
PHYSICAL REVIEW E 99, 063003 (2019)

Emergent subharmonic band gaps in nonlinear locally resonant metamaterials induced by
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With the aim of developing high-performance locally resonant metamaterials, the effect of nonlinear
hyperelastic interactions between a rubberlike elastomeric local resonator and the host matrix is investigated.
The results reveal a new emergent physical phenomenon not previously reported within the framework of
elastoacoustic metamaterials: The appearance of a half subharmonic attenuation zone complementing the local
resonance band gap around the fundamental frequency. Evidence of the emergent attenuation zone is provided
by direct numerical simulations as well as semianalytical developments via the method of multiple scales. The
analyses demonstrate that, in the considered nonlinear locally resonant metamaterial, the combined effects of
autoparametric and local resonance induce saturation of the primary wave at certain conditions and, subsequently,
promote energy exchange from a primary propagating wave to an evanescent subharmonic wave, giving rise
to an additional attenuation zone. This opens new possibilities for the design of passive filtering devices for
elastoacoustic waves.
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I. INTRODUCTION

The interest in metamaterials originates from the challenge
for designing a new generation of materials with superior
properties, not found in nature. In mechanics, the features
promoted by metamaterials are, in general, associated to neg-
ative mass, elastic (bulk, longitudinal, and/or shear) moduli
or Poisson’s ratio effects [1–3]. These negative effective prop-
erties attained by dynamical metamaterials are in many cases
triggered by localized resonances and the associated strongly
dispersive behavior. The most extraordinary feature of locally
resonant metamaterials is the subwavelength size of their unit
cells, which allows to break through the traditional limits
in wave focusing and imaging, and in the size of structures
promoting sound insulation [4].

Recently, the effect of nonlinearities in metamaterials has
received great attention. Nevertheless, in most of the works
dealing with nonlinearity, the considered metamaterials do not
include locally resonant units. Instead, phononic structures
involving nonlinear interactions are widely explored, both
from the fundamental and applied viewpoints. In general,
nonlinear interactions involve either cubic and/or quartic
potentials, such as the famous Fermi-Pasta-Ulam-Tsingou
(FPUT) problem [5,6], or more complex models such as the
Hertz interaction law in granular materials [7–10]. Recent
studies on FPUT-type phononic lattices focused mainly on
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weakly nonlinear interactions and the effect of nonlinearity on
the dispersion relations [11–16]. In these papers, it was shown
that nonlinearity induces amplitude-dependent dispersion and
group velocity, i.e., demonstrating the tunability potential of
nonlinear phononic structures. By making use of this feature,
new functionalities have been proposed, such as mechanical
switches and logic gates [17], acoustic diodes [18], and acous-
tic rectifiers [19]. In granular materials, the effect of highly
nonlinear interactions has been shown to induce solitary wave
propagation [20,21] and discrete breathers [22].

The interaction between nonlinearity and the local reso-
nance phenomenon, i.e., at the level of the local coupling
between the host and the local resonator, has been much
less explored. Within the nonlinear dynamics community,
several works have addressed the irreversible energy transfer
mechanisms induced by a single purely nonlinear attachment,
the so-called nonlinear energy sinks [23–25]. However, so
far, very few works have considered cases in which nonlinear
resonant attachments are densely or periodically distributed in
a host material in a similar fashion as done in linear locally
resonant acoustic metamaterials. Within the framework of
acoustic metamaterials, Lazarov and Jensen [26] have used
the harmonic balance method to investigate the amplitude
dependence of the locally resonant band gap in a discrete
lattice system including cubic interaction between the local
resonators and the main chain atoms. The effect of both
softening and stiffening (also known as hardening) cubic
nonlinearity on the amplitude-dependent dispersion behavior
of the nonlinear locally resonant lattice metamaterial has
been addressed by Manimala and Sun [27]. The potential
functionality of these materials as selective filters has thereby
been demonstrated. Other recent publications [28–30] have
further investigated similar lattice structures and showed that
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bifurcations induced by the local resonance mechanism may
induce chaotic bands and influence the attenuation bandwidth.

The present paper shows that multiple attenuation zones
can emerge in a nonlinear locally resonant metamaterial,
thus promoting novel opportunities for wave manipulation. In
particular, the emergence of subharmonic attenuation zones in
locally resonant metamaterials is shown to be induced by non-
linear energy conversion. Energy exchange between propagat-
ing wave modes is well known in nonlinear wave dynamics.
It originates from the nonlinear terms driving the linear waves
resonantly and giving rise to energy transfer between them
[31]. Rushchitscky et al. [32,33] demonstrated nonlinear wave
interactions in a nonlinear material described by the Mur-
nagham potential. Recently, nonlinear wave interactions in
quadratic, cubic, and quadratic-cubic phononic lattices were
investigated with the aim of allowing advanced manipulation
of wave propagation in metamaterials [13,34,35]. By making
use of second-harmonic generation, Guo et al. [36] designed
a nonlinear metasurface with unusual reflection effects. The
novelty of the present work consists in the discovered effect
that wave interactions between propagating and evanescent
waves may also occur induced by nonlinear local interactions
in metamaterials, which constitutes a new mechanism for wave
mitigation and control.

The metamaterial design under consideration here is a dis-
crete version of the locally resonant metamaterial proposed by
Liu et al. [37]. The key feature of the present model is the in-
corporation of a neo-Hookean nonlinear behavior, exhibiting
pronounced nonlinear tension-compression asymmetry, rep-
resentative of elastomeric rubber-coated inclusions [38,39]. It
should be pointed out that the present work is fundamentally
different from other publications [40–42] on soft elastomeric
metamaterials, where wave tailoring is achieved by induced
geometrical modifications during wave propagation, e.g., as a
result of buckling [42], or from the recent work by Konarski
et al. [43] in which a frequency-dependent effective medium
theory for locally resonant metamaterials with hyperelastic
inclusions and embedded mechanical instabilities has been
derived. Although the asymmetric nonlinear constitutive be-
havior of inclusions was considered, the interest there was in
investigating second-harmonic generation and the metamate-
rial response in multiple frequency regimes, i.e., from low to
high frequencies.

The paper is organized as follows. In the first part, Sec. II,
the mechanical model system under consideration is presented
together with the results obtained by direct numerical simula-
tions. These results suggest the emergence of a subharmonic
attenuation zone and its characteristics are underlined. In
the second part, Sec. III, semianalytical solutions based on

the method of multiple scales are derived using an approx-
imate quadratic nonlinear local interaction model. Results
for the elastomeric and approximate quadratic metamateri-
als are compared. In Sec. IV, the analytical expressions for
the quadratic metamaterial model are used to unravel the
underlying physical phenomenon explaining the emergent
subharmonic attenuation zone.

II. MECHANICAL MODEL SYSTEM OF A
HYPERELASTIC LOCALLY RESONANT METAMATERIAL

The mechanical model system considered throughout the
paper is based on a discrete analog of the three-dimensional
(3D) structure originally proposed by Liu et al. [37] to demon-
strate the local resonance mechanism, shown in Fig. 1(a).
The unit cell consists of a linear matrix (host medium) with
density ρ, containing an inclusion with density ρo covered by
a thick compliant coating layer which can potentially behave
nonlinearly. Restricting attention to longitudinal waves prop-
agating along one of the principal directions, and assuming
that the wavelength is much larger than the unit cell size, the
simplified discrete analog model system is shown in Fig. 1(b).
In this model system, a unit cell is represented by a discrete
main chain mass m, given by ρV , where V is the volume
of the matrix material, connected to a local mass mo, equal
to ρoVo, with Vo being the volume of the heavy inclusion.
The interaction between the unit cells is described by a linear
spring of stiffness k, which is proportional to the matrix elastic
modulus and, possibly, viscous damping c. Considering that
the density and volume of the inclusion are much larger than
those of the compliant rubber layer, the interaction between
the main chain mass m and the local mass mo within the
unit cell is described by a massless dash-pot with damping co

and an elastic interaction force fo, resulting from the parallel
connection between a connected massless linear spring with
stiffness ko, which is proportional to the equivalent Young’s
modulus of a neo-Hookean solid in uniaxial extension, and a
nonlinear massless spring with force function fNL.

For an arbitrary unit cell j, with j = 1, . . . , ncell, ncell ∈ Z
being the number of unit cells, the nondimensional equations
of motion in terms of the nondimensional absolute displace-
ments ū j = u j/uref and v̄ j = v j/uref of the main chain and the
local masses, respectively, at unit cell j and at neighboring
unit cells j − 1 and j + 1 are given by:

M ¨̄uj +
1∑

n=−1

(−1)nCn ˙̄uj+n +
1∑

n=−1

(−1)nKnūj+n = −f̄NL, (1)

where

M =
[

1 0
0 β

]
, C0 = ω̄m

[
(4ζm + 2

√
αβζo) −2

√
αβζo

−2
√

αβζo 2
√

αβζo

]
, K0 = ω̄2

m

[
2 + α −α

−α α

]
,

K−1,1 = ω̄2
m

[
1 0
0 0

]
, C−1,1 = ω̄m

[
2ζm 0
0 0

]
, f̄NL = 1

fref
fNL(q j )

[−1
1

]
, ū j+n =

[
ū j+n

v̄ j+n

]
, with fref = muref

t2
ref

,

in terms of reference displacement, time, and force val-
ues, uref, tref and fref, respectively, and the nondimensional

parameters: mass ratio β = mo/m, linear stiffness ratio α =
ko/k, angular frequency ω̄m = tref

√
k/m, and the damping
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FIG. 1. Metamaterial model with nonlinear local resonators: (a) three-dimensional Liu’s model and its corresponding unit cell and (b) 1D
discrete analog and its corresponding unit cell.

ratios ζm = c/(2
√

km) and ζo = co/(2
√

komo), relative to the
main chain and oscillator, respectively; f̄NL is a nondimen-
sional force function in terms of q j = v j − u j , i.e., the relative
motion between the local and main chain masses. The non-
linear force results from the nonlinear constitutive material
model, which will be further introduced in Sec. II A.

A. Nonlinear material model

The effect of nonlinearity on the local resonance phe-
nomenon in the periodic chain will be investigated and com-
pared with the classical linear local interaction. Since this
work aims to incorporate the nonlinear stress-strain relation
representative of rubberlike materials, commonly neglected in
wave propagation analyses of metamaterials, one of the basic
elastomer material models will be used, i.e., the hyperelastic
incompressible neo-Hookean material model. The constitutive
relation for a one-dimensional incompressible neo-Hookean
material under uniaxial tension-compression is given by [44]:

σ = 2C

(
λ − 1

λ2

)
, (2)

where σ is the nominal, or engineering, stress and λ the
stretch ratio given by λ = L/L0 = (L0 + q)/L0, with L and
L0 being the deformed and undeformed lengths, respectively;
C is a material constant, which for an incompressible neo-
Hookean solid at small strains is related to Young’s modulus
Eo and Lamé’s constant μo as C = (1/6)Eo = (1/2)μo. This
constitutive relation enters the equations of motion (1) of the
discrete locally resonant structure as a nonlinear interaction

force fNL = fNH, which can be written as a function of the
relative displacement q of the local resonator, as follows:

fNH = koL0

3

(
λ − 1

λ2

)
= koL0

3

[
1 + q

L0
− L2

0

(L0 + q)2

]
, (3)

where ko = 6CA0/L0 with A0 being the reference cross section
over which the interaction force is applied.

The total local interaction force between the main chain
mass and the attached local oscillator (consisting of linear and
nonlinear springs in parallel) is given by:

fo(q j ) = koq j + fNL(q j ). (4)

Inserting a Taylor’s series expansion of the nonlinear forcing
term (presented subsequently in Sec. III) in Eq. (4) shows that
the equivalent linear stiffness of the locally resonant unit is 2ko

and the equivalent linear resonance frequency of the oscillator
is ωR = √

2ko/mo or in dimensionless form ω̄R = ωRtref. In
Fig. 2, the normalized neo-Hookean force-elongation relation
[ fo/(koL0) = (λ − 1) + fNH/(koL0) vs λ] is plotted together
with the corresponding linear model and the approximate
quadratic model (to be used for the analytical solution in
Sec. III). Note its asymmetric tension-compression behavior
typical of elastomeric materials: Indeed, it exhibits a decrease
in the tangent stiffness modulus in tension, hereafter referred
to as “softening,” and an increase in tangent stiffness modulus
in compression, hereafter referred to as “stiffening.”
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FIG. 2. Force-elongation relation for the neo-Hookean material
and its linear and quadratic approximations.

B. Numerical model

The dynamic behavior of the metamaterial with nonlinear
local resonators is first investigated via direct numerical simu-
lations. A sufficiently long chain is considered for this purpose
to eliminate finite-size effects. This choice is dictated by the
fact that the highly nonlinear behavior of the local resonators
prevents the direct application of Bloch’s theorem [45] (which
would reduce the analysis of an infinite periodic system to a
single unit cell only).

The numerical model of the system under consideration
consists of two 1D discrete chains connected through a central
excited unit cell, as shown in Fig. 3. The chains on the left and
right sides are each composed of ncell locally resonant unit
cells of the type shown in Fig. 1. The total number of locally
resonant unit cells in this system is 2ncell + 1. A prescribed
harmonic displacement, in the form:

ūe(τ ) = εûe cos(�̄τ + φ), (5)

is applied to the main chain mass of the central unit cell
at position j = 0. In (5), ε � 1 is a small nondimensional
parameter, ûe is the nondimensional amplitude scaled to be
of order O(1), τ = t/tref is the nondimensional time variable,
�̄ = �tref is the nondimensional input angular frequency,
and φ the phase angle. Note that for each simulation the
harmonic displacement excitation at a fixed frequency has

been prescribed for a sufficiently long time interval to capture
long timescale effects, and no frequency sweep response has
been studied in this work. On the left and right ends, the
chain is connected to fixed nodes by means of linear springs
and dash-pots with a critical damping value ccr = 2

√
km.

The default values for the nondimensional material and ge-
ometrical parameters used in the numerical simulations are
as follows: ω̄m = 1, α = 2.5 × 10−5, β = 0.1, ζm = 0, and
ζo = 0.05. Then, by considering appropriate reference values
the link to (any) real material can be made. The number of
unit cells in the left and right chains is ncell = 5000. Hence,
the total number of degrees of freedom in the system amounts
to 2 × (2ncell + 1) = 20 002. The ordinary differential equa-
tions (1) describing the momentum balance of this system
are integrated numerically using an explicit time integration
method, i.e., the fourth-order Runge-Kutta method (ODE45,
MATLAB). The total integration time is 5000 dimensionless
time units. A constant time step of 0.10 is used in order to
ease the fast Fourier transform (FFT) during postprocessing
for the investigation of the frequency spectrum of the system
response.

C. Evidence of an emergent phenomenon

Periodic structures with linear locally resonant units are
characterized by the appearance of an attenuation frequency
zone in which waves do not propagate or are highly evanes-
cent, i.e., a band gap [1,3,46]. The negative effective dynamic
mass [47] is the mechanism that drives the formation of such
an attenuation zone in structures exhibiting dipolar resonance.
For a linear locally resonant metamaterial, the band gap
occurs around ω̄R, or �̄/ω̄R = 1, i.e., the resonance frequency
of the oscillator, whereby the band gap width is independent
of the amplitude of the applied excitation.

First, as a reference, numerical simulations for wave propa-
gation in a linear locally resonant metamaterial are performed.
Normalized and scaled input amplitudes ûe = [1, 3, 5] are
applied, as given in Eq. (5). In Fig. 4(a), the results of the
numerical simulations are presented in terms of the displace-
ment transmissibility evaluated in a root mean square (RMS)
sense, i.e., the ratio between the RMS amplitude values of
the displacement averaged over a number of periods (at least
7, at the lowest frequency of excitation, and at most 84, at
the highest frequency of excitation) evaluated at the main
chain masses located at cell 1000 and cell 0 (reference value).
Transmissibility is calculated for a number of normalized

FIG. 3. Sketch of the discrete chain model used in the numerical simulations.
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FIG. 4. Transmissibility of the metamaterial chain evaluated after 1000 unit cells for various normalized input displacements ûe = [1, 3, 5]
for ε = 0.1 in (5): (a) linear local resonator [ fNL(qj ) = koq j] and (b) neo-Hookean local resonator [ fNL(qj ) = fNH(qj ), Eq. (3)]. In (b), dashed
lines indicate width of attenuation zones for ûe = 5.

input frequencies �̄/ω̄R between 0 and 4. As expected, the
results for the linear case are amplitude independent and
consistent with the analytical predictions of the attenuation
zone around �̄/ω̄R ≈ 1.

Next, the chain with the neo-Hookean local interaction, as
expressed in Eq. (3), is evaluated. The results of the numerical
simulations in terms of RMS displacement transmissibility
are shown in Fig. 4(b). The locally resonant band gap around
�̄ ≈ 1 is still present independently of the value of the input
displacement amplitude. However, in contrast to the linear
case, three marked differences emerge:

(1) the level of displacement attenuation slightly decreases
with the increase of the input displacement amplitude;

(2) the band gap slightly shifts to the right (i.e., to higher
frequencies) with increasing input amplitude;

(3) a second attenuation zone emerges around �̄/ω̄R ≈ 2
for higher excitation amplitudes.

The first observation is an inherent feature of a nonlinear
system, periodic or not, i.e., revealing an amplitude-dependent
response. The second observation is also a consequence of the
amplitude-dependent behavior, but it is due to the competition

between “softening”-“stiffening” in the tension-compression
behavior. In a chain with positive cubic nonlinear local inter-
action, the “stiffening” effect in both tension and compression
has previously been shown to induce a shift of the band
gap position toward higher frequencies [26]. In the case of
asymmetric neo-Hookean local interaction, both “stiffening”
and “softening” effects are present (see Fig. 2). In Figs. 5(a)
and 5(b), the response of the local oscillators through the
chain as a function of the excitation frequency is shown for
both linear and nonlinear local interactions, respectively. In
these figures, the response of the local oscillators is obtained
by quantifying the oscillator amplification, i.e., the average
peak-to-peak response of the local oscillators normalized by
the peak-to-peak input amplitude. In the linear case, Fig. 5(a),
the amplification peaks occur at the local resonance frequency,
while, in the nonlinear case, Fig. 5(b), the amplification peaks
vary along the chain and occur at frequencies above the local
resonance one, following a stiffening backbone trend. This
explains the shift in the band gap position toward higher
frequencies with an increase of the input amplitude in the
transmission plots in Fig. 4(b). Indeed, Fig. 5(b) shows that,

FIG. 5. Averaged peak-to-peak response of local oscillators in the metamaterial normalized by the peak-to-peak input amplitude for ûe = 5
and ε = 0.1 in (5): (a) linear local resonator [ fNL(qj ) = koq j] and (b) neo-Hookean local resonator [ fNL(qj ) = fNH(qj ), Eq. (3)]. In (b), dashed
lines indicate the width of the backbone behavior.
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(a) (b)

FIG. 6. Map of total energy evolution in time for several unit cells along the locally resonant metamaterial, with neo-Hookean interaction
for (a) ûe = 1 and (b) ûe = 5.

due to the nonlinearity, the response of each local resonator
follows a backbone curve, whose maximum amplification,
as well as the associated frequency, decrease further away
from the excitation. This is because the wave attenuates while
it propagates due to damping and local resonance effects.
Notice that the width of the first and second attenuation zones,
indicated by the dashed lines in Fig. 4(b), are associated with
the width of the backbone behavior, indicated by the dashed
lines in Fig. 5(b).

To the best of the authors’ knowledge, the third, emer-
gent, phenomenon has not yet been reported in the literature.
Therefore, in the remainder of this paper, the focus will be
on the second attenuation zone. Indeed, additional simulations
(not presented here) revealed that the emergent phenomenon
occurs regardless of the damping value. Since the focus of
this paper is on the mechanism responsible for the emergence
of the second attenuation zone, a parametric analysis of the
phenomenon is outside the present scope. More insight in
the characteristics of this attenuation zone can be obtained
by analyzing the numerical results for a single excitation
frequency in the time domain as well as in the frequency
domain, i.e., after applying the FFT to the time signature.

Space-time maps of instantaneous total energy at several
unit cells of the nonlinear locally resonant metamaterial ex-
cited at �̄/ω̄R = 2.47 are plotted in Fig. 6. For low excitation
amplitudes, i.e., when the emergent second attenuation zone
does not occur, as for instance for ûe = 1, energy propa-
gates with approximately constant velocity. In Fig. 6(b), the
space-time map shows the evolution of the instantaneous total
energy for ûe = 5, for which the second transmission dip
was observed around this frequency. A space-time attenuation
zone can be clearly identified as denoted by the letter A.
Notice that it occurs after a transient propagative regime
and far away from the excitation. The propagative regime,
identified as P, corresponds to an initial transient state. This
regime is followed by a second regime of intense vibration and
slower wave propagation, denoted as S. The envelope of this
zone shows a decreasing velocity profile, as depicted in Fig. 6.

Further insights regarding the dynamics in zone S that will
lead to attenuation far away from the excitation point are
provided in Fig. 7, where the responses of the main chain
mass and the local oscillator at unit cell 1, within zone S,
are compared. The analysis is performed after sufficiently
long time to avoid transient effects. In Fig. 7(a), notice that
the local oscillator shows a higher amplitude of oscillation
compared to the main chain mass. The Fourier transform of
the computed time data as τ → ∞ [Fig. 7(b)] shows that the
highest harmonic amplitude for the local resonator occurs at
the one-half subharmonic of the primary input frequency, i.e.,
at 1/2 �̄. The response of the local resonator also shows an
important dc (static) component and smaller contributions of
other harmonics. The dominant frequency of the main chain
oscillation, on the other hand, still corresponds to the primary
input frequency �̄/ω̄R � 2. A smaller amplitude contribution
is observed in the main chain at 1/2 �̄. In the following
sections, these observations are used to develop an approx-
imate semianalytical model, with the aim of unraveling the
mechanism underlying the second attenuation zone formation
and the role of the nonlinear local interaction of neo-Hookean
type.

III. SEMIANALYTICAL ANALYSIS OF QUADRATIC
LOCALLY RESONANT METAMATERIAL

In this section, a perturbation method, the method of multi-
ple scales [48], is used to shed light on the dynamical behavior
of the nonlinear locally resonant metamaterial considered
in this paper with the main goal to clarify the mechanism
underlying the emergent second attenuation zone.

Perturbation methods consist in obtaining the response
of a nonlinear system by perturbing the response of the
corresponding linear system. Following the general procedure
of perturbation methods, the local interaction force fo given
by Eq. (4) is expanded in a Taylor series about a static
equilibrium position. Assuming no static prestretch, the static
equilibrium position corresponds to λ → 1 or q → 0. Then,
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FIG. 7. (a) Time and (b) frequency domain responses at cell 1 for a metamaterial with neo-Hookean local interaction computed via direct
numerical simulations for ûe = 5, �̄/ω̄R = 2.47; with Û being the amplitude of harmonics of the response.

Taylor’s series expansion of the nonlinear interaction force
gives:

fNH ≈ ko

[
(λ − 1)L0 − (λ − 1)2L0 + 4

3
(λ − 1)3L0 + · · ·

]
,

fNH ≈ koq − 1

L0
koq2 + 4

3L2
0

koq3 + · · · , (6)

which approximates a linear function with stiffness ko (a
property well known for the neo-Hookean model). In this
case, the approximation up to order q3

j of the local interaction
(4), with the nonlinear neo-Hookean model and a linear spring
parallel to it, is given by:

fo(q j ) = ko
(
γ1q j + γ2q2

j

) + O
(
q3

j

)
, (7)

with γ1 = 2 and γ2 = −1/L0, following from the Taylor’s
series expansion in Eq. (6). Then, in accordance with the
equivalent linear stiffness shown in Sec. II A, the equivalent
linear resonance frequency of the oscillator is ωR = √

2ko/mo.
The nondimensional form of the quadratic approximation
(truncated after the second term) of the neo-Hookean inter-
action is plotted in Fig. 2.

Without loss of generality, the forced wave propagation
problem to be solved via the method of multiple scales is given
in nondimensional form by:

M¨̄uj +
1∑

n=−1

(−1)nCn ˙̄uj+n +
1∑

n=−1

(−1)nKnūj+n + f̄NL(qj) = 0,

subject to
boundary condition: ū0(τ ) = ūe(τ ),
initial conditions: ū j (0) = 0, ˙̄u j (0) = 0,

(8)

where ūe(τ ) is the harmonic displacement applied at j = 0,

f̄NL(q j ) = 1

fref
γ2koq2

j

[−1
1

]
= γ̄2ω̄

2
Rq̄2

j

[−1
1

]
,

with γ̄2 = γ2uref = −uref/L0, and matrices M, Cn, and Kn are
given in Eq. (1).

The method of multiple scales seeks for a solution of the
nonlinear dynamical problem in the form of a spatially and
temporally uniformly valid solution through an asymptotic
expansion. In the case of forced wave propagation problems,

multiple time and space scales should be considered [49]. For
first-order approximated solutions, these scales are defined as:

T0 = τ, T1 = ετ, (9a)

X0 = j, X1 = ε j, (9b)

where ε � 1 is a small scale separation parameter which
makes each time (respectively, space) scale slower (respec-
tively, longer) than its predecessor. Then, the displacement
solution for an arbitrary unit cell j (ū j) can be expressed by
an asymptotic expansion of the form:

ū j � [
εû(0)

j + ε2û(1)
j + · · · ], (10)

where û(n)
j = û(n)

j (X0, X1, T0, T1) is the normalized displace-
ment at the order n.

Thus, within the framework of the method of multiple
scales, the approximate solution to the forced wave propaga-
tion problem requires the solution of an initial boundary value
problem at each order of perturbation (see Ref. [49] for further
details).

The numerical results shown in Fig. 7 suggest interactions
between the excitation frequency (i.e., the primary frequency)
and its half subharmonic (or secondary frequency), within the
local resonance band gap. Indeed, the analytical analysis of
the forced harmonic response of a local resonance metama-
terial demonstrates that the local resonant mode is excited in
the transient regime. Thus, at the first-order of perturbation,
we assume that the localized excitation (boundary condition)
is given by a time-harmonic displacement applied at j = 0 of
the form:

ūe(τ ) = εûe(τ ) = ε(Ûeeiω̄pτ+φep + εÛeeiω̄sτ+φes ). (11)

where i is the imaginary unit, the primary frequency corre-
sponds to the angular frequency of excitation, i.e., ω̄p ≡ �̄,
ω̄s is the secondary frequency, Ûe is the magnitude of the
excitation, and φep and φes are, respectively, the phases of the
primary and secondary harmonics. Note that the amplitude
of the secondary harmonic is taken much smaller than the
primary one. Accordingly, the zeroth-order solution û(0)

j in
Eq. (10) is given by a superposition of the wave modes as-
sociated with the primary and secondary angular frequencies
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FIG. 8. Dispersion relation for the approximate linear undamped
locally resonant metamaterial depicting the wave modes selected for
the wave-wave interaction analysis. Parameters of the model system:
β = 0.1, σp = 0.5 ω̄R, σs = 0.25 ω̄R.

as follows:

û(0)
j = Û (p)(X1, T1)�pei(ω̄pT0−μpX0 )︸ ︷︷ ︸

û(0,p)
j

+ Û (s)(X1, T1)�se
i(ω̄sT0−μsX0 )︸ ︷︷ ︸

û(0,s)
j

+c.c., (12)

where �p and �s are the vectors of wave mode shapes
corresponding to the linear primary (ω̄p, μp) and secondary
(or subharmonic) (ω̄s, μs) waves, respectively, with μp and
μs the corresponding nondimensional wave numbers, and c.c.
stands for the complex conjugate.

Herein, we consider the primary wave mode (ω̄p, μp) in-
duced by the excitation located on the high-frequency acoustic
branch of the corresponding linear metamaterial and its angu-
lar frequency satisfies a 2:1 relation with respect to the linear
locally resonance frequency, i.e.,

ω̄p = 2ω̄R + εσp, (13)

where σp is a primary frequency detuning parameter.
Consequently, the half subharmonic frequency might be

related to the local resonance frequency by

ω̄s = ω̄R + εσs, (14)

with σs > 0 being a subharmonic frequency detuning param-
eter. Due to the proximity to the local resonance frequency,

a subharmonic wave mode (ω̄s, μs) of evanescent nature can
be induced. For the purpose of illustration, the dispersion di-
agram of the corresponding linear metamaterial depicting the
primary propagating wave mode and an associated evanescent
subharmonic wave mode is shown in Fig. 8. The primary
and subharmonic wave modes to be considered within the
multiple scales framework correspond to those of the approx-
imate linear metamaterial. Therefore, the relation between the
corresponding frequency and wave number is given by:

μi = arccos

[
1 − 1

2

ω̄2
i

ω̄2
m

ω̄2
i − (β + 1)ω̄2

R

ω̄2
i − ω̄2

R

]
, with i = {s, p}.

(15)
From Eqs. (13), (14), and (15), a closed-form relation for
the analogous wave-number detuning parameters can be ex-
pressed in terms of the angular frequencies, providing the
corresponding dispersion relations for the approximate linear
metamaterial.

Following the multiple scales analysis for forced wave
propagation problems as described by Silva et al. [49], a
set of 1D advection-reaction equations with nonlinear source
(reaction) term describing the slow and long wave modulation
of the zeroth-order solution is obtained as follows:

∂Û (p)

∂T1
− νp

∂Û (p)

∂X1
= −ĉpÛ

(p) − αpe−σμi X1 [Û (s)]2,

(16a)

∂Û (s)

∂T1
− i sgn νs|νs|∂Û (s)

∂X1
= −ĉsÛ

(s) − αsÛ
(p)Û (s)∗, (16b)

where σμi = ε−1Im(−2μs). In terms of real coefficients, this
system of advection-reaction equations can be written in
matrix form as:(

∂

∂T1
− V

∂

∂X1

)
â = −Qâ − q̂NL,

subject to
initial conditions: â(X1, 0) = 0,

boundary conditions: â(0, T1) =

⎡
⎢⎢⎣

Ûe cos(φep )
Ûe sin(φep )
εÛe cos(φes )
εÛe sin(φes )

⎤
⎥⎥⎦,

(17)

where

â =

⎡
⎢⎢⎢⎢⎣

Û (p)
R

Û (p)
I

Û (s)
R

Û (s)
I

⎤
⎥⎥⎥⎥⎦, V =

⎡
⎢⎢⎢⎣

νp 0 0 0

0 νp 0 0

0 0 0 − sgn(νs)|νs|
0 0 sgn(νs)|νs| 0

⎤
⎥⎥⎥⎦, Q =

⎡
⎢⎢⎢⎣

ĉp 0 0 0

0 ĉp 0 0

0 0 ĉs 0

0 0 0 ĉs

⎤
⎥⎥⎥⎦,

q̂NL =

⎛
⎜⎜⎜⎜⎝

+αpe−σμi X1
{[

Û (s)2
R − Û (s)2

I

]
sin θ − 2Û (s)

R Û (s)
I cos θ

}
,

+αpe−σμi X1
{[

Û (s)2
R − Û (s)2

I

]
cos θ + 2Û (s)

R Û (s)
I sin θ

}
+αs

{[
Û (p)

R Û (s)
I − Û (p)

I Û (s)
R

]
cos θ − [

Û (p)
R Û (s)

R + Û (p)
I Û (s)

I

]
sin θ

}
+αs

{[
Û (p)

R Û (s)
R + Û (p)

I Û (s)
I

]
cos θ + [

Û (p)
I Û (s)

R − Û (p)
R Û (s)

I

]
sin θ

}

⎞
⎟⎟⎟⎟⎠,
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with V and Q being the nondimensional advection and damp-
ing matrices, respectively, and q̂NL the nonhomogeneous non-
linear vector. Herein, ĉr and αr are, respectively, the damping
and nonlinear interaction coefficients relative to the primary
(r = p) and secondary (or subharmonic) (r = s) wave mod-
ulations; νp is the velocity of the envelope of the primary
wave; νs is the purely complex velocity of the envelope over
the evanescent secondary wave, which means that for the
evanescent wave there is no pure convection but a phase
change under convection; Û (r)

R and Û (r)
I are, respectively,

the real and imaginary parts of the complex amplitude Û (r)

relative to the primary (r = p) and secondary (r = s) wave
modulations; and θ = (σp − 2σs)T1 − ε−1μpX1.

Semianalytical results

In this section, we investigate the numerical solutions to the
set of advection-reaction equations [Eq. (17)], which resulted
from the consideration of multiple time and space scales in
the dynamic resonance of the approximate quadratic locally
resonant metamaterial. The 1D advection-reaction equations
involve first-order derivatives in space and in time. Since the
advection-reaction problem involves a positive real velocity
νp, the backward finite difference scheme is used for space
discretization. On application of the boundary conditions, the
resulting nonlinear initial value problem consists of a set
of first-order differential equations solved using the implicit
Euler integration scheme coupled with the Newton-Raphson
method.

In what follows, we analyze results from the semianalytical
model, assuming uref = L0 such that γ̄2 = −1, for primary
and secondary waves with frequencies ω̄p = 2 ω̄s = 2.05 ω̄R,
i.e., ω̄s is located within the local resonance band gap and
ω̄p is located on the high-frequency acoustic branch of the
dispersion diagram of the linear metamaterial, as depicted in
Fig. 8; the frequency detuning parameters are σp = 0.5 ω̄R,
σs = 0.25 ω̄R. The system is considered initially at rest, and
excited in the middle node, at j = 0, at the primary frequency
ω̄p with amplitude Ûe. A residual excitation at the secondary
frequency with amplitude Û (s) = εÛe is considered to enable
the nonlinear wave-wave interaction. Indeed, due to the local-
ized nature of the excitation and the nonlinearity, a residual
excitation at the secondary frequency might occur.

The slow-long wave modulations of the primary wave in
space and time for two excitation amplitudes Ûe = {0.5, 1.5}
are depicted in Fig. 9. For the lower amplitude of excitation,
propagation of the primary wave is observed with the ampli-
tude of the same order as the excitation amplitude close to the
boundary and slowly decaying away from the excitation point
for the entire simulation time. This is in accordance with the
numerical results for the elastomeric locally resonant metama-
terial, which exhibit high transmissibility (near to the unity)
for low amplitudes of excitation and excitation frequencies
outside the local resonance band gap (see Fig. 4). However, for
the larger amplitude, Ûe = 1.5, results from the semianalytical
model show that the propagation at the level of the excitation
amplitude is sustained only for a short interval of time, after
which, the amplitude of the propagative primary wave decays
considerably. On the contrary, the secondary wave response
increases with the excitation amplitude [compare Figs. 9(b)

and 9(d), and note the difference in the scales], but its effect is
confined to the near-field only.

In Fig. 10, the evolution of the total energy for several unit
cells is reconstituted from the semianalytical results for Ûe =
0.5 and Ûe = 1.5. As expected, for the lower amplitude of
excitation, wave propagation with velocity ν ≈ 1 is observed
for the entire simulation time, while for the higher excitation
amplitude, the propagation with ν ≈ 1 occurs for limited time,
after which only near-field excitation with very slow wave
velocity is observed. Thus, for large-enough excitation and
as τ → +∞, the response of the quadratic metamaterial is
strongly attenuated, in accordance with the transmissibility re-
sults for the neo-Hookean locally resonant metamaterial. The
difference between the numerical results for the elastomeric
metamaterial (Fig. 6) and those obtained via the method
of multiple scales for the simplified quadratic metamaterial
model is in the spatial extent of zone S, where the response
is dominated by the subharmonic wave mode. Despite that
difference, the simplified semianalytical quadratic nonlinear
model is able to capture the phenomenon observed previously
for the more complex nonlinear interaction.

For four spatial positions along the chain (X0 =
{10, 100, 200, 300}), the time signatures of the primary and
secondary wave modulations are shown in Fig. 11. For the
lower amplitude of excitation, Ûe = 0.5, the amplitude of the
primary wave mode grows smoothly with time till the steady-
state amplitude is reached. Similar behavior is observed for
the secondary wave. However, the subharmonic modulation
amplitudes grow slower with time and reach considerably
lower steady-state values. For the higher amplitude of excita-
tion Ûe = 1.5 [Fig. 10(b)], a transient regime with high modu-
lation amplitude occurs for the primary wave, after which the
primary wave amplitude decreases until a steady-state value
is reached. It is remarkable, especially in the near field, that
while the primary wave amplitude decreases, the secondary
wave amplitude increases. The cause for this is the energy
exchange taking place between the primary and the secondary
wave modes.

To investigate the energy exchange phenomenon over a
range of excitation amplitudes, the steady-state amplitudes
of the wave modes (ω̄s, μs) and (ω̄p, μp), i.e., limτ→∞ Û (p)

and limτ→∞ Û (s), for sufficiently long time τ → +∞, are
evaluated for a range of excitation amplitudes Ûe and shown
in Fig. 12 for several positions along the metamaterial. Close
enough to the excitation, i.e., X0 = 10 [Fig. 12(a)], and for low
excitation amplitudes, the system behaves as a linear one, i.e.,
the amplitudes of the primary and subharmonic wave modes
increase linearly with the excitation amplitude, with the sub-
harmonic growth rate much lower than the primary one, thus
the amplitude of the subharmonic wave mode remains much
smaller than the amplitude of the primary wave mode. Similar
linear behavior for low amplitudes of excitation is observed
for X0 = {100, 200, 300}. Indeed, due to the near-field fea-
ture of the subharmonic wave mode, far enough from the
excitation, i.e., for X0 = {200, 300}, the subharmonic wave
amplitude tends to zero. For all positions, the alteration of
wave-wave interaction is evident when the excitation ampli-
tude reaches a critical value, Û crit

e ≈ 0.6. For larger excitation
amplitudes and in the very near field, X0 = 10, the primary
wave mode amplitude reaches saturation Û (p) = Û (p)

sat , while
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(a) (b)

(c) (d)

FIG. 9. Slow time and long space evolution of the amplitudes, normalized by L0, of the primary [(a) and (c)] and subharmonic [(b) and
(d)] wave modes for several excitation amplitudes: [(a) and (b)] Ûe = 0.5, [(c) and (d)] Ûe = 1.5. Parameters of the model system: β = 0.1,
σp = 0.5 ω̄R, σs = 0.25 ω̄R, ĉo = 2 × 10−5, ĉ = 2 × 10−5.

the rate of the subharmonic wave amplitude growth with
excitation becomes larger and nonlinear. Close enough to
the excitation, the subharmonic wave amplitude may even
exceed the primary wave amplitude [see Fig. 12(a)]. Then,
as subharmonic wave motion becomes dominant over the
primary one, and due to the nature of the subharmonic wave
mode, energy is being transfered to the local oscillator.

IV. PHYSICAL INTERPRETATION: EMERGING
SUBHARMONIC ATTENUATION DRIVEN BY ENERGY

CONVERSION MECHANISM

Based on the above results, the second attenuation zone
observed in the numerical simulations of the elastomeric
metamaterial results from the energy exchange between the
interacting primary (ω̄p, μp) and subharmonic (ω̄s, μs) wave
modes due to the autoparametric resonance. Similarly to
the second-harmonic resonance condition, a 2:1 ratio between
the angular frequencies of the interacting wave modes is
required. However, from the above results, for interacting

waves of different natures, i.e., one being propagative and
the other one, evanescent, phase matching is not required.
Instead, the subharmonic frequency must be close enough to
the local resonance frequency, i.e., ω̄s ≈ ω̄R, thus inducing
evanescent behavior.

Rewriting Eq. (16) in terms of the wave components û(0,s)
j

and û(0,p)
j , it becomes

∂û(0,p)
j

∂T1
− νp

∂û(0,p)
j

∂X1
= −ĉpû(0,p)

j − αp
[
û(0,s)

j

]2
,

(18a)

∂û(0,s)
j

∂T1
− i sgn(νs)|νs|

∂û(0,s)
j

∂X1
= −ĉsû

(0,s)
j − αsû

(0,p)
j û(0,s)∗

j ,

(18b)

with νp, ĉp, ĉs, αp, αs > 0, sgn(νs) < 0. The asymmetric non-
linear coupling term û(0,p)

j û(0,s)∗
j appears in the evolution

equation (18b) for the subharmonic wave mode amplitude.
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(a) (b)

FIG. 10. Map of the total energy evolution with time for unit cells along the quadratic locally resonant metamaterial: (a) Ûe = 0.5 and
(b) Ûe = 1.5. Parameters of the model system: β = 0.1, σp = 0.5 ω̄R, σs = 0.25 ω̄R, ĉo = 2 × 10−5, ĉ = 2 × 10−5.

This corresponds to a parametric excitation of the subhar-
monic wave mode by the primary wave mode amplitude.
If the amplitude of the primary wave is large enough such
that the parametric interaction contribution can overcome the
losses in the subharmonic wave and the internal resonant
convective force, then the secondary wave amplitude may
grow. On the other hand, the dynamics of the primary wave
mode, Eq. (18a), might be affected by the subharmonic wave

FIG. 11. Time evolution of the primary Û (p) and subharmonic
Û (s) wave amplitudes evaluated at several positions along the meta-
material for: (a) Ûe = 0.5 and (b) Ûe = 1.5. Parameters of the model
system: β = 0.1, σp = 0.5 ω̄R, σs = 0.25 ω̄R, ĉo = 2 × 10−5, ĉ =
2 × 10−5.

mode due to the nonlinear term [û(0,s)
j ]

2
. Since this is not a

cross-coupling term, and the coefficient αp is positive, it can
be regarded as an external sink term. Thus, as the amplitude of
the secondary wave becomes sufficiently large, the nonlinear
term in (18a) contributes to the saturation of the primary wave
amplitude, stopping the linear amplification process. In the
literature, the internal resonance phenomenon has often been
used to promote energy exchange between propagating wave
modes [48] and the autoparametric resonance phenomenon
has typically been studied on finite systems involving few
degrees of freedom or even a single nonlinear oscillator,
such as mass-spring-pendulum systems and ship models [50].
Although the autoparametric resonance mechanism has been
used to design simple nonlinear vibration absorbers [51],
the role of this phenomenon in wave propagation and the
possibility of inducing multiple attenuation zones in periodic
systems has not been explored. In this paper, the focus has
been restricted to the one half subharmonic; however, it is
expected that similar attenuation zones may appear around
frequencies corresponding to other tongues of instability of
the Ince-Strutt diagram [52,53]. The conditions for stability
of these multiple attenuation zones induced by autoparametric
resonance are still unknown and will be the subject of future
investigation.

The underlying phenomenon observed in the elastomeric
metamaterial model and its approximate quadratic model
shows similarities with quenching [52] in nonlinear dynamical
oscillators, and the physics of optical parametric oscillator
networks. In summary, forcing a lattice with nonlinear oscilla-
tors at ω̄p ≈ 2 ω̄R with sufficiently high amplitude, the trivial
primary wave mode solution saturates and energy is trans-
ferred to the subharmonic wave mode. Due to the evanescent
nature of the subharmonic wave mode (ω̄s, μs), the motion
becomes localized in the oscillator, which is at resonance.
Therefore, the overall energy in the main chain is reduced,
giving rise to the subharmonic attenuation as demonstrated
numerically in Sec. II C.
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FIG. 12. Evolution of steady-state amplitudes of the primary [Û (p)] and subharmonic [Û (s)] waves as function of the excitation amplitude Ûe

for several positions along the quadratic locally resonant metamaterial: (a) X0 = 10, (b) X0 = 100, (c) X0 = 200, and (d) X0 = 300. Parameters
of the model system: β = 0.1, σp = 0.5 ω̄R, σs = 0.25 ω̄R, ĉo = 2 × 10−5, ĉ = 2 × 10−5.

V. CONCLUSIONS

In this paper, discrete locally resonant metamaterials with
nonlinear interaction between the local oscillator and the main
chain mass have been investigated. The aim was to explore
the effect of material nonlinearities of rubberlike materials,
described by the neo-Hookean material model, on the dynam-
ical behavior of metamaterials. Numerical simulations of a
neo-Hookean locally resonant metamaterial revealed that not
only the locally resonant band gap would be generated but
also a half subharmonic attenuation region emerges.

In order to unravel the formation mechanism of the sub-
harmonic attenuation zone, the dynamics of an approximate
nonlinear model system involving only quadratic nonlinearity
has been investigated using the method of multiple scales.
Results of these analyses showed that the autoparametric
resonance mechanism induced by the combination of the
local resonance and quadratic nonlinearity drives the energy
exchange between the primary wave mode (ω̄p, μp), excited
by the applied harmonic displacement, and a subharmonic
wave mode (ω̄s, μs) with ω̄s ≈ (1/2)ω̄p. Indeed, for suffi-
ciently high applied harmonic amplitudes, the solution with
the dominant primary wave mode response saturates and

energy exchange occurs. Since the subharmonic wave mode
has evanescent behavior due to local resonance, the energy
becomes localized in the local resonators and does not propa-
gate further, thus giving rise to a second attenuation zone. In
nonlinear dynamics, similar phenomenon is known as a 2:1
internal resonance or autoparametric resonance mechanism.
In nonlinear wave dynamics, however, to the best of our
knowledge, this phenomenon has not yet been demonstrated.
Within the wave framework, it requires the consideration of
the convective forces which does not play a role in the case of
a single resonator. Moreover, since it occurs between waves
of different nature, i.e., propagating and evanescent waves,
subharmonic attenuation zones in metamaterials can emerge.
This novel feature of nonlinear locally resonant metamaterials
has the potential to inspire new metamaterial designs as a
single local resonance may yield multiple attenuation zones.
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