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Application of atomic stress to compute heat flux via molecular dynamics for
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Although the computation of heat flux and thermal conductivity either via Fourier’s law or the Green-Kubo
relation has become a common task in molecular dynamics simulation, contributions of three-body and larger
many-body interactions have always proved problematic to compute. In recent years, due to the success when
applying to pressure tensor computation, atomic stress approximation has been widely used to calculate heat
flux, where the LAMMPS molecular dynamics package is the most prominent propagator. We demonstrated that
the atomic stress approximation, while adequate for obtaining pressure, produces erroneous results in the case of
heat flux when applied to systems with many-body interactions, such as angle, torsion, or improper potentials.
This also produces incorrect thermal conductivity values. To remedy this deficiency, by starting from a strict
formulation of heat flux with many-body interactions, we reworked the atomic stress definition which resulted in
only a simple modification. We modified the LAMMPS package accordingly to demonstrate that the new atomic
stress approximation produces excellent results close to that of a rigid formulation.
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Molecular dynamics simulation has been widely used
to investigate thermal transport properties of bulk materials
and nanostructures [1]. Common tasks are to investigate the
molecular-scale mechanism of heat transfer and to obtain ther-
mal conductivity, where two methodologies are mostly used:
nonequilibrium molecular dynamics (NEMD) that induces an
actual heat flow and equilibrium molecular dynamics (EMD),
which utilizes the equilibrium fluctuation of heat flux [2].
Although the computation of the system heat flux for pairwise
interactions is rather straightforward [3], having three-body
and larger many-body interactions or computing the local heat
flux inside a control volume has proved more challenging.
Nevertheless, several works have been published rigorously
dealing with heat flux computation in such situations [4–7].
Identical problems are faced when computing the pressure
tensor. While rigid formulation has been put forward for both
obtaining local pressure [8,9] and handling many-body inter-
actions [5,10–12], approximations using atomic stress have
also been applied with acceptable accuracy and a much greater
ease of implementation [13–15], which is also the case for
the widely used molecular dynamics package LAMMPS [16].
Owing to the similarity of pressure and heat flux formulation,
the same atomic stress approximation has been applied to
computing heat flux and thermal conductivity without any
rigid validation for either molecular dynamics systems con-
taining simple many-body interactions such as angle, torsion,
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or improper [17–26], or for more complex ones such as
Stillinger-Weber, Tersoff, or AIREBO potentials [26–46].

In this work, we will briefly discuss computation of the
local pressure tensor inside a control volume for many-body
interactions and the atomic stress approximation, most promi-
nently used by the current versions of the LAMMPS package
[16]. We will then show how the atomic stress approximation
is applied to heat flux computation, resulting in incorrect heat
flux values for three-body and larger many-body interactions.
To remedy this, a new atomic stress definition will be derived
in accordance to precise formulation of heat flux for many-
body interactions. Finally, it will be demonstrated via several
test simulations that the new atomic stress approximation pro-
duces excellent agreement with results obtained via rigorous
computation, while the conventional atomic stress approxima-
tion substantially underestimates heat flux and overestimates
thermal conductivity.

In standard molecular dynamics simulation, pressure com-
putation is based on the virial theorem. In a periodic system of
V volume that consists of N number of particles, the pressure
tensor is expressed as

P = 1

V

〈
N∑

i=1

mi�vi ⊗ �vi + W

〉
, (1)

where mi and �vi represent the mass and velocity vectors of
the ith atom and angle brackets indicate time or ensemble
mean [47]. The component W is the virial contribution to
the pressure and for a system consisting of only pairwise
interactions

W pair =
N∑

i=1

N∑
j>i

�ri j ⊗ �Fi j, (2)
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where �ri j = �ri − �r j is the relative position of atom i in relation
to atom j and �Fi j is the force acting upon atom i due to inter-
action with atom j. For the sake of simplicity, we assume that
the system is large enough so that atoms do not interact with
their own images. This kind of “i j” notation is essential to
produce correct results with periodic systems [48]. Although
initially W was only clarified for pairwise interactions, it
has been extended for many-body interactions as well. Let
us say that there are K groups of many-body interactions
among atoms, where a single atom can participate in multiple
groups. Thompson et al. provided a concise expression that
they named “group” form to obtain the virial contribution as
[10]

W group =
K∑

k=1

∑
i∈k

�rk
i ⊗ �F k

i , (3)

where �rk
i and �F k

i represent the position of the ith atom in the
kth group and the force acting on it due to group interactions,
and i ∈ k indicates the set of atoms participating in the kth
many-body interaction group. In the case of periodic boundary
condition, the “k” superscript in �rk

i indicates that the actual
coordinate values are either those of the original simulation
cell or one of the image cells, selected depending on the
group, i.e., �rk

i might have different values in different groups.
Because of this and the fact that total force of a many-body
interaction is

∑
i∈k

�F k
i = �0, W group in Eq. (3) works correctly

with periodic boundary condition, even though it no longer
uses the “i j” notation, as detailed in the original paper [10].
It is assumed that many-body potentials only depend on
the relative positions of the atoms in the group, whereas
long-range electrostatic interactions would require different
treatment [49,50].

Unlike the system pressure tensor, several possible ex-
pressions for local Irving-Kirkwood-type pressure have been
proposed, which do not necessarily produce the same results
[11]. A widely used method in molecular dynamics is the
method of planes (MOP) [9], where the local pressure tensor
of the control plane is obtained from the momentum and force
that are transferred through it. Another popular method is the
volume averaging (VA) method, where the pressure tensor in
the control volume is computed by adding a weighting func-
tion to the virial [8]. For pairwise interactions, the weighting
function is simply a fraction of the interparticle distance that is
inside the control volume. It has been demonstrated that these
two methods are equivalent, as VA expression can be obtained
by spatially averaging the MOP expression [51]. Although
both MOP and VA methods are straightforward for pairwise
interactions, many-body interactions require more involved
treatment, such as central force decomposition [5,11,12].

Another approach exists, where the virial contribution is
distributed to each atom, and is referred to as atomic stress
[13,15]. For pairwise interactions, we define atomic stress of
the ith atom as

σ
pair
i = −1

2

N∑
j �=i

�ri j ⊗ �Fi j, (4)

where the sum over all atoms is equal to the total system virial
contribution W pair = −∑N

i σ
pair
i . Strictly speaking, Eq. (4)

has the dimension of energy and should be divided by some
type of atomic volume to give the dimension of stress. The
form in Eq. (4) was chosen to match the definition of virial
contribution component W pair in Eq. (2), which was itself
chosen to match that used by Thompson et al. [10], and lets us
avoid dealing with atomic volume such as taking into account
the relation between the atomic and system volumes. Note
that in other literature the kinetic term, i.e., the first right-hand
side term of Eq. (1), is sometimes included, the 1/2 coefficient
can be omitted, various definitions of atomic volume are used,
and stress might be exchanged to pressure. For many-body
interactions, similarly to MOP and VA methods, the more
involved central force decomposition can be used [5,11,12].
Although Thompson et al. admitted in their paper that there
is no strict physical basis [10], it is often simpler and more
convenient to equally distribute the virial from many-body
interaction to the each atom in the group in accordance to
Eq. (3),

σ
group
i = −

∑
k∈Ki

1

Nk

∑
j∈k

�rk
j ⊗ �F k

j , (5)

where Ki is the set of many-body interaction groups which
contain atom i, and Nk is the number of atoms in the k-th
many-body interaction group. This reduces to σ

pair
i for pair-

wise interactions. A somewhat crude, but convenient method
to assess the local pressure inside a control volume is to
simply sum the atomic stress values of the contained atoms

P� ≈ 1

�

〈∑
i∈�

mi�vi ⊗ �vi −
∑
i∈�

σ i

〉
, (6)

where � denotes the control volume and either σ
pair
i or

σ
group
i can be used for σ i. Strictly speaking, this method is

inferior to VA, and is known to produce artifacts [14], but
is sufficiently accurate when the control volume is set in a
homogeneous area, where molecule composition and density
are mostly uniform, as the artifacts cancel out. Satisfactory
accuracy can also be reached for sufficiently large systems,
where the control volume to surface ratio is high, although
exact estimates are difficult and would depend on the actual
pressure and conditions at the control volume boundary. The
expression in Eq. (6) also produces the exact pressure tensor
when used over the whole system. This is the scheme used in
LAMMPS with σ

group
i when computing pressure or heat flux.

As the pressure tensor expression in Eq. (1) can be derived
from momentum conservation law, so can the heat flux vector
�J of the whole system be derived in a similar manner from
energy conservation law as

�J = 1

V

〈∑
i=1

�viei + �Q
〉
, (7)

where ei is the kinetic and potential energy of the ith atom,
assuming equal potential energy distribution for many-body
interactions [3]. We also assume no streaming velocity for
simplicity. The �Q component is the virial contribution to the
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total heat flux, and for pairwise interactions

�Qpair = 1

2

N∑
i=1

N∑
j �=i

�ri j ( �Fi j · �vi ) = −
N∑

i=1

σ
pair
i · �vi, (8)

where the definition from Eq. (4) was used. This ability to
reuse atomic stress values greatly eases the implementation
and computational cost of heat flux calculation. The local
heat flux in a control volume can be defined in an equivalent
manner to Eq. (6):

�J� ≈ 1

�

〈
N∑

i∈�

�viei −
N∑

i∈�

σ i · �vi,

〉
, (9)

and while similarly to Eq. (6) this is a somewhat crude ap-
proximation, sufficient precision can be obtained if the control
volume is located in a homogeneous area and only pairwise
interactions are present. It might be tempting to use the
same approach for many-body interactions and substitute σ

pair
i

for σ
group
i to obtain �Qgroup = −∑N

i σ
group
i · �vi, as is currently

implemented in the present versions of LAMMPS. However,
as will be demonstrated later, this approximation introduces
significant artifacts and produces incorrect results. Fan et al.
have demonstrated these inconsistencies using the Tersoff
potential and central force decomposition [7].

Our group has previously published works detailing the
heat flux equivalents of the MOP and VA methods for many-
body interactions, which do not require decomposition of
central force [4,52]. We will use these results to derive an
appropriate expression of atomic stress suitable for use in heat
flux computations. As before, if we assume equal potential
distribution and limit ourselves to many-body interactions
only explicitly depending on the relative atom position, the
virial contribution to heat flux can be reduced to

�Qcntr =
K∑

k=1

∑
i∈k

(
�rk

i − �rk
0

)( �F k
i · �vi

)
, (10)

where script notations correspond to those used in Eq. (3),
and �rk

0 is the geometric center, i.e., centroid, of the kth group
�rk

0 = 1
Nk

∑
i∈k �rk

i . As can be derived from the original paper
[4], this geometric center form is the result of assuming equal
potential energy distribution over each atom in a many-body
interaction, and although in principle this assumption is not
required, it is seemingly most natural and widely used. We
will refer to Eq. (10) as the “centroid” form to distinguish it
from other forms. We can now define an atomic stress tensor
analogous to that in Eqs. (4) and (5) as

σcntr
i = −

∑
k∈Ki

(
�rk

i − �rk
0

) ⊗ �F k
i . (11)

As in previous expressions, �Qcntr = −∑N
i=1 σcntr

i · �vi and σcntr
i

reduces to σ
pair
i for pairwise interactions. It must be noted

that unlike atomic stress tensors σ
pair
i and σ

group
i , σcntr

i is not
symmetric, which is necessary to obtain correct heat flux via
Eq. (10). On the other hand, as total force due to many-body
interaction is zero, this does not affect the virial contribution
to the system pressure, i.e.,

∑N
i=1 σ

group
i = ∑N

i=1 σcntr
i . Also

note that while the virial contribution to the total system

TABLE I. Conditions for the simulation systems, where Nmol

is the number of molecules, and Lx , Ly, and Lz are the simulation
box dimensions in the corresponding directions, T is the average
temperature, and ρ is the system density. The thermal conductivity
is also indicated by λ, where parentheses indicate the standard error
of mean of the last digit, which was obtained identically to Fig. 1 via
15 data blocks.

Lx, Ly Lz T ρ λ

Molecule System Nmol (Å) (Å) (K) (kg/m3) ( W
m K )

Butane NEMD 1688 35.7 238.0 305.1 540.4 0.087(1)
Butane EMD 1688 67.05 67.05 304.4 537.1 0.0890(8)
Octane NEMD 939 35.7 238.0 402.0 587.2 0.0764(9)
Octane EMD 939 35.7 238.0 401.6 587.2 0.0775(6)
Polystyrene NEMD 100 30.42 339.3 300.4 1110.1 0.133(2)
Polystyrene EMD 100 30.42 339.3 300.6 1110.1 0.149(2)

heat flux �Qcntr, which would be used in EMD systems, is a
rigorous implementation of Ref. [4], it is no longer equivalent
to Ref. [4] when computing the local heat flux in a control
volume via Eq. (9), which would be used in NEMD systems,
as �Q�(cntr) ≈ −∑

i∈� σcntr
i · �vi is an approximation.

To demonstrate the validity of the centroid form atomic
stress, we conducted several computations with different sys-
tems composed of either butane, octane, or 20 monomer
polystyrene molecules with both standard LAMMPS and a
modified version to adhere to the centroid form of atomic
stress in Eq. (11). For butane and octane, the NERD potential
model was used [53]. For polystyrene, the potential model
developed by Karanikas and Economou was used [54]. Both
of the models are united atom and contain van der Waals,
bond, angle, and torsion potentials, with polystyrene also
containing an improper potential. The choice of systems was
purely pragmatic, as detailed results were available for butane
and octane from our group’s previous works [52,55] and
polystyrene had an improper potential and was available in our
in-house program. For each molecule type, a NEMD system
with an induced heat flux of 300 MW/m2 along the z direction
and an EMD system were created, with system sizes, molecule
numbers, and other properties shown in Table I. The NEMD
systems were used to directly compute heat flux inside control
volumes and investigate its components, while the Green-
Kubo relation for heat flux fluctuation was used in EMD
systems to obtain thermal conductivity of the whole systems,
which was decomposed into contributions of each potential
type via a method proposed by our group [55]. The EMD
and NEMD system setup for butane is detailed in Ref. [55],
except that the eHEX algorithm was used for inducing thermal
flux in the NEMD system [56]. For octane and polystyrene:
in the case of NEMD systems, an identical procedure to that
of butane was followed, with the equilibration run being at
least 5 ns, and in the case of EMD systems, NEMD systems
were reused, instead being equilibrated without an induced
heat flux. The original intent of not using cubic systems
for EMD was to eliminate a difference in thermal transport
properties due to different system aspect ratios and changes
in initial structure configurations when compared to NEMD
systems, but proved to be mostly unnecessary. For all NEMD
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systems, two control volumes with a length of 0.3Lz in the z
direction were placed in each half of the systems between the
cold and hot temperature regions. Details about temperature
settings and resulting system states can be obtained from
Refs. [55] and [52] for butane and octane, respectively, while
the mean temperatures for all systems are indicated in Table I.
Polystyrene resulted in an amorphous state and the cold and
hot regions had approximate temperatures of 278 and 322 K,
respectively. In the case of butane and octane, the rRESPA
multitimescale integrator was used with a 1.0 fs time step for
van der Waals interactions and a 0.2 fs time step for remaining
potential types [57], while the velocity Verlet algorithm with
a time step of 1.0 fs was used for polystyrene systems.
Production runs of 150 ns were conducted for all NEMD
systems. In the case of EMD systems, production runs of 150
and 90 ns were conducted for butane and octane systems, and
for the polystyrene system, respectively, producing the mean
of heat flux autocorrelation function over 10 ps.

The results are shown in Fig. 1. The heat flux inside the
NEMD systems in Fig. 1(a) was obtained by substituting
σ

group
i or σcntr

i into Eq. (9), and taking the average between the
values in the two control volumes. The thermal conductivity
of EMD systems in Fig. 1(b) was obtained by substituting
�Qgroup or �Qcntr into Eq. (7) and applying the Green-Kubo
relation [55]. The actual thermal conductivity values in Fig. 1
are the mean of x, y, and z components, as for even the
elongated systems of octane and polystyrene the difference
between z and x or y components was comparable to that
between x and y, being at most 4%, i.e., thermal transport was
isotropic in all systems. The reference values for butane and
octane were obtained from Refs. [55] and [52], respectively,
and values for polystyrene were computed with an in-house
program from a 50-ns production run. Also note that due to
a technical limitation, the reference of polystyrene displays
the sum of torsion and improper contributions (tor+imp).
All of these reference values were obtained with rigorous
implementation presented in Ref. [4]. Thermal conductivity
values are also displayed in Table I, where Fourier’s law was
used to obtain thermal conductivity for NEMD systems via the
temperature gradient inside the control volume regions and the
induced heat flux of 300 MW/m2, and for the EMD systems,
the results obtained via the centroid form of atomic stress were
used, corresponding to “Modified” in Fig. 1(b). It should be
noted that a non-negligible difference in the measured thermal
conductivity exists between the polystyrene NEMD and EMD
systems. The exact reason for this is unclear, and might
be due to the amorphous nature of the system, as only the
average thermal conductivity of the control volume regions
was measured. Indeed, for polystyrene the difference between
the two regions is about 4.5%, where for butane and octane it
is approximately 2.2% and 1.5%, respectively. This is not of
great concern, however, as we mainly compare among either
NEMD or EMD systems.

We first discuss the decomposition of the heat flux inside
the control volumes of NEMD systems in Fig. 1(a). It is
important to stress that if the expression of �J� does not violate
energy conservation, the average heat flux computed when
substituting the appropriate atomic stress definition σ i into
Eq. (9) must be equal to the applied heat flux. Regardless of
the molecule type, the total heat flux obtained via the group
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FIG. 1. Heat flux in (a) NEMD and thermal conductivity in
(b) EMD decomposition into respective interaction contributions,
where results obtained via σ

group
i in Eq. (5) (LAMMPS) and σcntr

i in
Eq. (11) (Modified) are displayed together with reference values
(Reference), which were rigorously obtained via the VA method
[52,55]. A zero axis and reference values are also indicated by a
horizontal dashed line where applicable. Horizontally shifting black
error bars indicate standard error of mean of each component that
was scaled by 2 for clarity, while horizontally centered thicker red
error bars at the top indicate that of the total, and were computed via
block average method by dividing sampled data into 30 blocks [58].

form atomic stress σ
group
i with unmodified LAMMPS is below

the induced heat flux of 300 MW/m2. The reason is obvious
when compared with the reference values: the contributions
from three-body and four-body interactions are much smaller
than the reference. Upon closer inspection, it is apparent that
torsion and improper contributions even became slightly neg-
ative. On the other hand, van der Waals and bond contribution
show a good match, which is not surprising, as all atomic
stress definitions in this paper reduce to the same expression
at pairwise interactions. Only the polystyrene system has a
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non-negligible angle contribution, although it is significantly
smaller than the reference. The reason for this is not imme-
diately clear, but it is obvious that a simple presence of a
non-negligible multibody contribution does not necessarily
indicate correctness. In contrast to the “LAMMPS” results, heat
flux values, indicated by “Modified” in Fig. 1(a), and obtained
via the centroid form of atomic stress σcntr

i show an excellent
match with reference values. The polystyrene system does
show larger uncertainty than other systems, which is most
likely because of its amorphous state that limits atom mi-
gration, but a good agreement with the reference is achieved
nevertheless. It is clear that the heat flux computed via the
group form atomic stress σ

group
i approximation used by the

current versions of LAMMPS significantly underestimates the
contribution of three-body and larger many-body interactions,
which is critical for systems with substantial contribution
from nonpairwise many-body interactions, such as octane or
polystyrene in Fig. 1.

Next, we discuss the decomposition of thermal conductiv-
ity in EMD systems in Fig. 1(b). Total thermal conductiv-
ity of butane and octane obtained via the centroid form of
atomic stress σcntr

i and indicated by “Modified” in the figure
showed an excellent match with the reference values, which
is not surprising as there are no approximations in Eq. (7)
when used with �Qcntr. Due to this, the scale between vertical
axes of heat flux in Fig. 1(a) and thermal conductivity in
Fig. 1(b) was adjusted so that the reference thermal con-
ductivity values for butane and octane, and the “Modified”
value for polystyrene would align to 300 MW/m2. We see an
excellent match between the decomposition results of “Mod-
ified” and the reference values for both EMD and NEMD
systems, which is the result of decomposition equivalence
discussed by Matsubara et al. in an earlier work [55]. On
the other hand, in all systems where the thermal conductivity
was obtained via the group form atomic stress σ

group
i with

unmodified LAMMPS, indicated by “LAMMPS” in Fig. 1(b),
the total thermal conductivity is overestimated. This happens
because the group form atomic stress σ

group
i approximation

underestimates the total heat flux, as discussed in the previous
paragraph, and thus the autocorrelation function used in the
Green-Kubo relation is no longer correct. As a result, even
contributions from pairwise interactions that were correctly
computed in NEMD systems are not guaranteed to be correct.
The difference from the reference is especially clear from the
bond and angle contributions in “LAMMPS,” where they are
vastly overestimated for all systems. Because of this, thermal
conductivity was vastly overestimated in butane, even though

the underestimation in NEMD “LAMMPS” was comparatively
small. On the other hand, polystyrene shows an opposite
tendency: underestimation of heat flux in NEMD “LAMMPS”
was comparatively large, while the overestimation of thermal
conductivity was less severe than in other systems. This
is not universal however, as octane has significant error in
“LAMMPS” for both NEMD and EMD systems. As both butane
and octane molecules had identical potential parameters and
only the chain length was different, not only the type of poten-
tial, but also the structure appears to have a large effect on the
heat flux and thermal conductivity obtained via the group form
atomic stress. In principle, in the case of heat flux it might be
possible to gauge the level of error by carefully investigating
how group and centroid form atomic stress values relate, and
in the case of thermal conductivity, how the thermal flux
correlation changes, but as demonstrated by butane and octane
systems, the relation appears to be complex and lacks apparent
consistency. Therefore, as long as the group form atomic
stress σ

group
i approximation is used, neither correct heat flux,

nor thermal conductivity via the Green-Kubo relation can be
obtained and gauging the level of error is also a nontrivial task.

In summary, we demonstrated that the simplistic atomic
stress approximation most widely used by the popular
LAMMPS package has a significant deficiency when applied
to three-body or large many-body interactions, which pre-
vents obtaining correct heat flux and thermal conductivity
values that satisfy energy conservation. For simple many-
body interactions such as angle, torsion, or improper poten-
tials, we demonstrated a simple modification to the atomic
stress definition, which produced an excellent match with
results obtained by more rigid and computationally intensive
methods. Although all of our test systems had low thermal
conductivities, comparably promising results were also ob-
tained from preliminary investigation on all-atom amorphous
polymer systems with higher thermal conductivity, and our
work should also be applicable to systems with high thermal
conductivity. It is expected that the same framework can be
used to extend the scope of application to more complex
many-body potentials. Modified LAMMPS code with the new
atomic stress definition will be made publicly available in a
timely manner.

This work was supported by JST CREST Grant No.
JPMJCR17I2, Japan. Computational simulations were per-
formed on the supercomputer system “AFI-NITY” at the Ad-
vanced Fluid Information Research Center, Institute of Fluid
Science, Tohoku University.
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Phys. 18, 9888 (2016).
[28] H. Honarvar, L. Yang, and M. I. Hussein, Appl. Phys. Lett. 108,

263101 (2016).
[29] H. Honarvar and M. I. Hussein, Phys. Rev. B 93, 081412(R)

(2016).
[30] Y. Lee, A. J. Pak, and G. S. Hwang, Phys. Chem. Chem. Phys.

18, 19544 (2016).
[31] J. Moon and A. J. Minnich, RSC Adv. 6, 105154 (2016).
[32] M. Verdier, K. Termentzidis, and D. Lacroix, J. Appl. Phys. 119,

175104 (2016).
[33] J. Nie, R. Ranganathan, Z. Liang, and P. Keblinski, J. Appl.

Phys. 122, 045104 (2017).
[34] H. Zhang, H. Han, S. Xiong, H. Wang, S. Volz, and Y. Ni, Appl.

Phys. Lett. 111, 121907 (2017).
[35] F. S. Dias and W. S. Machado, Comput. Condens. Matter 15, 21

(2018).

[36] A. Giri and P. E. Hopkins, Phys. Rev. B 98, 045421
(2018).

[37] A. Giri, B. F. Donovan, and P. E. Hopkins, Phys. Rev. Mater. 2,
056002 (2018).

[38] H. Honarvar and M. I. Hussein, Phys. Rev. B 97, 195413
(2018).

[39] M. Khalkhali and F. Khoeini, J. Phys. Chem. Solids 112, 216
(2018).

[40] Y.-Y. Liu, Y.-J. Zeng, P.-Z. Jia, X.-H. Cao, X. Jiang, and K.-Q.
Chen, J. Phys.: Condens. Matter 30, 275701 (2018).

[41] S. Mei and I. Knezevic, J. Appl. Phys. 123, 125103 (2018).
[42] J. Moon, B. Latour, and A. J. Minnich, Phys. Rev. B 97, 024201

(2018).
[43] K. Termentzidis, M. Isaiev, A. Salnikova, I. Belabbas, D.

Lacroix, and J. Kioseoglou, Phys. Chem. Chem. Phys. 20, 5159
(2018).

[44] M. Verdier, Y. Han, D. Lacroix, P.-O. Chapuis, and K.
Termentzidis, J. Phys.: Mater. 2, 015002 (2018).

[45] M. Verdier, D. Lacroix, S. Didenko, J.-F. Robillard, E. Lampin,
T.-M. Bah, and K. Termentzidis, Phys. Rev. B 97, 115435
(2018).

[46] V. S. Proshchenko, P. P. Dholabhai, T. C. Sterling, and S. Neogi,
Phys. Rev. B 99, 014207 (2019).

[47] M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids
(Oxford University Press, New York, 2009), pp. 46–50.

[48] R. Winkler, H. Morawitz, and D. Yoon, Mol. Phys. 75, 669
(1992).

[49] P. H. Hünenberger, J. Chem. Phys. 116, 6880 (2002).
[50] R. G. Winkler, J. Chem. Phys. 117, 2449 (2002).
[51] D. M. Heyes, E. R. Smith, D. Dini, and T. A. Zaki, J. Chem.

Phys. 135, 024512 (2011).
[52] T. Ohara, T. Chia Yuan, D. Torii, G. Kikugawa, and N. Kosugi,

J. Chem. Phys. 135, 034507 (2011).
[53] S. K. Nath, F. A. Escobedo, and J. J. de Pablo, J. Chem. Phys.

108, 9905 (1998).
[54] S. Karanikas and I. G. Economou, Eur. Polym. J. 47, 735

(2011).
[55] H. Matsubara, G. Kikugawa, M. Ishikiriyama, S. Yamashita,

and T. Ohara, J. Chem. Phys. 147, 114104 (2017).
[56] P. Wirnsberger, D. Frenkel, and C. Dellago, J. Chem. Phys. 143,

124104 (2015).
[57] M. Tuckerman, B. J. Berne, and G. J. Martyna, J. Chem. Phys.

97, 1990 (1992).
[58] A. R. Leach, Molecular Modeling: Principles and Applica-

tions, 2nd ed. (Pearson Education Limited, London, 2001),
pp. 343–347.

Correction: The volume number in Ref. [25] was invalid and
has been fixed.

051301-6

https://doi.org/10.1063/1.3245303
https://doi.org/10.1063/1.3245303
https://doi.org/10.1063/1.3245303
https://doi.org/10.1063/1.3245303
https://doi.org/10.1007/s10659-010-9249-6
https://doi.org/10.1007/s10659-010-9249-6
https://doi.org/10.1007/s10659-010-9249-6
https://doi.org/10.1007/s10659-010-9249-6
https://doi.org/10.1063/1.4891606
https://doi.org/10.1063/1.4891606
https://doi.org/10.1063/1.4891606
https://doi.org/10.1063/1.4891606
https://doi.org/10.1080/01418618008243894
https://doi.org/10.1080/01418618008243894
https://doi.org/10.1080/01418618008243894
https://doi.org/10.1080/01418618008243894
https://doi.org/10.1088/0965-0393/12/4/S03
https://doi.org/10.1088/0965-0393/12/4/S03
https://doi.org/10.1088/0965-0393/12/4/S03
https://doi.org/10.1088/0965-0393/12/4/S03
https://doi.org/10.1016/j.pmatsci.2011.01.004
https://doi.org/10.1016/j.pmatsci.2011.01.004
https://doi.org/10.1016/j.pmatsci.2011.01.004
https://doi.org/10.1016/j.pmatsci.2011.01.004
https://doi.org/10.1006/jcph.1995.1039
https://doi.org/10.1006/jcph.1995.1039
https://doi.org/10.1006/jcph.1995.1039
https://doi.org/10.1006/jcph.1995.1039
https://lammps.sandia.gov.
https://doi.org/10.1039/C6CP06643G
https://doi.org/10.1039/C6CP06643G
https://doi.org/10.1039/C6CP06643G
https://doi.org/10.1039/C6CP06643G
https://doi.org/10.1063/1.4994797
https://doi.org/10.1063/1.4994797
https://doi.org/10.1063/1.4994797
https://doi.org/10.1063/1.4994797
https://doi.org/10.1002/app.46371
https://doi.org/10.1002/app.46371
https://doi.org/10.1002/app.46371
https://doi.org/10.1002/app.46371
https://doi.org/10.1103/PhysRevB.97.104303
https://doi.org/10.1103/PhysRevB.97.104303
https://doi.org/10.1103/PhysRevB.97.104303
https://doi.org/10.1103/PhysRevB.97.104303
https://doi.org/10.1007/s10765-018-2359-2
https://doi.org/10.1007/s10765-018-2359-2
https://doi.org/10.1007/s10765-018-2359-2
https://doi.org/10.1007/s10765-018-2359-2
https://doi.org/10.1063/1.5006889
https://doi.org/10.1063/1.5006889
https://doi.org/10.1063/1.5006889
https://doi.org/10.1063/1.5006889
https://doi.org/10.1021/acs.chemmater.7b05015
https://doi.org/10.1021/acs.chemmater.7b05015
https://doi.org/10.1021/acs.chemmater.7b05015
https://doi.org/10.1021/acs.chemmater.7b05015
https://doi.org/10.1039/C8CP03433H
https://doi.org/10.1039/C8CP03433H
https://doi.org/10.1039/C8CP03433H
https://doi.org/10.1039/C8CP03433H
https://doi.org/10.1002/adts.201800153
https://doi.org/10.1002/adts.201800153
https://doi.org/10.1002/adts.201800153
https://doi.org/10.1002/adts.201800153
https://doi.org/10.1016/j.commatsci.2018.11.012
https://doi.org/10.1016/j.commatsci.2018.11.012
https://doi.org/10.1016/j.commatsci.2018.11.012
https://doi.org/10.1016/j.commatsci.2018.11.012
https://doi.org/10.1039/C6CP00630B
https://doi.org/10.1039/C6CP00630B
https://doi.org/10.1039/C6CP00630B
https://doi.org/10.1039/C6CP00630B
https://doi.org/10.1063/1.4954739
https://doi.org/10.1063/1.4954739
https://doi.org/10.1063/1.4954739
https://doi.org/10.1063/1.4954739
https://doi.org/10.1103/PhysRevB.93.081412
https://doi.org/10.1103/PhysRevB.93.081412
https://doi.org/10.1103/PhysRevB.93.081412
https://doi.org/10.1103/PhysRevB.93.081412
https://doi.org/10.1039/C6CP04388G
https://doi.org/10.1039/C6CP04388G
https://doi.org/10.1039/C6CP04388G
https://doi.org/10.1039/C6CP04388G
https://doi.org/10.1039/C6RA24053D
https://doi.org/10.1039/C6RA24053D
https://doi.org/10.1039/C6RA24053D
https://doi.org/10.1039/C6RA24053D
https://doi.org/10.1063/1.4948337
https://doi.org/10.1063/1.4948337
https://doi.org/10.1063/1.4948337
https://doi.org/10.1063/1.4948337
https://doi.org/10.1063/1.4994169
https://doi.org/10.1063/1.4994169
https://doi.org/10.1063/1.4994169
https://doi.org/10.1063/1.4994169
https://doi.org/10.1063/1.4998998
https://doi.org/10.1063/1.4998998
https://doi.org/10.1063/1.4998998
https://doi.org/10.1063/1.4998998
https://doi.org/10.1016/j.cocom.2018.03.004
https://doi.org/10.1016/j.cocom.2018.03.004
https://doi.org/10.1016/j.cocom.2018.03.004
https://doi.org/10.1016/j.cocom.2018.03.004
https://doi.org/10.1103/PhysRevB.98.045421
https://doi.org/10.1103/PhysRevB.98.045421
https://doi.org/10.1103/PhysRevB.98.045421
https://doi.org/10.1103/PhysRevB.98.045421
https://doi.org/10.1103/PhysRevMaterials.2.056002
https://doi.org/10.1103/PhysRevMaterials.2.056002
https://doi.org/10.1103/PhysRevMaterials.2.056002
https://doi.org/10.1103/PhysRevMaterials.2.056002
https://doi.org/10.1103/PhysRevB.97.195413
https://doi.org/10.1103/PhysRevB.97.195413
https://doi.org/10.1103/PhysRevB.97.195413
https://doi.org/10.1103/PhysRevB.97.195413
https://doi.org/10.1016/j.jpcs.2017.09.032
https://doi.org/10.1016/j.jpcs.2017.09.032
https://doi.org/10.1016/j.jpcs.2017.09.032
https://doi.org/10.1016/j.jpcs.2017.09.032
https://doi.org/10.1088/1361-648X/aac7f5
https://doi.org/10.1088/1361-648X/aac7f5
https://doi.org/10.1088/1361-648X/aac7f5
https://doi.org/10.1088/1361-648X/aac7f5
https://doi.org/10.1063/1.5008262
https://doi.org/10.1063/1.5008262
https://doi.org/10.1063/1.5008262
https://doi.org/10.1063/1.5008262
https://doi.org/10.1103/PhysRevB.97.024201
https://doi.org/10.1103/PhysRevB.97.024201
https://doi.org/10.1103/PhysRevB.97.024201
https://doi.org/10.1103/PhysRevB.97.024201
https://doi.org/10.1039/C7CP07821H
https://doi.org/10.1039/C7CP07821H
https://doi.org/10.1039/C7CP07821H
https://doi.org/10.1039/C7CP07821H
https://doi.org/10.1088/2515-7639/aaead5
https://doi.org/10.1088/2515-7639/aaead5
https://doi.org/10.1088/2515-7639/aaead5
https://doi.org/10.1088/2515-7639/aaead5
https://doi.org/10.1103/PhysRevB.97.115435
https://doi.org/10.1103/PhysRevB.97.115435
https://doi.org/10.1103/PhysRevB.97.115435
https://doi.org/10.1103/PhysRevB.97.115435
https://doi.org/10.1103/PhysRevB.99.014207
https://doi.org/10.1103/PhysRevB.99.014207
https://doi.org/10.1103/PhysRevB.99.014207
https://doi.org/10.1103/PhysRevB.99.014207
https://doi.org/10.1080/00268979200100491
https://doi.org/10.1080/00268979200100491
https://doi.org/10.1080/00268979200100491
https://doi.org/10.1080/00268979200100491
https://doi.org/10.1063/1.1463057
https://doi.org/10.1063/1.1463057
https://doi.org/10.1063/1.1463057
https://doi.org/10.1063/1.1463057
https://doi.org/10.1063/1.1488581
https://doi.org/10.1063/1.1488581
https://doi.org/10.1063/1.1488581
https://doi.org/10.1063/1.1488581
https://doi.org/10.1063/1.3605692
https://doi.org/10.1063/1.3605692
https://doi.org/10.1063/1.3605692
https://doi.org/10.1063/1.3605692
https://doi.org/10.1063/1.3613648
https://doi.org/10.1063/1.3613648
https://doi.org/10.1063/1.3613648
https://doi.org/10.1063/1.3613648
https://doi.org/10.1063/1.476429
https://doi.org/10.1063/1.476429
https://doi.org/10.1063/1.476429
https://doi.org/10.1063/1.476429
https://doi.org/10.1016/j.eurpolymj.2010.09.041
https://doi.org/10.1016/j.eurpolymj.2010.09.041
https://doi.org/10.1016/j.eurpolymj.2010.09.041
https://doi.org/10.1016/j.eurpolymj.2010.09.041
https://doi.org/10.1063/1.4990593
https://doi.org/10.1063/1.4990593
https://doi.org/10.1063/1.4990593
https://doi.org/10.1063/1.4990593
https://doi.org/10.1063/1.4931597
https://doi.org/10.1063/1.4931597
https://doi.org/10.1063/1.4931597
https://doi.org/10.1063/1.4931597
https://doi.org/10.1063/1.463137
https://doi.org/10.1063/1.463137
https://doi.org/10.1063/1.463137
https://doi.org/10.1063/1.463137

