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Similar size of slums caused by a Turing instability of migration behavior
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It is a remarkable fact that the size of slums is similar across the globe, regardless of city, country, or culture
[Friesen et al., Habitat Int. 73, 79 (2018)]. The main thesis of this paper is that this universal scale is intrinsic
to the slum-city system and is independent from external factors. By interpreting reaction and diffusion as long-
and short-distance migration, our paper explains this universal length scale as resulting from a Turing instability
of the interaction of two social groups: poor and rich.
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I. INTRODUCTION

Friesen et al. [1] point out that slums in Mumbai, India;
Manila, the Philippines; Cape Town, South Africa; and Rio
de Janeiro, Brazil all show the same scale, independent from
city, country, or culture: on average, a slum occupies an
area of 15 800 m2, i.e., the length scale is φ̃ ≈ 125 m; cf.
Table I. The globally universal scale for intraurban structures
φ̃ is astonishing, provoking the question of whether there is a
deeper reason for this similarity based on a general behavior
of the migrants.

In social sciences, there are plenty of different models to
describe slum formation using cellular automata or agent-
based models [2,3]. Many of these models try to describe
the development of slums with an ever increasing number of
influencing factors. This trend in sociology to refine models
with ever smaller nuances was criticized at the beginning of
the 19th century by well-known representatives of this branch
of science, including Menger [4] or Weber [5], and it was
criticized in recent years by Healy [6]. We propose describing
the development of slums and their characteristic size using as
simple a model as possible to gain a principal insight into the
formation of urban structure.

We hypothesize that the intraurban pattern can be ex-
plained by a Turing instability [7] occurring through the
interaction of two social groups: rich and poor. This division is
appropriate due to the great inequalities, especially in today’s
megacities such as Sao Paulo (cf. Fig. 1). The hypothesis fol-
lowed in this paper is that slums are part of a self-emergence
of order within a city. A convincing argument for this may
be that the scale emerges out of a stability analysis. In other
words, it is an intrinsic scale of the system. Slums are a Turing
pattern.

This hypothesis is not as far-fetched as it seems at first
glance, since Turing patterns are not limited to chemical
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TABLE I. The size of slums in different cities [1].

City φ̃i (m)

Mumbai, India 131
Manila, the Philippines 92
Cape Town, South Africa 132
Rio de Janeiro, Brazil 141

systems [8] or the patterning of organisms [9]. Theraulaz et al.
[10] showed that spatial clustering in ant colonies is a Turing
pattern, emerging through self-organization of these social
insects. Consequently, Turing patterns do not just emerge in
organisms but also through the interaction of organisms.

Moreover, for reaction-diffusion systems with two domi-
nant components, the Turing mechanism can be shown to be
the only possible patterning mechanism [11]. As proposed by
Gierer and Meinhardt [12], the emergence of Turing patterns
in a system with two dominant components, one being the
activator and the other the inhibitor, can be understood as

FIG. 1. The western part of the slum (favela) Paraisopolis in Sao
Paulo, and the penthouses located in close proximity. The image was
captured using Google Maps (2018).
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the interaction of strong local self-enhancement coupled with
long-range inhibition. From a nearly homogeneous initial
state, the self-enhancing activator growth is initiated by small
fluctuations, and, after a while, is limited by the inhibition
mechanism.

By using the Turing mechanism to model the similar sizes
of slums, the concept of continuum mechanics is transferred to
urban modeling. Although this approach has some limitations
and is not sufficient to describe all aspects of the phenomenon
of slum emergence, the major characteristics can be modeled.

II. STABILITY ANALYSIS OF MIGRATION BEHAVIOR

We start by dividing the population into two agents: poor
and rich. The number of poor inhabitants per area at the spatial
point x̃j (j = 1, 2) and time t̃ is given by the density field
ũ1(x̃j , t̃ ). Equally, the density field of the rich inhabitants at
the same point and same time is ũ2(x̃j , t̃ ). Hence the number
of inhabitants in a finite area A of the city is Ni = ∫

A
ũi dA.

The increase rate Ṅi of either poor (i = 1) or rich (i = 2)
inhabitants has three contributions: (i) birth and death of
poor and rich within the area A; (ii) migration due to flight
from the land or movement from one city district to another;
(iii) migration flux toward lower concentrations across the
closed boundary C of the area A. The latter contribution is
a diffusive flux referred to here as short-distance migration.
For shortness, we call the sum of the two former contributions
long-distance migration, recognizing that birth and death are
different from migration. Hence the balance equations for
poor and rich read

rate of = long-distance migration + short-distance

density change (including birth and death) migration,

Ṅ1 = ∂

∂t̃

∫
A

ũ1dA =
∫

A

ÛRf1(u1, u2)dA −
∮

C

�J1 · �n dC,

Ṅ2 = ∂

∂t̃

∫
A

ũ2dA =
∫

A

ÛRf2(u1, u2)dA −
∮

C

�J2 · �n dC.

(1)

The long-distance migration is determined by the product of a
dimensionless so called reaction term fi (uj ) and the reaction
rate ÛR. The dimension of Û is inhabitants per area. The
dimension of R is that of a rate, i.e., 1 over time. uj := ũj /Û

is a dimensionless population density being measured in
multiples of the reference density Û . Û may be the maximal
possible density. By using this transformation, it is possible to
compare cities with completely different population densities,
like Manila and Cape Town.

The short-distance migration is driven by a density gradi-
ent. Neglecting cross diffusion, the simplest model is Fick’s
first law �J1 = −D1∇ũ1 and �J2 = −D2∇ũ2 with constant
diffusion coefficients D1 and D2 for poor and rich, respec-
tively. By using Gauss’ theorem, the two interacting reaction
diffusion equations are derived:

∂ũ1

∂t̃
= ÛRf1(u1, u2) + D1�ũ1,

∂ũ2

∂t̃
= ÛRf2(u1, u2) + D2�ũ2. (2)

The transformation t := Rt̃ , xj := x̃j

√
R/D1, ui := ũi/Û

yields the dimensionless reaction diffusion system (written in
Einstein’s index notation)

∂ui

∂t
= fi (uj ) + dij

∂2uj

∂xk∂xk

, (dij ) =
(

1 0
0 d

)
(3)

with d := D2/D1.
Following well-known literature [13], we conduct a sta-

bility analysis of the system. We linearize Eq. (3) with uj =
Uj + δuj , where Uj is the homogeneous solution of fi (Uj ) =
0. Introduction of the ansatz δuj = R[δûj exp(σ t + ikkxk )]
results in an eigenvalue problem and hence a dispersion
relation between the eigenvalue σ and the Euclidian length
k = √

kiki of the wave vector ki . Linear stability of a uniform
distribution of poor and rich without short-distance migration
is gained for negative real parts of the eigenvalues. For dij =
0, the eigenvalue problem reads (σδij − aij )δûj = 0, with
the Jacobian aij := ∂fi/∂uj and the Kronecker delta δij . The
characteristic equation is σ 2 − aiiσ + det (aij ) = 0 and the

eigenvalues are 2σ1,2 = aii ±
√

a2
ii − 4 det (aij ). The real part

of the eigenvalues is only negative provided the trace of the
Jacobian aij is negative,

aii = a11 + a22 < 0, (4)

and the determinant of the Jacobian is positive,

det (aij ) = a11a22 − a12a21 > 0. (5)

Hence, an initial distribution of poor and rich is only stable
if the Jacobian assumes the form

(aij ) =
(

a11 > 0 a12 > 0
a21 < 0 a22 < 0

)
. (6)

There are three alternative classes of systems, but they
are not relevant for migration. As is well known [13], the
conditions (4) and (5) lead to four qualitatively different
Jacobians with pairwise equal properties:(+ +

− −
)
,
(− −
+ +

)
,
(+ −
+ −

)
,
(− +
− +

)
. (7)

For the first two cases, the resulting concentrations are spa-
tially out of phase (segregation of rich and poor as explained
below), whereas the last two matrices lead to a concentration
that is spatially in phase, which is not plausible for the model
and thus have been neglected.

The signs of the elements of the Jacobian are easily inter-
pretable as sociological general rules. As long as the following
four rules are satisfied on the one hand, and there is no
short-distance migration by means of diffusion on the other
hand, the initial distribution of poor and rich is stable:

(i) a11 > 0, poor attract poor. An increase of poor inhabi-
tants, i.e., an increase of the concentration u1(xj , t ) at a point
xj in time t , results in an increase of poor people moving
into the city and settling at that point xj . One influential
factor for the growth of cities is the migration of people from
the countryside seeking opportunities. This is reasoned by
informal networks: The migrants know people in cities that
already live there. Thus, areas with a higher concentration of
poor people tend to grow [14]. Equally, an increase of poor
inhabitants results in an increased number of births [15]. In
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either case, the consequence is a long-distance migration of
poor into the city.

(ii) a12 > 0, rich attract poor. An increase of rich inhab-
itants u2(xj , t ) results in an increase of poor people moving
into the city and settling at point xj . This is due to the higher
financial resources generated by the wealthy citizens and the
resulting increase in opportunities for poor people.

(iii) a21 < 0, poor repel rich. An increase of poor inhabi-
tants at a point xj results in long-distance migration of wealthy
inhabitants leaving the location xj . This is because for wealthy
citizens, the attractiveness of an area is diminished with a high
number of poor people. A consequence of this behavior are
“gated communities,” often seen in the global south [16].

(iv) a22 < 0, rich repel rich. An increase of rich inhabitants
u2(xj , t ) at point xj at time t may result in a long-distance
migration of wealthy inhabitants. This is related to lower birth
rates with better education [15] and a lower population density
due to greater financial resources. The underlying assumption
is analogous to a “monolayer” of molecules. This assumption
of course would not be valid for extreme cases like Manhattan
in New York.

In the following, the role of short-distance migration, i.e.,
diffusion, is studied. As is known [13], diffusion can lead
to Turing instability [7]. From statistical mechanics [17] it
is known that the diffusion coefficient, D1 or D2, is the
product of specific energy kBT (Boltzmann constant kB ,
temperature T ) and mobility μ of an entity: for a system
with constant temperature, the ratio d equals the ratio of the
mobility d = μ2/μ1. It is feasible that mobility increases with
wealth. Hence, d shall be greater than 1. In the following, the
diffusion-driven instability is recaptured [13] but interpreted
for a social system. Using the abbreviation bij := aij − dij k

2,
the eigenvalue problem reads (σδij − bij )δûj = 0. The two
eigenvalues are

2σ1,2 = bii ±
√

b2
ii − 4 det (bij ). (8)

A perturbation of Uj is only stable if the real part of the
largest eigenvalue associated with the largest wave number is
smaller than zero: maxR(σ (k)) < 0. This is the case for

bii = aii − k2(1 + d ) < 0 (9)

and

det (bij ) = (a11 − k2)(a22 − dk2) − a12a21 > 0. (10)

Since aii < 0 due to the stable initial state, the trace
bii = aii − k2(1 + d ) is smaller than zero as well. Hence,
instability may only be caused by a violation of the
condition det (bij ) = (a11 − k2)(a22 − dk2) − a12a21 > 0.
There is a change in sign at det (bij ) = 0 for
(a11 − k2)(a22 − dk2) − a12a21 = 0. This is a quadratic
equation in k2. The minimal value of the determinant,
det (bij ) = det (aij ) − (a11d + a22)2/4d , is reached for

k2
dom = 1

2

(
a11 + a22

d

)
. (11)

Hence, the determinant det (bij ) is negative for a11d +
a22 > 2

√
d det (aij ). With 2

√
d det (aij ) >0, the necessary

condition for Turing instability reads a11d + a22 > 0. Conse-

quently, the initial stable distribution may become unstable for

a11

μ1
> −a22

μ2
or a11 > −a22

d
. (12)

In other words, a stable social system may become Turing-
unstable when “the generalized attraction of poor” dominates
the “generalized repulsion of rich.” When d exceeds this
threshold, a Turing instability resulting in a Turing pattern
with the dominant wave number kdom will emerge. The anal-
ysis of the dispersion relation (8) leads to the expression (11)
for kdom.

III. DISCUSSION

The model shows that patterns with a certain wavelength
are formed. The solution of the equation leads to a regular con-
centration distribution with wavelength λ = 2π/k depending
on the Jacobian aij and the diffusion ratio d. Setting a thresh-
old value u∗ for the concentration ui leads to a binary pattern
similar to observed binary patterns of slums in a city. Within
the binary pattern, two distinct but linked properties can be
found: (i) the wavelength λ, which translates to the distance
between slums; and (ii) the size of concentration peaks φ of
the poor, which itself is proportional to λ and dependent on the
threshold value u∗. φ can be interpreted as the size of slums.
The characteristic intrinsic scale φ ∝ λ results from simple
rules of behavior of two social groups, by interpreting the
Turing model in a sociological way. So far the analysis was
performed dimensionless, i.e., φ̃ is measured in multiples of
the length scale

√
D1/R: φ̃ = φ

√
D1/R. The characteristic

length can be understood as the distance “molecules,” e.g.,
humans of the first morphogen, i.e., poor humans, travel dur-
ing a characteristic reaction time and thus connect short- and
long-distance migration. We hypothesize that the length scale√

D1/R is similar between cities since it is only dependent
on the human scale: as the data show, the birth rate, which
influences the reaction rate R, is similar between countries. In
the countries considered in the Introduction, the birth rates are
in the realm of 2.4 births per woman (India 2.3, the Philippines
2.9, South Africa 2.5, and Brazil 1.7 births per woman) [18].
It is a much harder task to support the diffusion coefficient
D1 with observations. In the sketched analogy to statistical
mechanics, D1 shall be proportional to the fluctuation energy
of humans, measured by a “temperature.” Assuming a simi-
lar fluctuation energy for humans in different countries, the
model in its present form predicts similar dynamics and a
similar characteristic length

√
D1/R for a characteristic slum

size. Still, in future investigations this point should be verified.
The interpretation shows that short- and long-distance

migration suffices for the self-emergence of slums from a
homogeneous distribution of rich and poor. Self-organized
pattern formation only occurs when short-distance migration
is considered. According to this model, slums only emerge
when there is a concentration-dependent effort by people to
move away from the same social group in their surroundings.
An interesting outcome is that the interaction behavior within
the “poor” group differs between long and short distance. On
the one hand, poor people attract poor people on long distance,
but on the other hand they repel each other depending on the
concentration in short distance.
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Following these results, the role of the relation λ ∝ φ

remains unclear since it predicts a proportionality between
the size and distance of slums, which is not found in the data
of mapped slums. Analysis of slum data suggests no strong
correlation between size and distance. One could argue that
the reason for the differences between the model and reality
is the relative size of the patterns and their building blocks. In
the case of slums, the size of the pattern-building organisms
(inhabitants) is in the realm of 100 m. The size of the patterns
(slums) is about 102 m. Thus, slums are only 100 times larger
than their builders, which calls into question the assumption of
a continuum. In the aforementioned work of Theraulaz et al.,
the behavior of ants is modeled with a validated continuum
model [10]. However, ants as the building blocks are ten times
smaller than the features of the pattern, which is an argument
for our continuum hypothesis. A more plausible reason for
the differences may be the effects of the nonhomogeneous
environment, which the model does not account for and which
cannot be neglected. In [10] it was possible to exclude the
effects of the environment on the ants’ behavior in a laboratory
experiment. In the case of slums, this is obviously not possible
and thus may lead to the differences between the model and
reality.

IV. CONCLUSION

We finish this paper with some general considerations.
First, the derived rules for short- and long-distance migration
that are necessary conditions for a Turing instability are
surprisingly simple and feasible. Second, since φ ∝ λ

emerges out of a stability analysis, the typical scale is
intrinsic and not caused by external factors. The question
arises as to whether the assumptions made here might be too
strict to describe such a complex sociological phenomenon as
slum formation in cities by means of two coupled, nonlinear
reaction-diffusion equations.

We interpret a reaction-diffusion model to describe quan-
titatively measurable variables of the system. There has to
be a general driving force for the similar size of slums to
be independent of continent or culture. To determine the
reason behind this phenomenon, one should use the most
concise model rather than a detailed one. In this sense, our
model does not attempt to depict the differences between slum
developments in different cities. Instead, it attempts to outline
the empirically observed similarities by describing the central
forces underlying the respective behavior.

Our research shows that the interpretation of simple math-
ematical models in the context of social sciences can lead to
a better understanding of possible basic driving forces behind
a system as complex as a city, and such models lead to new
impulses for the empirical research of slums. We believe the
trend toward more nuance in social science models is a fallacy,
and simple models such as the Turing mechanism suffice to
explain astonishing facts like the similar sizes of slums.
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