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Role of hubs in the synergistic spread of behavior
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The spread of behavior in a society has two major features: the synergy of multiple spreaders and the
dominance of hubs. While strong synergy is known to induce mixed-order transitions (MOTs) at percolation, the
effects of hubs on the phenomena are yet to be clarified. By analytically solving the generalized epidemic process
on random scale-free networks with the power-law degree distribution p; ~ k=%, we clarify how the dominance
of hubs in social networks affects the conditions for MOTs. Our results show that, for « < 4, an abundance of
hubs drive MOTs, even if a synergistic spreading event requires an arbitrarily large number of adjacent spreaders.
In particular, for 2 < o < 3, we find that a global cascade is possible even when only synergistic spreading events
are allowed. These transition properties are substantially different from those of cooperative contagions, which
are another class of synergistic cascading processes exhibiting MOTs.
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Introduction. There has been a growing body of literature
on mixed-order transitions (MOTs), which qualify as both
continuous and discontinuous phase transitions depending
on the chosen order parameter. Such transitions appear in
many different contexts, such as DNA unzipping [1-3], Ising
spins with long-range interactions [4], and various percolation
models with biased merger of clusters [5]. A common aspect
of these systems is the existence of long-range interactions
which encourage global ordering over a finite fraction of the
system at criticality [4].

Recently added to the list are various models of cas-
cades with synergistic spreading rules involving cooperation
between different contagions [6-9], weakened individuals
[10-16], or multiple spreading thresholds [17]. If each trans-
mission occurs independently without synergy, the cascade
exhibits a continuous percolation transition [18]. In contrast,
with sufficiently strong synergy, the transition can be a MOT:
a continuous transition of the probability of a global cascade
coincides with a discontinuous jump of the cascade size.
Moreover, the lines of MOTs and purely continuous transi-
tions join at a tricritical point (TCP) with its own critical
properties [19]. Again, the long loops of the substrate, through
which different spreading pathways cross each other, facilitate
global cascades at the MOTs [8,11].

A natural question arises on how the conditions for MOTs
depend on the structure of the underlying substrate. In ho-
mogeneous structures, such as lattices [6,7,13—15], Poisso-
nian random networks [6—-8,10-13,17], and modular networks
[16], a MOT requires sufficiently strong synergy between
two spreaders and dimension greater than two [13,14]. How-
ever, cascades typically occur on heterogeneous structures:
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for instance, social networks feature a significant fraction of
highly connected individuals called hubs, whose existence
is typically modeled by scale-free networks (SFNs) with a
power-law distribution p; ~ k=% (with & > 2) of the number
of neighbors & (called degree) [20]. Since SFNs with a greater
variance of k contain more loops [21], « can be a major
determinant of the conditions for MOTs. For cooperative
contagions on SFNs, a heterogeneous mean-field approach
[9] showed that a discontinuous jump of the cascade size is
possible for @ > 3 given sufficiently strong synergy, but not
for 2 < o < 3; however, whether the same statement holds
for general kinds of synergy remains to be clarified.

In this study, we show that the synergistic spread of be-
havior exhibits substantially different transition phenomena
for small values of «. As empirically observed [22], social
reinforcement induces a large boost in the spread of a behavior
if the target individual has sufficiently many adjacent spread-
ers. As a simple model incorporating this feature, we study
the generalized epidemic process (GEP) with the synergy
threshold n > 2, in which the spreading probability changes
when the number of spreading neighbors is greater than or
equal to n, extending the original version limited to n = 2
[13]. In the sense that the cluster is formed by a mixture of
single-node and multinode mechanisms, our model can be
considered a cascading-process analog of the heterogeneous
k-core percolation [23], which is a pruning process. We an-
alytically show that, for 2 < o < 4, an abundance of hubs
enable MOTs for arbitrarily large n > 2. In contrast to coop-
erative contagions, the cascade size exhibits a discontinuous
jump even for 2 < o < 3 in a manner similar to the abrupt
appearance of a giant heterogeneous k core with k > 3 on the
same SFNs [23]. While the near-TCP scaling exponents for
o > 3 remain identical to those of cooperative contagions [9],
a new set of exponents can be identified for 2 < o < 3.

Dynamics. In the GEP, a node can be susceptible (Sy),
weakened (S;), infected (I), or removed (R). All nodes are
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FIG. 1. (a) The GEP with n = 3 on a five-node network. Each thick arrow represents a time step. (b) Examples of the transitions of 7 in the
GEP with n = 3 on the SFNs. Inset: a magnified view of the double phase transition for (o, u) = (4.5, 1). (¢c) The o dependence of the TCP
(X¢, p,) and (d) the scaling exponents in Table I. The SFNs in (b)—(d) have k,, = 4.

initially Sy, except for one randomly chosen I node (the
“seed”) starting the spread. At each time step, a random I
node attempts to spread the behavior to all of its S; or S,
neighbors, each of the former (latter) with probability A (u).
Upon success, the target becomes I. A failed attempt does
not affect the target unless it is the (n — 1)th attempt on the
same Sp node, in which case the node becomes S,. After then,
the chosen I node immediately deactivates and becomes R,
permanently removing itself from the dynamics. The process
goes on until the network runs out of I nodes. The GEP with
n = 3 on a five-node network is illustrated in Fig. 1(a).

Substrate. The GEP spreads on an ensemble of infinitely
large random SFNs constrained by two conditions. First,
the degree distribution obeys a power law py = k™% /¢y,
for k > k,, and o > 2, where the generalized zeta function
5.0, defined as the analytic continuation of Zfﬁv k¢ for
s # 1, normalizes the distribution. The assumed range of o
ensures that the mean degree (k) = {4—1.4,/lak, 1S finite.
Second, there is no correlation between the degrees of ad-
jacent nodes. Given these two conditions, one may assume
that a node and each of its neighbors have mutually in-
dependent statistics, which makes the problem analytically
tractable.

Notations. The final fraction of R nodes, denoted by r,
quantifies the cascade size. The probability of a global cascade
with r > 0 is denoted by P.,. The percolation transition from
the phase with zero r and P, to the phase with positive
r and P, occurs at A = A., and r exhibits a continuous
(discontinuous) transition at the point if u < u; (U > Wy).
The scaling behaviors near the TCP (A, u) = (A., u;) are
characterized by three exponents B., B;, and ¢, so that
P ~ ef", r~ ef’, and r ~ £/ with €, = (A — A.)/A. and
€ = (1 — uy)/ 1.

Transition of P. For the SFNs defined above, multiple
spreading pathways rarely cross at the same node unless the
cascade has already reached a finite fraction of the network.
For this reason, p is completely irrelevant to the transition
from Py, = 0 to P, > 0: only XA controls the transition by a
bond-percolation mechanism. Thus one can simply apply the
theory of bond percolation on the random SFNs [24] to obtain

the transition point
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which lies between O and 1 for sufficiently large k,,. The
percolation theory [24] also shows that the transition can only
be continuous with the universal scaling behavior Py, ~ ef”
for small positive €,, where the «-dependent values of the
critical exponent B, are listed in Table I. Such equivalence
has also been noted for the GEP [10,13] and cooperative
contagions [6,8,11,12] on homogeneous networks.

Analytic calculation of r. In contrast to Po,, r depends on p
as the crossing of spreading pathways is nonnegligible when-
ever r > (. Here we present a calculation of the dependence
based on a standard tree ansatz for random SFNs [24]. For
this aim, we consider the probability g that a node at an end
of a randomly chosen link is R after the spread has stopped.
For simplicity, we assume k,, > n — 2, which does not affect
the main results. Then g satisfies a self-consistency equation

q = f(q), where
k—1 .
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TABLE I. Scaling exponents describing Py, ~ ef", r~¢", and
r ~ €f4/% of the GEP on the random SFNs near a TCP.
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Each summand indexed by m on the right-hand side accounts
for the probability that the node has m nodes among k — 1
neighbors (excluding the neighbor at the other end of the
randomly chosen link) trying to spread the behavior to it, all
of which fail to do so. Note that p; = kpy/(k) is the degree
distribution of a node at the end of a path, weighted by k
because higher-degree nodes are more likely to be connected.
Once ¢ is known, we can calculate » by

00 k
k .
=1— 1= min[m,n—1]
r pa Pk|: E <m>( )

m=0
x (1 _ M)max[o,m—n+l]qm(1 _ q)k—m:|’ (3)

where p; appears instead of p because all nodes have equal
weights regardless of & in the definition of r. For any parame-
ters, Egs. (2) and (3) provide an exact, albeit implicit, solution
for r. Examples are shown in Fig. 1(b) for the GEP withn = 3
on the SFNs with &, = 4.

Conditions for MOTs. A MOT occurs at A = A, when
it coincides with a discontinuous jump of r. Since Eq. (3)
implies r >~ (k)\Lg, the transitions of r and g should be of the
same type. The latter are encoded in the small-g expansion of
Eq. (2), which for noninteger « is given by (see [25] for the
detailed derivation)

Sa—2.kp — Sa—1,k
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where I" is the gamma function, and g; , is defined as
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Here ¢/ with an integer j corresponds to the contribution from
j neighbors, while g*~2 stems from the hubs. We note that
the latter gets an extra factor of Ing for the special cases
where « is an integer, which leads to some complications (see
[25] for more details). The transition type is determined by
whether ¢ = f(¢q) has a positive root at A = A., which in turn
depends on the sign of f” = lim,o f"(¢). If f > 0 (f" < 0),
a positive root exists (cannot exist), and the transition of r is
discontinuous (continuous). Applying this criterion to Eq. (4),
we find that the transition of r is discontinuous (continuous)
if w> w, (u < wuy), where u, € [0, 1] is a solution of

gmin2,a—21,n(Ae, i) =0 (6)

for any noninteger o > 2. In Fig. 1(c), we show examples of
Ao and u, on the SFNs with k,, = 4 satisfying this equation.
The solvability of Eq. (6) has the following implications:

() If « > 4, for n = 2 the solution is u, = % which
depends on « only through A.. This is because the transition
type is determined by the sign of ¢ in Eq. (4), which is a two-
neighbor effect. On the other hand, for n > 3 there is no solu-
tion because g2 (A, ;) = —A2 < 0; in other words, f” < 0
always holds, so the transition of r is always continuous.
Here pu comes into play only for three-or-more neighboring
spreaders, so it cannot affect the sign of ¢°.

(i) If 3 <o <4, Eq. (6) is explicitly dependent on «,
reflecting the dominance of the hub-induced ¢*~2 term. Here
the solution exists for any n > 2, because the convergence of
many spreading pathways at the hubs facilitates a MOT even
if n is arbitrarily large. We note that i, obtained from Eq. (6),
depending on k,,, can still be larger than 1 and thus impossible
to achieve, as shown for k,, = 4 in Fig. 1(c).

(iii)) If 2 < o < 3, for any n > 2, u, = 0 is the only so-
lution. This captures lim, o 7 being positive (zero) for . > 0
(u = 0); in other words, there are so many spreading path-
ways crossing at the hubs that, regardless of n, synergistic
spreading events by p unaided by A can induce a global
cascade. This regime is where the cascades of the GEP differ
most significantly from those of cooperative contagions [9]. In
the latter, a node should first be infected by one contagion with
probability A to experience a secondary infection with proba-
bility u, so r = 0 whenever A = 0. In the GEP, even if A = 0,
a spreading event by u can still occur because it only requires
sufficiently many exposures to neighboring spreaders. This
parallels the robust existence of a giant heterogeneous k core
with £ > 3 on the same SFNs even in the limit where the
fraction of removed nodes approaches unity [23].

Based on these results, one can interpret the transition
behaviors of the GEP with n = 3 on the SFNs with k,, = 4
illustrated in Fig. 1(b). For « = 3.5, both continuous and dis-
continuous transitions of r are possible at A, ~ 0.104 with the
boundary at u, &~ 0.371, whereas for « = 4.5 (see the inset
for a magnified view) r undergoes a continuous transition
belonging to the bond percolation universality class (8. = 1)
at A, & 0.203 even in the extreme case ; = 1. Notably, there
is a secondary discontinuous transition (marked by dotted
vertical lines) at A > X., whose possibility is not excluded by
our argument. This phenomenon seems to be related to the
double phase transitions reported in [17] and will be discussed
in detail elsewhere [26].

Tricritical behaviors for @ > 3. For small and positive ¢,
a Taylor expansion of Eq. (4) about (A, u) = (A, u,) yields

(/1€ if el > €l €y <0
if e, | < € (7)
if e, > €, e, > 0,

r~q-~ ef’
il

where €, = (1 — u;)/u;, the exponents B, and B; are shown
in Table I as well as Fig. 1(d), and ¢ = 1 — B;/B,. The values
of B, in this regime are in exact agreement with those reported
in [9]. It is notable that the exponent ¢, which governs the
crossover between different scaling regimes, exhibits non-
monotonic behaviors with the slope changing sign at « = 4
[see Fig. 1(d)]. This is yet another consequence of the fact that
the hubs begin to drive the MOTs as « is decreased below 4.
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FIG. 2. The near-TCP crossover behaviors for n = 2 described
by Eq. (8). The lines are obtained from the roots of Eq. (4), and the
symbols are simulation results obtained using 103 SFNs with N =
107 and k,, = 4. The upper (lower) data correspond to the €, < 0
(e, > 0) regime with (a) « = 4.5 and (b) o = 3.5. See Fig. S2 [25]
for the case o = 5.5. To remove overlaps, all data for €, < 0 have
been divided by 109. All plots use the same values of |e,,|.

To numerically verify the scaling exponents derived above,
we present the scaling form for rP.,, which converges to the
average fraction of R nodes, (R)/N, readily obtained using
random SFNs of N nodes (see [25] for more details) in the
N — oo limit. The scaling form is given by

. (R) _
rPo = lim ~= = e, P Foe e, |719),  (8)
N—ooco N

where F (F_) is the scaling function for €, > 0 (¢, < 0).
As shown in Fig. 2, there is a good agreement between the
theory and the numerics, despite deviations due to finite-size
effects for small |¢,| and |e,| (see Fig. S3 [25] for a closer
comparison between theory and numerics).

Scaling behaviors for 2 < a < 3. As discussed above and
illustrated in Figs. 3(a) and 3(b) (the latter providing a numer-
ical verification of the tree ansatz, whose rigorous justification
remains an open mathematical problem due to a diverging
number of short loops [21]), A, = @, = 0 holds in this regime.
Due to the absence of the phase of localized cascades, it would
be misleading to call the point a TCP; however, one can still
identify universal scaling behaviors and the crossover between
them from the leading-order terms of Eq. (4), identifying new
scaling exponents previously unreported. We obtain

g~ (g r + pe2)"0 )

with a coefficient dyy, > 0 determined by « and k,, as

illustrated in Fig. 3(c). For u = 0, the above equation and r ~
Aq from Eq. (3) implies r ~ A% with B, = 3=%. Moreover,

since the positive limiting values of ¢ and r as A decreases
to zero become clear only for ;& >> A!'/©@~2) we can also write
¢ = ﬁ to describe the crossover. The behaviors of 8, and

— 100
100 (a) (c)
_ 102 h =0 — - 10! ¢ <
104 0.04 —
[ 0.08 — | 10-2
106 |- 0.16 - E_1 E
L SH 3—a
107 L E
10 L E
E n=2 —
r 4 —
T 10-° vl il
1072 1071 100 103 1072 10! 100
A da,km, A+ :u'a72

FIG. 3. (a) Scaling behaviors of the cascade size r on the SFNs
with @ = 2.5 and k,, = 4. (b) Comparison between the asymptotic
values of 7P, (solid lines) predicted by the roots of Eq. (4) and the
corresponding finite-size observable (R)/N (symbols) numerically
obtained from 10° networks with N = 10°. Both (a) and (b) use
n = 2 and the same values of . (c) Universal scaling form of g with
respect to dy , A + 1*~2, as predicted by Eq. (9). The solid (dashed)
lines correspond to A = 0 (u = 0).

¢ for 2 < a < 3 shown in Table I and Fig. 1(c) should be
understood in this vein.

Summary. We examined the effects of the degree exponent
o on the percolation transitions of the GEP on uncorre-
lated random SFNs. All analytical results, based on the tree
ansatz (2), are in good agreement with the numerics beyond
the regime of strong finite-size effects. It is found that the
hub-driven MOTs occur only for « < 4. In particular, for
2 < a < 3, we identified new transition behaviors stemming
from the convergence of loops at the hubs. These imply
that the spread of behavior and cooperative contagions [9]
belong to different universality classes on typical social net-
works. Our results reveal fundamental principles underlying
the formation of compact cultural subgroups fostered by the
fat-tailed degree distribution of social networks. Interesting
topics for future studies include the conditions for double
phase transitions, the nature of finite-size effects, and con-
nections to MOTs and TCPs reported in other percolation
models [27,28].
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