
PHYSICAL REVIEW E 98, 052317 (2018)

Kinetic theory for financial Brownian motion from microscopic dynamics

Kiyoshi Kanazawa,1,2 Takumi Sueshige,2 Hideki Takayasu,1,3 and Misako Takayasu1,2

1Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
2Department of Mathematical and Computing Science, School of Computing, Tokyo Institute of Technology,

4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
3Sony Computer Science Laboratories, 3-14-13 Higashi-Gotanda, Shinagawa-ku, Tokyo 141-0022, Japan

(Received 21 March 2018; published 29 November 2018)

Recent technological development has enabled researchers to study social phenomena in detail, and financial
markets have attracted the attention of physicists particularly since key concepts in Brownian motion are
applicable to the description of financial systems. In our previous Letter [Kanazawa et al., Phys. Rev. Lett.
120, 138301 (2018)], we presented a microscopic model of high-frequency traders (HFTs) through direct
data analyses of individual trajectories of HFTs and revealed its theoretical dynamics by introducing the
Boltzmann and Langevin equations for finance. However, the formulation therein was rather heuristic and a
more mathematically exact derivation is necessary from the microscopic dynamics of the HFT model. We hereby
establish the mathematical foundation of kinetic theory for financial Brownian motion in a manner parallel to
traditional statistical physics. We first derive the exact time-evolution equation for the phase-space distribution
for the HFT model, corresponding to the Liouville equation in analytical mechanics. By a systematic reduction
of the Liouville equation for finance, the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchal equations are
generalized for financial Brownian motion. We then derive the Boltzmann and Langevin equations for the order
book and the price dynamics by assuming molecular chaos. The asymptotic solutions to these equations are
presented for a large number of HFTs, which qualitatively reveal how the strategies of traders at the microscopic
level impact the macroscopic dynamics of market price. Our theoretical prediction was numerically examined
via Monte Carlo simulations. Our kinetic description highlights the parallel mathematical structure between the
financial and physical Brownian motions by a straightforward extension of statistical mechanics.
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I. INTRODUCTION

The goal of statistical physics is to reveal macroscopic be-
havior of physical systems from their microscopic setups, and
this has been partially achieved in equilibrium and nonequi-
librium statistical mechanics [1]. For example, kinetic theory
has provided a mathematically rigid foundation for various
nonequilibrium systems such as dilute molecular gas, Brow-
nian motion, granular gas, active matter, traffic flows, neural
networks, and social dynamics [2–12]. The fundamental equa-
tions of kinetic theory (i.e., the Boltzmann and Langevin equa-
tions) were historically introduced on the basis of phenomeno-
logical arguments within the frameworks of nonlinear master
equations and stochastic processes [13,14]. Furthermore, their
systematic derivations were mathematically developed from
analytical mechanics by Bogoliubov-Born-Green-Kirkwood-
Yvon (BBGKY) and van Kampen [14–17].

Inspired by these successes, physicists have attempted to
apply statistical physic approaches beyond material science
to the social sciences. In particular, financial markets have
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attracted the attention of physicists as an interdisciplinary field
[18,19] since they exhibit quite similar phenomena which can
be described by key concepts in physics, such as Brownian
motion. It is noteworthy that the concept of Brownian motion
was historically first formulated for financial systems by
Bachelier [20] before the famous work by Einstein in field
physics [21]. Subsequent to Bachelier’s studies, several char-
acteristics of Brownian motions in finance and their differ-
ences from physical Brownian motions have been discovered
by both theoretical and data analyses. On the level of price
time series, the power-law behavior of price movements has
been reported empirically [22–26]. Such universal characters
have been summarized as the stylized facts [19] and have been
theoretically investigated using time-series models [19,27–29]
and agent-based models [30–37]. In addition, the characteris-
tics of order books (i.e., current distribution of quoted prices)
have been studied using both empirical analysis and order-
book models [19,38–44]. For example, the zero-intelligence
order-book models [38–44] have been investigated from sev-
eral perspectives, such as power-law price movement statistics
[38], order-book profile [41], and market impact by large meta
orders [43,44]. The collective motion of the full order book
was further found by analyzing the layered structure of the
order book [45,46], which was a key to the generalization
of the fluctuation-dissipation relation to financial Brownian
motion. To date, however, the modeling of individual traders
dynamics based on direct microscopic evidence has not been
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fully studied, which is a crucial obstacle in the application
of statistical mechanics from microscopic dynamics. To fully
apply statistical mechanics to financial systems, it is necessary
to establish a microscopic dynamical model of traders based
on microscopic evidence, and to develop a nonequilibrium
statistical mechanics for such non-Hamiltonian many-body
systems.

Recently, an extension of the kinetic framework for fi-
nancial Brownian motion was proposed by studying high-
frequency data including traders identifiers (IDs) [46]. The
dynamics of high-frequency traders (HFTs) were directly
analyzed by tracking the trajectories of individuals, and a
microscopic model of trend-following HFTs was established
showing agreement with empirical analyses of microscopic
trajectories. On the basis of the “equation of motions” for
the HFTs, Boltzmann-like and Langevin-like equations were
finally derived for mesoscopic and macroscopic dynamics,
respectively. This framework is shown to be consistent with
empirical findings, such as HFTs’ trend following, average
order-book profile, price movement, and layered order-book
structure. However, the mathematical argument therein was
rather heuristic, similarly to the original derivation of the con-
ventional Boltzmann and Langevin equations. Considering
the traditional stream of kinetic theory, a mathematical deriva-
tion beyond heuristics is necessary for the financial Brownian
motion parallel to the works by BBGKY and van Kampen.

In this paper, we examine the mathematical foundation
for financial Brownian motion in the parallel mathematics
of kinetic theory. For the trend-following HFT model [46],
we first define the phase space and the corresponding phase-
space distribution (PSD) according to analytical mechanics
[15,47]. We then derive the exact time-evolution equation for
the PSD, which corresponds to the Liouville equation in ana-
lytical mechanics. The many-body dynamics for the PSD are
reduced into few-body dynamics for reduced PSD according
to the reduction method by BBGKY. By assuming molecular
chaos, we obtain the nonlinear Boltzmann equation for the
order-book profile and the master Boltzmann equation for
the market price dynamics. We also present their perturbative
solutions for a large number of HFTs to study the dynamic
behavior of this system for all hierarchies. The validity of our
framework is finally examined by Monte Carlo simulation.

This paper is organized as follows: In Sec. II, we briefly
review the mathematical structure of the standard kinetic
theory and the double-auction systems for price formulation
before proceeding to our work. In Sec. III, we describe the
details of the trend-following HFTs model as the microscopic
setup. In Sec. IV, the microscopic dynamics of the model are
exactly formulated in terms of the Liouville equation and the
corresponding BBGKY hierarchal equations. In Sec. V, the
financial Boltzmann equation is derived as the mesoscopic
description of the financial system. In Sec. VI, the macro-
scopic behavior is analyzed by deriving the financial Langevin
equation. In Sec. VII, implications of our theory are discussed
for several related topics. We conclude this paper in Sec. VIII
with some remarks. In this paper, the presentation of the main
results is written as self-contained, followed by the detailed
derivation of the results; readers interested only in the main
results may skip their theoretical derivation without referring
to the detailed calculation.

II. BRIEF REVIEW OF CONVENTIONAL KINETIC
THEORY FOR BROWNIAN MOTION AND FINANCIAL

MARKET MICROSTRUCTURE

Before proceeding to the core part of our work, we briefly
review (i) the formulation of the kinetic theory for physical
Brownian motion and (ii) the price formulation mechanism
in financial markets via the double-auction systems, to con-
vey our essential idea for generalization toward financial
systems. The aim of this section is to provide sufficient
background knowledge for nonexperts in kinetic theory or
financial market microstructure. Since our work is based on
interdisciplinary techniques in statistical physics and financial
market microstructure, we believe that these reviews will help
familiarize readers to these fields, although the main results in
this paper are self-contained.

A. Review of kinetic theories from the equation of motions

We first start with a review of kinetic theory from micro-
scopic Newton dynamics. Let us consider the Hamiltonian
dynamics of N gas particles of mass m and a tracer particle
of mass M with the hard-core interaction in a hard-core box
of volume V [see Fig. 1(a) for a schematic]. The momentum
and position of the ith gas particle are denoted by pi ≡
(pi;x, pi;y, pi;z) and qi ≡ (qi;x, qi;y, qi;z) for 1 � i � N , and
those of the tracer are denoted by P = p0 and Q = q0. The
dynamics of this system are described by the equation of
motions,

dqi

dt
= pi

mi

,
d pi

dt
=

∑
j �=i

Fij , (1)

with interaction force Fij between particles i and j for 0 �
i, j � N (mi = M for i = 0 and mi = m otherwise).

B. Liouville equation

In analytical mechanics, the phase space is defined as S ≡∏N
i=0(−∞,∞)6. The state of a system can be designated as

the phase point defined by � ≡ ( P, Q; p1, q1; . . . ; pN, qN ) ∈
S , and the corresponding PSD is denoted by Pt (�). The time
evolution of the PSD is described by the Liouville equation,

∂Pt (�)

∂t
= LPt (�), (2)

with the Liouville operator L1 (see Refs. [14,15,47–50] for
the details). This equation is mathematically exactly equiv-
alent to the equation of motions (1), and is the funda-
mental equation for the microscopic description [Fig. 1(a)].
However, the equation is not analytically solvable since it
fully addresses the original many-body dynamics without any
approximation.

1In the presence of the hard-core interaction, the Liouville operator
L is nonlocal and is technically called the pseudo-Liouville operator
[14,48–50].
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FIG. 1. Hierarchal kinetic description of the conventional Brownian motion (a)–(c) and the financial Brownian motion (d)–(f). In the
microscopic hierarchy of physical Brownian motion (a), gas particles and a massive tracer interact with each other, where the dynamics are
described by the Liouville equation (2). As the mesoscopic description (b), the full dynamics are reduced to the one-body distribution φ(1)

for gas particles, which are governed by the Boltzmann equation (6). The macroscopic dynamics of the tracer (c) are described by the master
Boltzmann equation (8), or the Langevin equation (9) asymptotically for large system size M � m. Here we focus on the parallel hierarchal
structure of financial markets (d)–(f) to molecular kinetic theory. In the microscopic hierarchy (d), each trader makes decisions to submit or
cancel orders. As such, the dynamics of the traders correspond to those of molecules in kinetic theory. In the mesoscopic hierarchy (e), the
information on trader identifiers is lost by coarse graining and we obtain the dynamics of the order book (i.e., the quoted price distribution). The
order-book profile corresponds to the velocity distribution in the conventional kinetic theory. In the macroscopic hierarchy (f), the dynamics of
the market price movement are finally deduced by the coarse graining, which exhibits anomalous random walks. The market price dynamics
correspond to those of the Brownian motion in kinetic theory.

C. BBGKY hierarchy and Boltzmann equation

To focus on the one-body dynamics of a gas particle or the
tracer, let us introduce the reduced PSDs,

φ
(1)
t ( p1, q1) ≡

∫
Pt (�)

∏
i=0,i�2

d pidqi ,

φ
(2)
t ( p1, q1, p2, q2) ≡

∫
Pt (�)

∏
i=0,i�3

d pidqi , (3a)

P
(T)
t ( P, Q) ≡

∫
Pt (�)

∏
i�1

d pidqi ,

P
(TG)
t ( P, Q, p1, q1) ≡

∫
Pt (�)

∏
i�2

d pidqi . (3b)

On the assumption of binary interaction, we can exactly derive
hierarchies of the PSDs from the Liouville equation (2), such
that

∂φ
(1)
t

∂t
= L(1)φ

(1)
t + L(2)φ

(2)
t + 1

N
L(TG)P

(TG)
t , (4a)

∂P
(T)
t

∂t
= L(T)P

(T)
t + L(TG)P

(TG)
t , (4b)

with one-body Liouville operators L(1),L(T) and two-body
collision operators L(2),L(TG). These equations are exact but
not closed in terms of φ

(1)
t and P

(T)
t .

To obtain analytical solutions, a further approximation is
necessary. The standard approximation in kinetic theory is a
mean-field approximation, called molecular chaos,

φ(2)( p1, q1, p2, q2) ≈ φ(1)( p1, q1)φ(1)( p2, q2), (5)

which is mathematically shown to be asymptotically exact
for dilute gas in the thermodynamic limit N,V → ∞ (called
the Boltzmann-Grad limit [51]). We then obtain the closed
dynamical equation for φ(1) as

∂φ(1)

∂t
≈ L(1)φ(1) + L(2)(φ(1)φ(1) ), (6)

which is the fundamental equation for the mesoscopic descrip-
tion [Fig. 1(b)]. The steady solution for φ(1) of the nonlin-
ear Boltzmann equation (6) is then given by the celebrated
Maxwell-Boltzmann distribution.

D. Langevin equation

The stochastic dynamics for the macroscopic variables
( P, Q) can also be obtained within kinetic theory. By apply-
ing molecular chaos for P (TG)( P, Q, p1, q1) as

P (TG)( P, Q, p1, q1) ≈ P (T)( P, Q)φ(1)( p1, q1), (7)

we obtain the master Boltzmann equation (or the linear Boltz-
mann equation)

∂P (T)

∂t
≈ L(T)P (T) + L(TG)(P (T)φ(1) ), (8)
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FIG. 2. Schematic of the price formulation via the double-auction systems. (a) Individual traders make decisions on limit, market,
and cancellation orders. In this schematic, the first trader canceled his/her bid quote of price 110.895 JPY at 9:10:10:10.553; the second
trader submitted his/her ask limit order of price 110.915 JPY at 9:10:25.001; the third trader submitted a buy market order at 9:11:00.222.
(b) Cancellation and limit orders are reflected in the order book as depletion and injection of “blocks.” Here the blocks represent orders of the
unit volume (i.e., one million dollars) and are allocated on the lattice with minimum interval 0.005 JPY. (c) A new market price is generated
when prices match, as an interaction between limit and market orders.

which belongs to the linear-master equations in the Markov
process and describes the dynamics of the tracer particle.
Equation (8) can be further approximated as the Fokker-
Planck equation within the system size expansion, which was
developed by van Kampen [16]. For the macroscopic limit
M � m, one can asymptotically deduce the Langevin equa-
tion for the tracer as the macroscopic description of Brownian
motion [Fig. 1(c)],

d P
dt

≈ − γ

M
P +

√
2γ T ξG, (9)

with viscous coefficient γ , temperature of the gas T , and white
Gaussian noise ξG with unit variance.

The above formulation shows the systematic connection
from the microscopic Newtonian dynamics to the mesoscopic
dynamics and macroscopic dynamics. This methodology is
shown to be valid even for nonequilibrium systems when the
gas is sufficiently dilute (see Refs. [3–9,12] for its application
to various nonequilibrium systems), and is one of the most
successful formulations in statistical physics.

E. Review of price formation mechanism
in the double-auction financial markets

The aforementioned kinetic theory is generalized for fi-
nancial markets in this paper. Let us then review the price
formation mechanism in financial markets via the double-
auction systems, which is a popular framework adopted in
many financial markets, such as foreign exchange (FX) and
stock markets. This subsection is aimed to provide sufficient
background knowledge to statistical physicists who are not
familiar with financial markets.

Here we introduce five technical terms related to the price
formulation in the double-auction systems: limit order, order
book, market order, cancellation order, and liquidity.

(1) Limit order. In the double-auction markets, traders
submit limit orders to show their quoted prices, the prices at
which they are willing to transact [Fig. 2(a)]. There are two
types of quoted prices: bid and ask. A bid (ask) quoted price
means the price at which they are willing to buy (sell) the
currency. A limit order also accompanies volume, the total
amount of currencies that the trader is willing to transact.
We note that both price and volume are typically discretized;
for example, the minimum price precision was 0.005 yen

and the minimum volume unit was one million dollars in
our interbank market data provided by Electronic Broking
Services (EBS) on the exchange between the US dollar (USD)
and Japanese yen (JPY) (see Sec. III B for the detailed data
description). In the following, we measure volume using the
volume minimum unit. For example, a bid (ask) limit order of
price 110.905 JPY with a unit volume implies that the trader
is willing to buy (sell) one million USD by paying (receiving)
110.905 × 106 JPY.

(2) Order book. Quoted prices reside in the order book, the
current distribution of bid and ask quoted orders [see Fig. 2(b)
for a schematic]. When a trader submits an ask limit order,
for example, the order will enter and reside in the ask order
book until it is transacted or canceled. Here the horizontal
axis represents the price and the vertical axis represents the
total volumes of orders at the price in Fig. 2(b). We note that
the price axis is discretized by the minimum price precision
like a one-dimensional lattice system. The order book is the
key element to the double-auction systems since it provides
the current information on the demands and supplies for the
currency. The highest bid and lowest ask quoted prices are
called the market best bid and ask prices, respectively.

(3) Market order. A transaction occurs when bid and ask
prices match between different traders: traders exchange their
currency pair at the market transacted price (or the market
price for short). Transactions can be triggered by market
orders,2 orders to immediately buy (sell) the currency at the
market best ask (bid) prices, and the market price is reflected
in the price time series [Fig. 2(c)]. A market order has a
gender, buy or sell.

(4) Cancelation order. Traders can cancel their limit or-
ders by cancellation orders [Fig. 2(b)]. In particular, HFTs
frequently cancel their limit orders and update their prices, in
order to take advantage of their response speed. Not-canceled
limit orders are called live orders to stress their difference
from canceled limit orders.

(5) Liquidity. The market liquidity implies the degree to
which the currency can be quickly bought or sold without any

2Technically, an ask (bid) limit order of lower (higher) price than
the market best bid (ask) price can immediately trigger a transaction,
akin to a market order. The difference between limit orders and
market orders is subtle in this sense.
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price impact. The price impact of a market order tends to be
significant in the cases of a lack of bid or ask limit orders and
the double-auction markets of plenty bid and ask orders are
regarded as liquid markets. Maintenance of sufficient numbers
of orders for both bid and ask sides is highly appreciated and
there are specialists that provide such market liquidity, called
liquidity providers, as discussed later.

The aforementioned mechanisms are implemented in the
double-auction systems for price formulation, where the price
time series is not generated by pure random numbers but
is formed as part of the psychological battles and implicit
negotiations among traders through both order book and price
time series.

To capture such complex structures, there are several mod-
els for price formulation dynamics that focus on various
viewpoints. For example, one of the popular approaches is to
ignore the details of the order-book dynamics, and to focus
on economical perspectives (e.g., the information asymmetry
among traders in Kyle’s classical model [30]). While this ap-
proach highlights fundamental economical properties, various
properties of the order book are missed, such as the book
profile and its relaxation dynamics. Another approach is to
directly model the order-book dynamics based on only simple
assumptions, to avoid introduction of ad hoc parameters. For
example, the zero-intelligence models are based on simple
Poisson processes for the order submission, cancellation, and
execution [38–44]. This approach also highlights the basic
characteristics of the order-book dynamics under minimal as-
sumptions. In addition, these approaches have the advantages
that the model calibration is easy under coarse-grained data
sets; they require only the price time series or order book
for calibration. Indeed, the availability of precise microscopic
data sets was limited, which had made it difficult to scientifi-
cally model the trader dynamics on the level of individuals.

Recently, however, ultimately microscopic data including
trader IDs have become available, which has made it sci-
entifically possible to directly model the details of individ-
ual trader dynamics. In Ref. [46], a microscopic model of
individual trader dynamics was introduced as a stochastic
multiagent model by utilizing the trading log data on the
level of traders. The authors found a novel empirical law on
the trend-following behavior of traders, which characterizes
the collective motion of individual traders and was missing
in the previous order-book models. We here stress that the
microscopic data were critically helpful in constructing the
microscopic model without introduction of ad hoc parameters.
The developed model was finally shown to be consistent with
the mesoscopic and macroscopic findings from the data set.

Since the microscopic model has been established by a real
data analysis, it is necessary to reveal the model dynamics
by developing a corresponding statistical mechanical theory.
The aim of this paper is to develop a statistical mechanical
theory for such a financial Brownian motion model based on
molecular kinetic theory.

F. Idea to generalize kinetic theory toward finance

Herein, we will present our ideas with regard to gener-
alizing the framework toward a financial Brownian motion.
Financial markets have a quite similar hierarchal structure
to conventional Brownian motion [see Figs. 1(d)–1(f) for a

schematic]: In the microscopic hierarchy, individual traders
make decisions to buy or sell currencies at a certain price
[Fig. 1(d)]. In the mesoscopic hierarchy, the dynamics are
coarse-grained into the order-book dynamics with the removal
of traders’ IDs [Fig. 1(e)]. In the macroscopic hierarchy, the
dynamics are reduced to the price dynamics [Fig. 1(f)]. One
can notice that these hierarchies directly correspond to those
in kinetic theory; traders, order book, and price correspond
to molecules, velocity distribution, and Brownian particle,
respectively. In this sense, the financial markets have a similar
hierarchal structure to that in kinetic theory. From the next
section, we present a parallel mathematical framework for the
description of financial markets from microscopic dynamics.

III. MICROSCOPIC SETUP

In this section, the dynamics of the trend-following HFT
model in Ref. [46] is mathematically formulated within the
many-body stochastic processes with collisions on the basis
of microscopic empirical evidence.

A. Notation

We here briefly explain the notation used in this paper.
Any stochastic variable accompanies the hat symbol such
as Â to stress its difference from nonstochastic real num-
bers such as A. For example, the probability distribution
function (PDF) of a stochastic variable Â(t ) at real time t

is denoted by P (A, t ) ≡ P (Â(t ) = A) with a nonstochas-
tic real number A [i.e., the probability of Â(t ) ∈ [A,A +
dA) is given by P (A, t )dA]. The complementary cumu-
lative distribution function (CDF) is also defined as P (�
A, t ) ≡ ∫ ∞

A
P (A′, t )dA′. Arguments in functions are abbrevi-

ated without mention sometimes to simplify the notation. The
ensemble average of any stochastic quantity Â(t ) is denoted
by 〈Â(t )〉 ≡ ∫ ∞

−∞ AP (A, t )dA.
We next explain the terminology for the order book for the

whole market [Fig. 3(a)]. The highest bid (lowest ask) quoted
price among all the traders is called the market best bid (ask)
price b̂M (âM ). The average of the market best bid and ask
prices is called the market midprice ẑM ≡ (b̂M + âM )/2. The
difference between the market best bid and ask prices L̂M ≡
âM − b̂M is called the market spread. The market transacted
price refers to the price at which a transaction occurs in
the market. In this paper, the market price (mathematically
denoted by p̂) indicates the market transacted price for short.

For a single trader, the highest bid (lowest ask) quoted price
by a single trader is called the best bid (ask) price of the trader
in this paper, which is denoted by b̂i (âi) for the ith trader
[see Fig. 3(b)]. The average of the best bid and ask prices of
the trader is called the midprice of the trader (denoted by ẑi).
Also, the difference between the best bid and ask prices of
the trader is called the buy-sell spread of the trader (denoted
by L̂i ≡ âi − b̂i), which is conceptually different from the
market spread L̂M .

There are two types of time used in this analysis. One is
the real time t and the other is the tick time T [Fig. 3(c)].
The tick time T is defined as a discrete time incremented
by every market transaction and corresponds to the real time
as a stochastic variable, such as t = t̂[T ]. Here the square
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FIG. 3. Notation of the state variables for our market model. (a) Market best bid b̂M and ask âM prices. The market midprice and market
spread are defined by ẑM ≡ (b̂M + âM )/2 and L̂M ≡ âM − b̂M , respectively. (b) Best bid b̂i and ask âi prices for a single trader i. Here
the light blocks represent the orders submitted by the ith trader. The midprice and buy-sell spread of the ith trader are defined by ẑi ≡
(b̂i + âi )/2 and L̂i ≡ âi − b̂i , respectively. (c) Schematic of the tick time T , incremented every transaction. For the trend-following analysis of
individual traders [46], the correlation was studied between future movement of HFT’s quoted midprice �ẑi[T ] and historical price movement
�p̂[T − 1].

brackets for the function’s argument (e.g., Â[T ]) imply that
the stochastic variable Â(t ) is measured according to the tick
time T [i.e., Â[T ] ≡ Â(t̂[T ])], highlighting the difference
from that measured according to the real time t [e.g., Â(t )
with round brackets].

B. Data description and characters of real HFTs

Here we describe the characters of real HFTs on the basis
of high-frequency data analysis of an interbank FX market.
We analyzed the order-book data including anonymized trader
IDs and anonymized bank codes on EBS from the 5th 18:00
to the 10th 22:00 GMT June 2016.3 EBS is an interbank FX
market and is one of the biggest financial platforms in the
world. The minimum volume unit for transaction was one
million USD for the FX market between the USD and the
JPY. Since the EBS market is an interbank platform, most of
the market participants are professional institutional investors;
they are typically associated with banks (or hedge funds via
the EBS prime dealing service). Our FX data set is therefore
essentially the trading log data of institutional investors but
not of retail investors; most of the traders can be assumed to
have professional skills of FX trading.

For this study, we focus particularly on HFTs, who fre-
quently submit or cancel their orders according to algorithms.
As reported in our previous work [46], HFTs have several
characteristics that are quite different from those of low-
frequency traders (LFTs). In this paper, an HFT is defined
as a trader who submitted limit orders more than 2500 times
during the week (i.e., at least approximately one submission
every minute on average, assuming that their working time
is eight hours per day). Here, we acknowledge that there
are a variety of definitions of HFTs in both econophysics
and finance but we use the simplest definition based on the
number of order submissions during the week, similarly to
previous research [52]. With this definition, the number of
HFTs was 135 during the week, while the total number of
traders submitting limit orders was 922,4 and 89.6% of all the
orders in this market were submitted by the HFTs. Here we

3We purchased this data set for academic use only from NEX
Group plc, a third-party for-profit company.

4In Ref. [46] 134 traders were defined as HFTs with one trader
excluded whose order lifetime is extremely short.

summarize the reported characteristics with several additional
pieces of evidence:

(α1) Small number of live orders and volume. HFTs typ-
ically maintain a few live orders, less than ten [see Figs. 4(a)
and 4(b)]. Furthermore, a single order submitted by HFTs
typically implies one unit volume of the currency. These char-
acteristics are in contrast to those of LFTs, who sometimes
submit large volumes in a single order [see Figs. 4(a) and
4(c) for the fat-tailed distributions of the number of orders or
volumes for LFTs].

(α2) Liquidity providers. Typical HFTs play the role of
key liquidity providers and have the obligation to maintain
continuous two-way quotes during their liquidity hours ac-
cording to the EBS rulebook [53] [see Fig. 4(d) for a typical
trajectory of the top HFT]. Here the two-way quotes implies
that the trader quotes both bid and ask prices to provide
liquidity for the market. The balance between the ask and
bid order book is kept statistically symmetric to some extent,
seemingly thanks to the liquidity providers.

(α3) Frequent price modification. Typical HFTs fre-
quently modify their quoted prices by successive submission
and cancellation of orders [see Fig. 4(d) for a typical trajectory
of the top HFT]. The lifetime of orders was typically within
seconds for the top HFT, while the typical transaction interval
was 9.3 seconds in our data set. In addition, 94.4% of the sub-
missions by all the HFTs were canceled without transactions.

(α4) Trend-following property. HFTs tend to follow the
market trends. We here denote the best bid and ask quoted
price of the ith trader and the market price at the T tick
time by b̂i (t̂[T ]) ≡ b̂i[T ], âi (t̂[T ]) ≡ âi[T ], and p̂(t̂[T ]) ≡
p̂[T ], respectively [see Fig. 3(c)]. We also denote the mid
quoted price of the ithe trader by ẑi[T ] ≡ (b̂i[T ] + âi[T ])/2.
According to Ref. [46], the future price movement of the ith
HFT �ẑi[T ] ≡ ẑ[T + 1] − ẑ[T ] statistically obeys

〈�ẑi[T ]〉�p̂[T −1]=�p ≈ ci tanh
�p

�p∗
i

(10)

conditionally on the historical price movement �p̂[T − 1] ≡
p̂[T ] − p̂[T − 1] = �p with the characteristic constants ci

and �p∗
i . The constant ci characterizes the strength of trend

following for the ith trader, whereas �p∗
i characterizes the

saturation threshold for the trader’s reaction to market trends.
Here the ensemble average 〈. . . 〉�p̂[T −1]=�p is taken for
active traders �ẑi[T ] �= 0 on the condition that the previ-
ous price movement is given by �p̂[T − 1] = �p with a
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FIG. 4. Summary of the empirical characters of real HFTs based on our data set. (a) The number of submissions, typical number of orders,
typical volumes designated in one order, depending on the ranking of the trader. For this figure, we analyzed representative numbers for every
two traders for anonymization. Top: We sorted the traders by their total number of submissions to define their rankings. The top 135 traders
were defined as HFTs, while the remaining 788 traders were defined as LFTs in this paper. We plotted the average of their total submissions
for every two traders. Center: We investigated the number of total orders in the bid (ask) side at every bid (ask) order submission and take its
median, first, and third quartiles every two traders. Bottom: We studied the volumes designated in one order at every order submission and
take its median, first, and third quartiles for every two traders. (b) PDF for the numbers of orders maintained by a single HFT for one side
(purple) and volumes designated in a single order of HFTs (green). For this figure, we studied medians as representative numbers for every
single HFT. (c) CDF for the numbers of orders maintained for one side (purple) by a single LFT and the volumes designated in a single order
of LFTs (green). For this figure, we studied medians as representative numbers for every single LFT. (d) Typical trajectories of the top HFT,
continuously maintaining both sides as key liquidity providers. (e) PDF for volumes filled in a single transaction. The percentage of one-to-one
transaction is 81.5% of all transactions. Transactions within 5 volumes occupy 98.2%.

nonstochastic real number �p. In the following, we intro-
duce shorthand notation for the conditional ensemble average
as 〈...〉�p̂[T −1]=�p = 〈...〉�p. In addition, the variance of the
HFT’s future price movement is independent of historical
market trends as

V�p(�ẑi[T ]) ≈ σ 2
i (11)

with variance V�p(�ẑi[T ]) ≡ 〈(�ẑi[T ] − 〈�ẑi[T ]〉�p )2〉�p

and constant σ 2
i independent of �p.

We also note that the one-to-one transaction is the basic
interaction among traders in this market. The percentage
of one-to-one transactions was 81.5% in our data set [see
Fig. 4(e) for more detailed evidence]. On the basis of the
previous empirical results, the trend-following HFT model
was proposed in Ref. [46] as the corresponding minimal
microscopic model as reviewed in the next section.

C. Theoretical model

On the basis of the previously outlined characteristics of
HFTs, let us consider a microscopic model according to

Ref. [46], within the framework of many-body stochastic
systems with collisions.

1. State variables

Let us consider a market composed of N HFTs quoting
both bid and ask prices {b̂i}i and {âi}i at all time with
the unit volume, where the index i identifies the individual
trader (1 � i � N ). This assumption is consistent with the
empirical HFT’s characteristics (α1) and (α2). For simplicity,
the difference between the best bid and ask prices of a single
trader (called buy-sell spread Li) is assumed to be a time
constant unique to the trader [see Fig. 5(a)]:

Li ≡ b̂i − âi = const. (12)

On this assumption, the dynamics of individual HFTs are
uniquely characterized by their midprice as ẑi ≡ (b̂i + âi )/2.
The maximum and minimum values of the buy-sell spread
among traders are denoted by Lmax and Lmin, respectively.
According to Ref. [46], the buy-sell distribution ρL is directly

052317-7



KANAZAWA, SUESHIGE, TAKAYASU, AND TAKAYASU PHYSICAL REVIEW E 98, 052317 (2018)

(updated as         )

(b)(a) (c)Volume
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Transaction Requotation

FIG. 5. Schematics of the dynamics of the trend-following HFT model. (a) Traders maintain two-sided quotes with constant buy-sell
spreads Li and Lj for traders i and j . Their midprices move according to a deterministic trend following and random movement. (b) When bid
and ask prices coincide, transaction occurs at that price. (c) Both traders requote their bid and ask prices at a distance from the market price
after transaction.

measured to obey the γ distribution, such that

ρL ≡ 1

N

N∑
i=1

δ(L − Li ) ≈ Lα

α!L∗(α+1)
e−L/L∗

(13)

with decay length L∗ and empirical exponent α ≈ 3.

2. Trend-following random walks

HFTs have a tendency to maintain continuous two-sided
quotes by frequently modifying their prices (i.e., successive
cancellation and submission of limit orders), as required by
the market rule [53]. This implies that the midprice trajectory
of an HFT can be modeled as a continuous random trajectory
[i.e., the characteristics (α2) and (α3)]. Remarkably, there is a
mathematical theorem which guarantees that the Itô processes
[i.e., stochastic differential equations (SDEs) driven by the
white Gaussian noise] are the only Markov processes with
a continuous sample trajectory [13]. As a minimal model
satisfying all the characters of real HFTs (α1)–(α4), the
dynamics of the HFTs are modeled within the Itô processes
as

dẑi

dt
= c tanh

�p̂

�p∗ + σ η̂R
i (14)

in the absence of transactions [Fig. 5(a)]. Here c and �p∗ are
constants that characterize the strength and threshold of the
trend-following effect and η̂R

i is the white Gaussian noise with
unit variance. The presence of the trend-following effect in
Eq. (14) is the characteristic of our HFT model, which induces
the collective translational motion of full order book [46]
and is crucial in reproducing the order-book layered structure
reported in Ref. [45] (see Sec. III F).

3. Transaction rule

When the best bid and ask prices coincide, a transaction
occurs [see Fig. 5(b)]. The transaction condition (i.e., the
condition of price matching) is mathematically given by

b̂j = âi (15)

for i �= j . In the following, we assume that the index i is an
integer different from another integer j . At the instance of the
transaction b̂j = âi , let us assume that the traders requote their
prices simultaneously [see Fig. 5(c)] such that

b̂
pst
j = b̂j − Lj

2
, â

pst
i = âi + Li

2
, (16)

where b̂
pst
j and â

pst
i are post-transactional bid and ask prices,

respectively. By introducing the midprice of the individual
traders as ẑi ≡ (b̂i + âi )/2, the transaction rule is rewritten
as

ẑi − ẑj = Li + Lj

2
=⇒ ẑ

pst
i = ẑi − Li

2
, ẑ

pst
j = ẑj + Lj

2
.

(17)

We hereby define the market price p̂(t ) and the previous
price movement �p̂(t ) at time t . p̂(t ) is the market price
at the previous transaction; �p̂(t ) is the price movement by
the previous transaction. They are updated after transactions
under the following post-transaction rule [Figs. 5(b) and 5(c)]:

|ẑi − ẑj | = Li + Lj

2
=⇒ p̂pst = ẑi − Li

2
sgn(ẑi − ẑj ),

�p̂pst = ẑi − Li

2
sgn(ẑi − ẑj ) − p̂, (18)

with signature function sgn(x) defined by sgn(x) = x/|x| for
x �= 0 and sgn(0) = 0.

D. Complete model dynamics

We hereby specify the complete dynamics of the quoted
prices {ẑi (t )}i within the framework of stochastic processes
with collisions. When the previous price movement is �p̂,
we assume that the traders’ quoted prices are described by
trend-following random walks:

dẑi

dt
= c tanh

�p̂

�p∗ + σ η̂R
i + η̂T

i ,

η̂T
i ≡

∞∑
k=1

∑
j

�ẑij δ(t − τ̂k;ij ), (19)
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TABLE I. Summary of the model parameters and their dimensions.

Parameter Meaning Dimension

N Number of traders dimensionless
{Li}1�i�N Buy-sell spreads of traders price
c Strength of trend following price/time
�p∗ Saturation for trend following price
σ 2 Variance of random noise price2/time

where η̂T
i is a requotation jump term and τ̂k;ij is the kth

transaction time between traders i and j satisfying

|ẑi (τ̂k;ij ) − ẑj (τ̂k;ij )| = Li + Lj

2
,

�ẑij ≡ −Li

2
sgn(ẑi − ẑj ). (20)

The requotation jump η̂T
i corresponds to collisions in molec-

ular kinetic theory. The price-matching condition and the
requotation rule (17) correspond to the contact condition and
the momentum exchange rule in standard kinetic theory for
hard-sphere gases, respectively. The summary of the model
parameters is presented in Table I with their dimensions. A
sample trajectory of this model is depicted in Fig. 6(a). This
model is a generalization of the previous theoretical model in
Refs. [31,34–37] on the basis of the aforementioned empirical
facts (α1)–(α4) on HFTs.

The dynamics of the price p̂ and the previous price move-
ment �p̂ can be specified within the framework of stochastic
processes. Since p̂ and �p̂ are updated at the instance of the
transactions, their dynamics synchronize with the collision
time τ̂k;ij . Considering the transaction rule for prices (18),
their concrete dynamical equations are thus given by

dp̂

dt
=

∞∑
k=1

i<j∑
i,j

(
p̂

pst
ij − p̂

)
δ(t − τ̂k;ij ),

d�p̂

dt
=

∞∑
k=1

i<j∑
i,j

(
�p̂

pst
ij − �p̂

)
δ(t − τ̂k;ij ), (21)

with the price after collision p̂
pst
ij ≡ ẑi − (Li/2)sgn(ẑi − ẑj )

and the price movement after collision �p̂
pst
ij ≡ p̂

pst
ij − p̂. In

this paper, the Itô convention is used for the multiplication to
δ functions.

E. Slow variable

Introduction of slow variables is key to reduction of com-
plex dynamics in general (e.g., the center of mass (c.m.)
of the Brownian particle [16] and the slaving principles in
synergetics [54]). Here we introduce the c.m. of the quoted
prices as the slow variable of this system [Fig. 6(a)]. The
definition of the c.m. and its dynamics are given by

ẑc.m. ≡ 1

N

N∑
i=1

ẑi ,
dẑc.m.

dt
= c tanh

�p̂

�p∗ + η̄, (22)

with η̄ ≡ (σ/N )
∑N

i=1 η̂R
i + (1/N )

∑N
i=1 η̂T

i . The c.m. ẑc.m.

characterizes the macroscopic dynamics of this system. As
will be shown in Sec. VI C 1, the diffusion coefficient of the
c.m. is proportional to N−1 for the weak trend-following case,
which implies that the selection of ẑc.m. is reasonable as a slow
variable.

Another motivation to introduce the c.m. is to define the
relative price from the c.m. such that

r̂i ≡ ẑi − ẑc.m., (23)

since the relative price r̂i has better mathematical character-
istics than ẑi . For example, the relative price r̂i fluctuates
around zero [see Fig. 6(b) for the dynamics in the comoving
frame of c.m.] and has the stationary distribution, while the
original variable ẑi diffuses to infinity for a long time and has
no stationary distribution.

F. Difference from other order-book models

One of the unique characters of the HFT model is the
collective motion of the order book due to trend following.
As in Ref. [45], the order book has the layered structure in the
sense that the difference in volumes of bid (ask) order book
near best price has positive (negative) correlation with price
movements. This implies that the order book exhibits transla-
tional motion like inertia in physics [Fig. 6(c)], and thus move-
ments of HFTs are not independent of each other like herding
behavior. This collective motion has not been implemented
in conventional zero-intelligence order-book models [38–44],
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FIG. 6. Schematics of the microscopic and mesoscopic dynamics of the HFT model. (a) Sample trajectory of an HFT, showing the bid b̂i

and ask âi quoted prices of the ith trader, the c.m. ẑc.m., and the market transaction price p̂. (b) Sample trajectory of the relative price r̂i from
the c.m. ẑc.m., showing that r̂i stationarily fluctuates around zero. (c) Collective motion of the order book, showing herding behavior of traders.
This collective motion is minimally implemented as trend following.
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Collision Jump

)c()b()a(

FIG. 7. Schematic of the two-body collision. When the prices match between the traders i and j , they requote their prices far from the
market price. Note that the c.m. also moves through a distance of �ẑc.m. = −(Li − Lj )/2N during this requotation.

which are based on independent Poisson processes for order
submission and cancellation, and is minimally implemented
in our trend-following HFT model for consistency with the
layered order-book structure [46].

IV. MAIN RESULT 1: MICROSCOPIC DESCRIPTION

As the main results of this paper, the analytical solutions
of the trend-following HFT model are presented by develop-
ing the mathematical techniques of kinetic theory. We first
introduce the phase space for the HFT model in the standard
manner of analytical mechanics, and derive the dynamical
equation for the PSD, which we call the financial Liouville
equation. We next derive the hierarchy for the reduced dis-
tributions similarly to the BBGKY hierarchy in molecular
kinetic theory, which is the theoretical key to systematic
understanding of the financial system as shown in Secs. V
and VI.

A. Phase space and phase-space distribution

Here we first introduce the phase space for the HFT
model according to the standard manner of analytical mechan-

ics. Let us introduce a vector �̂ ≡ (ẑ1, . . . , ẑN ; ẑc.m., p̂,�p̂),
which corresponds to a phase point in the phase space
S ≡ ∏N+3

i=1 (−∞,∞) as �̂ ∈ S . Equations (19), (21), and
(22) are the complete set of dynamical equations for the
phase point, corresponding to the Newtonian equations
of motions in conventional mechanics. Also, let us de-
fine the PSD function Pt (�). Using the PSD, the prob-
ability where the phase point � exists at the time t in
the volume element d� ≡ ∏N

i=1[zi, zi + dzi ) × [zc.m., zc.m. +
dzc.m.) × [p, p + dp) × [�p,�p + d�p) as �̂ ∈ d� is
given by Pt (�)d�.

B. Financial Liouville equation

As the first main result in this paper, we present the
Liouville equation for the trend-following trader model (19)–
(22) as the dynamical equation for the PSD. The dynamical
equation for the PSD is given by

∂Pt (�)

∂t
= LaPt (�) + LcPt (�), (24)

where the advective and diffusive Liouville operator La and
the binary collision Liouville operator Lc are defined by

LaPt ≡
N∑

i=1

[
−c tanh

�p

�p∗

{
∂i + 1

N
∂c.m.

}
+ σ 2

2

{
∂i + 1

N
∂c.m.

}2
]
Pt (�), (25a)

LcPt ≡
∑
i,j

σ 2

2

{
δ(zi − zj )δ(p − zi )

∫
d�p′|∂̃ij |Pt (� − ��′

ij ) − δ

(
zi − zj − Li + Lj

2

)
|∂̃ij |Pt (�)

}
. (25b)

Here we have introduced the symmetric absolute derivative |∂̃ij |f ≡ |∂if | + |∂jf | for an arbitrary function f (zi, zj ) and
abbreviated derivatives ∂i ≡ ∂/∂zi and ∂c.m. ≡ ∂/∂zc.m. (see the detailed derivation below). We have also introduced a difference
vector representing the two-body collision (see Fig. 7),

��′
ij ≡

(
0, . . . ,−Li

2
, . . . ,+Lj

2
, . . . , 0; �zc.m.,�p,�p − �p′

)
, (26)

with movement of the c.m. �zc.m. ≡ −(Li − Lj )/2N . This is the first main result of this paper. The advective and diffusive
Liouville operator La describes the continuous dynamics of the system in the absence of transactions, while the binary collision
Liouville operator Lc describes the discontinuous dynamics in the presence of transactions. Equation (24) formally corresponds
to the Liouville equation (2) in molecular kinetic theory, and is called the financial Liouville equation in this paper. The financial
Liouville equation completely characterizes the microscopic dynamics of all traders [Fig. 1(d)].
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Derivation

The financial Liouville equation for the trader model (19) is derived as follows. Let us formulate our model by

dẑi

dt
= c tanh

�p

�p∗ + σ η̂R
i;ε + η̂T

i (27)

with a colored Gaussian noise η̂R
i;ε satisfying 〈η̂R

i;ε〉 = 0 and 〈η̂R
i;ε(t )η̂R

i;ε(s)〉 = e−|t−s|/ε/2ε. For mathematical convenience, we
finally take the white noise limit ε → +0: limε→0 η̂R

i;ε = η̂R
i . The dynamics of the c.m. ẑc.m. are given by

dẑc.m.

dt
= c tanh

�p

�p∗ + η̄, η̄ ≡ σ

N

N∑
i=1

η̂R
i;ε + 1

N

i<j∑
i,j

∞∑
k=1

(�ẑij + �ẑj i )δ(t − τ̂k;ij ). (28)

We also consider the dynamics of an arbitrary function f (�̂) for �̂ ≡ (ẑ1, . . . , ẑN ; ẑc.m., p̂,�p̂) ∈ S . The time evolution of
f (�̂) is governed by the continuous movement by the continuous noise term η̂R

i;ε and the discontinuous jumps by the deterministic
transaction term η̂T

i . We then obtain

df (�̂)

dt
=

N∑
i=1

∂f

∂r̂i

{
c tanh

�p̂

�p∗ + σ η̂R
i;ε

}
+ ∂f

∂ẑc.m.

{
c tanh

�p̂

�p∗ + σ

N

N∑
i=1

η̂R
i;ε

}

+
∞∑

k=1

i<j∑
i,j

[f (�̂ + ��̂ij ) − f (�̂)]δ(t − τ̂k;ij ), (29)

where we have introduced the difference vector ��̂ij induced by transactions defined by

��̂ij ≡

⎛
⎜⎜⎜⎝0, . . . , 0,

ith︷ ︸︸ ︷
−Li

2
sgn(ẑi − ẑj ), 0, . . . , 0,

j th︷ ︸︸ ︷
−Lj

2
sgn(ẑj − ẑi ), 0, . . . , 0; −Li − Lj

2N
sgn(ẑi − ẑj ), p̂pst

ij − p̂,�p̂
pst
ij − �p̂

⎞
⎟⎟⎟⎠

(30)

with p̂
pst
ij ≡ ẑi − (Li/2)sgn(ẑi − ẑj ) and �p

pst
ij ≡ p̂

pst
ij − p̂. Let us decompose the sum of δ functions as

i<j∑
i,j

∞∑
k=1

δ(t − τ̂k;ij ) =
i<j∑
i,j

[
σδ

(
ẑi − ẑj − Li + Lj

2

)(
η̂R

i;ε − η̂R
j ;ε

) − σδ

(
ẑi − ẑj + Li + Lj

2

)(
η̂R

i;ε − η̂R
j ;ε

)]

=
∑
i,j

σ δ

(
ẑi − ẑj − Li + Lj

2

)(
η̂R

i;ε − η̂R
j ;ε

)
, (31)

where we have used η̂R
i;ε − η̂R

j ;ε > 0 just before ẑi − ẑj − (Li + Lj )/2 = 0 [or equivalently, η̂R
i;ε − η̂R

j ;ε < 0 just before ẑi − ẑj +
(Li + Lj )/2 = 0] by taking collision directions into account. We then take the ensemble average of both sides of Eq. (29) with
the aid of Novikov’s theorem [59] for an arbitrary functional g[η̂R

i;ε],

〈
η̂R

i;ε(t )g
[
η̂R

i;ε

]〉 =
∫ t

0
ds

〈
η̂R

i;ε(t )η̂R
i;ε(s)

〉〈δg
[
ηR

i;ε

]
δηR

i;ε(s)

〉
, (32)

for the colored Gaussian noise η̂R
i;ε. Here we note the following two important relations for the δ function for the phase space

δ(�̂ − �) ≡ δ(ẑc.m. − zc.m.)δ(p̂ − p)δ(�p̂ − �p)
∏N

i=1 δ(ẑi − zi ):

lim
ε→0

〈
δ(�̂ − �)δ(ẑi − ẑj − (Li + Lj )/2)η̂R

i;ε

〉 = δ(zi − zj − (Li + Lj )/2) lim
ε→0

〈
δ(�̂ − �)η̂R

i;ε

〉
= σ

2
δ(zi − zj − (Li + Lj )/2)

〈[
∂

∂ẑi

+ 1

N

∂

∂ẑc.m.

]
δ(�̂ − �)

〉

= −σ

2
δ(zi − zj − (Li + Lj )/2)

[
∂i + 1

N
∂c.m.

]
Pt (�) (33)
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and

lim
ε→0

〈
δ(�̂ + ��̂ij − �)δ(ẑi − ẑj − (Li + Lj )/2)η̂R

i;ε

〉 = δ(zi − zj ) lim
ε→0

〈
δ(�̂ + ��̂ij − �)η̂R

i;ε

〉
= −σ

2
δ(zi − zj )δ(p − zi )

[
∂i + 1

N
∂c.m.

] ∫
d�p′Pt (� − ��′

ij ) (34)

with the dummy variable

��′
ij ≡

(
0, . . . ,−Li

2
, . . . ,+Lj

2
, . . . , 0; −Li − Lj

2N
,�p,�p − �p′

)
. (35)

By substituting f (�̂) = δ(�̂ − �), we take the ensemble average for both sides of Eq. (29) in the ε → 0 limit. We then obtain

∂Pt (�)

∂t
=

N∑
i=1

[
−c tanh

�p

�p∗

{
∂i + 1

N
∂c.m.

}
+ σ 2

2

{
∂i + 1

N
∂c.m.

}2
]
Pt (�)

+
∑
i,j

σ 2

2

{
−δ(zi − zj )δ(p − zi )

∫
d�p′∂̃ijPt (� − ��′

ij ) + δ

(
zi − zj − Li + Lj

2

)
∂̃ijPt (�)

}
(36)

with an abbreviation symbol ∂̃ij ≡ ∂i − ∂j . Here, we pay attention to the signature of the derivatives. Considering P (�) � 0 for
all � and P (�) = 0 for zi − zj > (Li + Lj )/2, we obtain the signature of the derivatives

∂iPt (�)|zi−zj =(Li+Lj )/2 � 0, ∂jPt (�)|zi−zj =(Li+Lj )/2 � 0. (37)

Equation (36) can be simplified into Eq. (24) in terms of signatures by introducing the symmetric absolute derivative

|∂̃ij |Pt (�) ≡ |∂iPt (�)| + |∂jPt (�)|. (38)

Note that Eq. (24) is a partial integro-differential equation because of the transaction jumps.5

C. Financial BBGKY hierarchy

The financial Liouville equation (24) is exact but cannot be solved analytically. We therefore reduce Eq. (24) to a simplified
dynamical equation for a one-body distribution in the parallel method to molecular kinetic theory. According to the standard
method in kinetic theory, the Boltzmann equation, a closed dynamical equation for the one-body distribution, can be derived
by systematically reducing the Liouville equation using the BBGKY hierarchy (see Sec. II C). We here present the lowest-order
equation of reduced distributions for the trend-following HFT model in the parallel calculation to kinetic theory. We define the
one-body, two-body, and three-body reduced distribution functions for the relative price ri ≡ zi − zc.m.:

P i
t (ri ) ≡

∫
Pt (�)dzc.m.dpd�p

N∏
l �=i

drl, P
ij
t (ri, rj ) ≡

∫
Pt (�)dzc.m.dpd�p

N∏
l �=i,j

drl, (39a)

P
ijk
t (ri, rj , rk ) ≡

∫
Pt (�)dzc.m.dpd�p

N∏
l �=i,j,k

drl. (39b)

We then obtain the lowest-order hierarchal equation for the one-body distribution as

∂P i
t (ri )

∂t
= L(i)P i

t (ri ) +
∑
j �=i

L(ij )P
ij
t (ri, rj ) +

∑
j,k �=i

L(ijk)P
ijk
t (ri, rj , rk ) (40)

with one-body, two-body, and three-body Liouville operators L(i), L(ij ), L(ijk) defined by

L(i)P i
t ≡ σ̃ 2

2

∂2P i
t (ri )

∂r2
i

, (41a)

L(ij )P
ij
t ≡

∑
s=±1

σ 2

2

[|∂̃ij |P ij
t (ri − �rij ;s , rj + �rji;s )|ri=rj

− |∂̃ij |P ij
t (ri, rj )|ri−rj =s(Li+Lj )/2

]
, (41b)

L(ijk)P
ij
t ≡

∑
s=±1

σ 2

2

∫
drj

[|∂̃jk|P ijk
t

(
ri − �r

(1)
jk;s , rj , rk

) − |∂̃jk|P ijk
t (ri, rj , rk )

]∣∣
rj −rk=s(Lj +Lk )/2, (41c)

5This implies that our financial Liouville equation (24) technically corresponds to the pseudo-Liouville equation [14,48–50] for hard-core
interaction.
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effective variance σ̃ 2 ≡ σ 2(1 − 1/N ), and jump size �rij ;s ≡ �r
(0)
ij ;s + �r

(1)
ij ;s with

�r
(0)
ij ;s ≡ − sLi

2
, �r

(1)
ij ;s ≡ s(Li − Lj )

2N
. (42)

Here �r
(1)
ij ;s indirectly originates from the movement of the c.m. during requotation. Equation (40) formally corresponds to the

conventional BBGKY hierarchal equation (4a) for the mesoscopic description. On the basis of Eq. (40), the Boltzmann-type
closed equation for the one-body distribution is derived in the next section.

We also derive the hierarchal equation for the macroscopic dynamics. For the macroscopic variables Z ≡ (zc.m., p,�p), we
define the reduced distributions:

Pt (Z) ≡ Pt (zc.m., p,�p) ≡
∫

Pt (�)
N∏

k=1

dzk, P
ij
t (zi, zj ; Z) ≡ P

ij
t (zi, zj ; zc.m., p,�p) ≡

∫
Pt (�)

N∏
k �=i,j

dzk. (43)

We then obtain the hierarchal equation for the macroscopic dynamics,

∂Pt (Z)

∂t
= La

c.m.Pt (Z) +
∑
i,j

Lc;ij
c.m.P

ij
t (zi, zj ; Z), (44)

with advective and diffusive Liouville operator La
c.m. and collision Liouville operator Lc;ij

c.m. between particles i and j :

La
c.m.Pt =

[
−c tanh

�p

�p∗ ∂c.m. + σ 2

2N
∂2

c.m.

]
Pt (zc.m., p,�p), (45a)

Lc;ij
c.m.Pt = σ 2

2

[ ∫
|∂̃ij |P ij

t

(
zi + Li

2
, zj − Lj

2
; zc.m. + Li − Lj

2N
,p − �p,�p′

)∣∣∣∣
zi=zj =p

d�p′ −
∫

|∂̃ij |P ij
t

∣∣∣∣
zi=zj +(Li+Lj )/2

dzj

]
.

(45b)

Equation (44) formally corresponds to the lowest-order conventional BBGKY hierarchal equation (8) for the macroscopic
description. Using this hierarchal equation (44), a closed master Boltzmann equation is derived for the macroscopic variables in
the next section.

The set of Eqs. (40) and (44) is the second main result in this paper. Equation (40) connects the microscopic description
[Fig. 1(d)] to the mesoscopic description [Fig. 1(e)], and Eq. (44) connects the mesoscopic description [Fig. 1(e)] to the
macroscopic description [Fig. 1(f)]. These equations are derived in a parallel calculation to the conventional BBGKY hierarchal
equations (4), and are called the financial BBGKY hierarchal equations in this paper. Similarly to the conventional BBGKY
hierarchal equations (4), our hierarchal equations (40) and (44) are exact but are not closed: the dynamics of low-order
distributions are driven by those of higher-order distributions. Appropriate approximations are necessary to derive closed
equations, such as molecular chaos, which will be studied in the next section.

1. Derivation

We here derive the lowest BBGKY hierarchal equation (40) for the reduced distribution function, starting from the financial
Liouville equation (24). We first introduce the relative price from the c.m. as ri ≡ zi − zc.m.. By making transformation � =
(z1, . . . , zN ; zc.m., p,�p) → �r ≡ (r1, . . . , rN ; zc.m., p,�p), the financial Liouville equation can be rewritten as

∂Pt (�r )

∂t
=

⎡
⎣−c tanh

�p

�p∗ ∂c.m. + σ 2

2

N∑
i=1

{
∂i + 1

N

(
∂c.m. −

N∑
k=1

∂k

)}2
⎤
⎦Pt (�r ) +

∑
i,j

σ 2

2

{
δ(ri − rj )δ(p − ri − zc.m.)

×
∫

d�p′|∂̃ij |Pt (�r − ��′
ij ;r ) − δ

(
ri − rj − Li + Lj

2

)
|∂̃ij |Pt (�r )

}
, (46)

where we have used the chain rule for the variable transformation:

∂

∂zi

→ ∂

∂ri

,
∂

∂zc.m.

→ ∂

∂zc.m.

−
N∑

k=1

∂

∂rk

. (47)

We have also introduced ��′
ij ;r = ��

′(0)
ij ;r + ��

′(1)
ij ;r with

��
′(0)
ij ;r ≡

(
0, . . . ,−Li

2
, . . . ,+Lj

2
, . . . , 0; 0,�p,�p − �p′

)
, ��

′(1)
ij ;r ≡ Li − Lj

2N
(+1, . . . ,+1; −1, 0, 0). (48)

052317-13



KANAZAWA, SUESHIGE, TAKAYASU, AND TAKAYASU PHYSICAL REVIEW E 98, 052317 (2018)

)c()b()a(

Collision

FIG. 8. Schematic of the three-body collision term L(ijk). Let us assume that there is a collision between the traders j and k. Because of the
assumption of the binary interaction, the midprice ẑi of the ith trader does not move during this collision. On the other hand, the c.m. of this
system ẑc.m. moves through a short distance of �ẑc.m. ≡ ẑpst

c.m. − ẑc.m. = −sgn(ẑj − ẑk )(Lj − Lk )/2N because of the requotation. The relative
price r̂i of the ith trader indirectly moves through a short distance of �r̂i ≡ r̂

pst
i − r̂i = �r

(1)
ij ;s .

According to the definition of the one-body, two-body, and three-body reduced distributions (39), the lowest-order hierarchy
is then derived as

∂P i
t (ri )

∂t
= σ̃ 2

2

∂2P i
t (ri )

∂r2
i

+
∑
s=±1

∑
j �=i

σ 2

2

[|∂̃ij |P ij
t (ri − �rij ;s , rj + �rji;s )|ri=rj

− |∂̃ij |P ij
t (ri, rj )|ri−rj =s(Li+Lj )/2

]

+
∑
s=±1

∑
j,k �=i

σ 2

2

∫
drj

[|∂̃jk|P ijk
t

(
ri − �r

(1)
jk;s , rj , rk

) − |∂̃jk|P ijk
t (ri, rj , rk )

]∣∣
rj −rk=s(Lj +Lk )/2, (49)

with effective variance σ̃ 2 ≡ σ 2(1 − 1/N ) and jump
size �rij ;s ≡ �r

(0)
ij ;s + �r

(1)
ij ;s with �r

(0)
ij ;s ≡ −sLi/2,

�r
(1)
ij ;s ≡ s(Li − Lj )/2N . Equation (40) is thus derived

from Eq. (49) by introducing Liouville operators (41).
Similarly, Eq. (44) can also be derived by integrating both
sides of Eq. (24) with respect to z1, . . . , zN .

2. Remark on the three-body collision term

We remark on the emergence of the three-body collision
term L(ijk) in the BBGKY hierarchy (40), which is slightly
different from the conventional BBGKY hierarchy (4a). This
term appears because our kinetic theory is formulated on the
basis of the relative price r̂i . To understand this point, let
us consider the movement of the relative price r̂i of the ith
trader during collision between traders j and k (see Fig. 8 for
a schematic of three-body collision). While the midprice ẑi

of the ith trader does not move during the collision between
traders j and k, the c.m. of this system ẑc.m. moves through
a distance of �ẑc.m. ≡ ẑ

pst
c.m. − ẑc.m. = −sgn(ẑj − ẑk )(Lj −

Lk )/2N . The relative price r̂i thus moves indirectly through
a distance of �r̂i ≡ r̂

pst
i − r̂i = −�ẑc.m. = �r

(1)
jk;s , which ap-

pears in the three-body collision operator (41c). This effect
is intuitively small for the large-N limit and is finally shown
to be irrelevant to leading-order (LO) and next-leading-order
(NLO) approximations as discussed later.

V. MAIN RESULT 2: MESOSCOPIC DESCRIPTION

From microscopic dynamics, we have derived the BBGKY
hierarchal equation (40) for the mesoscopic description of the

HFT model in a parallel manner to the conventional BBGKY
hierarchal equations (4). Here we proceed to derive the closed
mean-field model for the mesoscopic description, which will
be finally shown useful in systematic understanding of the
order-book profile.

A. Financial Boltzmann equation

We here derive a closed equation for the one-body dis-
tribution function by assuming a mean-field approximation.
The one-body and two-body distribution functions φL

t (r )
and φLL′

t (r, r ′) are introduced conditional on the traders’

spreads L and L′, such that φ
Li

t (r ) = P i
t (r ) and φ

LiLj

t (r, r ′) =
P

ij
t (r, r ′). Let us approximately truncate the two-body corre-

lation as

φLL′
t (r, r ′) ≈ φL

t (r )φL′
t (r ′), (50)

which corresponds to molecular chaos (5), the standard ap-
proximation in kinetic theory. The validity of this approxi-
mation will be numerically evaluated in Sec. V B. A closed
mean-field equation for the one-body distribution φL

t (r ) is
thus obtained as

∂φL
t

∂t
≈ σ 2

2

∂2φL
t

∂r2
+ N

∑
s=±1

∫ Lmax

Lmin

dL′ρL′

× [
JLL′

t ;s (r + sL/2) − JLL′
t ;s (r )

]
,

J LL′
t ;s (r ) = σ 2

2
|∂̃rr ′ |φL

t (r )φL′
t (r ′)

∣∣
r−r ′=s(L+L′ )/2 (51)

with mean-field probability flux JLL′
t ;s (r ) for s = ±1. The

systematic derivation of this equation is the third main result
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in this paper (see the derivation below). Equation (51) is a
closed equation for the one-body distribution function, and
corresponds to the Boltzmann equation in molecular kinetic
theory [see Fig. 1(b)]. Equation (51) is therefore called the
financial Boltzmann equation in this paper. Here the dummy
variable s = +1 (s = −1) implies the transactions as a bidder
(an asker), and the integrals on the right-hand side (rhs) cor-
respond to the collision integrals in the standard Boltzmann
equation (6). Remarkably, Eq. (51) is derived from a system-
atic calculation from the Liouville equation (24), whereas it
was originally introduced with a rather heuristic discussion in
our previous paper [46].

Derivation

Here we derive the financial Boltzmann equation (51)
from the financial BBGKY hierarchy (40). To simplify the
hierarchal equation (40), we use the symmetry among the
traders in terms of the spread: when the spreads are equal for
ith and j th traders, their one-body distributions are also equal,
namely,

Li = Lj =⇒ P i
t (r ) = P

j
t (r ). (52)

Furthermore, there are also symmetries for the two-body and
three-body distributions such that

Li = Lk, Lj = Ll =⇒ P
ij
t (r, r ′, r ′′) = P kl

t (r, r ′, r ′′) (53)

and

Li = Ll, Lj = Lm,

Lk = Ln =⇒ P
ijk
t (r, r ′, r ′′) = P lmn

t (r, r ′, r ′′). (54)

On the basis of these symmetries, we introduce the condi-
tional distributions on spreads. We assume that the number
of traders is large enough such that we can approximately
regard the spreads as continuously distributed. In other words,
the spread distribution ρL ≡ ∑N

i=1 δ(L − Li )/N is an approx-
imately continuous function. We also assume that ρL = 0 for
L �∈ [Lmin, Lmax]. The one-body and two-body distributions
φL

t (r ) and φLL′
t (r, r ′) are defined conditional on spreads L and

L′ by

φ
Li

t (r ) ≡ P i
t (r ), φ

LiLj

t (r, r ′) ≡ P
ij
t (r, r ′). (55)

Here, we make the following approximations for N → ∞:
(1) The effective variance σ̃ 2 = σ 2(1 − 1/N ) is approxi-

mated as

σ̃ 2 ≈ σ 2. (56)

(2) The discrete sums are approximated as continuous
integrals:∑

j

(. . . ) ≈ N

∫ Lmax

Lmin

dL′ρL′ (. . . ),

∑
j,k

(. . . ) ≈ N2
∫ Lmax

Lmin

dL′dL′′ρ(L′)ρ(L′′)(. . . ). (57)

(3) The relatively small displacement �r
(1)
ij ;s is negligible:∣∣�r

(1)
ij ;s

∣∣ � ∣∣�r
(0)
ij ;s

∣∣. (58)

On the basis of these approximations, the lowest hierarchal
equation (40) can be rewritten as

∂φL
t (r )

∂t
≈ σ 2

2

∂2φL
t (r )

∂r2
+ N

∑
s=±1

∫
dL′ρL′

σ 2

2

×
[
|∂̃rr ′ |φLL′

t

(
r − sL

2
, r ′ + sL′

2

)∣∣∣∣
r=r ′

− |∂̃rr ′ |φLL′
t (r, r ′)

∣∣
r−r ′=s(L+L′ )/2

]
, (59)

which was heuristically derived in our previous paper [46].
Here we have ignored the correction terms of O(N−1). The
financial Boltzmann equation (51) is then derived by making
the mean-field approximation (50) to Eq. (59). Note that the
three-body correlation term in Eq. (40) is finally irrelevant
under these assumptions. The consistency of the assump-
tion (58) is examined using the NLO solution (61) of Eq. (51)
in Appendix B.

B. Solution

Let us focus on the steady solution φL(r ) ≡ limt→∞ φL
t (r )

to the financial Boltzmann Eq. (51). Equation (51) can be
asymptotically solved for the liquid market N � 1 using the
boundary-layer analysis. To understand our picture, let us
introduce one-body PDFs f i

B (r ) and f i
A(r ) for the relative bid

and ask prices from the c.m. for the trader i (see Fig. 9(a) for
the schematic profiles):6

f i
B (r ) ≡ 〈δ(b̂i − ẑc.m. − r )〉 = φLi (r + Li/2),

f i
A(r ) ≡ 〈δ(âi − ẑc.m. − r )〉 = φLi (r − Li/2). (60)

The basic idea is that most of the transactions will occur
near the c.m. for N � 1; the c.m. will be a strict transaction
barrier at which any bid and ask order will be transacted
instantaneously for infinite N (i.e., the LO approximation),
whereas the c.m. will be a stochastic transaction barrier near
which a bid and ask order will be transacted with high
probability for finite N (i.e., the NLO approximation). In
Fig. 9(a), we illustrate that a bid (ask) order can go beyond
the c.m. with low probability for finite N , which is reflected
as the tail near r = 0. In physical mathematics, such finite but
small probability leakage can be captured by boundary-layer
analysis, which was historically developed for fluid dynamics
and was generalized for a singular perturbation theory. In the
following, we found an asymptotic solution in terms of 1/N

within the spirit of boundary-layer analysis.
This picture can be rephrased for the one-body PDF φL(r )

for the relative midprice as illustrated in Fig. 9(b). The
transaction barrier at the c.m. in Fig. 9(a) corresponds to the
barriers at r = ±L/2 with the boundary layer of thickness ε

in Fig. 9(b), characterizing the small probabilistic leak near

6Since Fig. 9(a) is a schematic of the average bid and ask order-
book profiles measured from the c.m., their slight overlap does not
indicate immediate transactions. We note that there is no overlap in
principle between the simultaneous snapshot of the bid and ask order
books for this model.
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Relative 
midprice

)b()a(
Effective transaction barrier Boundary layers

FIG. 9. Schematic of the NLO boundary layer solution (61). (a) Schematic of the bid and ask average order-book profiles f i
B (r ) and f i

A(r )
for the ith trader. Most of transactions will occur at the c.m. r = 0 for infinite N since the market is sufficiently liquid. On the other hand, for a
finite large N � 1, a small portion of bid and ask orders can go beyond the c.m. with low probability, which is reflected as the tail near r � 0
with thickness of the boundary layer ε = L∗

ρ/2
√

N . (b) Schematic of the midprice average order-book profile φL(r ). The tail near r � ±L/2
rapidly decays with the thickness of the boundary layer ε. The peak is also rounded with the thickness of ε because requoted orders will be
submitted near the peak, after transactions near the tail.

the tails.7 We found the following global asymptotic steady
solution satisfying Eq. (51) up to the NLO approximation:

φL(r ) � 4ε

L2

[
F

( |r| − L/2

ε

)
− 2F

( |r|
ε

)]
, (61)

which we call the NLO boundary-layer solution. Here we
introduced

1

L∗2
ρ

≡
∫ Lmax

Lmin

dLρL

L2
, ε ≡ L∗

ρ

2
√

N
,

F (r ) ≡ e−r2/2

√
2π

− r

2
erfc

(
r√
2

)
(62)

with complementary error function erfc(r ) ≡
(2/

√
π )

∫ ∞
r

dte−t2
. The validity of this solution can be

checked by direct substitution into Eq. (51) (see Appendix A
for the calculation). The LO solution is given by the tent
function:

ψL(r ) ≡ lim
N→0

φL(r ) = 4

L2
max

{
L

2
− |r|, 0

}
, (63)

which is a reasonable solution since the tent function is the
steady solution for the Brownian motion surrounded by strict
hopping barriers (see the Supplemental Material of Ref. [46]).
Although the LO solution (63) is sufficient to understand
the average order-book profile as discussed in Sec. V C, the
details of the NLO solution (61) are necessary to understand
the dynamics of the financial Langevin equation as shown in
Sec. VI.

Technical issues

Here we explain the boundary condition for our asymptotic
analysis. We introduce cutoffs for the boundaries at r =
±Lcut/2 and make the following four assumptions:

(1) Equation (51) is valid only for r ∈ [−Lcut/2, Lcut/2].
(2) The cutoff is taken sufficiently large: Lcut > Lmax.

7The peak regime is also under the influence of the boundary
layer since the trader’s midprice will return near the peak after price
matching.

(3) The probability is zero beyond the boundary: φL
t (r ) =

0 for r �∈ [−Lcut/2, Lcut/2].
(4) The boundaries are the reflecting barriers, which en-

sure the conservation of the probability:

∂φL
t (r, t )

∂r

∣∣∣∣
r=±Lcut/2

= 0 =⇒ ∂

∂t

∫ Lcut/2

−Lcut/2
drφL

t (r, t ) = 0.

(64)

The probability conservation (64) can be proved under
this boundary condition as shown in Appendix C. The cutoff
parameter is finally taken at infinity as Lcut → ∞, and the
main results in this paper do not depend on Lcut.

We also note another related technical issue for the mean-
field solution (63). The large-number limit N → ∞ is taken
first; the Lmax → ∞ limit is taken after the Lcut → ∞ limit to
conserve the second assumption Lcut > Lmax. Therefore, the
steady solution (63) technically implies

ψL(r ) ≡ lim
t→∞ lim

Lmax→∞
lim

Lcut→∞
lim

N→∞
φL

t (r ). (65)

C. Average order-book profile

Considering that the ask order-book snapshot is defined
by f̂A(r ) ≡ ∑N

i=1 δ(âi − ẑc.m. − r ), the average ask order-
book profile fA(r ) ≡ 〈f̂A(r )〉 = ∑N

i=1 f i
A(r ) is given by the

superposition of the tent function to leading order:

fA(r ) �
∫ Lmax

Lmin

dLρLψL(r − L/2) (66)

(see Fig. 10). The average order-book profile has a symmetry,
such that fB (r ) = fA(−r ) for the average bid order-book
fB (r ).

We numerically examined the theoretical order-book pro-
file (66) for two examples, the δ-distributed spread

ρL = δ(L − L∗) (67)

and the γ -distributed spread

ρL = L3e−L/L∗

6L∗4
(68)

with the characteristic length parameter L∗. The numeri-
cal implementation of the trend-following HFT model is as
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FIG. 10. Average order-book profile is given by the superposition (66) of the tent function (63). For the δ-distributed spread (Case 1), the
profile is the tent function (69). For the γ -distributed spread (Case 2), the profile obeys Eq. (70).

follows: The length and time units of this system are given
by L∗ and L∗2/(σ 2N ), respectively. We performed the Monte
Carlo simulation for various numbers of traders N under a
fixed discretization time step �t = 0.01L∗2/(σ 2N ). For ini-
tialization, we first ran the simulation for the time interval of
10L∗2/σ 2 and then ran the simulation again to take samples.
The simulation time was set to be 105 ticks.

1. Case 1: δ-distributed spread

Let us first consider the case of the δ-distributed
spread (67). The corresponding average order-book profile is
given by the tent function

fA(r ) = ψL∗
(r − L∗/2) = 4

L2∗ max

{
L∗

2
−

∣∣∣∣r − L∗

2

∣∣∣∣, 0

}
.

(69)

We have numerically examined the validity of this formula
in Fig. 11(a), which shows numerical agreement with our
formula (69). The LO solution (69) works quite well for
the description of the order-book profile, and the numerical
convergence in Fig. 11(a) implies that Eq. (69) might be
exactly valid for N → ∞.

2. Case 2: γ -distributed spread

The formula (66) works well even for Lmin → 0 and
Lmax → ∞ when the integrals converge. For the γ -distributed
spread (68), we obtain

fA(r ) = 1

L∗ ψ

(
r

L∗

)
,

ψ (r ) ≡ 4

3
e− 3r

2

[
(2 + r ) sinh

r

2
− r

2
e− r

2

]
, (70)

which was empirically validated through single-trajectory
analysis of individual traders in our previous work [46].
We have numerically examined the validity of this formula
in Fig. 11(b), showing numerical agreement with our for-
mula (70). The numerical convergence in Fig. 11(b) implies
that the LO solution (70) might be also exact for N → ∞.

VI. MAIN RESULT 3: MACROSCOPIC DESCRIPTION

In this section, we derive the stochastic equations for
the macroscopic dynamics of this system from the BBGKY
hierarchal equation (44) in the parallel method to the master
Boltzmann equation (8) for physical Brownian motion.

A. Master Boltzmann equation for financial Brownian motion

On the basis of the financial BBGKY hierarchy (44) for
the macroscopic dynamics, we derive a closed dynamical
equation for the macroscopic variables Z ≡ (zc.m., p,�p).
Here, we first make the assumption of molecular chaos,

P
ij
t (zi, zj ; Z) ≈ φ

Li

t (zi − zc.m.)φ
Lj

t (zj − zc.m.)Pt (Z). (71)

Using the NLO solution (61), we deduce a closed master
Boltzmann equation for the macroscopic dynamics (see the
detailed calculation below):

∂Pt (Z)

∂t
≈ (

La
c.m. + Lc;MF

c.m.

)
Pt (Z), (72)

where the mean-field collision Liouville operator for the
macroscopic variables Lc;MF

c.m. is defined by

Lc;MF
c.m. Pt ≡

∫
d X{W (Z|X )Pt (X ) − W (X|Z)Pt (Z)} (73)

with transition rate W (Z|X ) conditional on the state variables
before the jump X ≡ (z′

c.m., p
′,�p′) specified by

W (Z|X ) ≡ 1

τ ∗N
(

p − zc.m.;
L∗2

ρ

4N

)

×wN (zc.m. − z′
c.m.)δ(�p − p + p′) (74)

and volume element d X ≡ dz′
c.m.dp

′d�p′. Here, N (x; σ 2) is
the Gaussian distribution, wN (y) is jump size distribution, and
τ ∗ is the mean transaction interval defined by

N (x; σ 2) ≡ e−x2/2σ 2

√
2πσ 2

,

wN (y) ≡
∫ ∞

−∞

2NL∗4
ρ dL

L2(L + 2Ny)2
ρLρ(L+2Ny), (75)

τ ∗ ≡ 1∫
d ZW (Z|X )

� L∗2
ρ

2Nσ 2
.

We note that wN (y) satisfies the scaling of the system size
expansion [16]:

w̃(y) ≡ 1

N
wN

(
y

N

)
(76)

is an N -independent non-negative function. This character is
useful for an asymptotic expansion in terms of 1/N as will be
shown later.

Because any master equation corresponds to a set of SDEs
[60], the dynamics of the master Boltzmann equation (79) can
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FIG. 11. Numerical validation of our formula (66) for the average order-book profile for two examples. (a) Numerical average ask order-
book profile for the δ-distributed spread ρL = δ(L − L∗), showing the agreement with the theoretical formula (69) for N → ∞. (b) Numerical
average ask order-book profile for the γ -distributed spread ρL = L3e−L/L∗

/6L∗4, showing the agreement with the theoretical formula (70) for
N → ∞.

be mapped to those of a set of SDEs

dẑc.m.

dt
= c tanh

�p̂

�p∗ + σ√
N

ξ̂G + (
ẑpst

c.m. − ẑc.m.

)
ξ̂P
τ ∗,

dp̂

dt
= (p̂pst − p̂)ξ̂P

τ ∗,
d�p̂

dt
= (�p̂pst − �p̂)ξ̂P

τ ∗ (77)

with white Gaussian noise ξ̂G of unit variance and
white Poisson noise ξ̂P

τ ∗ of mean interval τ ∗. The
postcollisional states are given by (ẑpst

c.m., p̂
pst,�p̂pst ) ≡

(ẑc.m. + ν̂[T ]/N, ẑ
pst
c.m. + (L∗

ρ/2
√

N )ξ̂ [T ], p̂pst − p̂) at the
tick time T . Here, ν̂[T ] is a discrete-time white noise term
whose PDF is given by w̃(ν) and ξ̂ [T ] is a discrete-time white
Gaussian noise with unit variance.

Derivation

The master Boltzmann equation (72) is derived from the
BBGKY hierarchal equation (44) for macroscopic variables.
By applying a mean-field approximation (71) to Eq. (44), we
obtain

∂Pt (zc.m., p,�p)

∂t
=
[
−c tanh

�p

�p∗ ∂c.m. + σ 2

2N
∂2

c.m.

]
Pt (zc.m., p,�p) + N2σ 2

2

∫
dLdL′ρLρL′

×
{∫

d�p′|∂̃rr ′ |φL

(
r + L

2
− zc.m.

)
φL′

(
r ′ − L′

2
− zc.m.

)∣∣∣∣
r=r ′=p

Pt

(
zc.m. + L − L′

2N
,p − �p,�p′

)

− P (zc.m., p,�p)
∫

dr|∂̃rr ′ |φL(r )φL′
(r ′)|r=r ′+(L+L′ )/2

}
. (78)

Using the NLO solution (61), we deduce

∂Pt (Z)

∂t
= La

c.m.Pt (Z) + 1

τ ∗

[
N

(
p − zc.m.;

L∗2
ρ

4N

)∫
d�p′dywN (y)Pt (zc.m. − y, p − �p,�p′) − Pt (Z)

]
. (79)

By introducing X ≡ (z′
c.m., p

′,�p′) ≡ (zc.m. − y, p −
�p,�p′) and the transition rate W (Z|X ), this equation
can be rewritten into Eq. (72), which is a standard differential
form of the Chapman-Kolmogorov equation [13].

B. Financial Langevin equation

We have derived the stochastic dynamics for the three
macroscopic variables Ẑ = (ẑc.m., p̂,�p̂) as the master equa-
tion (72) [or equivalently SDEs (77)] in the continuous time t .
We next simplify the dynamics (72) of the three macroscopic
variables into that of a single macroscopic variable �p̂ in the
tick time T . In the tick time T , the dynamical equation for the

price movement �p̂ is given by

�p̂[T + 1] = cτ̂ [T ] tanh
�p̂[T ]

�p∗︸ ︷︷ ︸
Trend following

+�ξ̂ [T ]︸ ︷︷ ︸
Zigzag

+ ζ̂ [T ]︸︷︷︸
Random

, (80)

where τ̂ [T ] ≡ t̂[T + 1] − t̂[T ] is time interval between trans-
action, �ξ̂ [T ] is the zigzag noise of order N−1/2, and ζ̂ [T ]
is a random noise of order N−1 (see the derivation below).
The systematic derivation of Eq. (80) is the fourth main
result of this paper. Equation (80) corresponds to the conven-
tional Langevin equation (9), and is thus called the financial
Langevin equation in this paper.

Within the mean-field approximation, we can specify all
the statistics of the random noise terms from analytics. The
time interval τ̂ [T ] is given by the exponential random number

052317-18



KINETIC THEORY FOR FINANCIAL BROWNIAN MOTION … PHYSICAL REVIEW E 98, 052317 (2018)

with mean interval τ ∗,

P (τ ) = 1

τ ∗ e−τ/τ ∗
, τ ∗ = L∗2

ρ

2Nσ 2
. (81)

The zigzag noise �ξ̂ [T ] is defined by the difference of two
Gaussian random numbers as

�ξ̂ [T ] ≈ L∗
ρ

2
√

N
(ξ̂ [T ] − ξ̂ [T − 1]) = O(N−1/2), (82)

where ξ̂ [T ] is a discrete-time white Gaussian noise with unit
variance. The random noise term ζ̂ [T ] is specified as

ζ̂ [T ] ≈ σ

√
τ̂ (T )

N
μ̂[T ] + 1

N
ν̂[T ] = O(N−1), (83)

where μ̂[T ] is a discrete-time white Gaussian noise with unit
variance and ν̂[T ] is a discrete-time white noise term whose
PDF is given by w̃(ν).

Here we describe the concrete statistics of the noise in
Eq. (80) for two specific cases as follows:

Case 1: δ-distributed spread. For the δ-distributed
spread (67), we obtain

w̃(y) = δ(y), τ ∗ = L∗2

2Nσ 2
, L∗2

ρ = L∗2, (84)

which implies the absence of ν̂(T ) for the δ-distributed spread
[i.e., ν̂(T ) = 0]. This is natural because the c.m. is conserved
during transaction for this special case.

Case 2: γ -distributed spread. For the γ -distributed
spread (68), we obtain

w̃(y) = L∗ + 2|y|
2L∗2

e−2|y|/L∗
, τ ∗ = 3L∗2

Nσ 2
, L∗2

ρ = 6L∗2.

(85)

We next discuss the interpretation of each term on the rhs
of Eq. (80). The trend-following term induces the collective
motion of the order book and thus keeps the price movement
in the same direction for a certain time interval similarly to
inertia in physics. On the other hand, the zigzag noise term
exhibits one-tick negative autocorrelation, such that

C�ξ̂ [K] ≡ 〈�ξ̂ [T + K]�ξ̂ [T ]〉
〈�ξ̂ [T ]2〉 ≈

⎧⎨
⎩

1 (K = 0),
−1/2 (K = 1),
0 (K � 2),

(86)

and has the effect to change the price movement direc-
tion alternately. In this sense, the trend-following term and
the zigzag noise have the opposite effect to each other;
the balance between their strengths is crucial for the qualita-
tive behavior of the market price dynamics. The random noise
term ζ̂ [T ] originates from the slow dynamics of the c.m.:
σ ( ˆτ [T ]/N )1/2μ̂[T ] is the diffusion term of the c.m. during
a transaction time interval τ̂ [T ] and ν̂[T ]/N is the movement
term of the c.m. by requotation jumps of traders’ midprices
after transaction.

Derivation

Here we simplify the three SDEs (77) for (ẑc.m., p̂,�p̂) in
continuous time t into a single SDE (80) for price movement
�p̂ in discrete time. According to the set of SDEs (77), ẑc.m.

exhibits random walks with a constant drift in the absence of

transactions, without updates for p̂ and �p̂. The movement of
the c.m. between transactions (i.e., the time interval [t̂[T ] +
ε, t̂[T + 1] − ε] with the infinitesimal positive number ε) is
then basically determined by the time interval τ̂ [T ] ≡ t̂[T +
1] − t̂[T ] as

ẑc.m.(t̂[T + 1] − ε) − ẑc.m.(t̂[T ] + ε)

= cτ̂ [T ] tanh
�p̂

�p∗ +
√

σ 2τ̂ [T ]

N
μ̂[T ] + O(ε) (87)

with Gaussian random noise μ̂[T ] with unit variance. Within
the mean-field approximation, τ̂ [T ] is an exponential random
number with mean interval τ ∗. At the instance of the trans-
action at time t̂[T + 1], there is a jump originating from the
Poisson noise term (ẑpst

c.m. − ẑc.m.)ξ̂P
τ ∗ ,

ẑc.m.(t̂[T + 1] + ε) − ẑc.m.(t̂[T + 1] − ε) = 1

N
ν̂[T ] + O(ε).

(88)

In summary, we obtain the following stochastic dynamics in
tick time:

ẑc.m.[T + 1] = ẑc.m.[T ] + cτ̂ [T ] tanh
�p̂[T ]

�p∗

+
√

σ 2τ̂ [T ]

N
μ̂[T ] + 1

N
ν̂[T ], (89a)

p̂[T + 1] = ẑc.m.[T + 1] + L∗
ρ

2
√

N
ξ̂ [T ], (89b)

�p̂[T + 1] = p̂[T + 1] − p̂[T ], (89c)

with Gaussian random number ξ̂ [T ] with unit variance.
To be precise, ẑc.m.[T ] ≡ limε→+0 ẑc.m.(t̂[T ] + ε), p̂[T ] ≡
limε→+0 p̂(t̂[T ] + ε), and �p̂[T ] ≡ limε→+0 �p̂(t̂[T ] + ε).
By eliminating the two variables (ẑc.m., p̂) from Eq. (89), we
obtain Eq. (80) as a single stochastic difference equation in
the tick time.

C. Solution

The macroscopic dynamics of the price strongly depends
on the balance between the strength of the trend-following
effect and that of the zigzag noise. Here, we present the
solutions of the financial Langevin equation depending on
the strength of trend following using dimensional analysis.
The price movement originating from trend-following be-
havior is estimated to be cτ ∗ (of price dimension). On the
other hand, the amplitude of the zigzag noise is estimated
to be L∗

ρ/
√

2N (of price dimension). Their balance is thus
characterized by the dimensionless parameter c̃ defined by

c̃ ≡ cτ ∗

L∗
ρ/

√
2N

= cL∗
ρ

σ 2
√

2N
. (90)

Another dimensionless control parameter is the ratio �p̃∗
between the average movement by the trend following cτ ∗
(of price dimension) and the saturation threshold against the
market trend �p∗ (of price dimension):

�p̃∗ ≡ �p∗

cτ ∗ . (91)
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FIG. 12. Sample trajectories are plotted for (a) the weak trend-following case c̃ = 0, (b) the strong trend-following case (c̃, �p̃∗) =
(2.0, 0.1), and (c) the marginal trend-following case (c̃, �p̃∗) = (0.5, 2.5) for N = 100, 105 ticks, and the γ -distributed spread. All parameters
are shared except for the trend-following parameters (c̃, �p̃∗). As can be seen from the figures, all trajectories seem to be the normal diffusion
in the long timescale. The sample trajectories are enlarged 100 times [in the circles in panels (a)–(c)] as panels (a′)–(c′), where the character of
each trajectory can be seen. (a′) The price trajectory exhibits a zigzag behavior in the absence of trend following. (b′) The price keeps moving
toward the same direction for a certain tick period because of the strong trend following. (c′) The price trajectory exhibits both zigzag behavior
and trend following because both effects are in balance.

The set of dimensionless parameters (c̃,�p̃∗) governs the
qualitative dynamics of the market price. For consistency with
the empirical report [46], we focus on the case of �p̃∗ � 1 in
this section, whereby the saturation of the hyperbolic function
is valid (see Sec. VII I for the discussion on the case with
�p̃∗ � 1). Here we introduce three classifications in terms
of the strength of trend following:

(1) Weak trend-following case: c̃ � 1.
(2) Strong trend-following case: c̃ � 1.
(3) Marginal trend-following case: c̃ ∼ 1.
Sample trajectories are plotted in Fig. 12 to highlight the

character of each case: For the weak trend-following case
[Fig. 12(a)], the price tends to move upward and downward
alternatively every tick because of the zigzag noise �ξ̂ . For
the strong trend-following case [Fig. 12(b)], the unidirectional
movement of price is kept for a certain time period. For
the marginal trend-following case [Fig. 12(c)], both zigzag
and unidirectional movements randomly appear because both
effects are in balance. As will be shown later in detail, the
marginal case may be the most realistic, at least in our
data set. We next study these qualitative characters through
statistical analysis of price time series within the mean-field
approximation.

1. Weak trend-following case

For the weak trend-following case c̃ � 1, the trend-
following effect is negligible compared with the zigzag

noise: |cτ̂ [T ] tanh(�p̂[T ]/�p∗)| � |�ξ̂ [T ]|. The master
equation (72) can then be analytically solved in continuous
time t . By ignoring the trend-following term, we integrate
Eq. (72) with respect to p and �p to obtain

∂Pt (zc.m.)

∂t
= σ 2

2N

∂2Pt (zc.m.)

∂z2
c.m.

+ 1

τ ∗

∫ ∞

−∞
dywN (y)

× [Pt (zc.m. − y) − Pt (zc.m.)]. (92)

Given that wN (y) satisfies the scaling of the system size ex-
pansion (76), we apply the Kramers-Moyal expansion [13,16]

1

τ ∗

∫ ∞

−∞
dywN (y)[Pt (zc.m. − y) − Pt (zc.m.)]

= 2σ 2

L∗2
ρ

∞∑
k=1

(−1)k

Nk−1

αk

k!

∂kPt (zc.m.)

∂zk
c.m.

(93)

with the N -independent Kramers-Moyal coefficient αk ≡∫ ∞
−∞ dyynw̃(y). By taking the series up to the order of N−1,

we finally obtain the diffusion equation for the c.m. (94) as

∂Pt (zc.m.)

∂t
= D(N )

∂2Pt (zc.m.)

∂z2
c.m.

, D(N ) ≡ σ 2

2N

(
1 + 2α2

L∗2
ρ

)
(94)
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with the renormalized diffusion coefficient D(N ) up to the
order of N−1.8 We note that α2 = L∗2 for the γ -distributed
spread. The diffusion constant D(N ) decays for N → ∞,
which implies that the dynamics of the c.m. become slower
as the number of traders increases. Given that the dynamics
of price p̂ coincide with those of the c.m. ẑc.m. for a long
timescale, the diffusion of the price is also shown to be normal
for a long timescale with the same diffusion coefficient D(N )
in real time t . The mean-squared displacement (MSD) based
on real time t is thus analytically obtained as

MSD(t ) ≡ 〈[p̂(t ) − p̂(0)]2〉 ∼ 2D(N )t, (95)

showing the normal diffusion for a long time.
We also study price movement at one-tick precision. For

the weak trend-following case, the only relevant term in
Eq. (80) is the zigzag noise �ξ̂ (T ) for a short timescale. Price
movement �p̂ then obeys the Gaussian distribution

P (�p) ≈ N
(

�p;
L∗2

ρ

2N

)
, 〈�p̂2〉 ≈ L∗2

ρ

2N
. (96)

The autocorrelation function of the price movement �p̂ is
also given by

C�p̂[K] ≡ 〈�p̂[T + K]�p̂[T ]〉
〈�p̂[T ]2〉

≈ C�ξ̂ [K] ≈
⎧⎨
⎩

1 (K = 0),
−1/2 (K = 1),
0 (K � 2).

(97)

Interestingly, this property is consistent with an empirical fact
that price movements typically exhibit zigzag behavior for a
short timescale.

Here we discuss the origin of the strong negative cor-
relation in terms of price movement. Remarkably, only the
random noise ζ̂ [T ] is dominant for a long time whereas only
the zigzag noise �ξ̂ [T ] is dominant for a short timescale. For
K � N , indeed, we obtain

p̂[T + K] − p̂[T ] =
K−1∑
i=0

(�ξ̂ [T + i] + ζ̂ [T + i])

=
√

L∗2
ρ

4N
(ξ̂ [T + K − 1] − ξ̂ [T − 1])︸ ︷︷ ︸

O(N−1/2 )

+
K−1∑
i=0

ζ̂ [T + i]

︸ ︷︷ ︸
O(N−1K1/2 )

, (98)

which implies that the contribution by the zigzag noise ξ̂ [T ] is
negligible compared with that of the random noise ζ̂ [T ] [i.e.,∑K−1

i=0 ζ̂ [T + i] = O(N−1K1/2) � O(N−1/2)]. Considering

8Introduction of a renormalized time t̃ ≡ t/N is also useful in
clarifying the appropriate timescale at which the diffusive approx-
imation holds, according to the original formulation of the system
size expansion.

that the random noise ζ̂ [T ] originates from the diffusion of
the c.m., Eq. (98) implies that the macroscopic behavior of
price is governed by the slow dynamics of the c.m. Even
though the price movement at one-tick precision is much
larger than that of the c.m., such movement is irrelevant to
the macroscopic dynamics of the whole system. This is the
origin of the strong negative correlation for price movement in
this model for the weak trend-following case. To relieve such
negative correlation, stronger trend following is necessary to
induce the collective motion of the order book as discussed
in Ref. [46]. We note that similar slow diffusion is observed
in the conventional zero-intelligence order-book models [38–
40], with which the trend-following effect is not incorporated
likewise.

We also note that the negative correlation (97) is also
related to the slow diffusion of price for a short timescale.
Indeed, the MSD for the tick time K is given by

MSD[K] = 〈(p̂[T + K] − p̂[T ])2〉 ≈ L∗2
ρ

2N
+ 2D(N )τ ∗K

(99)

within the mean-field approximation. This formula implies
that the MSD is almost constant (i.e., no diffusion) for a short
timescale K � N , while it is asymptotically linear (i.e., the
normal diffusion) for a long timescale K � N .

Numerical comparison. Here, we examine the validity of
our formulas through comparison with numerical results for
the γ -distributed spread (see Sec. V C for the implementa-
tion).

(a) Transaction interval. We first check the statistics of the
time interval between transactions τ̂ . The mean transaction
interval τ ∗ ≡ 〈τ̂ 〉 is numerically plotted in Fig. 13(a), showing
the quantitative agreement with the theoretical prediction (81)
including the coefficient. In Fig. 13(b), we also numerically
plot the probability distribution of τ̂ with scaling parameters
for the horizontal and vertical axes, qualitatively showing
the exponential tail for large τ̂ . Here we have introduced a
scaled transaction interval τ̃ ≡ cτ τ̂ /τ ∗ and plotted the scaled
probability distribution

P̃ (τ̃ ) ≡ τ ∗P (τ )

Zτ

∼ e−τ̃ (τ̃ → ∞), (100)

with scaling parameters for the horizontal and vertical axes cτ

and Zτ , respectively. The coefficients cτ and Zτ were deter-
mined using the least-squares method to fit the exponential
tail for each N . The numerical results imply the modifica-
tion for the decay length cτ ≈ 1.6, whereas the mean-field
solution (81) predicts cτ = 1. This implies that the mean-field
solution (81) is not exact but is rather qualitatively correct for
the probability distribution P (τ ).

This factor modification cτ ≈ 1.6 can be roughly under-
stood from the viewpoint of the order statistics, as discussed
in Ref. [46]. The mean-field approximation predicts the ex-
ponential interval distribution (81), which implies that the
transaction obeys the exact Poisson process. As the numerics
shows, however, the transaction obeys the Poisson process
not exactly but only asymptotically. An explanation for this
observation is that a transaction occurs as a pair of arrivals
of both bid and ask quotes. Let us assume that the arrival of
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FIG. 13. Numerical study in the absence of trend following c = 0. (a) Numerical mean transaction intervals τ ∗ and the theoretical line for
various N . (b) Transaction interval distribution for various N with an exponential guideline by scaling the horizontal and vertical axes. The
scaled interval is given by τ̃ = cτ τ̂ /τ ∗, where the fitting parameter cτ for the decay time was estimated by the least-squares method for the
tail as cτ = 1.34, 1.49, 1.56, 1.58, 1.62, and 1.59 for N = 25, 50, 100, 200, 400, and 800, respectively. (c) MSD plot based on real time t for
various N with the theoretical lines, showing the normal diffusion for large t but the slow diffusion t ∼ τ ∗. (d) MSD plot based on tick time
K for various N with the theoretical line, showing the normal diffusion for large K but the slow diffusion for small K . (e) Variance of price
difference �p̂ for various number of traders N with a fitting curve of power-law exponent N−1. (f) Plot of the peak of the PDF P (�p̃) for the
scaled price movement �p̃ ≡ √

N�p/L∗. (g) Log plot of the tail of the PDF P (�p̃) with a Gaussian fitting curve h(�p̃). (h) Autocorrelation
function C�p̂[K] with tick time K , showing negative correlation at K = 1. The simulation time was set to be 105 ticks except for panels (a),
(b), and (e)–(h), whereas the simulation time was set to be 106 ticks for panels (c) and (d).

a bid (ask) quote at the transaction price obeys the Poisson
statistics as P (τB ) = e−τB/τ ∗

B /τ ∗
B [P (τA) = e−τA/τ ∗

A/τ ∗
A]. Any

transaction is assumed to occur when both bid and ask quotes
arrive at the transaction price. We then make an approximation
that τ̂ ≈ max{τ̂B, τ̂A} and τ ∗

B = τ ∗
A. On the basis of the orders

statistics [55], we obtain

P (τ ) ≈ 1 − (1 − e−3τ/2τ ∗
)2 ∼ e−3τ/2τ ∗

, (101)

where the fitting parameter was determined by the consistency
condition for the average interval as 〈τ̂ 〉 = τ ∗ ⇐⇒ τ ∗

B =
3τ ∗/2. We thus obtain the modification factor cτ = 3/2 as an
approximation.

We note that the transaction interval is not under the
influence of the trend-following effect. This statistical char-
acteristic of the transaction interval is therefore shared for any
parameter set of (c̃,�p̃∗).

(b) MSD. Our theoretical prediction on the MSD is numer-
ically examined for analyses based on both real time t and
tick time K . We first numerically check the MSD (95) based
on the real time t in Fig. 13(c). This figure shows the quan-
titative agreement with our theoretical formula (95) without
fitting parameters. We also check the MSD based on the tick
time K in Fig. 13(d), showing a quantitative agreement with
the theoretical prediction (99) for K � 1. For small K ∼ 1,
the agreement is not perfect between the numerical data and

the theoretical line, but the slowness of the diffusion is quali-
tatively observed as predicted in the mean-field solution (99).

(c) Price movement. The dependence of the variance
of price movement is examined in Fig. 13(e) on the
number of traders N . We numerically obtained 〈�p̂2〉 ≈
C〈�p̂2〉(L∗2

ρ /2N ) with modification factor C〈�p̂2〉 ≈ 0.4. Al-
though there is a discrepancy in terms of the factor C〈�p̂2〉,
the mean-field solution (96) qualitatively works well for
the variance of price movement. We also checked the PDF
P (|�p̃|) of the scaled price movement �p̃ ≡ √

N�p/L∗
[Figs. 13(f) and 13(g) for the peak and tail of the PDF,
respectively]. In Fig. 13(g), we also show a Gaussian-type
fitting curve h(�p̃) = exp (−h∗

0 − h∗
1�p̃ − h∗

2�p̃2) for the
tail with parameters h∗

0 = 0.75 ± 0.05, h∗
1 = 0.54 ± 0.04, and

h∗
2 = 0.238 ± 0.006. These figures suggest that the PDF of

the price movement has a Gaussian tail, which is qualitatively
consistent with the theoretical prediction (96) (h∗

1 = 0 and
h∗

2 = 1/6).
(d) Autocorrelation. The autocorrelation function C�p̂[K]

is checked in Fig. 13(h), which supports the qualitative con-
sistency between the theory (98) and the numerical results in
terms of the negative correlation at K = 1 tick. This negative
correlation implies that the price time series exhibits the
zigzag behavior in the absence of the trend-following effect.
Indeed, the probability of �p̂[T + 1]�p̂[T ] < 0 is theoret-
ically 2/3 = 66.6 . . . % for the mean-field model, which is
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TABLE II. Table of the probabilities of the same successive sign
and different sign for the price movement time series {�p̂[T ]}T . We
numerically obtained the probability that the next price movement
�p̂[T + 1] has the same (different) sign as (from) that of the
previous price movement �p̂[T ] for N = 100. (a) For the weak
trend-following case c̃ = 0, the probability of taking a different sign
is higher than that of taking the same sign, implying the zigzag mo-
tion of the price movement. (b) For the strong trend-following case
(c̃, �p̃∗) = (2.0, 0.1), the probability of taking the same successive
sign is much higher than that of taking a different sign, implying
the ballistic motion of the price movement. (c) For the marginal
trend-following case (c̃, �p̃∗) = (0.5, 2.5), the probability of taking
a different sign is slightly higher than that of taking the same sign.
(d) We also obtained the probabilities from the real price time series
in our data set, showing that the probability of taking a different sign
is slightly higher than that of taking the same sign. For simplicity, we
omitted zero, such as �p[T ] = 0, during the data analysis of the real
price movement time series {�p̂[T ]}T . This table implies that the
marginal trend-following case is consistent with the real price time
series and is the most realistic at least for our data set.

Case Same sign Different sign

(a) Weak trend-following case 0.389 0.611
(b) Strong trend-following case 0.949 0.051
(c) Marginal trend-following case 0.480 0.520
(d) Real price time series 0.479 0.521

considerably higher than 50% (i.e., the pure random walks).
This result is also qualitatively consistent with the numerical
result (approximately 61%) as shown in Table II.

The theoretical prediction for the probability of �p̂[T +
1]�p̂[T ] < 0 can be obtained as follows: let us introduce
three Gaussian random variables x̂, ŷ, ẑ with unit variance
and investigate ŵ ≡ ŷ − x̂ and û ≡ ẑ − ŷ. To analyze the
probability of the successive same sign for the mean-field
model (80), it is sufficient to study the probability of taking
the same sign for ŵ and û as

P (ŵ > 0 ∩ û > 0) + P (ŵ < 0 ∩ û < 0)

= 2P (ŵ > 0 ∩ û > 0) =
∫ ∞

0
dwduP (w, u). (102)

Here we obtain

P (ŵ > 0 ∩ û > 0)

=
∫ ∞

0
dwdu

∫ ∞

−∞
dxdydzδ(w − y + x)

× δ(u − z + y)
e−(x2+y2+z2 )/2

(2π )3/2

=
∫ ∞

0
dwdu

∫ ∞

−∞

dz

(2π )3/2
exp

[
− 1

2
(z − u − w)2

− 1

2
(z − u)2 − 1

2
z2

]
= 1

6
. (103)

The probability of successive same sign for the mean-field
model (80) is thus given by 1/3. The probability of �p̂[T +
1]�p̂[T ] < 0 is then given by 2/3.

2. Strong trend-following case

The strong trend-following case c̃ � 1 is also analytically
tractable, whereby the trend-following term is dominant such
that |cτ̂ [T ] tanh(�p̂[T ]/�p∗)| � | max{�ξ̂ [T ], ζ̂ [T ]}|.
Here we assume that the saturation threshold is sufficiently
small such that �p̃∗ � 1. This condition simplifies the
following analysis because the hyperbolic function can
be approximated as the signature function, such that
tanh(�p̂[T ]/�p∗) ≈ sgn(�p̂[T ]). Price movement is
then governed by the first term on the rhs of Eq. (80), which
approximately leads the exponential distribution,

P (|�p|) ∝ e−|�p|/κ , (104)

with decay length κ for |�p| → ∞. The decay length is given
by the mean movement originating from the trend following
as κ = cτ ∗ within the mean-field approximation (81). By
applying the improved mean-field approximation (101), a
more consistent coefficient κ = 2cτ ∗/3 is obtained with the
numerical result which follows. The trend-following effect
plays similar roles to momentum inertia in physics, which are
reflected in the autocorrelation function and the MSD plot as
shown numerically in the next paragraph.

Numerical comparison. Numerical characters are studied
here for the strong trend-following case under the parameter
set (c̃,�p̃∗) = (2.0, 0.1). We first study the price movement
distribution P (|�p|). In Fig. 14(a), the price movement dis-
tribution is plotted by scaling the horizontal and vertical axes,

P̃ (|�p̃|) = κP (|�p|)
Z�p̃

∼ e−|�p̃|, (105)

which qualitatively shows the exponential tail for the scaled
price movement �p̃ ≡ �p/κ . Here the scaling parameters κ

and Z�p̃ were determined by the least-squares method for the
tail. The mean-field solution (81) and the improved mean-field
solution (101) predicts κ = cτ ∗ and κ = 2cτ ∗/3, respectively.
These theoretical predictions are qualitatively consistent with
the numerical estimation κ ≈ 0.64cτ ∗.

We next investigate the autocorrelation function C�p̂[K] of
the price difference �p̂ based on the tick time K in Fig. 14(b)
by scaling the horizontal line. For our parameter sets, the
numerical result implies that the autocorrelation function can
be written as

C�p̂[K] ≈
{

1 (K = 1),
1

ZAC
e−K/τAC (K � 2), (106)

with fitting parameters τAC and ZAC. This autocorrelation sug-
gests that the strong trend following keeps unidirectional price
movements for a certain time interval. Indeed, the probability
of �p̂[T ]�p̂[T + 1] > 0 is much higher than 50% under this
condition as shown in Table II. In addition, the numerical
MSD plot in Fig. 14(c) shows the rapid diffusion (almost
ballistic motion K2) for a short time and the normal diffusion
for a long time.

3. Marginal case

The most complex case is the marginal case c̃ ∼ 1, where
both trend-following effect and zigzag noise contribute to the
price movement as |cτ̂ [T ] tanh(�p̂[T ]/�p∗)| ∼ |�ξ̂ [T ]|.
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FIG. 14. Numerical study for the strong trend-following case c̃ � 1. We adopted (c̃∗, �p̃∗) = (2.0, 0.1) as the trend-following parameters.
(a) Price movement distribution for various N by scaling both horizontal and vertical axes, qualitatively showing the exponential law (104). The
least-squares method numerically estimates the decay length as κ/cτ ∗ = 0.74, 0.68, 0.65, 0.64, 0.64, and 0.64 for N = 25, 50, 100, 200, 400,
and 800, respectively. (b) Autocorrelation function C�p̂[K] with tick time K , showing the positive correlation with exponential decay. The
fitting parameters were estimated to be ZAC = 0.62 and τAC = 16.4, 14.2, 13.1, 12.8, 12.2, and 12.6 for N = 25, 50, 100, 200, 400, and 800,
respectively. (c) Numerical MSD plot for N = 50, showing a rapid diffusion of exponent K1.8 (almost the ballistic motion of exponent K2) for
a short time and a normal diffusion of exponent K1 for a long time. The simulation time was set to be 105 ticks for panels (a) and (b), whereas
the simulation time was set to be 106 ticks for panel (c).

While both the trend-following term cτ̂ tanh(�p̂/�p∗) and
the random noise term �ξ̂ are relevant under this condition,
the main contribution to the price movement tail originates
from the trend-following term because the former yields an
exponential tail while the latter yields a Gaussian tail. We
thus obtain the exponential tail (104) for the price movement
for the marginal case. This theoretical conjecture is to be
validated numerically below.

Numerical comparison. We studied the marginal case for
the parameter set (c̃,�p̃∗) = (0.5, 2.5). In Fig. 15(a), we plot
the price movement distribution by scaling both horizontal
and vertical axes as Eq. (105). We thus qualitatively obtain
the exponential-law tail (105) for the price movement.

In Fig. 15(b), we also studied the autocorrelation function
C�p̂[K] on tick time K through both numerical simulation
(points) and empirical data analysis (solid line) of the real
time series. This figure shows the slight negative correlation
around K = 1, which is qualitatively consistent with the
empirical result in our data set. This result also implies that
the price time series exhibits a slight zigzag behavior for a
certain tick period. This theoretical implication was validated
by analyzing the probability of �p̂[T ]�p̂[T + 1] < 0 as
summarized in Table II. Table II shows the quantitative
consistency between the marginal trend-following case and
the real price time series.

We also discuss the behavior of the MSD in Figs. 15(c)
and 15(d), which shows both slow and rapid diffusions depen-
dently of the chosen parameters. For example, we set the pa-
rameters (c̃,�p̃∗) = (0.5, 2.5) and (c̃,�p̃∗) = (0.86, 1.43)
for Figs. 15(c) and 15(d), respectively. In Fig. 15(c), the MSD
plot exhibits a slightly slow diffusion for a short time and a
normal diffusion for a long time. In Fig. 15(d), on the other
hand, the MSD plot exhibits a slightly rapid diffusion with
the Hurst exponent H = 0.65 for a short time and the normal
diffusion for a long time. We thus conclude that our HFT
model can reproduce a variety of diffusions by adjusting the
trend-following parameters.

VII. DISCUSSION

We here discuss implications of our theory to understand
various topics intensively.

A. Comparison with real data set

Here we provide a detailed comparison between the em-
pirical facts and the aforementioned theoretical predictions as
follows: As for the order-book profile fA(r ), the validity of
the formula (70) was examined by analyzing the daily average
order book in Ref. [46]. The exponential tail for the time
interval distribution P (τ ) ∼ e−τ/τ ∗

was studied in Ref. [56]
by removing the nonstationary property of the time series.
The price movement was reported to obey the exponential
law P (|�p|) ∼ e−|�p|/κ in Ref. [46] by removing the non-
stationary property of the time series. The price time series
tended to exhibit zigzag behaviors, which were reflected in
the negative autocorrelation function C�p̂[K] around K = 1
[see Fig. 15(c)] and the probability of �p̂[T ]�p̂[T + 1] < 0
(i.e., taking different signs) slightly over 50% (see Table II).
All these characters are consistent with our theoretical pre-
diction for the marginal trend-following case (see Table III
for a summary of the comparison). The HFT model presented
here can show precise agreements with these empirical facts.
Considering that the market was not volatile in our data set,
we concluded that our HFT model can describe the FX market
well, at least during the stable period. The description of
unstable markets is out of the scope of this paper and is a next
interesting problem for future studies.

B. Validity of mean-field approximation

We have numerically validated the mean-field theory. The
LO solution (63) quantitatively describes the order-book pro-
file (66) with high precision and the NLO solution (61)
qualitatively describes the price movement (80). Here we
discuss possible reasons for the excellent performance of the
mean-field approximation for the trend-following HFT model
considering a common sense in the field of statistical physics.

The mean-field approximation is expected to be invalid for
low-dimensional physical systems because two-body corre-
lations do not disappear between colliding pairs for a long
time. Colliding particles are not allowed to be separated
far from each other because of the continuity of paths and
the low-dimensional space geometry. For one-dimensional
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FIG. 15. Numerical study for the marginal case c̃ ∼ 1. (a) The price movement distribution �p by scaling the horizontal and vertical axes.
(b) Autocorrelation function C�p̂[K] based on tick time K (points), showing the negative correlation around K = 1. This numerical result was
consistent with the empirical result obtained from our data set (solid line). (c) MSD plot under the parameters (c̃, �p̃∗) = (0.5, 2.5), showing a
slightly slow diffusion. (d) MSD plot under the parameters (c̃, �p̃∗) = (0.86, 1.43), showing a slightly rapid diffusion with the Hurst exponent
H = 0.65. The simulation time was set to be 105 ticks for panels (a) and (b), whereas the simulation time was set to be 106 ticks for panels (c)
and (d).

Hamiltonian systems with hard-core interactions, for exam-
ple, any particle successively collides with fixed neighboring
particles and the two-body correlations remain forever. The
mean-field approximation is therefore shown to be valid only
for high-dimensional systems, at least for several concrete se-
tups. From this viewpoint, the precise agreement is not trivial
between the mean-field solution (66) and the numerical result.

In contrast, the continuity of the path is absent due to
requotation jumps, although our model is a one-dimensional
system. There is no restriction on the combination of possible
transaction pairs because the transaction rule (17) compul-
sorily separates the transaction pairs after their collision. In
the N → ∞ limit, in addition, transactions between the same
pair traders become rare (i.e., the probability of successive
transactions between the same pair decays as the order of
N−2), which implies quick disappearance of the two-body
correlation between transaction pairs for N → ∞. This is our
conjecture to validate the mean-field approximation for this
model. If this conjecture is correct, kinetic-like descriptions
might be valid for various agent-based systems, if agents
are separated compulsorily to avoid successive interactions
between the same pairs.

C. Nonstationary property for price movements:
Power-law behavior

Financial markets are known to statistically exhibit strong
nonstationary properties, such as intraday activity patterns.
Here, we discuss the impact of such nonstationary properties
on the price movements and its relation to the celebrated
power-law behavior for a long time.

Our theoretical model implies that the exponential
law (104) for the price movement is the basic statistical
property. This property was shown to be consistent with the
real price movement in Ref. [46] for a short time, by removing
the nonstationary property in terms of the decay length κ . The
decay length κ is related to the number of traders N and the
strength of the trend following c, both of which are expected to
have nonstationary properties. Indeed, the number of traders
N exhibits a trivial but strong nonstationary property with a
correlation with the decay length (see also the Supplemental
Material of Ref. [46]).

To illustrate this characteristic, let us analyze the statistical
relation between the mean absolute price movement 〈|�p̂|〉
and the number of HFTs N in our data set. We measured
〈|�p̂|〉 as a representative of the market volatility for a short
time and studied its correlation with N every two hours in
Fig. 16(a). Spearman’s rank correlation coefficient was 0.63
between 〈|�p̂|〉 and 1/N . This result implies that the market
volatility is relatively small when N is large, which is quali-
tatively consistent with our theoretical prediction of 〈|�p̂|〉 ≈
κ ∼ 1/Nβ (e.g., β = 1 if parameters are time constant other
than N ). The regression analysis between log 〈|�p̂|〉 and
log N implies β = 0.86 ± 0.1 as shown in Fig. 16(b). We also
note that both 〈�p̂〉 and 1/N had a tendency to become large
during inactive hours of the EBS market [Fig. 16(c)].

The nonstationary property of the market volatility is
related to the power-law behavior of the price movement
for a long time. In Ref. [46], the decay length κ is shown
to have a power-law distribution P (κ ) ∝ κ−α−1, which im-
plies the power-law price movement for a long time as the

TABLE III. Comparison between the empirical facts of the EBS market and our theoretical prediction.

Case P (|�p|) P (τ ) C�p[K] Prob. of diff. sign

(a) Weak trend-following case Gaussian Exponential Strongly negative at K = 1 around 60%
(b) Strong trend-following case Exponential Exponential Strongly positive less than 10%
(c) Marginal trend-following case Exponential Exponential Slightly negative around K = 1 around 52%
(d) Empirical facts Exponential Exponential Slightly negative around K = 1 around 52%
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FIG. 16. Empirical characteristics of the short-time market volatility 〈|�p̂|〉. (a) Time series of 〈|�p̂|〉 and the inverse number of HFTs
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correlation between 〈|�p̂|〉 and 1/N with Spearman’s rank correlation coefficient of 0.63. (b) Scattering plot between 〈|�p̂|〉 and N in the log-
log scale. Regression analysis between log 〈|�p̂|〉 and log N implies a power-law (almost linear) relation 〈|�p̂|〉 ∝ 1/Nβ with β = 0.86 ± 0.1.
In this analysis, we excluded the two samples after the market opening (the 5th 18:00–24:00 GMT) as outliers. (c) Intraday patterns are studied
for 〈|�p̂|〉 and N . We took the averages of 〈|�p̂|〉 and N conditional on two-hourly intraday time zones from Tuesday to Thursday, with the
arrow-type legends showing the working hours for Tokyo (0:00–9:00 GMT), London (8:00–17:00 GMT), and New York (13:00–22:00 GMT).
This figure shows that both 〈|�p̂|〉 and 1/N tended to take large values during the end of the New York working hours (20:00–22:00 GMT).

superposition of the short-time exponential distribution,

Plong(� |�p|) =
∫

dκP (κ )Pshort (� |�p|) ∼ |�p|−α,

(107)

with the complementary cumulative price movement distribu-
tion Plong(� |�p|) and Pshort (� |�p|) ∼ e−|�p|/κ . This result
is consistent with previous empirical research [23–26]. We
thus concluded that both exponential law and power law can
consistently coexist at least in our data set.

We here note that the FX market in our data set was rather
stable without any external shocks. While the exponential law
was essential for a short time in our data set, we do not deny
the possibility that the power law may be essential even for
a short time for unstable markets under external shocks. In
our view, there would exist essentially different structures
in unstable markets and it would be interesting to study the
statistics of traders’ behavior in these markets under financial
crisis in a future investigation.

D. Nonstationary property for transaction interval:
Power-law behavior

In terms of the transaction interval, our theory predicts that
the exponential law (81) is essential rather than the power law.
This result is consistent with the previous report in Ref. [56],
showing that the exponential law is essential for a short time
but its superposition leads to the power-law behavior of the
transaction interval for a long time.

E. Nonstationary property for order-book dynamics:
Stability of the order-book profile

We have discussed that both price movement and trans-
action interval are quite sensitive to nonstationary properties
of the market. On the other hand, the average order-book
profile fA(r ) is relatively insensitive to such nonstationary
properties, in contrast to the price movement and transaction
interval. Indeed, the average order-book profile fA(r ) is in-
dependent of the trend-following property c̃. In addition, the
order-book profile shows a convergence for N → ∞, such

that limN→∞ fA(r ) is an L2 function, which implies that
large variation of N does not have an impact on the average
order-book profile.

A similar insensitivity does not exist for the price move-
ment and transaction interval. Indeed, they exhibit a strong
divergence for N → ∞ as limN→∞ P (|�p|) = δ(|�p|) and
limN→∞ P (τ ) = δ(τ ), which implies that there is a significant
impact of large variations of N on their statistics.

In this sense, the average order-book profile is a stable
quantity to measure under nonstationary processes, whereas
the price movement and transaction interval are unstable
quantities. Our theory provides insight on the sensitivity of
measured quantities to the nonstationary nature of the market.
We believe that developing systematic methods to remove
such nonstationary characteristics is the key to understanding
not only the origin of power laws in finance, but also the
essence of market microstructure.

F. More is different: N = 2 vs N � 1

One of the most interesting features in statistical physics
lies in the fact that many-body systems can exhibit essentially
different characteristics compared to few-body systems, such
as critical phenomena and collective motion. Though the
current HFT model does not exhibit critical phenomena, an
essential difference can be shown between the cases of N = 2
and N � 1. To illustrate this point, let us consider the case
of c̃ = 0 without trend following. Our theory is applicable
to solve the case of N = 2 exactly, which leads to the same
solution presented in Ref. [36]. The price movement is then
predicted to obey the exponential law even without trend
following, which is qualitatively different from the Gaussian
law (96) for N → ∞. This difference appears because the
dynamics of the c.m. are not sufficiently slow for N = 2.
For N = 2, indeed, one can show the absence of the zigzag
noise term �ξ̂ [T ] in the financial Langevin equation (80),
which leads to the dominance of the random exponential
noise ζ̂ [T ]. For N � 1, on the other hand, the random noise
ζ̂ [T ] is negligibly small due to the slow c.m. dynamics, and
the trend-following effect becomes necessary to explain the
exponential price movements statistics. The model presented
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here thus exhibits essentially different characteristics as the
number of traders increases.

G. Does the trend-following effect
break the random walk hypothesis?

Seemingly, the trend-following effect is strongly contradic-
tory to the conventional assumption of the random walk hy-
pothesis. Our analysis however implies that the situation is not
so simple: In the absence of trend following, the market price
exhibits the strong zigzag behavior, which is far from the pure
random walks. By adjusting the strength of the trend following
appropriately (i.e., the marginal trend-following case), on the
other hand, the zigzag behavior is somewhat relieved and the
market price time series approaches the random walks. In
this sense, the trend-following strategy might originate from
the rational behavior of HFTs to equilibrate the strategies
among traders. It would be interesting to pursue the origin
of trend-following behavior from economical viewpoints as
future studies.

We also note that the real price time series exhibits slightly
zigzag behaviors (i.e., the negative autocorrelation and the
tendency for price movement to take different sign), which
are consistent with our HFT model for the marginal trend-
following case. These different characters from the pure
random walks are well known in finance and are obviously
applicable to predict the direction of price movement in the
one-tick future. It is not easy however to make profits over the
market spread (i.e., the difference between the market best bid
and ask prices) by utilizing only these properties. While the
real price time series slightly deviates from the pure random
walks, it is not obvious whether these characteristics provide
easy opportunities to statistically make profits. Making profits
requires us to predict price movements beyond the market
spread, which is beyond the scope of this paper, but is an
interesting potential topic for a future study.

H. Possible generalization 1: Multiple-tick trend-following
random walks and the PUCK model

In this paper, we have addressed the trend-following HFT
model with one-tick memory. It is straightforward to gen-
eralize the one-tick memory model toward a multiple-tick
memory model, such that

〈�ẑi[T ]〉�p̂EMA[T −1]=�pEMA = c tanh
�pEMA

�p∗ ,

�p̂EMA[T ] ≡
∞∑

K=0

e−K/τEMA

ZEMA
�p̂[T − K],

(108)
where �p̂EMA[T − 1] is the exponential moving average
for the price movements {�p̂[T ]}T with decay time τEMA

and renormalization constant ZEMA ≡ 1/(1 − e−1/τEMA ), and
〈. . . 〉�p̂EMA[T −1]=�pEMA is the ensemble average conditional on
�p̂EMA[T − 1] = �pEMA. In the authors’ view, this model is
more realistic because such an exponential moving average
is a popular strategy among HFTs according to a detailed
regression analysis for trend following [57]. We then obtain
a generalization of the financial Langevin equation as

�p̂[T + 1] = cτ̂ [T ] tanh
�p̂EMA[T ]

�p∗ + �ξ̂ [T ] + ζ̂ [T ].

(109)

The generalized financial Langevin equation (109) is
equivalent to the potentials of unbalanced complex kinetics
(PUCK) model [29], previously introduced on the basis of
price time-series analyses. Here we use an identity

�p̂EMA[T ] = e1/τEMA

ZEMA
{p̂[T + 1] − p̂EMA[T + 1]},

p̂EMA[T ] ≡
∞∑

K=0

e−K/τEMA

ZEMA
p̂[T − K] (110)

for the exponential moving averages �p̂EMA[T ] and
p̂EMA[T ], which leads to the PUCK model

p̂[T + 1] − p̂[T ] = − ∂U (p)

∂p

∣∣∣∣
p=p̂[T ]−p̂EMA[T ]

+ �ξ̂ [T − 1] + ζ̂ [T − 1] (111)

under a random potential U (p) = −ce−1/τEMA�p∗ZEMAτ̂

[T − 1] log{cosh(e1/τEMAp/�p∗ZEMA)}. In this sense, our
theory is applicable in a straightforward manner to a deriva-
tion of the PUCK model.

I. Possible generalization 2: Reduction to the random
multiplicative processes

In Sec. VI C, we assume �p̃∗ � 1 both for analytical
simplicity and for consistency with the empirical report [46].
Here we discuss the case with �p̃∗ � 1, whereby the hy-
perbolic trend following reduces to the linear trend follow-
ing as c tanh(�p̂/�p∗) ≈ c�p̂/�p∗. The financial Langevin
equation (80) is thus replaced with a linear financial Langevin
equation

�p̂[T + 1] = cτ̂ [T ]
�p̂[T ]

�p∗ + �ξ̂ [T ] + ζ̂ [T ]. (112)

By introducing the second-order difference �2p̂[T ] ≡
�p̂[T + 1] − �p̂[T ], we obtain a similar equation to the
conventional Langevin equation as

�2p̂[T ] = −γ̂ [T ]�p̂[T ] + �ξ̂ [T ] + ζ̂ [T ] (113)

with a random frictional coefficient γ̂ [T ] ≡ 1 − cτ̂ [T ]/�p∗,
consistently with the simplified discussion in the Supplemen-
tal Material of Ref. [46]. Since Eq. (113) belongs to the
random multiplicative processes [58], the price movement
obeys the power-law statistics, consistently with the previous
exact solution [36] for the two-body case N = 2.

VIII. CONCLUSION

In this paper, we have presented a systematic solution
for the trend-following trader model, which was empirically
introduced in our previous work [46]. Starting from the micro-
scopic dynamics of individual traders, we have systematically
reduced the multiagent dynamics by generalizing the math-
ematical method developed in molecular kinetic theory. We
first introduce the phase space for our model and derive the
dynamical equation for the phase space distribution function,
which corresponds to the Liouville equation in conventional
analytical mechanics. On the basis of the Liouville equation
for the trend-following trader model, we derive a hierarchy
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of reduced distributions in a parallel method to the BBGKY
hierarchy. By introducing the mean-filed approximation, cor-
responding to the assumption of molecular chaos, we derive
the mean-field dynamical equation for the one-body distri-
bution function, similarly to the Boltzmann equation. We
then derive the analytic solution for the mean-field model,
whose validity is numerically examined when the number
of traders is sufficiently large. We also derive the financial
Langevin equation, governing the macroscopic dynamics of
the financial Brownian motion, and study the macroscopic
properties of the market price movements. Our formulation
clarifies the explicit mathematical correspondence between
colloidal Brownian particle (water molecule) and market price
(order book), as the physical picture for the financial Brown-
ian motion heuristically proposed in Ref. [45].

Here we have clarified the power of the kinetic frameworks
in describing financial markets from microscopic dynamics.
In our conjecture, this success lies in the fact that the financial
markets approximately satisfy the key assumptions of the
binary interaction and molecular chaos; the one-to-one trans-
action (i.e., the binary interaction) is the most basic interaction
and traders are less likely to transact with the same counterpart
for large N . We believe that the financial market is one of
the best areas to apply kinetic theory, besides traffic flow and
wealth distribution [7–9,12]. We also believe that generaliza-
tion of kinetic theories could be a key to clarifying various
social systems from microscopic dynamics, since access to
miscellaneous microscopic data is currently widely available.

In this paper, we studied the EBS interbank FX market,
whose characters may be different from other financial mar-
kets (e.g., stock markets and retail FX markets). While most of
the traders in our data set would be professional institutional
investors, the presence of retail traders would not be negligible
in general financial markets. Also, the strict two-way quote
rule imposed on the key liquidity providers might be specific
to the EBS market. It may be interesting to apply our analyses
to other financial markets, to highlight their differences to the
EBS market.

It would be also interesting to generalize our formulation
for various traders employing different trading strategies.
While we focused on the trend-following strategy, market
makers apply various strategies, such as classical inventory
management [i.e., they tend to buy (sell) the currency after
selling (buying) to close their position]. The impact of intro-
ducing a variety of strategies would need to be pursued as a
future topic.
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FIG. 17. Qualitative picture of the NLO solution (61) depending
on the regimes R0, R1, and R2 ≡ R−

2 ∪ R+
2 . The asymptotic behav-

ior is described by Eq. (A2). The regimes R0, R1, and R2 represent
the peak, transient, and tail regimes, respectively.
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APPENDIX A: NEXT-TO-LEADING-ORDER SOLUTION
TO THE FINANCIAL BOLTZMANN EQUATION

Here we check that the NLO solution (61) is the solution of
the financial Boltzmann equation (51) by direct substitution.
Before the detailed calculation, let us introduce several useful
concepts and equations. We first introduce three regimes for
the solution (61) (see Fig. 17 for the schematic):

(1) Around the peak: R0 ≡ (−ε/2, ε/2).
(2) Transient regime: R1 ≡ (−L/2 + ε/2,−ε/2) ∪

(ε/2, L/2 − ε/2).
(3) Around the tail: R2 ≡ R−

2 ∪ R+
2 with R−

2 ≡
(−∞,−L/2 + ε/2) and R+

2 ≡ (L/2 − ε/2,∞).
The tail regime R2 is rounded by the finite N effect,

whereby prices go beyond the c.m. with low but finite prob-
ability. Most of the transactions will occur in this regime and
the newly submitted orders will return back near the peak
R0. The peak regime R0 is also rounded because the newly
submitted midprices return back from the tail regime R2.
The boundary-layer thickness is given by ε for both regimes.
For the transient regime R1, nothing will happen with high
probability since it is far from the tails and peak.

We next summarize several useful relations. For F (r ) ≡
e−r2/2/

√
2π − (r/2)erfc(r/

√
2), asymptotic relations hold:

F (r ) � 1

r2

e−r2/2

√
2π

(r → +∞),

F (r ) � −r (r → −∞). (A1)

There is a symmetry such that φL(r ) = φL(−r ). The solu-
tion (61) therefore implies

φL(r ) �
⎧⎨
⎩

ψL(r ) − 8ε
L2 F

( |r|
ε

)
(r ∈ R0),

ψL(r ) (r ∈ R1),
4ε
L2 F

( |r|−L/2
ε

)
(r ∈ R2),

(A2)

with the tent function ψL(r ) ≡ (4/L2) max{L/2 − |r|, 0}. In
addition, we obtain an identity

|∂̃rr ′ |[F (r )F (−r ′)]|r=r ′ = d2

dr2
F (r ) = e−r2/2

√
2π

. (A3)
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The steady probability flux JLL′
s (r ) ≡ (σ 2/2)|∂̃rr ′ |φL(r )φL′

(r ′)|r−r ′=s(L+L′ )/2 is thus rewritten as

JLL′
s=+1(r ) �

{
σ 2

2
16ε

L2L′2
1√
2π

e−(r−L/2)2/2ε2
(r ∈ R+

2 ),
0 (r �∈ R+

2 ),

J LL′
s=−1(r ) �

{
σ 2

2
16ε

L2L′2
1√
2π

e−(r+L/2)2/2ε2
(r ∈ R−

2 ),
0 (r �∈ R−

2 ),
(A4)

where we have ignored exponentially small contributions. We note that the NLO solution (61) perturbatively satisfies the
renormalization condition as∫ ∞

−∞
drφL(r ) � 1 − 1

2

(
1 + 4ε2

L2

)
erfc

(
L

2
√

2ε

)
+ 2ε

L

e−L2/8ε2

√
2π

= 1 + o

(
ε

L

e−L2/8ε2

√
2π

)
, (A5)

which implies that Eq. (61) is the appropriate renormalized solution if it satisfies Eq. (51).9

Using the above relations, we next check that the NLO solution (61) satisfies Eq. (51) by direct substitution. For r ∈ R1,
Eq. (61) obviously satisfies the financial Boltzmann equation (51), by considering the asymptotic relations (A2) and (A4). For
r ∈ R+

2 , we obtain

σ 2

2

∂φL

∂r2
+ N

∑
s=±1

∫ Lmax

Lmin

dL′ρL′
[
JLL′

s (r + sL/2) − JLL′
s (r )

]

� σ 2

2

∂φL

∂r2
− N

∫ Lmax

Lmin

dL′ρL′JLL′
s=+1(r ) = σ 2

2

4

L2ε

e−(r−L/2)2/2ε2

√
2π

[
1 − 4ε2N

∫ Lmax

Lmin

dL′ρL′

L′2

]
= 0. (A6)

This implies that the NLO solution (61) asymptotically satisfies Eq. (51) for r ∈ R+
2 . In a parallel calculation, we can also show

that the NLO solution (61) satisfies Eq. (51) for r ∈ R−
2 . For r ∈ R0, we obtain

σ 2

2

∂φL

∂r2
+ N

∑
s=±1

∫ Lmax

Lmin

dL′ρL′
[
JLL′

s (r + sL/2) − JLL′
s (r )

]

� σ 2

2

∂φL

∂r2
+ N

∑
s=±1

∫ Lmax

Lmin

dL′ρL′JLL′
s (r + sL/2) = σ 2

2

[
− 8

εL2
+ 32Nε

L2

∫ Lmax

Lmin

dL′ρL′

L′2

]
e−r2/2ε2

√
2π

= 0, (A7)

which implies that Eq. (61) satisfies Eq. (51) for r ∈ R0. In summary, the NLO asymptotic solution (61) is shown to satisfy the
financial Boltzmann equation (51) globally.

APPENDIX B: CONSISTENCY OF THE SOLUTION (61) WITH THE FINANCIAL BBGKY HIERARCHY (59)

We have obtained the NLO solution (61) to the financial Boltzmann equation (51). The financial Boltzmann equation (51)
is derived from the financial BBGKY hierarchal equation (40) with the three-body correlation terms assumed to be irrelevant
in Sec. V A. Here we check that the consistency between the NLO solution (61) and this assumption. Let us introduce the
three-body distribution function φLL′L′′

T (r, r ′, r ′′) for the relative prices as

φ
LiLj Lk

t (r, r ′, r ′′) = P
ijk
t (r, r ′, r ′′). (B1)

Let us check that the following remaining term R can be ignored for N → ∞,

R ≡ N2
∫

dr ′dL′dL′′ρL′ρL′′

[
|∂̃r ′r ′′ |φLL′L′′

t

(
r − s(L′ − L′′)

2N
, r ′, r ′′

)
− |∂̃r ′r ′′ |φLL′L′′

t (r, r ′, r ′′)
]∣∣∣∣

r ′−r ′′=s(L′+L′′ )/2

, (B2)

by assuming molecular chaos for the three-body distribution

φLL′L′′
t (r, r ′, r ′′) ≈ φL

t (r )φL′
t (r ′)φL′′

t (r ′′). (B3)

Indeed, we obtain

R ≈ N2
∑
s=±1

∫
dL′dL′′ρL′ρL′′

∫
dr ′|∂̃r ′r ′′ |φL′

t (r ′)φL′′
t (r ′′)

∣∣∣∣
r ′−r ′′=s(L′+L′′ )/2

[
φL

t

(
r − s(L′ − L′′)

2N

)
− φL

t (r )

]
. (B4)

9The uniqueness of the solution is technically assumed. The proofs of such mathematical details are out of the scope of this paper.
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By substituting the NLO solution (61), we obtain a relation∫
dr ′|∂̃r ′r ′′ |φL′

t (r ′)φL′′
t (r ′′)

∣∣∣∣
r ′−r ′′=s(L′+L′′ )/2

≈ 4L∗2
ρ

NL′2L′′2 . (B5)

R is then shown to be of order O(N−1) as

R ≈
∞∑

k=1

4L∗2
ρ

(2k)!(2N )2k−1

∫
dL′dL′′ρL′ρL′′ (L′ − L′′)2k

L′2L′′2
∂2kφL

t (r )

∂r2k
= O(N−1), (B6)

where we have used the Taylor expansion

φL
t

(
r − s(L′ − L′′)

2N

)
− φL

t (r ) =
∞∑

k=1

(−s)k

k!

(
L′ − L′′

2N

)k
∂kφL

t (r )

∂rk
. (B7)

The neglect of the three-body correlation term R is thus validated on the basis of the NLO solution (61).

APPENDIX C: PROOF OF PROBABILITY CONSERVATION

We here prove the conservation of the probability (64) under the reflecting boundary condition. The total probability where
the order exists in the range [−Lcut/2, Lcut/2] is given by

∫ Lcut/2
−Lcut/2 drφL

t (r ). The time derivative of the total probability obeys the
following equation:

∂

∂t

∫ Lcut/2

−Lcut/2
drφL

t (r ) =
∫ Lcut/2

−Lcut/2
dr

{
σ 2

2

∂2φL
t (r )

∂r2
+ N

∑
s=±1

∫ Lmax

Lmin

dL′ρL′
[
JLL′

t ;s (r + sL/2) − JLL′
t ;s (r )

]}

= σ 2

2

[
∂φL

t (r )

∂r

]Lcut/2

−Lcut/2

+ N
∑
s=±1

∫ Lcut/2

−Lcut/2
dr

∫ Lmax

Lmin

dL′ρL′
[
JLL′

t ;s (r + sL/2) − JLL′
t ;s (r )

]
. (C1)

Considering the following identity for the integrals∫ Lcut/2

−Lcut/2
drJLL′

t ;s=+1(r + sL/2) = σ 2

2

∫ Lcut/2

−Lcut/2
dr

[
φL′

t (r − L′/2)
∣∣∂φL

t (r + L/2)
∣∣ + ∣∣∂φL′

t (r − L′/2)
∣∣φL

t (r + L/2)
]

= σ 2

2

∫ (Lcut−L)/2

−(Lcut−L′ )/2
dr

[
φL′

t (r − L′/2)
∣∣∂φL

t (r + L/2)
∣∣ + ∣∣∂φL′

t (r − L′/2)
∣∣φL

t (r + L/2)
]

(C2)

and ∫ Lcut/2

−Lcut/2
drJLL′

t ;s=+1(r ) = σ 2

2

∫ Lcut/2

−Lcut/2
dr

[
φL′

t (r − (L + L′)/2)
∣∣∂φL

t (r )
∣∣ + ∣∣∂φL′

t (r − (L + L′)/2)
∣∣φL

t (r )
]

= σ 2

2

∫ Lcut/2

(−Lcut+L+L′ )/2
dr

[
φL′

t (r − (L + L′)/2)
∣∣∂φL

t (r )
∣∣ + ∣∣∂φL′

t (r − (L + L′)/2)
∣∣φL

t (r )
]

= σ 2

2

∫ (Lcut−L)/2

−(Lcut−L′ )/2
dr

[
φL′

t (r − L′/2)
∣∣∂φL

t (r + L/2)
∣∣ + ∣∣∂φL′

t (r − L′/2)
∣∣φL

t (r + L/2)
]
, (C3)

we obtain ∫ Lcut/2

−Lcut/2
dr

[
JLL′

t ;s=+1(r + L/2) − JLL′
t ;s=+1(r )

] = 0. (C4)

Here, the assumption Lcut > Lmax is used in changing the integral interval. In a parallel calculation, we obtain∫ Lcut/2

−Lcut/2
dr

[
JLL′

t ;s=−1(r − L/2) − JLL′
t ;s=−1(r )

] = 0. (C5)

These relations imply

∂

∂t

∫ Lcut/2

−Lcut/2
drφL

t (r ) = σ 2

2

[
∂φL

t (r )

∂r

]Lcut/2

−Lcut/2

. (C6)

We then show the conservation of the probability (64) under the reflecting boundary condition.
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