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Color-gradient lattice Boltzmann model with nonorthogonal central moments:
Hydrodynamic melt-jet breakup simulations
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We develop a lattice Boltzmann (LB) model for immiscible two-phase flow simulations with central moments
(CMs). This successfully combines a three-dimensional nonorthogonal CM-based LB scheme [De Rosis, Phys.
Rev. E 95, 013310 (2017)] with our previous color-gradient LB model [Saito, Abe, and Koyama, Phys. Rev. E
96, 013317 (2017)]. Hydrodynamic melt-jet breakup simulations show that the proposed model is significantly
more stable, even for flow with extremely high Reynolds numbers, up to O(106). This enables us to investigate
the phenomena expected under actual reactor conditions.
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I. INTRODUCTION

Multiphase and multicomponent flows appear in many
natural and industrial processes. A liquid jet injected into
another fluid is an interesting example of such a flow, and
understanding the breakup of liquid jets has been a topic
of significant interest for more than a century. Since the
pioneering works of Plateau [1] and Rayleigh [2], this subject
has been extensively studied theoretically, experimentally, and
numerically [3–6]. In the linear theory framework, the liquid
jet breakup problem is described in terms of the density ratio
γ , viscosity ratio η, Reynolds number Re, Weber number We,
and Froude number Fr as follows [4]:

γ = ρj

ρc

, (1)

η = νj

νc

, (2)

Re = ρjuj0Dj0

μj

, (3)

We = ρju
2
j0Dj0

σ
, (4)

Fr = u2
j0

gDj0
, (5)

where ρ is the density, ν is the kinematic viscosity, uj0 is the
jet velocity, Dj0 is the jet inlet diameter, σ is the interfacial
tension, and g is the acceleration due to gravity. The subscript
j and c denote the dispersed and the continuous phases,
respectively.
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At low injection velocities, drops form directly at the nozzle,
while at higher velocities a liquid jet issues from the nozzle and
then breaks into various droplet patterns. Discovering when
these regimes occur is of significant interest in the study of
liquid-jet breakup. Ohnesorge [7] classified his results into
four breakup regimes: dripping (0), varicose (I), sinuous (II),
and atomization (III) [8,9]. He also provided a map of these
regimes for liquid jets in a gas in terms of the Reynolds number
Re and the Ohnesorge number Oh, where Oh = We1/2/Re
and can thus be calculated using Eqs. (3) and (4). Following
Ohnesorge’s work, there has been much research on this subject
(see, e.g., Refs. [10–12]), most of which has focused on
liquid-gas systems (liquid jets into gaseous atmospheres). Jet
breakup in liquid-liquid systems (liquid jets into other liquids)
has not been investigated as extensively.

Recently, Saito et al. [13] used a series of observations
to classify the jet breakup regimes in liquid-liquid systems,
as shown in Fig. 1(a), extending Ohnesorge’s classification
scheme for liquid-gas systems [7–9]. This classification largely
follows Ohnesorge’s one, but it further divides Regime II into
two subregimes: sinuous without entrainment (IIa) and sinuous
with entrainment (IIb). On the basis of observations and
phenomenological considerations, they derived the following
flow-transition criteria [13]:

Oh = 2.8Re−1 (6)

for Regimes I and II and

Oh = 22Re−1 (7)

for Regimes II and III. These criteria can be used to predict
the breakup regimes of immiscible liquid-liquid jets based on
their initial parameters. We have successfully reproduced these
flow-transition criteria in numerical simulations [14] based on
their multiple-relaxation-time (MRT) lattice Boltzmann (LB)
two-phase flow model, as illustrated in Fig. 1(b).
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FIG. 1. (a) Snapshots of typical jet breakup regimes in liquid-liquid systems: dripping (0), varicose (I), sinuous without entrainment (IIa),
sinuous with entrainment (IIb), and atomization (III) [13]. (b) Map of jet breakup regimes in immiscible liquid-liquid systems [13,14]

Liquid-liquid–jet systems can be found in several fields,
e.g., chemical processing [15–17] and CO2 storage in oceans
[18,19]. In the nuclear engineering field, it is important to fully
understand the interactions between melt and coolant when
designing nuclear reactor safety. As a result, the dispersion
of liquid metal in water has been extensively investigated
in the literature [20–23], going all the way back to G. I.
Taylor’s classic experiment with mercury and water [24]. In
these experiments, high-temperature melt and water are often
used to simulate the core melt materials and coolant. Using the
experimental facility at University of Tsukuba (UT), Matsuo
et al. [23,25] injected molten alloy with a melting point of 78 ◦C
(U-Alloy78) into a water pool, using high-speed visualization
to help understand the mechanism behind melt-jet breakup
in water. The experiments of Magallon et al. [26], called
FARO-TERMOS (FT), are unique in that they used a liquid
sodium coolant: They poured pure molten UO2 into a pool
of liquid sodium. The fragment size analysis showed that fine
fragments were generated by interactions between the molten
UO2 and the liquid sodium, but they obtained little physical
insight into the breakup behavior because liquid sodium is not
transparent. In this paper, our simulation targets are these two
melt-coolant experiments [23,26]; we call them the UT and FT
experiments, respectively.

The complexity of the phenomena involved in melt-coolant
interactions means it is difficult to understand all the mecha-
nisms simultaneously. Investigating the hydrodynamic inter-
actions separately will thus help us to better understand the
fundamental melt-jet breakup processes. Several researchers
have already attempted to simulate jet breakup behavior using
the volume-of-fluid method (see, e.g., Refs. [27–29]). In this
paper, we use the LB method for multiphase flows, which has
come to be recognized as a powerful tool for analyzing complex
fluid dynamics, including multicomponent and multiphase
flows [30]. Figure 2 illustrates the fluid flow properties at
different scales. Compared with macroscopic CFD methods,
which are based on the Navier-Stokes equations, the LB
method, which uses mesoscopic kinetic equations, has several
advantages, such as making it easy to incorporate mesoscale

physics like interfacial breakup and coalescence. In addition,
the computational cost of simulating realistic fluid flows is
far more reasonable than with particle-based methods (e.g.,
molecular dynamics).

Two-phase or multiphase LB models can be divided into
four categories, namely color-gradient [31,32], pseudopoten-
tial [33,34], free-energy [35,36], and mean-field [37] models.
This is not an exhaustive classification; for instance, the latter
two model types are sometimes called phase-field models [38]
since the Cahn-Hilliard (or similar) interface tracking equa-
tions can be derived from them. For further details about mul-
tiphase LB models, interested readers can refer to several com-
prehensive review papers [30,38–42] and references therein.
This paper focus on color-gradient (CG) models, as they have
many strengths for simulating multiphase or multicomponent
flows, including strict mass conservation for each fluid and
flexibility in adjusting the interfacial tension [43]. They also
do not require us to use the static drop test to determine the
interfacial tension, as this can be obtained directly without
further analysis or assumptions. In addition, CG models exhibit
very low dissolution for tiny droplets or bubbles [42].

CG models, often called R-K models, were first developed
by Gunstensen et al. [31], who extended Rothman and Keller’s
two-component lattice gas automata model [44]. Later,

Lattice Boltzmann

Mesoscopic

FIG. 2. Fluid flow properties revealed at different scales by
different simulation methods. The LB method is a mesoscopic
simulation approach that lies between microscopic particle-based
(e.g., molecular dynamics) and macroscopic Navier-Stokes–based
methods.
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Grunau et al. [32] enabled density and viscosity ratios to
be introduced by modifying the forms of the distribution
functions. Latva-Kokko and Rothman [45] then replaced
Gunstensen’s maximization-recoloring step with a formulaic
segregation algorithm. Instead of widening the interface,
Latva-Kokko–Rothman’s recoloring algorithm solves two
issues with the previous CG models, namely the lattice-pinning
problem and spurious velocities. Reis and Phillips [46]
extended the model to a common two-dimensional nine-
velocity (D2Q9) lattice and modified the perturbation operator
to correctly recover the Navier-Stokes equations. Leclaire et al.
[47] demonstrated that combining Latva-Kokko–Rothman’s
recoloring operator [45] with Reis-Phillips’ perturbation
operator [46] greatly improves the numerical stability and
accuracy of the solutions over a wide parameter range. Using
an isotropic gradient operator also enhances the numerical
stability and accuracy [48]. Liu et al. [49] derived a generalized
perturbation operator using the phase-field (or order parameter)
and formulated the CG model in three dimensions. Leclaire
et al. [50] generalized the CG model to two and three
dimensions. For interested readers, Leclaire’s MATLAB
scripts will help to understand how to code the CG model [51].

The so-called Bhatnagar–Gross–Krook (BGK) [52]
approximation refers to this simplest form of the collision
operator, which forces all populations to relax towards an
equilibrium state with the same rate. Despite its simplicity and
phenomenal popularity, the BGK LB method is known to suffer
from numerical instability under high-Re (low-viscosity)
conditions. One way to overcome this issue is to modify the
collision operator [53]. For example, MRT collision operators
[54–56] have been widely used, even for multiphase flows, to
enhance numerical stability and accuracy and reduce spurious
currents near the interface. Later, Geier et al. [57] proposed
a new collision operator based on the relaxation of central
moments (CMs) that can be obtained by shifting the lattice
directions according to the local fluid velocity. Many studies
have developed this approach to fully exploit the properties of
CM-based schemes (see, e.g., De Rosis [58] and references
therein). For multiphase flows, Lycett-Brown and Luo [59]
first introduced CMs into the pseudopotential multiphase
LB model. Leclaire et al. [60] also introduced CMs into the
CG model with unit density ratio. Very recently, De Rosis
et al. [61] formulated a CM-based LB scheme for coupled
Cahn–Hilliard-Navier–Stokes equations. De Rosis has
consistently adopted nonorthogonal CMs [62–66], which are
characterized by straightforward derivation and easy practical
implementation. Moreover, his analytical formulation is very
general, as it can be extended to any lattice velocity space.

In this paper, we present a three-dimensional CG LB
model and apply it to hydrodynamic simulations of melt-jet
breakup. Section II describes the formulation of this LB model.
Section III uses numerical tests on static droplets to evaluate
the proposed model. Section IV applies the model to simulating
melt-jet breakup under the conditions of the UT and FT
experiments. Finally, Sec. V concludes this paper.

II. METHODOLOGY

The LB model presented here is based on our previous
MRT CG model [14]. The most significant difference between

the current and previous models is the introduction of De
Rosis’s nonorthogonal CMs [62,63]. In the current three-
dimensional LB model, the distribution functions move on a
three-dimensional 27-velocity (D3Q27) lattice [67]. We adopt
a lattice speed c = δx/δt = 1, where δx and δt are the lattice
spacing and time step, respectively. The lattice velocities ci =
[|cix〉,|ciy〉,|ciz〉] are defined as follows:

|cix〉 = [0,1,−1,0,0,0,0,1,−1,1,−1,0,0,0,0,1,−1,1,−1,

1,−1,1,−1,1,−1,−1,1]�,

|ciy〉 = [0,0,0,1,−1,0,0,1,−1,−1,1,1,−1,1,−1,0,0,0,0,

1,−1,1,−1,−1,1,1,−1]�,

|ciz〉 = [0,0,0,0,0,1,−1,0,0,0,0,1,−1,−1,1,1,−1,−1,1,

1,−1,−1,1,1,−1,1,−1]�, (8)

where i(=0,1, . . . ,26) represents the lattice-velocity direc-
tions and the superscript “�” is the transpose operator. Here we
employ Dirac’s bracket notation, where the “bra” operator 〈·|
denotes a row vector along one of the lattice-velocity directions
and the “ket” operator |·〉 denotes a column vector.

The model represents two immiscible fluids as red and blue
fluids. Distribution functions f k

i represent the fluids k, where
k = r and b denote “red” and “blue,” respectively, and i is
the lattice-velocity direction. The total distribution function is
defined as fi = f r

i + f b
i , and the evolution is expressed by the

following LB equation:

f k
i (x + ciδt ,t + δt ) − f k

i (x,t) = �k
i (x,t), (9)

where x = [x,y,z] and t are the position and time, respectively.
The collision operator �k

i is made up of three suboperators
[68]:

�k
i = (

�k
i

)(3)[(
�k

i

)(1) + (
�k

i

)(2)]
, (10)

where (�k
i )(1), (�k

i )(2), and (�k
i )(3) are the single-phase

collision, perturbation, and recoloring operators, respectively.
As in Ref. [50], the single-phase and perturbation operators
are applied using the color blind distribution function fi .

In this paper, we adopt the general MRT (GMRT) frame-
work [69,70] to describe the single-phase collision operator
with nonorthogonal CMs, due to the simplicity of its relation-
ship to the MRT and SRT collision operators. It should be noted
that Fei et al. [70] propose a simplified version of De Rosis’s
nonorthogonal CMs [62,63], showing a significantly reduced
computational cost. In the GMRT framework, the single-phase
collision operator can be written as

(|�〉)(1) = −M−1N−1KNM(|f 〉 − |f (e)〉) + |F 〉, (11)

where M, N, and K are the transformation, shift [69–71], and
relaxation matrices, respectively. The density of the fluid k is
given by

ρk =
∑

i

f k
i . (12)

The total fluid density is given by ρ = ∑
k ρk , and the total

momentum is defined as

ρu =
∑

i

fici + 1

2
Fδt , (13)
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where F is the body force. Note that, in Eq. (13), the local
velocity has been modified to incorporate the spatially varying
body force [72]. To model the single-phase collision operator
[Eq. (11)], we use the nonorthogonal CMs proposed by De
Rosis [63], namely

NM = T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

〈|ci |0|
〈c̄ix |
〈c̄iy |
〈c̄iz|

〈c̄ix c̄iy |
〈c̄ix c̄iz|
〈c̄iy c̄iz|〈

c̄2
ix − c̄2

iy

∣∣〈
c̄2
ix − c̄2

iz

∣∣〈
c̄2
ix + c̄2

iy + c̄2
iz

∣∣〈
c̄ix c̄

2
iy + c̄ix c̄

2
iz

∣∣〈
c̄2
ix c̄iy + c̄iy c̄

2
iz

∣∣〈
c̄2
ix c̄iz + c̄2

iy c̄iz

∣∣〈
c̄ix c̄

2
iy − c̄ix c̄

2
iz

∣∣〈
c̄2
ix c̄iy − c̄iy c̄

2
iz

∣∣〈
c̄2
ix c̄iz − c̄2

iy c̄iz

∣∣〈
c̄ix c̄iy c̄iz

∣∣〈
c̄2
ix c̄

2
iy + c̄2

ix c̄
2
iz + c̄2

iy c̄
2
iz

∣∣〈
c̄2
ix c̄

2
iy + c̄2

ix c̄
2
iz − c̄2

iy c̄
2
iz

∣∣〈
c̄2
ix c̄

2
iy − c̄2

ix c̄
2
iz

∣∣〈
c̄2
ix c̄iy c̄iz

∣∣〈
c̄ix c̄

2
iy c̄iz

∣∣〈
c̄ix c̄iy c̄

2
iz

∣∣〈
c̄ix c̄

2
iy c̄

2
iz

∣∣〈
c̄2
ix c̄iy c̄

2
iz

∣∣〈
c̄2
ix c̄

2
iy c̄iz

∣∣〈
c̄2
ix c̄

2
iy c̄

2
iz

∣∣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (14)

where |c̄ix〉 = |cix − ux〉, |c̄iy〉 = |ciy − uy〉, and |c̄iz〉 =
|ciz − uz〉. All the components of the vector |ci |0 are equal to 1.
The transformation matrix M, whose components are constant,
transforms the distribution functions into raw moments. The
shift matrix N, a lower-triangular matrix with components
given by the macroscopic velocity u, transforms the raw
moments into CMs and can be written as N = TM−1. The
practical forms of M, M−1, N, and N−1 are given in the
Appendix.

The relaxation matrix K is a diagonal matrix given by

K = diag[s0,s1,s1,s1,s2ν,s2ν,s2ν,s2ν,s2ν,s2b,s3,s3,s3,s3,s3,

s3,s3,s4,s4,s4,s4,s4,s4,s5,s5,s5,s6], (15)

where the elements are the moments’ relaxation times. If
s0 = · · · = si = · · · = s6, then the model reduces to the BGK
(single-relaxation-time) model. The subscripts represent the
orders (e.g., “2” means second order). The parameters s2ν and
s2b satisfy the following relations:

ν = c2

3

(
1

s2ν

− 1

2

)
δt , (16)

ζ = 5 − 3c2

9

(
1

s2b

− 1

2

)
δt , (17)

where ν and ζ are the kinematic and bulk viscosities, re-
spectively. Here we use s0 = s1 = 0 and s2b = s3 = s4 = s5 =
s6 = 1.

For the single-phase collision operator, we use the follow-
ing enhanced equilibrium distribution function [73] in three
dimensions [14]:

f
(e)
i (ρ,u) = ρ

{
ϕi + wi

[
3

c2
(ci · u) + 9

2c4
(ci · u)2 − 3

2c2
u2

+ 9

2c6
(ci · u)3 − 9

2c4
(ci · u)u2

]}
+ �i. (18)

If �i = 0, then Eq. (18) reduces to the standard form of
an equilibrium distribution function up to third order. Using
Eq. (18) improves the Galilean invariance of the variable
density and viscosity ratios under the assumption of a small
pressure gradient [73–75].

The weights, wi , are those of a standard D3Q27 lattice [76],
as follows:

wi =

⎧⎪⎪⎨
⎪⎪⎩

8/27, |ci |2 = 0,

2/27, |ci |2 = 1,

1/54, |ci |2 = 2,

1/216, |ci |2 = 3.

(19)

In addition, for a D3Q27 lattice, we can derive

ϕi =

⎧⎪⎪⎨
⎪⎪⎩

ᾱ, |ci |2 = 0,

2(1 − ᾱ)/19, |ci |2 = 1,

(1 − ᾱ)/38, |ci |2 = 2,

(1 − ᾱ)/152, |ci |2 = 3,

(20)

and

�i =

⎧⎪⎪⎨
⎪⎪⎩

−3ν̄(u · ∇ρ)/c, |ci |2 = 0,

+16ν̄(G : ci ⊗ ci)/c3, |ci |2 = 1,

+4ν̄(G : ci ⊗ ci)/c3, |ci |2 = 2,

+1ν̄(G : ci ⊗ ci)/c3, |ci |2 = 3,

(21)

where⊗ is the tensor product, “:” represents tensor contraction,
and ν̄ is the kinematic viscosity, which interpolates between the
red and blue viscosities νr and νb via the following harmonic
mean [50,77,78]:

1

ν̄
= 1 + φ

2

1

νr

+ 1 − φ

2

1

νb

. (22)

Here φ is the order parameter that distinguishes the two
components in the multicomponent flow, defined as [43]

φ =
(

ρr

ρ0
r

− ρb

ρ0
b

)/(
ρr

ρ0
r

+ ρb

ρ0
b

)
, (23)
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where the superscript “0” indicates the initial density value at
the beginning of the simulation [73]. The order parameter val-
ues φ = 1,−1, and 0 correspond to a purely red fluid, a purely
blue fluid, and the interface between the two, respectively [68].
In the D3Q27 lattice framework, the tensor G in Eq. (21) is
defined as

G = 1
48 [u ⊗ ∇ρ + (u ⊗ ∇ρ)�]. (24)

As established in Ref. [32], to obtain a stable interface, we must
take the fluid density ratio γ into account, which is defined as
follows:

γ = ρ0
r

ρ0
b

= 1 − αb

1 − αr

. (25)

The fluid pressures are given by an isothermal equation of state
for the D3Q27 lattice:

p = ρ(cs)
2 = ρk

9(1 − ᾱ)

19
c2, (26)

where ᾱ interpolates between αr and αb as follows [50]:

ᾱ = 1 + φ

2
αr + 1 − φ

2
αb. (27)

In this paper, we set αb = 8/27, for which cb
s = 1/

√
3 [74,79].

The term |F 〉 in Eq. (11) is a discrete forcing term that
accounts for the body force F. In the GMRT framework [69],
it is

|F 〉 = M−1N−1
(
I − 1

2 K
)
NM|F ′〉, (28)

where I is the unit matrix, |F 〉 = (F0,F1, . . . ,F26)�, and
|F ′〉 = (F ′

0,F
′
1, . . . ,F

′
26)� is given by

|F ′〉 = wi

[
3

ci − u
c2

+ 9
(ci · u)ci

c4

]
· Fδt . (29)

Equations (28) and (29) reduce to the MRT forcing scheme [80]
when we use N = I, and to Guo et al.’s original forcing scheme
[72] when we use a single-relaxation time (not necessarily
required that N = M = I).

To model the interfacial tension, we use the generalized
perturbation operator derived in Ref. [49], based on the idea
of continuum surface force (CSF) [81], and follow Ref. [46]
to obtain the interfacial tension as follows:

(�i)
(2) = A

2
|∇φ|

[
wi

(ci · ∇φ)

|∇φ|2 − Bi

]
. (30)

Equation (30) takes the correct form for an interfacial tension
force in the Navier-Stokes equations when the lattice-specific
variables Bi are chosen correctly. We have derived the follow-
ing Bi values for the D3Q27 lattice framework:

Bi =

⎧⎪⎪⎨
⎪⎪⎩

−(10/27)c2, |ci |2 = 0,

+(2/27)c2, |ci |2 = 1,

+(1/54)c2, |ci |2 = 2,

+(1/216)c2, |ci |2 = 3.

(31)

In this model, the interfacial tension can be given directly by

σ = 4
9Aτc4δt , (32)

where τ is the relaxation time and we have assumed that
A = Ar = Ab. The parameter A controls the interfacial tension
strength σ .

Although the perturbation operator (�k
i )(2) generates the in-

terfacial tension, it does not guarantee the two fluids are immis-
cible. To promote phase segregation and maintain the interface,
we apply the following recoloring operators [45,47,82]:

(
�r

i

)(3) = ρr

ρ
fi + β

ρrρb

ρ2
cos(θi)f

(e)
i (ρ,0), (33)

(
�b

i

)(3) = ρb

ρ
fi − β

ρrρb

ρ2
cos(θi)f

(e)
i (ρ,0), (34)

where θi is the is the angle between ∇φ and ci , defined by

cos(θi) = ci · ∇φ

|ci ||∇φ| . (35)

Here we set the parameter β to 0.7 to reproduce the correct
interfacial behavior with as narrow an interface as possible
[49,82,83].

For the current model, we can derive the following continu-
ity and Navier-Stokes equations via Chapman-Enskog analysis
[49,72,84]:

∂ρ

∂t
+ ∇ · (ρu) = 0, (36)

∂(ρu)

∂t
+ ∇ · (ρuu) = −∇p + ∇ · � + ∇ · S + F, (37)

where

� = ρν[∇u + (∇u)T] + ρ(ζ − 2ν/D)(∇ · u)I (38)

is the viscous stress tensor, with D = 3 in the three dimensions;
the shear viscosity ν is given by Eq. (16) and the bulk viscosity
ζ is given by Eq. (17). In Eq. (37), the ∇ · S term arises from
the perturbation operator given by Eq. (30) and, according to
the CSF idea, is equivalent to the interfacial force [49]. The
capillary stress tensor S is given by

S = −τδt

∑
i

∑
k

(
�k

i

)(2)
cici . (39)

The solutions of the present model with CMs [63] are
consistent with the Navier-Stokes equations to second order
in diffusive scaling [59,62,85,86] with the body [72] and
interfacial [49] forces.

To compute the gradient operator for an arbitrary functionχ ,
we adopt the following second-order isotropic central scheme
[49,87–89]:

∇χ (x,t) = 3

c2

∑
i

wiχ (x + ciδt ,t)ci

δt

. (40)

In this paper, we set δx and δt to 1, as is usual in LB simulations.
Although the above formulation focuses on two-component
systems, it should also be straightforward to implement this
model for systems with three or more components [90].

III. STATIC DROPLET TESTS

In this section, we carry out static droplet tests to evaluate
whether the interfacial tension predicted by Eq. (32) is correct
for various density ratios. We discretized the computational
domain as a 100 × 100 × 100 lattice and immersed a static
red droplet of radius R in a blue fluid. The initial density fields
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TABLE I. Static droplet tests for various density ratios, showing that the current CM-based CG model can predict the interfacial tension for
static cases with a maximum error of 0.40% and that introducing CMs into the single-phase collision operator can help to reduce the spurious
velocity.

Density ratio γ Theoretical (σth) Numerical (σLap) Error E (%) Maximum spurious velocity |umax|
1 3.5556 × 10−4 3.5697 × 10−4 0.40 1.22 × 10−4

10 3.5556 × 10−4 3.5683 × 10−4 0.36 4.23 × 10−5

100 3.5556 × 10−4 3.5669 × 10−4 0.32 4.67 × 10−5

1000 3.5556 × 10−4 3.5696 × 10−4 0.40 6.94 × 10−5

for each phase were as follows:

ρr (x,y,z) = ρ0
r

2

[
1 − tanh

(
2(r − R)

W

)]
, (41)

ρb(x,y,z) = ρ0
b

2

[
1 + tanh

(
2(r − R)

W

)]
, (42)

where W = 4 and r =
√

(x − xc)2 + (y − yc)2 + (z − zc)2.
Here (xc,yc,zc) is the center of the computational domain. We
set the kinematic viscosity ratio to be 1, with each phase’s
kinematic viscosity being 1/6, and set the parameters A

in Eq. (32) to 0.01 and the initial droplet radius R to 25.
We neglect gravity throughout the simulations and imposed
periodic boundary conditions on all sides of the computational
domain.

The three-dimensional Laplace equation is given by

�p = 2σ

R
, (43)

where �p is the pressure difference across the droplet inter-
face. We evaluated the pressure for each phase using Eq. (26)
and measured it after 100 000 iterations via the procedure used
by Leclaire et al. [47]. Table I summarizes the simulation
parameters and resulting errors E, which were calculated as
[49]

E = |σth − σLap|
σth

× 100, (44)

where σth and σLap are the interfacial tensions predicted by
Eq. (32) and measured using the Laplace equation [Eq. (43)],
respectively. Note that the droplets are always spherical at
equilibrium, indicating that numerical stability was maintained
for all density ratios. These tests confirm that the CM-based
CG model described in Sec. II can predict the interfacial
tension in static cases to within a maximum error of 0.40%. In
addition, we measured the maximum spurious velocity |umax|
in the domain at equilibrium, finding a maximum value of
1.22 × 10−4 (Table I). This value is smaller than that of our
MRT-based CG model [14] (|umax| = 5.8 × 10−3 for γ = 1.5).
These findings indicate that introducing the CMs into the
single-phase collision operator can help to reduce the spurious
velocity, contributing to enhance the numerical stability.

IV. JET BREAKUP SIMULATIONS

As mentioned in Sec. I, we will now simulate the following
two experiments using the method presented in Sec. II: UT
experiments [23] (see Sec. IV B) and FT experiments [26] (see
Sec. IV C)

In the following simulations, we neglect temperature
changes and do not take phase-change effects (e.g., vaporiza-
tion, condensation, or solidification) into account, meaning that
these are strictly hydrodynamic simulations.

A. Setup

Figure 3 illustrates the computational setup for our hydrody-
namic melt-jet breakup simulations. The boundary conditions
are the same as in Ref. [14]. Initially, the computational
domain consists entirely of blue particle distribution functions
f b

i with zero velocity. The boundaries consist of an inflow
boundary, wall boundaries, and an outflow boundary. There is
a circular inflow boundary at the top of the domain, within
(x − xc)2 + (y − yc)2 < (Dj0/2)2, where (xc,yc) represents
the center of the x-y plane. Here the velocity uj0 is uniform,
with corresponding equilibrium functions, and there are no
artificial disturbances at this boundary. Wall boundaries cover
the rest of the top and sides of the domain, with free-slip [67]
boundary conditions. At the outflow boundary, we imposed
a convective boundary condition [91], applying the following
convective equation to the distribution functions:

∂fi

∂t
+ Uc

∂fi

∂z
= 0, at z = N, (45)

where N is the outflow boundary node. Following Lou et al.
[91], we added two additional ghost nodes, N + 1 and N + 2.
The discretized form of the distribution functions can be given

FIG. 3. Boundary conditions for the melt-jet breakup simulations.
(a) The boundaries consist of an inflow boundary, wall boundaries,
and an outflow boundary. (b) There is a circular inflow boundary of
diameter Dj0 at the top, where the velocity uj0 is uniform. Free-slip
[67] and convective [91] boundary conditions are imposed at the wall
and outflow boundaries, respectively.
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TABLE II. Conditions used for the UT experiment simulations, reproduced from Ref. [23]. The dimensionless parameters calculated from
Eqs. (1)–(5) are also shown, including the density ratio γ , kinematic viscosity ratio η, Reynolds number Re, Weber number We, and Froude
number Fr.

Dj0 (mm) uj0 (m/s) γ (−) η (−) Re (−) We (−) Fr (−)

Case 1 7 2.10 8.3 0.54 6.1 × 104 2.3 × 102 64
Case 2 10 1.55 8.3 0.54 6.5 × 104 1.8 × 102 24
Case 3 15 1.73 8.3 0.54 1.1 × 105 3.3 × 102 20
Case 4 20 1.75 8.3 0.54 1.5 × 105 4.5 × 102 16

by the first-order implicit scheme

fi(x,y,N,t + δt ) = fi(x,y,N,t) + λfi(x,y,N − 1,t + δt )

1 + λ
,

(46)

where λ = Uc(t + δt )δt/δx . There are several possibilities for
the convective velocity Uc normal to the outflow boundary,
such as the local, average, or maximum velocity [92]. After
conducting some numerical tests, we determined that the local
velocity was most suitable for the current system, namely

Uc(x,y,N,t) = uz(x,y,N − 1,t), (47)

where uz(x,t) = uz(x,y,z,t) is the component of the fluid
velocity u in the z direction.

FIG. 4. Comparison of jet breakup behavior for Case 1 in
Table II (Dj0 = 7 mm) for the (a) UT experiment and (b) simulation.
The simulation parameters used were as follows (in lattice units):
σ = 6.6 × 10−3, νj = νr = 2.5 × 10−5, νc = νb = 4.5 × 10−5, g =
1.3 × 10−6, ρj = ρ0

r = 1, and ρc = ρ0
b = 0.12. The minimum spatial

resolution in this case was �x = 0.23 mm. The experimental results
clearly show trapped gas, which caused differences in the interface
shape compared with the simulation.

We represented the body force in Eq. (29) as

F(x,t) = (
ρ(x,t) − ρ0

b

)
g, (48)

with g = (0,0,g). This means that gravity only acts on the
dispersed phase [41].

B. UT experiments

In the UT experiments [23], an alloy called U-Alloy78
(Osaka Asahi Co., Ltd.), with a melting point of 78 ◦C, was
injected into a stagnant water pool under atmospheric pressure.
We considered four cases with different nozzle diameters
(Dj0 = 7, 10, 15, and 20 mm) from Ref. [23] (see Table II).
In these four cases, the melt and water temperatures were set
to 270 ◦C and 70 ◦C, respectively, and the physical properties

FIG. 5. Comparison of jet breakup behavior for Case 2 in Table II
(Dj0 = 10 mm) for the (a) UT experiment and (b) simulation.
The simulation parameters used were as follows (in lattice units):
σ = 8.4 × 10−3, νj = νr = 2.3 × 10−5, νc = νb = 4.3 × 10−5, g =
3.4 × 10−6, ρj = ρ0

r = 1, and ρc = ρ0
b = 0.12. The minimum spatial

resolution in this case was �x = 0.33 mm. Between t = 0.2 and
t = 0.25 s, the fragments in the simulation spread out significantly
less than in the experiments.
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FIG. 6. Comparison of jet breakup behavior for Case 3 in Table II
(Dj0 = 15 mm) for the (a) UT experiment and (b) simulation.
The simulation parameters used were as follows (in lattice units):
σ = 4.5 × 10−3, νj = νr = 1.4 × 10−5, νc = νb = 2.6 × 10−5, g =
4.1 × 10−6, ρj = ρ0

r = 1, and ρc = ρ0
b = 0.12. The minimum spatial

resolution in this case was �x = 0.5 mm. Although the results spread
out more in the lateral direction than the experimental results do
between t = 0.16 and 0.25 s, their final shape is close to that observed
experimentally.

were as follows: ρj = 8 183 kg/m3, νj = 0.24 mm2/s, σ =
1.104 N/m, ρc = 981 kg/m3, and νc = 0.443 mm2/s. Note
that they defined the jet velocity uj0 and inlet diameter Dj0

as the contact velocity at the water surface and the nozzle
diameter, respectively.

In this case, we discretized the computational domain into
an 8Dj0 × 8Dj0 × 40Dj0 lattice with Dj0 = 30, resulting in
a total of 240 × 240 × 1 200 = 69 120 000 grid points being
used in the simulation. We set the inlet velocity uj0 to 0.05,
the jet density ρj = ρ0

r to 1, and the coolant density ρc = ρ0
b

to 1/γ . We here mention the computational cost of the present
simulations. For the simulations with 6 912 000 grids, it takes
around 32 h for 20 000 iterations with our MPI-parallelized
code on an Intel Xeon based system (CPU: E5-2670v2 @2.5
GHz) with 600 cores. One way to reduce the cost may be using
the reduced velocity model, such as D3Q15 or D3Q19 lattice
models (see Refs. [63,70]).

Figures 4–7 show comparisons of the UT experiments’
results with those of our simulations for Cases 1–4. The
simulation parameters used are shown (in lattice units) in
the captions. All the simulations (Table II) were numerically
stable, even for very low kinematic viscosities of O(10−5).

FIG. 7. Comparison of jet breakup behavior for Case 4 in Table II
(Dj0 = 20 mm) for the (a) UT experiment and (b) simulation.
The simulation parameters used were as follows (in lattice units):
σ = 3.3 × 10−3, νj = νr = 1.0 × 10−5, νc = νb = 1.9 × 10−5, g =
5.3 × 10−6, ρj = ρ0

r = 1, and ρc = ρ0
b = 0.12. The minimum spatial

resolution in this case was �x = 0.67 mm. In the simulation, the
fragment groups were generated around the jet’s leading edge and the
side of the jet column, showing similar behavior to that observed in
the experiment.

In all cases, the simulation results reproduce the qualitative
interfacial behavior well, i.e., many fragments are generated
as the jets penetrate each other, both around the leading
edge and the side regions. However, there are still some
differences in interfacial behavior between the experiments
and the simulations, particularly for smaller Dj0 values (e.g.,
at t = 0.15 s in Fig. 4 and t = 0.25 s in Fig. 5). One reason
for this is the effect of gas entrapment: In the experiments,
some of the gas was trapped in the water pool when the jet
came in contact with the water surface, and the simulations
did not take this into account. In contrast, the simulated shape
of the interface agreed relatively well with the experiments
for larger Dj0 values (Figs. 6 and 7) because little gas
was trapped in these cases. For Case 4, the details of the
generated fragments and the flow field are shown in Fig. 8.
We can find that the liquid jet column has large velocity, while
the generated fragments has small velocity. In the snapshot
at upstream region [Fig. 8(b)], the fragments generate from
the unstable liquid-jet interface. Most of the fragments in this
region are stretched, which appear not to be spherical shapes.
The velocity magnitude of stretched fragments is large, while
that of spherical ones is small. In the snapshot at downstream
region [Fig. 8(c)], most of the fragments are spherical shapes
with low velocity magnitude.

To make a quantitative comparison, we compared the
evolution of the jet’s leading edge over time for each condition,
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uj

FIG. 8. (a) Snapshot of detailed interface structure for Case 4 in Table II (Dj0 = 20 mm). The color bar indicates the velocity magnitude
normalized by the inlet velocity. The liquid column has large velocity, while the generated fragments has small velocity. The regions surrounded
by gray dashed lines are shown below. (b) Magnified snapshot for upstream region. The fragments generate from the unstable liquid jet interface.
Most of the fragments in this region are stretched, which appear not to be spherical shapes. The velocity magnitude of stretched fragments are
large, while that of spherical ones are small. (c) Magnified snapshot for downstream region. Most of the fragments in this region are spherical
shapes with low velocity magnitude.

and the results are summarized in Fig. 9. This shows that the
simulation results agree well with the experimental data [23].
In all cases, the experimental observations are ahead of the
simulation early, but the simulation passes the experiment in
the later stages. This is due to differences in the inlet conditions
between the experiments and simulations: In the experiments, a
given mass of melt material is injected, so the injection velocity
uj0 may decrease over time (i.e., is not constant), whereas the
simulations assumed a constant injection velocity. This means
that the simulations match the experiments particularly well in
the early stages during jet penetration.

Based on the evolution of the jet’s leading edge over time,
we can estimate the jet breakup length L, i.e., the length of the
continuous liquid column emitted from the nozzle [3,4]. This is
one of the metrics that characterize jet breakup behavior. Here
we estimated it via the procedure used by previous melt-jet
experiments [23,93,94]. Table III compares the jet breakup

TABLE III. Comparison of the jet breakup lengths observed
in the experiments and simulations. The simulations predicted the
experimental breakup length L to within a maximum error of 31.4%.

Experiment [23] (mm) Simulation (mm) Error E (%)

Case 1 171 117 31.4
Case 2 264 337 27.8
Case 3 348 310 10.8
Case 4 440 382 13.0

z

t

z

t

FIG. 9. Evolution of the jet’s leading edge over time for (a) Case 1
(Dj0 = 7 mm), (b) Case 2 (Dj0 = 10 mm), (c) Case 3 (Dj0 = 15 mm),
and (d) Case 4 (Dj0 = 20 mm). In all cases, the experimental
observations are ahead of the simulation early, but the simulation
passes the experiment in the latter stages. Overall, the simulations
reproduce the experimental trends well.
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dd

dm dm

dm dm

FIG. 10. Fragment-diameter distribution histograms for (a)
Case 1 (Dj0 = 7 mm), (b) Case 2 (Dj0 = 10 mm), (c) Case 3
(Dj0 = 15 mm), and (d) Case 4 (Dj0 = 20 mm). Here dm denotes
the mass-median diameter. Larger inlet diameter Dj0 lead to large
fragments appearing more frequently.

lengths from Ref. [23] and with those in our simulations; the
error E here is defined as

E = |Lexp − Lsim|
Lexp

× 100, (49)

where Lexp and Lsim are the breakup lengths obtained via the
experiments and simulations, respectively. The simulation’s
accuracy improves as Dj0 increases, the error dropping from
31.4% for Case 1 to 10.8% for Case 3. Thus, these simulations
were able to predict the experimental jet breakup length L to
within a maximum error of 31.4%.

As another quantitative comparison, we also evaluated the
fragment diameters. The fragment diameter d was determined
by the following procedures:

(i) Binarize the order parameter φ into 1 for the jet region
and 0 for the others.

(ii) Find the connected components (with 1) and regard
them as fragments.

(iii) Calculate each fragment’s volume V .
(iv) Convert the volume V into the equivalent spherical

diameter by d ≡ (6V/π )1/3.
Figure 10 shows histograms of the measured diameters; we

have excluded the continuous liquid column from the nozzle
from the calculation. From the figure, we can find that the
smaller the nozzle diameter is, the higher the observation fre-
quency of the droplet is. Except for Dj0 = 7 mm [Fig. 10(a)],
all the distributions have a long tail to the right, similar to a
log-normal distribution.

Next, we compared the fragment diameters measured via
the simulations with the experimental data and the predictions
of hydrodynamic instability theories. We calculated the mass-
median diameter as a fragment size metric, due to the shape

uj

d m

FIG. 11. Comparison of the experimental and simulated fragment
sizes. Here the critical Weber number Wecr in Eq. (52) was assumed
to be 18. Both the experimental [23] and simulation results are in
accordance with the Kelvin-Helmholtz [Eq. (51)] and critical Weber
number [Eq. (52)] theories. However, the Rayleigh-Taylor instability
[Eq. (50)] does not correlate with either the numerical or experimental
results.

of the distribution (Fig. 10). On the theoretical side, the
first indicators we compared were the critical wavelengths of
classical Rayleigh-Taylor (RT) and Kelvin-Helmholtz (KH)
instabilities, λcr,RT and λcr,KH. Assuming a two-dimensional
stratified geometry, these are [95]

λcr,RT = 2π

[
σ

(ρj − ρc)g

] 1
2

, (50)

λcr,KH = 2π
ρj + ρc

ρjρc

σ

u2
j0

. (51)

Here we used the jet velocity uj0 as the scaling velocity,
assuming that the ambient fluid was stationary in Eq. (51).
The second theoretical indicator we compared was the critical
Weber number Wecr, from which we obtained the critical
droplet diameter d, as follows:

d = Wecr
σ

ρcu
2
j0

. (52)

The value of Wecr depends on the assumptions made, so several
values have been proposed, such as 12 (Pilch and Erdman [96])
and 18 (Matsuo et al. [25]). Previous studies [22,94,97] have
pointed out that these theoretical quantities are related to the
sizes of the fragments generated by jet breakup.

Figure 11 compares the simulated and experimental frag-
ment sizes. The aforementioned hydrodynamic instability
theories [Eqs. (50)–(52)] are also shown in the graph. The
error bars indicate the 95% confidence intervals for the median
diameter, which we used to express the widths of the droplet
size distributions even though they were not necessarily Gaus-
sian [13]. As in the experiment [23], the simulation results
are in agreement with both the KH [Eq. (51)] and critical
Weber number [Eq. (52)] theories. However, the RT instability
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TABLE IV. Comparison of the mass-median diameters observed
in the experiments and simulations. The simulations predicted the
experimental median diameter dm to within a maximum error of
41.9%.

Experiment [23] (mm) Simulation (mm) Error E (%)

Case 1 4.54 2.85 37.2
Case 2 5.10 2.96 41.9
Case 3 5.23 4.91 6.0
Case 4 5.40 4.61 14.4

[Eq. (50)] does not appear to be correlated with the numerical
or experimental results. As in Figs. 4–7, the jet’s interfaces
appear to be very unstable at the jet-side region both in the
experiments and simulations. Since there is velocity difference
between the jet and the ambient fluid, KH instability may
be one of the reasons of the onset of interfacial instability.
In addition, fragments generated at the tip of the jet (also at
the jet side in some cases) are considered to be fragmented
into smaller drops again due to the limitation of the critical
Weber number. These simulations thus support the breakup
mechanism proposed based on the experimental observations.
Table IV compares the experimental and simulated median
diameters; the error E is defined as

E = |dm,exp − dm,sim|
dm,exp

× 100, (53)

where dm,exp and dm,sim are the experimental and simulated
median diameters, respectively. The maximum error E was
41.9%, for Case 2.

C. FT experiments

The FT experiments were performed at the Joint Research
Centre in Ispra (Italy) by Magallon et al. [26]. Around 100-kg-
scale of UO2 melt was poured into a liquid-sodium pool. Two
experiments, called T1 and T2, were carried out, with release
diameters of 50 and 80 mm, respectively. In this paper, we focus
on the T1 experiment. A notable feature of the FT experiments
is that sodium in not transparent, so these simulations will
hopefully help us to better understand the phenomena involved.

For these simulations, we discretized the computational
domain into an 8Dj0 × 8Dj0 × 20Dj0 lattice. Table V summa-
rizes the simulation conditions, together with the correspond-
ing dimensionless quantities, given by Eqs. (1)–(5). It should

TABLE V. Conditions for the FT experiment simulations, repro-
duced from Ref. [26]. Here we focus on their T1 experiment. The
physical properties for the UO2 melt and liquid sodium were as
follows [98]:ρj = 8 663 kg/m3, νj = 0.46 mm2/s,σ = 0.465 N/m,
ρc = 856 kg/m3, and νc = 0.28 mm2/s. The dimensionless quan-
tities, calculated using Eqs. (1)–(5), are also shown, including the
density ratio γ , kinematic viscosity ratio η, Reynolds number Re,
Weber number We, and Froude number Fr.

Dj0 uj0

(mm) (m/s) γ (−) η (−) Re (−) We (−) Fr (−)

50 10 10.1 1.4 1.1 × 106 9.3 × 104 2.0 × 102

FIG. 12. Flow regime region covered by the FT experiment
together with the conditions our previous simulations (“o”) [14].
Our current simulations (“×”) involve substantially higher Re values
compared with the previous ones. The present simulation condition
is located extremely higher Re condition compared with our previous
simulation. The hatched gray region shows the reactor conditions
estimated in Ref. [13]; the FT experiment fell within this region. This
diagram predicts that the breakup will be in the atomization regime
(III). The conditions of UT simulations presented in Sec. IV B are
also shown in the same map for reference.

be noted that the Reynolds number in Table V (1.1 × 106) is
extremely high from a multiphase LB perspective. The liquid-
liquid–jet breakup flow-regime map [13] shown in Fig. 12
indicates we are in the atomization regime (Regime III) in this
case. To examine the effect of grid resolution on jet breakup be-
havior, we considered two cases with different grids: a coarse
case with Dj0 = 30, and hence a 240 × 240 × 600 lattice
(=34 560 000 grid points), and a fine case with Dj0 = 60, and
hence a 480 × 480 × 1 200 lattice (=276 480 000 grid points).
The resulting minimum spacings (in physical units) were�x =
1.67 mm and �x = 0.83 mm for the coarse and fine cases,
respectively. For reference, the conditions of UT simulations
presented in Sec. IV B are also shown in the same map.

Figure 13 shows the simulation results for the coarse case.
The left-hand side [Fig. 13(a)] shows the time evolution of the
jet interface in real units, while the right-hand side [Fig. 13(b)]
shows the calculated fragment size distribution at t = 0.125 s.
The simulation parameters are given (in lattice units) in the
caption. Even though the numerical conditions were somewhat
extreme, numerical stability was maintained throughout the
simulations These results show that using our CG LB model,
based on nonorthogonal CMs, allowed Re to be increased
significantly. In Fig. 13, most of the fragments are generated at
the side of the jet due to entrainment, and they appear to be tiny
compared with the inlet diameter Dj0. This is characteristic
of the atomization regime (Regime III) [13]. This simulation
therefore suggests that the jet state in the FT experiment should
be similar to the atomization regime and, in fact, the debris
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d

x 

FIG. 13. FT simulation results for the coarse (low-resolution) case, showing the (a) interfacial behavior and (b) fragment-diameter
distribution. The inlet diameter was set to Dj0 = 30 (in lattice units), and the computational domain was discretized into a 240 × 240 × 600
lattice (=34 560 000 grid points). The simulation parameters were as follows (in lattice units): σ = 1.6 × 10−5, νj = νr = 1.4 × 10−6,
νc = νb = 9.9 × 10−7, g = 4.1 × 10−7, ρj = ρ0

r = 1, and ρc = ρ0
b = 0.099. The minimum spatial resolution in this case was �x = 1.67 mm.

Although the computation is stable, some unphysical behavior can be seen: The fragments do not appear to be spherical, and the fragments
that should appear around the jet’s leading edge are not present. In addition, the fragment-diameter distribution appears to be log-normal but is
interrupted near the minimum resolution �x.

collected in the T1 experiment was very fine (around 30–
600 μm) [26]. That said, however, some unphysical points
remain in terms of the fragment shapes and numerical dissolu-
tion. The resulting fragments were not spherical but irregular,
and the jet’s leading edge faced numerical dissolution at the
later stage compared to that at the initial stages. In addition,

Fig. 13(b) shows that the fragment-diameter distribution ap-
pears to be log-normal, but this pattern is interrupted near the
minimum resolution, which we believe is due to the low spatial
resolution.

To investigate the effect of spatial resolution, we then carried
out a fine simulation, in which there were twice as many

x 

d

FIG. 14. FT simulation results for the fine (high-resolution) case, showing the (a) interfacial behavior and (b) fragment diameter distribution.
The inlet diameter was set to Dj0 = 60 (in lattice units), and the computational domain is discretized into a 480 × 480 × 1200 lattice
(=276 480 000 grid points). The simulation parameters used were as follows (in lattice units): σ = 3.2 × 10−5, νj = νr = 2.8 × 10−6,
νc = νb = 2.0 × 10−6, g = 2.0 × 10−7, ρj = ρ0

r = 1, and ρc = ρ0
b = 0.099. The minimum spatial resolution in this case was �x = 0.83

mm. Compared with the results in Fig. 13(a), the interfacial behavior seen in Fig. 14(a) is clearly different in terms of the fragment sizes and
shapes: The fragments are smaller and nearly spherical. In addition, the fragment-diameter distribution in Fig. 14(b) is smoother than that in
Fig. 13(b), and the higher-resolution domain has also improved the numerical dissolution.
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grid points in each direction. We used the same dimensionless
quantities (Table V) as in the coarse case. Figure 14 shows the
results of this simulation, with the simulation parameters again
shown (in lattice units) in the caption. In the Supplemental Ma-
terial, a movie [99] allows the reader to better understand the
corresponding jet-breakup process. Compared with Fig. 13(a),
the interfacial behavior seen in Fig. 14(a) is clearly different
in terms of the fragment sizes and shapes: They are smaller
and nearly spherical, and fragmentation now occurs around the
jet’s leading edge and side. The fragment-diameter distribution
in Fig. 14(b) is also smoother than that in Fig. 13(b), resem-
bling a log-normal distribution. Adopting a higher-resolution
computational domain also improved the numerical dissolution
issue, as more physically reasonable results were obtained. In
both cases (coarse and fine), the atomization regime appeared,
implying that the grid resolutions used in this paper were
sufficient to simulate the qualitative behavior of the entire jet.
However, we can also observe that finer grids will be required
to perform quantitative evaluations.

V. CONCLUSION

In this paper, we have extended the previous CG LB model
[14] by introducing nonorthogonal CMs in three dimensions
[63] within the GMRT framework [69,70]. Static droplet tests
showed that our model can predict the interfacial tension for
a range of density ratios (up to 1000) to within a maximum
error of 0.40% and also that it can greatly reduce the spurious
velocity. We also applied our model to hydrodynamic melt-
jet breakup simulations, targeting two different experiments,
namely the UT [23] and FT [26] experiments. Numerical
simulations under corresponding conditions, including those

equivalent to an actual reactor, demonstrated that our model
was more stable. In particular, our model allowed the Reynolds
number to be increased significantly, up to O(106). The
UT simulations predicted the jet breakup length and median
fragment-diameter to within maximum errors of 31.4% and
41.9%, respectively. The results of the FT simulation sug-
gested that the jet in the experiment was in the atomization
regime. To investigate the effect of grid resolution, the latter
simulation was carried out at two grid resolutions, with a
minimum spacing of �x = 0.83 mm. The results imply that
finer grid resolutions will be required to evaluate the behavior
accurately. Since the spatial resolution used was limited by our
computing environment, we plan to use a higher-performance
environment in our future work.
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APPENDIX: TRANSFORMATION AND SHIFT MATRICES

When the lattice velocity ci is defined by Eq. (8), the
transformation matrix M can be given by

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 −1 0 0 0 0 1 −1 1 −1 0 0 0 0 1 −1 1 −1 1 −1 1 −1 1 −1 −1 1
0 0 0 1 −1 0 0 1 −1 −1 1 1 −1 1 −1 0 0 0 0 1 −1 1 −1 −1 1 1 −1
0 0 0 0 0 1 −1 0 0 0 0 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 1 −1
0 0 0 0 0 0 0 1 1 −1 −1 0 0 0 0 0 0 0 0 1 1 1 1 −1 −1 −1 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1
0 0 0 0 0 0 0 0 0 0 0 1 1 −1 −1 0 0 0 0 1 1 −1 −1 −1 −1 1 1
0 1 1 −1 −1 0 0 0 0 0 0 −1 −1 −1 −1 1 1 1 1 0 0 0 0 0 0 0 0
0 1 1 0 0 −1 −1 1 1 1 1 −1 −1 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3
0 0 0 0 0 0 0 1 −1 1 −1 0 0 0 0 1 −1 1 −1 2 −2 2 −2 2 −2 −2 2
0 0 0 0 0 0 0 1 −1 −1 1 1 −1 1 −1 0 0 0 0 2 −2 2 −2 −2 2 2 −2
0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 1 1 −1 −1 1 2 −2 −2 2 2 −2 2 −2
0 0 0 0 0 0 0 1 −1 1 −1 0 0 0 0 −1 1 −1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 −1 −1 1 −1 1 −1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −1 1 1 −1 1 −1 −1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 1 −1 1 −1 1
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3
0 0 0 0 0 0 0 1 1 1 1 −1 −1 −1 −1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 −1 −1 −1 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 −1 −1 −1 −1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 −1 −1 1 1 −1 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 −1 −1 −1 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 1 −1 1 −1 −1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 1 −1 −1 1 1 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 1 1 −1 1 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(A1)
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Note that the above practical forms [Eqs. (A1)–(A4)] depend on the definition of the lattice
velocity ci .
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