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Classical density functional theory, unconstrained crystallization, and polymorphic behavior
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While in principle, classical density functional theory (cDFT) should be a powerful tool for the study of
crystallization, in practice this has not so far been the case. Progress has been hampered by technical problems
which have plagued the study of the crystalline systems using the most sophisticated fundamental measure theory
models. In this paper, the reasons for the difficulties are examined and it is proposed that the tensor functionals
currently favored are in fact numerically unstable. By reverting to an older, more heuristic model it is shown that
all of the technical difficulties are eliminated. Application to a Lennard-Jones fluid results in a demonstration
of power of cDFT to describe crystallization in a highly inhomogeneous system. First, we show that droplets
attached to a slightly hydrophobic wall crystallize spontaneously upon being quenched. The resulting crystallites
are clearly faceted structures and are predominantly HCP structures. In contrast, droplets in a fully periodic
calculational cell remain stable to lower temperatures and eventually show the same spontaneous localization of
the density into “atoms” but in an amorphous structure having many of the structural characteristics of a glass.
A small change of the protocol leads, at the same temperature, to the formation of crystals, this time with the
fcc structure typical of bulk Lennard-Jones solids. The fcc crystals have lower free energy than the amorphous
structures which in turn are more stable than the liquid droplets. It is demonstrated that as the temperature is
raised, the free energy differences between the structures decrease until the solid clusters become less stable than
the liquid droplets and spontaneously melt. The presence of energy barriers separating the various structures is
therefore clearly demonstrated.
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I. INTRODUCTION

Work on classical density functional theory (cDFT) for
classical systems [1,2] has long been driven by the promise of
having a tool that allows for the determination of free energies
and inhomogeneous density distributions for arbitrary systems
such as confined liquids and solids and glasses (confined or not)
and the energy barriers separating these states that would then
open the way to studying all aspects of nucleation: lifetimes of
metastable states, transition pathways, etc., without problem-
specific modeling bias. Indeed, these goals are so important
that they have driven much recent work in other fields as well.
A good example is the field of computer simulation where the
search for unbiased methods of studying free energy surfaces
and transitions between metastable states that do not rely on
the definition of collective variables to characterize such states
has been prominent (see, e.g., the contributions of Piaggi et al.
[3] and of Swinburn and Marinica [4] that present two recent
steps in this direction). In principle, cDFT evades the need for
collective variables since one works directly with the density
field. A well-known and closely related alternative to cDFT are
phase-field theories which are a more mesoscopic theoretical
approach that extends the Landau theory of phase transitions by
adding additional variables and terms to the gradient-expanded
free energy as suggested from DFT (for an overview, see, e.g.,
[5] where it is emphasized that phase-field theory can perhaps
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best be viewed as a mesoscopic, coarse-grained version of
cDFT). But the truly microscopic approach based on cDFT that
is capable of accurately describing atomic-scale correlations
in liquids as well as solids and amorphous systems has so far
remained elusive.

All forms density functional theory (classical and quantum,
zero, and finite temperature) are formally based on exact theo-
rems stating that for a fixed temperature and chemical potential
in the grand-canonical ensemble, there exists a functional �[n]
of the local number density n(r) (or partial densities for a
multicomponent system) having the property that its value is
uniquely minimized by the equilibrium density, i.e., if the equi-
librium density is neq(r) then �[n] � �[neq] with equality if
and only if n(r) = neq(r). Furthermore, when evaluated at this
minimizing density field, one has that �[neq] = �, the grand-
canonical free energy for the system. The functional � depends
also on any external fields present, but this dependence is
trivial, being given by �[n; φ] = F [n] + ∫

(φ(r) − μ)n(r)dr
where φ(r) is the external potential, μ is the chemical potential,
and F [n], called the Helmholtz free energy functional, is the
part of � independent of the field. In general, F [n] is not
known and so applications of cDFT depend on some sort of
approximation for it. These are often constructed based on the
rare systems for which exact results are possible such as the
ideal gas, hard particles in highly confined geometries, and hard
rods in one dimension. For this reason, the most highly refined
theories in three dimensions are for hard spheres and so it has
long been the case that a crucial test of model cDFT’s has been
their ability to describe inhomogeneous hard-sphere systems,
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including the solid phase and the liquid-solid transition; see,
e.g., [1,2].

The most accurate and widely accepted models today are
of a class collectively known as fundamental measure theory
(FMT) [6]. These arose out of the exact results of Percus and
coauthors for one-dimensional systems [7–9] as well as an
approximate description of hard-sphere statistical mechanics
called scaled particle theory [10]. Rosenfeld’s original FMT
gave a good description of fluids near a wall but failed
to stabilize (i.e., to have a minimum corresponding to) the
hard-sphere solid phase. After much work by several authors,
Tarazona suggested a modification of Rosenfeld’s theory that
succeeded in stabilizing the hard-sphere solid and that was
motivated by demanding that the functional reproduce certain
exact results [11]. A heuristic modification of Tarazona’s
theory was proposed by Roth et al. [12] that aimed to improve
the description of the dense liquid and this version of FMT,
known as the white bear (WBI) functional, was for some
time considered to be the best available model. For example,
it gives a very good quantitative prediction of the hard-
sphere freezing transition. A relatively recent modification,
the so-called white bear II (WBII) model, gives an even more
accurate representation of the hard-sphere solid including a
good description of the vacancy concentration [13]. These
models are not perfect—there are difficulties in extending them
to mixtures [14] and to metastable lattice structures [15]—but
their value as the best current description of the hard-sphere
solid cannot be questioned.

Originally, because of computational constraints, cDFT cal-
culations for the solid phase were performed using a restricted
model of the density field whereby it was represented as a sum
of Gaussians centered at the fixed lattice sites of a given Bravais
lattice. Only the widths of the Gaussians and sometimes their
amplitudes were varied so as to minimize �. This clearly is
in accord with an intuitive idea of what a solid should look
like and also recovers the homogeneous liquid in the limit that
the Gaussian widths become infinitely large. Non-Gaussian
corrections were also sometimes investigated but generally
seemed of minor importance. Only in the last 20 years have full-
scale, unconstrained cDFT calculations been performed using
either finite-element or pseudospectral methods. In particular,
Oettel et al. have pioneered the investigation of the hard-sphere
solid phase with finite-element methods and using the WB
models [16]. However, one surprising point noted in the course
of these applications has been a numerical delicacy of the
WB models. In order to obtain useful results and to avoid
numerical divergences, the authors report having to work at
constant number rather than constant chemical potential, as
is more natural in the cDFT framework and in some cases
being forced to carefully maintain strict cubic symmetry in the
course of the numerical optimizations as well as having to use
relatively fine numerical discretizations.

Because of these limitations, the results reported so far on
the use of cDFT to describe the solid phase has generally
been limited to homogeneous solids, to planar liquid-solid
interfaces, and to two-dimensional systems. For example, the
homogeneous hard-sphere crystal has long been used as a
test of cDFT models and, less often, the phase diagram of
homogeneous solids for systems with pair potentials have
been studied (see, e.g., the discussion in [2]). But in all cases,

these calculations are based on predefined lattice structures
and the creation “by hand” of localized density fields. One of
the few applications beyond homogeneous crystals that have
been studied in the literature by many authors is the planar
liquid-solid hard-sphere interface, e.g., by Curtin [17], Lutsko
[18], and Oettel and co-workers [19,20], but always starting
with the introduction of preselected crystalline structures by
hand. Similarly, cDFT has long been applied to study the free
energy of glasslike systems [21,22] but, once again, based on
predetermined structures (typically the pair-distribution func-
tion of Bennett [23]). In contrast, in our work, we demonstrate
the spontaneous formation of solid clusters having no relation
at all to the symmetries of the calculational cell or of the
applied boundary conditions and we derive a pair-distribution
function from our structures that is the equivalent of the
Bennett result. Only a few earlier works have demonstrated
any spontaneous localization of a density field (e.g., the work
on hard-sphere glasses of Dasgupta and Walls [24] and the
extension of this work by Chaudhuri et al. [25] which used
very simple models limited to homogeneous systems, and
that of Archer and co-workers [26,27] on two-dimensional
freezing of soft matter) and we are not aware of any such work
applied to highly inhomogeneous systems such as clusters
(as is necessary for applications like clustering in proteins,
nucleation, and crystallization) in three dimensions.

In this paper, we propose that the numerical difficulties of
the WB functionals are due to a pathology of the tensor models:
namely, that their approximation for �[n] is not bounded from
below and that in fact it has no minimum. In this interpretation,
the constraints mentioned above—cubic symmetry and con-
stant number—suppress this pathology to allow results to be
obtained from (artificial or actual) metastable stationary points
of the functional. But while the constant number constraint
is benign, the constraint of cubic symmetry clearly limits
applicability of the model to high symmetry systems and thus
restricts the overall utility of the model. In this paper, it is
shown that using a more heuristic, but demonstrably stable,
model eliminates all of these problems and leads to a much
more robust description of the solid. The resulting model
is not a definitive replacement for the tensor models—the
exact limits satisfied by the latter are undoubtedly crucial to
incorporate—but serves as a proof of concept of the feasibility
of a fully robust cDFT solid.

We go on to use this robust hard-sphere functional to
construct a functional for arbitrary pair potentials by treating
the attractive tail of the potential using the standard mean-
field approach. This model is used to perform calculations
for a Lennard-Jones potential. We first determine the entire
vapor-liquid-solid phase diagram. Next, we study the behavior
of small droplets in contact with a wall. As the temperature
is quenched, typical layering structure develops within the
droplets until at a certain point, the density field spontaneously
localizes into atoms arranged in a faceted, HCP crystallite. The
same protocol applied to the case of spherical droplets with
no walls present shows a similar spontaneous localization but
into an amorphous structure with many of the structural char-
acteristics found in a glass. An intermediate protocol where a
“wall” is present at the start of minimization but then removed
results in the formation of homogeneous crystals which are
again faceted but which have the fcc structure typical of bulk
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Lennard-Jones. We show that at intermediate temperatures, all
three structures—droplet, crystal, and amorphous cluster—are
metastable minima of the free energy functional thus implying
the presence of energy barriers separating them. These results
clearly show the utility and far-reaching potential of this model
for the study of nucleation, crystallization, polymorphism, and,
potentially, the glass transition.

Section II of this paper describes the technical problems
with current hard-sphere functionals and our proposal for
their origin and resolution. The result is a functional that is
more numerically robust than any of the previous models. We
implemented this functional in a new finite-element algorithm
(described in detail in an appendix) designed to rigorously
maintain the term-by-term positivity of the contributions to the
� functional and validate it by detailed comparison to previous
works on hard spheres. In Sec. III, the new hard-sphere func-
tional is used to construct a mean-field description of a system
interacting via arbitrary pair potentials and applied specifically
to a Lennard-Jones potential. Calculations are presented for
the phase diagram of the homogeneous system and of critical
clusters for the vapor-liquid and vapor-solid transitions. We
find that the solid clusters exhibit polymorphism depending on
the environment in which they form. Section IV summarizes
the results and discusses their implications for further improve-
ments of FMT hard-sphere models and for applications to the
study of clustering, nucleation, crystallization, and amorphous
systems.

II. FUNDAMENTAL MEASURE THEORY

A. FMT models

In this and the following sections, attention will be restricted
to single component systems in three dimensions composed
of hard spheres with diameter σ . The Helmholtz free energy
functional is written as F [n] = Fid[n] + Fex[n] with the ideal
gas contribution given by

Fid[n] = kBT

∫
{n(r) ln[n(r)σ 3] − n(r)}dr, (1)

where kB is Boltzmann constant and T is the temperature
and, for later use, we define β = 1/(kBT ). The second term
is the excess free energy and in fundamental measure theory
is modeled using Rosenfeld’s ansatz as

F [n] =
∫

�{nα(r;[n])}dr, (2)

where nα(r;[n]) stands for a family of linear functionals of the
density having the generic form

nα(r;[n]) =
∫

wα(|r − r′|)n(r′)dr′ (3)

and the weights wα(r) are in general short-ranged functions.
The standard density functionals are the local packing fraction,

η(r) =
∫



(σ

2
− |r − r′|

)
n(r′)dr′, (4)

which is just the density averaged over a spherical volume
corresponding to the hard-sphere diameter, and the scalar,
vector, and tensor surface averages

s(r) =
∫

δ
(σ

2
− |r − r′|

)
n(r′)dr′,

v(r) =
∫

r − r′

|r − r′|δ
(σ

2
− |r − r′|

)
n(r′)dr′, (5)

T(r) =
∫

r − r′

|r − r′|
r − r′

|r − r′|δ
(σ

2
− |r − r′|

)
n(r′)dr′,

or, equivalently,

s(r) =
∫

δ
(σ

2
− r ′

)
n(r − r′)dr′,

v(r) =
∫

r′

r ′ δ
(σ

2
− r ′

)
n(r − r′)dr′, (6)

T(r) =
∫

r′

r ′
r′

r ′ δ
(σ

2
− r ′

)
n(r − r′)dr′.

It is sometimes interesting to separate the latter into a sum of its
trace and traceless part as T(r) = 1

3 s(r)1 + U(r). Notice that
since the density itself is always greater than or equal to zero,
η, s, and T are also positive semidefinite. In a liquid, for which
the density is by definition uniform n(r) = n, these become

η(r) = π

6
nσ 3, s(r) = πnσ 2, v(r) = 0, T(r) = π

3
nσ 21.

(7)

Different FMT models are distinguished by the form of
�(nα). In Rosenfeld’s original proposal, this was

β�R(nα) = − 1

πσ 2
s ln(1 − η) + 1

2πσ

s2 − v2

(1 − η)

+ 1

24π

s3 − 3sv2

(1 − η)2
. (8)

As long as η < 1, the first term on the right is obviously positive
semidefinite. The second term shares this property as can be
seen from the simple inequality

0 �
∫

δ
(σ

2
− r ′

)
n(r − r′)[̂r′s(r) − v(r)]2dr

= [s2(r) − v2(r)]s(r) (9)

so s2(r) � v2(r). On the other hand, the third term is not. As a
somewhat realistic example that illustrates this, consider a hard
wall with normal in the z direction located at z = 0. Let the
density be zero for z < 0, “outside” the volume, and a constant
ρ0 for z > 0. The weighted densities are zero for z < −σ/2,
and in the domain −σ/2 < z < σ/2 they are (see Appendix A
for details)

η(z) = π

12
ρ0σ

3
[
1 −

( z

σ

)][
1 + 2

( z

σ

)]2
,

s(z) = π

2
ρ0σ

2
[
1 + 2

( z

σ

)]
,

v(z) = π

4
ρ0σ

2

[
1 − 4

( z

σ

)2
]
, (10)
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so that

s2(z) − v2(z) = 1

8
(πρ0σ

2)2

[
3

2
−

( z

σ

)][
1 + 2

( z

σ

)]3
,

s2(z) − 3v2(z) = 3

4
(πρ0σ

2)2
[
1 + 2

( z

σ

)]2
(11)

×
[

1

12
+

( z

σ

)
−

( z

σ

)2
]
.

Clearly, for values of z in the given domain, the first expres-
sion is indeed non-negative. However, the second is not: for
example, its value at z = −σ/4 is

s2 − 3v2 = − 11
256 (πρ0σ

2)2. (12)

There is no a priori physical reason that this numerator must
be non-negative and it is, in fact, the reason that Rosenfeld’s
model fails to stabilize the solid phase: in that application, the
numerator can be negative while the local value of η tends to
one near the lattice sites in the solid thus making the free energy
unbounded from below. Nevertheless, Rosenfeld’s model does
give an impressively good description of a hard-sphere fluid
near a wall and has the important property that it reproduces
the Percus-Yevik direct correlation function for hard spheres
via the exact relation [2]

c(r12; n) = − lim
n(r)→n

δ2βFex(n)

δn(r1)δn(r2)
(13)

and it follows that the functional also reproduces the Percus-
Yevik equation of state for the uniform fluid. Therefore, much
work went into trying to improve it. The best functionals
currently in use are based on Tarazona’s generalization, in
which the numerator of the third term is replaced by

s3 − 3sv2 → 9
2 [v · T · v − sv2 + s Tr(T 2) − Tr(T 3)]

= s3 − 3sv2+ 9
2 [v · U · v − Tr(U 3)]. (14)

The resulting functional �T(nα) is indeed able to stabilize the
solid phase, and like Rosenfeld’s original functional, Tara-
zona’s reproduces the Percus-Yevik direct-correlation function
and equation of state for the uniform fluid. It does not, however,
give very good results for liquid-solid coexistence of hard
spheres. This is because the Percus-Yevik approximation is
not very good at liquid densities and so the liquid equation
of state is poorly approximated. Roth et al. [12] suggested an
empirical modification of the form

β�WBI(nα)

= − 1

πσ 2
s ln(1 − η) + 1

2πσ

s2 − v2

(1 − η)

+ 3

16π

v · T · v − sv2 + s Tr(T 2) − Tr(T 3)

(1 − η)2
φWBI

2 (η). (15)

with

φWBI
2 = 1 − −2η + 3η2 − 2(1 − η)2 ln(1 − η)

3η2
. (16)

Whereas Tarazona’s functional was based on demanding that
FMT reproduce certain exact limits, this functional, known as
the “white bear” functional, was mostly an empirical modifica-
tion aimed at reproducing the more accurate Carnahan-Starling

equation of state for the liquid phase. With this modification,
the theory gives a quantitatively accurate description of the
hard-sphere solid and of liquid-solid coexistence. Since the
equation of state for the uniform fluid is no longer that
of the Percus-Yevik approximation, it is necessarily the case
that the implied direct correlation function is also different. In
fact, the WBI model gives

cWBI(r; n) = (
a

(WBI)
0 (η) + a

(WBI)
1 (η)r + a

(WBI)
3 (η)r3

)
×
(σ − r) (17)

with η = π
6 nσ 3 and

a
(WBI)
0 (η) = 1 + 4η + 3η2 − 2η3

(1 − η)4
,

a
(WBI)
1 (η) = −2 − η + 14η2 − 6η3

(1 − η)4
− 2

ln(1 − η)

η
, (18)

a
(WBI)
3 (η) = 3 − 10η + 15η2 − 5η3

(1 − η)4
+ 3

ln(1 − η)

η
.

For reference, we note that the Percus-Yevik (PY) direct
correlation function has the same form but with coefficients

a
(PY)
0 (η) = (1 + 2η)2

(1 − η)4
,

a
(PY)
1 (η) = −3

2
η

(2 + η)2

(1 − η)4
, (19)

a
(PY)
2 (η) = 1

2
η

(1 + 2η)2

(1 − η)4
.

The WBI direct correlation function is in fact more accurate
than the PY direct correlation function at high densities [12].

Finally, a similar functional was developed using a more
accurate equation of state for mixtures, the so-called “white
bear II” model [13],

β�WBII(nα)

= − 1

πσ 2
s ln(1 − η) + 1

2πσ

s2 − v2

(1 − η)
φWBII

1 (η)

+ 3

16π

v · T · v − sv2 + s Tr(T 2) − Tr(T 3)

(1 − η)2
φWBII

2 (η).

(20)

with

φWBII
1 (η) = 1 + 2η − η2 + 2(1 − η) ln(1 − η)

3η
,

φWBII
2 (η) = 1 − 2η − 3η2 + 2η3 + 2(1 − η)2 ln(1 − η)

3η2
.

(21)

It is worth pausing to note that it is easy to show that φWBII
2 (η) �

0 for 0 � η � 1. Begin by writing φWBII
2 (η) = (1−η)2

3η2 K(η) with

K(η) = η(−1+3η−η2)
(1−η)2 − ln (1 − η). Now K(0) = 0 and K ′(η) =

η

1−η
+ 2η

(1−η)3 � 0 so increases monotonically from 0 and is

therefore always non-negative and therefore so is φWBII
2 (η).

On the other hand, φWBII
2 (η) has the well-behaved value

φWBII
2 (1) = 2

3 so that it does not affect the positivity of the
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third term in the � and it introduces no additional singular
behavior in the high-density limit.

As noted above, it has been reported in the literature
that fully three-dimensional calculations for the hard-sphere
solid using the tensor theories must be carefully controlled
to preserve cubic symmetry or numerical instabilities are
encountered [16]. In our own calculations, we find that the
tensorial term does indeed lead to numerical instabilities. In
particular, in the solid phase with its highly localized density
peaks leading to local packing fractions η(r) very close to 1,
the instabilities are due to the numerator becoming negative
leading to an overwhelming large negative contribution to
the total free energy. The result is that the total free energy
tends to negative infinity and so no physical minimum exists.
The question then is whether this is a numerical problem,
which can be corrected, or a property of the functional itself.
We therefore first ask whether the numerator of the tensorial
functional is positive definite, like the other FMT contributions,
or not. If not, this opens the possibility that the numerical
instabilities are in fact of the same origin as in Rosenfeld’s
original model. (Note however, that in earlier calculations
using Gaussians to represent the solid density, Rosenfeld’s
model was unstable but the tensor models were not [11].)
Returning to the example of the discontinuous density at a
wall, one finds (see Appendix A for details) that the tensor
density in the domain −σ/2 < z < σ/2 is

Tij (z) = π

6
ρ0

(
1 − z

σ

)
(2z + σ )2δij

+ π

2
ρ0

z

σ
(4z2 − σ 2)δizδjz (22)

so that the tensor numerator [from the third term in Eqs. (15)
and (20)], N = v · T · v − sv2 + s Tr (T 2) − Tr (T 3), be-
comes

N (z) = (πρ0σ
2)3

144

[
1 + 2

( z

σ

)]5[
1 −

( z

σ

)]
×

[
1 + 6

( z

σ

)
− 12

( z

σ

)2
+ 8

( z

σ

)3
]
. (23)

All of the factors in this expression are positive for z in the
given domain except for the last one which becomes negative
for z < −0.13σ . Another example is one with zero density
outside the wall and a linearly increasing density, ρ0

z
a

, for
z > 0 with a > σ/2. Again, in the domain −σ/2 < z < σ/2
one finds that

N (z) = − 1

442 368
π3ρ3

0
σ 9

a3

[
1 + 2

( z

σ

)]8
[

3 − 176
( z

σ

)
+ 296

( z

σ

)2
− 192

( z

σ

)3
+ 48

( z

σ

)4
]
, (24)

which obviously assumes a small but negative value at z = 0.
In conclusion, these examples serve to show that the third
contribution to the tensor functional is not positive definite.
Having also tried, without success, to eliminate the numerical
instabilities by carefully controlling the numerics (i.e., by
modifying the algorithm so as to preserve the inequalities
between the weighted densities, by decreasing the lattice
spacing and checking for round-off errors in the calculations)
we conclude that the mix of empirical and analytic evidence

suggests that the functional is indeed unbounded from below
and that the numerical difficulties encountered when doing free
minimization of the solid are due to this fact.

B. A bounded alternative

A truly bounded (from below) alternative was in fact
proposed heuristically by Rosenfeld et al. prior to the in-
troduction of the tensor densities [28]. The idea was to
replace the numerator in Rosenfeld’s theory, s3 − 3sv2 =
s3(1 − 3v2/s2), by s3(1 − 3v2/s2 + 3(v2/s2)2 − (v2/s2)3) =
s3[1 − (v2/s2)]3 which, from Eq. (9), is now obviously non-
negative and which agrees with Rosenfeld’s theory when
(v2/s2) � 1—e.g., in the liquid limit. The latter property is
necessary if one wishes to still obtain the PY direct correlation
function for the liquid. There is another way to motivate this
approximation starting with the tensor theory [2]. One could
try to replace the traceless tensor U by a combination of the
scalar and vector quantities. Given that it is traceless and must
scale linearly with the density, any such approximation must

have the form U app = A(v2/s2) vivj −(1/3)δij v
2

s
where A(x) is an

arbitrary scalar function. Evaluating the tensor numerator with
this approximation gives

N = 2

9

(
s3 − 3sv2+3A(v2/s2)

v4

s
− A3(v2/s2)

v6

s3

)
. (25)

Interestingly, the simplest choice A(x) = 1 yields the same
positive-definite numerator. In the following, we refer to this
as the RSLT functional.

One can further “upgrade” to the Carnahan-Starling equa-
tion of state either by making the same approximation for
the tensor density in the WBI and WBII functionals or by
following the logic of their original derivations but starting
with the positive-definite ansatz for the numerator: both routes
yield the same result which is

β�(nα) = − 1

πσ 2
s ln(1 − η) + 1

2πσ

s2 − v2

(1 − η)
φ1(η)

+ 1

24π

s3[1 − (v2/s2)]3

(1 − η)2
φ2(η) (26)

with either φ1 and φ2 being the same as in the tensor case (i.e.,
the WBI and WBII functions). Furthermore, it turns out that
the direct correlation function for the fluid is then identical
to that obtained from the tensor theories. It therefore seems
that the differences between the two are subtle and probably
only important in highly inhomogeneous systems like a solid.
The upgraded RSLT model using the WBI functions will be
the main alternative discussed in the remainder of this paper
and will be referred to as the modified RSLT or mRSLT model.

C. Calculations: Canonical vs grand-canonical interpretations

The goal is to minimize �[n; φ] at fixed chemical potential
and external field resulting in a density n∗(r) satisfying

δF [n]

δn(r)

∣∣∣∣
n∗(r)

= μ − φ(r). (27)
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An alternative is to minimize F [n] at constant total particle
number, N∗, by constructing a Lagrangian

Lλ[n] = F [n] +
∫

φ(r)n(r)dr − λ

(∫
n(r) − N∗

)
(28)

and solving the equations

0 = δLλ[n]

δn(r)
= δF [n]

δn(r)
+ φ(r) − λ,

0 = ∂Lλ[n]

∂λ
=

∫
n(r) − N∗. (29)

Operationally, one could guess a value of λ and solve the first
equation for the density, call it nλ(r), and then vary λ until
finding a value that satisfies the second equation (call it λN∗ ).
The resulting density will satisfy

δF [n]

δn(r) nλN∗
= λN∗ − φ(r) (30)

and comparison to Eq. (29) shows that this is precisely the
local density for a system at chemical potential μ = λN∗ . There
are two ways to interpret this result. Rigorously, this means
that the local density so obtained is the grand-canonical local
density for the system at this chemical potential. The fact
that, as a matter of algorithmic convenience, it was obtained
by minimizations at constant particle number is irrelevant.
However, it is known [29] that for sufficiently large systems,
the ensembles become equivalent so that one can, heuristically,
take this local density to be that of a canonical system with
fixed particle number N∗. Practically, speaking there are in
fact methods to evaluate the corrections involved in this
identification but in practice they seem to be negligible for
systems of 100 or more particles [30–32].

Note that the fixed-N procedure can be simplified by
eliminating the Lagrange multiplier. Multiplying the first of
Eqs. (29) by the density and integrating, one sees that this
particular density also satisfies

0 =
∫ (

δF
[
nλN∗

]
δnλN∗ (r)

+ φ(r)

)
nλN∗ (r)dr − λN∗N∗ (31)

so that one can write

0 = δF
[
nλN∗

]
δnλN∗ (r)

+ φ(r)

− 1

N∗

∫ (
δF

[
nλN∗

]
δnλN∗ (r)

+ φ(r)

)
nλN∗ (r)dr. (32)

This means that nλN∗ (r) can also be characterized as the
solution to

0 = δF [n]

δn(r)
+ φ(r) − 1

N∗

∫ (
δF [n]

δn(r)
+ φ(r)

)
n(r)dr, (33)

which gives a more practical route that does not involve a
Lagrange multiplier and it is this equation that we actually
solve in numerical calculations (when working at fixed particle
number) via the implementation discussed in Appendix B. So,
in this case, one first fixes the lattice parameter and the number
of particles and determines the minimizing density, nλN∗ ,a[r],
giving �(N∗,a) = �[nλN∗ ,a]. This then is minimized with

respect to either one of the arguments, say N∗, to get the
minimizing value, N∗∗(a), and �(a) = �(N∗∗(a),a). At the
same time, one gets μ(a) = λN∗∗(a) which gives the mapping
between lattice parameter and chemical potential.

D. Validation for the homogeneous hard-sphere crystal

In order to validate our algorithm and to make contact with
previous calculations, we have performed an extensive study of
the homogeneous hard-sphere fcc crystalline phase for which
there is no external field and the crystal extends indefinitely in
all directions. Because there are no long-ranged interactions,
it is sufficient to restrict computations to a single unit cell with
periodic boundary conditions. (In fact, for simplicity, we use
a cubic cell rather than the minimal, noncubic cell for this
lattice.) The minimal cubic unit cell has sides of length a and
contains four lattice points so that the density of lattice points is
nfcc = 4/a3. If every lattice site were occupied, this would also
be the physical density of the crystal but, in fact, one expects a
certain fraction of unoccupied lattice sites (i.e., vacancies) so
that the actual average density will be n < nfcc. It is related to
the local density via

n = 1

a3

∫
cell

n(r)dr, (34)

where the notation indicates that the integral is restricted
to a single unit cell. The number of vacancies in the unit
cell will then be nfcca

3 − na3 = 4 − na3 and the vacancy
concentration (ratio of number of vacancies to the number of
lattice sites) is cvac = 1 − n/nfcc. In principle, one should allow
the lattice parameter to vary during the minimization. Instead,
this minimization is divided into two steps: first, a minimization
at fixed values of the lattice parameter to get n∗

a(r) and then a
second minimization with of �[n∗

a; φ] with respect to a.
Our implementation of these calculations follows in broad

outline previous work: the density field is discretized on a
cubic computational lattice and the weighted densities cal-
culated using fast Fourier transforms. The main difference
in our implementation is that, rather than using the analytic
Fourier transform of the weighting functions as has been done
previously, we use a scheme designed to guarantee that the
various analytic inequalities between the weighted densities
discussed above are rigorously preserved. This may result,
for technical reasons discussed in Appendix C, in somewhat
slower convergence (i.e., the need for a finer lattice spacing)
but ensures that no artifacts arise due to the FFT technique. A
detailed description of the algorithm is given in Appendix C.

Because the results of the calculations are rather technical,
we have collected most of the results in Appendix D and
only briefly discuss the main results here. First, following
Ref. [16] we have minimized at fixed N and fixed lattice
parameter with subsequent minimization with respect to the
lattice parameter and examined convergence of the algorithm
as the lattice parameter is refined. For sufficiently fine lattice
spacing (up to 256 points per hard-sphere lattice parameter)
we reproduce previous results for the WB models to several
significant figures thus validating the implementation. Doing
this for many different densities allows us to determine the
phase coexistence with the liquid phase. For the WB models,
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we are again in close numerical agreement with previous
calculations.

Concerning the numerical stability of the algorithm, we
found, as reported previously, that numerical instabilities arose
when we tried to minimize the WB functionals at constant
chemical potential. On the other hand, at fixed particle number,
we did not find it necessary to maintain strict cubic symmetry
during the minimizations and we were able to use much
coarser calculational lattices than were possible with previous
implementations [33]. We speculate this may be due to the
careful treatment of the FFT calculations and the preservation
of the analytic inequalities.

We then extend the calculations to the proposed mRSLT
model. In this case, we found that—as expected—we were able
to minimize at fixed chemical potential with no instabilities as
in the WB models. Also as expected, due to the more heuristic
nature of the model, the results for liquid-solid coexistence
were, while reasonable, somewhat poorer. The liquid (solid)
packing fractions at coexistence from simulation [34] are
0.492 (0.545), the WBII model gives 0.495 (0.545), and the
mRSLT yields 0.513 (0.546). While an error of some 3% is
not excessive, there is nevertheless room for improvement.

A final test was to determine the vacancy concentration
as a function of the average density. Oettel et al. [16] report
this as being a rather sensitive test of the models and is one
for which the WBII functional is clearly superior to the WBI
functional (indeed, WBI does not produce physical results for
this quantity because minimization with respect to the lattice
spacing is not possible). The mRSLT functional does produce
physically reasonable results that compare well with WBII as
well as simulation.

III. APPLICATION TO SIMPLE LIQUIDS

A. cDFT functional

To further illustrate the capabilities of a model that is free
of divergences we consider a simple fluid. The development
below is generic and can be adapted to any pair potential but
for the sake of calculations, we have used a Lennard-Jones
potential,

vLJ(r) = 4ε

[(σ

r

)12
−

(σ

r

)6
]
, (35)

which is cutoff at a separation rc and shifted to give the
interaction potential

v(r) =
{
vLJ(r) − vLJ(rc), r < rc

0, r � rc
. (36)

All results reported here were obtained using a cutoff of rc =
3σ . The potential is separated into a short-ranged repulsive part
v0(r) and a long-ranged attractive part w(r), using the WCA
prescription [35,36] according to which v(r) = v0(r) + w(r)
with

w(r) =
{
v(r0), r < r0

v(r), r � r0
, (37)

where r0 = 21/6σ is the minimum of the potential. An
effective hard-sphere diameter d is computed using the

Barker-Henderson prescription [36,37],

dT =
∫ r0

0
(1 − e−βv0(r))dr (38)

and it should be noted that the effective hard-sphere diameter
depends on temperature but not on the density. The model DFT
Helmholtz functional is then constructed as

F [n] = FHS[n; dT ] + 1

2

∫∫
n(r1)n(r2)w(r12)dr1dr2. (39)

For a uniform fluid, n(r) = n, all of the Helmholtz free energy
assumes a kind of generalized van der Waals form,

1

V
F (n) ≡ f (n) = fHS(n; dT ) + 1

2
an2 (40)

with

a =
∫

w(r)dr. (41)

To implement this functional, only two changes from the
hard-sphere calculations are necessary. The first is that one
must include the extra term coming from the attractive part
of the potential. This is efficiently evaluated using standard
FFT techniques. The second is that care must be taken with
the periodic boundaries. Whereas in the hard-sphere case, it
sufficed to take the calculational cell to be the cubic unit cell
(and in fact one can invoke cubic symmetry to reduce this
to an octant of the cubic cell, although we did not do this)
the attractive tail will in general have a range greater than the
lattice spacing and so a larger calculational cell must be used.
(Again, other, more efficient but more complicated possibilities
exploiting cubic symmetry and not using the minimum image
prescription are possible but not pursued here.)

B. Phase diagram

As a first application, the model was used to calculate the
vapor-liquid-fcc phase diagram for a homogeneous system.
Since the typical lattice spacing in an fcc Lennard-Jones solid
is on the order of σ , we used a calculational cell consisting
of 4 × 4 × 4 primitive cubic unit cells with a discretization
lattice spacing of � = 0.05σ . The vapor-liquid binodal is
easily determined from the model. Indeed, for a uniform system
at density n̄, one has that

1

V
lim

n(r)→n̄
�[n] ≡ 1

V
�(n̄) = [n̄ ln(n̄σ 3) − n̄]

+ f CS
ex (n̄) + 1

2
an̄2 − n̄μ, (42)

where the Carnahan-Starling excess free energy per unit
volume is

f CS
ex (n̄) = n̄

η̄(4 − 3η̄)

(1 − η̄)2
(43)

with η̄ = π
6 n̄d3

T . The Euler-Lagrange equation reduces to

0 = ∂�(n̄)

∂n̄
⇒ ln(n̄σ 3) + ∂

∂n̄
f CS

ex (n̄) + an̄ = μ, (44)

which is the usual thermodynamic relation between the chem-
ical potential and the free energy. Coexistence is therefore
determined by finding the (two) densities n̄1 and n̄2 satisfying
Eq. (44) and, since the fundamental theorem of DFT says the
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FIG. 1. Phase diagram for the Lennard-Jones potential cutoff at
rc = 3σ as determined from the model DFT functional minimized at
constant chemical potential. The dashed lines are for visual purposes
only and indicate the critical point and the triple point.

equilibrium state minimizes �[n], the two states must also
satisfy �(n̄1) = �(n̄2). These two relations—equivalent to the
usual thermodynamic criteria of equality of chemical potential
and pressure—uniquely determine the coexisting states.

For the solid, the calculation is conceptually the same. First,
a chemical potential μ is chosen. Then, �[n] is minimized for
unit cells of size k� with typical values being 127 � k � 135.
Interpolation of the resulting values of � are used to determine
a minimum and, hence, the cell size (i.e., lattice density)
and grand-canonical free energy for the solid phase for the
given chemical potential. The same interpolation also yields
the average density of the solid phase. From Eq. (44), the
density of the liquid (vapor) for the chemical potential is also
determined. Finally, the procedure is repeated for different
chemical potentials until equality of the grand-canonical free
energies is found, thus giving the coexisting densities for the
solid and liquid (vapor) phases. The resulting phase diagram is
shown in Fig. 1 where the reduced temperature is T ∗ ≡ kBT /ε.
The results are typical of previous calculations and serve as a
baseline for the application of this model to crystallization.

C. Heterogeneous crystallization

As an example of the capabilities of a well-behaved DFT
functional we consider the rapid quench of a small Lennard-
Jones droplet attached to a wall. The calculational cell is
rectilinear with dimensions 20σ × 20σ × 10σ with periodic
boundaries in the first two (x,y) directions. In the z direction,
the cell is bounded by impenetrable walls. The lower wall at
z = 0 is hard meaning that the particles do not interact with it
except that they cannot pass through it: it can be represented
as an external potential which is zero for z > 0 and infinite
for z < 0. The interaction with the upper wall is also taken to
be infinite for z > zwall and for z < zwall it is the Steele 4-9

potential [38,39], which is a continuum potential intended to
mimic the average potential generated by the (100) surface of
an fcc crystal,

vwall(r) = 0.4εwall

(
σwall

zwall − z

)10

−
(

σwall

zwall − z

)4

−
√

2

3
∗

(
σwall

zwall − z + 0.61σwall/2qrt2

)3

, (45)

where the position of the wall is zwall = 9σ . (The wall is
not at the limit of the cell, 10σ , for technical reasons since
the FMT weighted densities are nonzero for one hard-sphere
radius outside the calculational domain.) The calculations were
performed using εwall = 0.15ε, σwall = σ and a discretization
of � = σ/7 which for a typical solid density of nσ 3 = 0.9
corresponds to approximately 11.5 lattice points per unit cell.
The initial density was taken as

n(r) = nvap + (nliq − nvap)e−βvwall(r)
[R − (r0 − r)] (46)

with nvap,nliq being the coexistence densities of liquid and
vapor at the given temperature, R is the radius of the (spherical)
droplet, and r0 = (10σ,10σ,zwall) is its center. This is therefore
a crude model of a spherical drop resting on the upper wall.

The initial temperature was taken to be kBT = 0.8ε and
the cDFT functional minimized at constant particle number.
Because of the rather large system sizes needed for the
calculations, to ensure that there is no direct self-interaction
of the droplets, we have used a rather coarse lattice with a
lattice spacing of σ/7 in this and all subsequent calculations
described below. (There are approximately 297 particles in
the system with almost all concentrated in the droplet.) As
discussed above, the resulting configurations can be viewed in
two different ways. On the one hand, the droplets are expected
to approximate the density distribution for a canonical system,
with the approximation generally becoming more accurate as
the number of particles in the system increases. On the other
hand, the result of minimizing at constant particle number
has the exact interpretation of being the stationary density
distribution for the grand-canonical system with a chemical
potential determined by the calculation. In the present case,
it corresponds to an unstable stationary point of the grand-
canonical functional and, so physically, to the grand-canonical
critical droplet.

Once this configuration is relaxed, the temperature is low-
ered and the system is again relaxed, etc. Since there are no
fluctuations in the system (except those induced by numerical
noise and the discreteness of the calculational lattice), this
corresponds physically to a rapid quench. Figure 2 shows the
evolution of the density as the temperature is lowered: i.e.,
according to the two interpretations it is either the evolution
of a quenched system in the canonical ensemble or a sequence
of critical droplets in the grand-canonical ensemble. As the
temperature is lowered, one sees the development of more and
more structure within the droplet corresponding to layering of
the dense fluid near the wall until, at the lowest temperature, the
density spontaneously localizes and the system crystallizes into
a hexagonal close-packed (hcp) structure. This crystallization
is completely unconstrained and untemplated: it is not induced
artificially and the resulting structure is distinct from the cubic
calculational lattice. It is also surprising since the minimum
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FIG. 2. Cooling droplet resulting in crystallization. The images show the density (as a contour plot) with both the intensity and the opacity
of the color increasing from very light-blue and completely transparent at zero density to dark blue and 70% opaque at nσ 3 = 1.5 for the liquid
droplets. For the crystal, the maximum density reaches 216 and the contours used in the plot are equally spaced at 0.8 � nσ 3 � 10. The top
three images from left to right are at reduced temperatures of T ∗ = 0.8, 0.7, and 0.6 and T ∗ = 0.5 for the bottom left image. The last two
images are different views of the same crystal that spontaneously formed at T ∗ = 0.45.

energy state for bulk Lennard-Jones is an fcc crystal. However,
the difference in energy between hcp and fcc is small and in
fact it is known from simulations that small droplets attached
to walls will crystallize into hcp structures [40]. The crystal
can be reheated, with minimization of the energy functional at
each temperature, and the free energy difference between the
droplet and the crystallite determined until at kBT = 0.55ε the
crystal spontaneously melts. For the range 0.45 < kBT/ε <

0.55 both the droplet and the crystallite are metastable thus
establishing that there is a free energy barrier separating them:
the free energy functional therefore gives a mean-field model
of crystallization. At kBT /ε = 0.50 the total free energy of
the system with crystallite is about 7kBT smaller than that
with the droplet. Further properties of this model, including
a demonstration of the spontaneous formation of the bulk fcc
phase, will be discussed in a later publication.

D. Homogeneous solidification: Polymorphic behavior

Encouraged by this, we turned to the same problem in the
absence of a wall with the aim of studying homogeneous
crystals. We began with a free-floating droplet that was
equilibrated at a temperature above the triple point. We then
lowered the temperature and equilibrated resulting in the series
of droplets shown in Fig. 3. At a sufficiently low tempera-
ture, we again saw the spontaneous formation of a localized
structure. To characterize it, localized peaks obtained in DFT
are identified as particle coordinates using particle tracking
methods that are commonly employed for confocal microscopy
analysis [41] (see Fig. 4). From there, we deduced the pair
distribution function which exhibits a split of the second peak
[see Fig. 5(a)]. Furthermore, topological cluster classification

analysis as developed by Mallins et al. [42] is carried out in
order to identify local structures. The amorphous cluster is
characterized by an increasing emergence of icosahedral order
as the temperature is decreased. Icosahedral order has been
conjectured as a signature of the glass transition. In this picture,
geometrical frustrations are induced because icosahedrons are
not able to tessellate three-dimensional (3D) space which then
leads to the dynamical arrest observed in glass transition [43].
While both experimental [44,45] and numerical evidences
[46–49] have been found for such phenomenon, our results
demonstrate that the icosahedral rich structure is not only
accompanying or causing the dynamical arrests but it is a
genuine minimum in the free energy landscape and should be
therefore considered as a thermodynamically stable state. The
conclusion that the system has found a free energy minimum
corresponding to a glassy structure is plausible.

In order to check that this was not a pathology of the model,
we performed the same calculation but at the beginning of
the minimization at the lowest temperature, we introduced
a simple planar field at the center of the droplet which was
intended to break the spherical symmetry. [The specific field
was arbitrarily chosen to be φ(r)/ε = −0.1e|z|/10 where the
droplet is centered at x = y = z = 0.] This field was removed
after a few thousand minimization steps and the minimization
was allowed to continue as before. In this case, we obtained
a nearly perfect fcc crystal with a free energy some 222kBT

below that of the amorphous cluster. The crystal is shown in
Fig. 6 where its faceting into (111) and (100) planes is evident.
As illustrated in Fig. 5, both hcp and fcc clusters are found
within the crystal with far higher populations than for the
amorphous cluster.

012604-9



JAMES F. LUTSKO AND JULIEN LAM PHYSICAL REVIEW E 98, 012604 (2018)

FIG. 3. The local density of droplets at temperatures kBT /ε = 0.8, 0.7, 0.6 from left to right in the first row and 0.5, 0.4, 0.3 in the second
row: the last figure shows the amorphous cluster that forms spontaneously. For the droplets, the figure displays a planar slice through the center
of the droplet with the same color scale, ranging from zero to density ρσ 3 = 1.5. For the amorphous cluster, the representation is a contour plot
with the same characteristics as in Fig. 2 and with the actual maximum density being nσ 3 = 148.

From these calculations, we already know that the crys-
talline and amorphous clusters are both minima of the free
energy functional and so there must necessarily be a free energy
barrier between them. To investigate their stability, we then
increased the temperature and minimized starting in each case
with the previous (lower temperature) structure. The resulting
free energies are shown in Fig. 7. The amorphous structure
spontaneously melts at kBT /ε = 0.45 indicating that the en-
ergy barrier separating it from the liquid state vanishes. The
solid is stable up to kBT /ε = 0.45 at which point it also melts.

We note that it is widely known that glasses are not
normally seen in simulations of one-component Lennard-Jones
systems and so our amorphous clusters might seem suspicious.
However, we have verified that using the particle coordinates
as input to a (constant-N , canonical) molecular dynamics
simulation, the clusters immediately crystallize so that the
energy barrier between the amorphous and crystalline states

FIG. 4. (a) Amorphous structure obtained with DFT shown as a
contour plot as in Fig. 3. (b) Corresponding coordinates identified
using particle tracking. Blue particles are identified as defective
icosahedron and others (red) are deliberately shown smaller.

must be very small compared to the thermal energy, thus
explaining why they are not normally observed. We also note
that our crystalline cluster does not have the geometry of the
minimum energy cluster found by Xing et al. [50] and reported
in the Cambridge Cluster Database [51]. To investigate this,
we have again used our structures as the starting state for the
minimization of the Hamiltonian in a particle-based algorithm
(using facilities in the LAMMPS package [52]) and we have
performed the same calculation using the database structure
(but using our cut and shifted Lennard-Jones potential). We find
that the energy per particle of the amorphous cluster converges
to −6.20ε, our fcc crystal gives −6.48ε, and the database
structure gives −6.50ε so that while the latter is, technically,
a more stable state, the energy difference is very small.
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FIG. 5. (a) Pair distribution function of amorphous structures as
obtained at different temperatures. (b) Population of face-centered-
cubic, hexagonal compact, defective icosahedron, and icosahedron
clusters.
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FIG. 6. A comparison of the amorphous (left) and crystalline
(right) clusters obtained in the homogeneous case, shown as contour
plots. Note the faceting of the latter structure.

Finally, it is important to be clear that our calculations do
not, per se, involve nucleation because there are no thermal
fluctuations: we quench to sufficiently low temperatures that
the barrier to crystallization either vanishes or becomes so
small that numerical noise is enough to drive the transition. But
such a model can obviously be used together with techniques
for exploring free energy surfaces to give a complete picture
of crystallization. It should be emphasized that DFT by itself
is not sufficient to resolve all issues associated with the
nucleation of stable solid clusters. This is because nucleation
is a fundamentally nonequilibrium process and, as has been
recently emphasized [53,54], requires a dynamical description
in addition to the free energies provided by DFT. However,
it has recently become clear how to combine DFT and
dynamics—e.g., fluctuating hydrodynamics—so as to describe
first order phase transitions [54]. The relation between this
dynamical description and the more coarse-grained approach
of classical nucleation theory has been established as has the
development of reduced description based on coarse-grained
order parameters [54,55]. With the addition of free energy
functionals capable of describing crystalline phases without

constraint, the path is now open to attach theoretical questions
that have until now been inaccessible.

IV. CONCLUSIONS

In this paper, the limits of current FMT models for hard-
sphere crystallization have been re-examined. It was demon-
strated that the tensor theories are not positive definite and,
based on the numerical evidence, it was suggested that they are
indeed not bounded from below thus opening the possibility
that the hard-sphere crystalline states they predict are in fact
metastable states. The true minima, in this case, consist of
some sort of highly localized densities with local packing
fractions approaching unity that give an unbounded negative
total free energy becoming lower as the density peaks become
more localized. In other words, the functionals are unbounded
from below. As such, they can only be viewed as very limited
realizations of the “true” DFT functional which should give
the (known) stable crystalline state as an absolute minimum
of the functional. The correct behavior has been illustrated by
using an older, positive-definite, and therefore bounded, excess
free-energy functional that is adapted to give the Carnahan-
Starling equation of state. This functional is certainly not
the final word in hard-sphere functionals as it lacks several
advantages of the tenor theories: in particular, the description
of hard-sphere freezing is not as quantitatively accurate as that
of the tensor theories and (probably related) it lacks consistency
with some known exact results that the tensor theories respect
[11]. Nevertheless, the virtues of being demonstrably bounded
are also very clear: namely, the ability to minimize with no
special regard to maintaining cubic symmetry and even the
possibility to minimize at constant chemical potential with no
additional effort.

Ours is not the first work to encounter problems with the
tensorial functionals. We note that extensions to nonspherical
hard particles have also proven difficult as discussed, e.g., by
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FIG. 7. The (canonical, Helmholtz) free energy of the liquid, amorphous, and crystalline clusters as functions of the temperature. For the
amorphous and crystalline clusters, the curves were obtained by starting with the lowest temperature structures, increasing the temperature, and
minimizing. The inset shows the free energy of the amorphous and solid clusters relative to the liquid droplet.
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Wittman et al. [56] who observed that some of these problems
are solved by using another, older, functional of Tarazona
and Rosenfeld [57] which is also demonstrably bounded from
below and which could therefore be an interesting alternative
to the RSLT functional used here. In any case, none of this
definitively shows that the (newer) tensorial functionals are
unphysical. The present work only shows that (a) the numerator
of the functional is not positive definite and (b) that numerical
evidence suggests it could be unbounded from below. The
second point is supported by the fact that simply replacing the
functional by the bounded mRSLT functional with no other
change to the calculations gives numerical stability. While our
algorithmic implementation is nonstandard and could also be
responsible for some of the improved stability, we did find the
same instabilities with our algorithm as with older ones.

The mRSLT functional was then used as the basis for
a mean-field treatment of a Lennard-Jones system. The full
vapor-liquid-solid phase diagram was computed including full
minimization of the density. Then, as an illustration of the
applications that become possible with a stable functional, the
crystallization of a droplet on an attractive wall was illustrated.
The density of the droplet was calculated (at constant particle
number) for lower and lower temperatures until at sufficiently
low temperature, the droplet crystallizes into an hcp struc-
ture. This localization of the density and crystallization is
completely spontaneous and takes place with no externally
imposed lattice structure. Because these are static calculations,
the crystallization is not the result of nucleation: rather, the
temperature is so low that any energy barrier between the
liquid and solid states is so small that either (a) there is in
fact no barrier or (b) there is a barrier but it is so small
that numerical noise in the calculation is enough to allow the
system to overcome it. Nevertheless, despite being performed
at constant particle number, the relevance to nucleation at
constant chemical potential was noted so that the present results
do in fact have a bearing on nucleation.

The study of clusters was continued by replacing the wall
with periodic boundaries. In this case, an amorphous cluster
was produced. We also succeeded in generating a lower energy
fcc crystalline cluster by introducing a symmetry-breaking
external field in the early stages of minimization and then
removing it. These clusters were heated and we demonstrated a
region of three-phase coexistence until at higher temperatures
the amorphous and crystalline clusters eventually melted. This
work continues and we are in the process of studying similar
clusters of different sizes. We emphasized that the calculations
can be viewed as either approximate (but for such large
systems, probably very good) results for a fixed particle number
canonical system or as exact results in the grand-canonical
ensemble. For the canonical systems, the droplets and clusters
are stable states due to the constraint of fixed N : if the clusters
grow, the density of the vapor outside of them decreases and the
system becomes undersaturated leading to cluster sublimation
while if the clusters shrink, the vapor becomes more highly
supersaturated leading to cluster growth [58]. Viewed as exact
grand-canonical results, the clusters are metastable critical
clusters and as such give a direct indication of the nucleation
barrier.

These calculations show that cDFT can be a powerful tool
in the study of inhomogeneous classical systems with the

capability of producing unexpected results. It is hoped that the
potential of this application will serve to inspire more work
on how to improve the FMT theories so that they retain their
quantitative accuracy while correcting their weaknesses which
seem to be tied to the issue of boundedness of the functional.
Promising starting points for such developments could be the
older Tarazona-Rosenfeld tensorial functional [57] discussed
also by Wittman et al. [56] and the recently proposed scalar
functional of Hansen-Goos et al. [59] built upon a consistency
condition discovered by Santos [60]. The potential applications
to nucleation, premelting of surfaces, cluster formation in
proteins, wetting, crystallization, and perhaps even the glass
transition are evident. In particular, they open the door to
a complete approach to the description of first order phase
transitions in which the free energy surfaces produced can be
combined with a stochastic-dynamical framework [53,54] and
tools such as the dimer method [61] and the string method
[62], as well as stochastic-processes theory [63–65], so as to
predict nucleation rates, nucleation pathways, and multistep
nucleation mechanisms.
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APPENDIX A: CALCULATIONS FOR SIMPLE LOCAL
DENSITIES

1. Generating function formalism

It is convenient to evaluate the weighted densities using a
generating function formalism [2]. For a planar geometry with
densities that depend only on the z coordinate, the generating
function

τ (z) = π

64

∫ z+σ/2

z−σ/2
[σ − 2(z′ − z)]2[σ + 2(z′ − z)]2n(z′)dz′

(A1)

can be used to determine all of the weighted densities according
to the relations

η(z) = 4

σ

∂

∂σ
τ (z), s(z) = 2

∂

∂σ
η(z), vi(z) = δiz

∂

∂z
η(z),

Tij (z) = δij

2

σ
η(z) + δizδjz

2

σ

∂2

∂z2
τ (z). (A2)
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Defining

v(z) = ∂

∂z
η(z), W (z) = 2

σ

∂2

∂z2
τ (z), (A3)

the tensor numerator becomes

N = v · T · v − sv2 + s Tr(T 2) − Tr(T 3)

= v2

(
2

σ
η + W

)
− sv2 + s

[
2

(
2

σ
η

)2

+
(

2

σ
η + W

)2
]

− 2

(
2

σ
η

)3

−
(

2

σ
η + W

)3

. (A4)

2. Linear local density

For

n(r) = n0

(
1 + a

z

(σ/2)

)
(A5)

with |a| < 1 one finds that

τ (z) = π

120
σ 4n0(σ + 2az) (A6)

giving

η(z) = 1
30πσ 2n0(5σ + 8az),

s(z) = 1
15πσn0(15σ + 16az), (A7)

v(z) = 4
15πaσ 2n0

and

s2(z) − v2(z) = (πn0σ
2)2(1 − 3a2),

s2(z) − v2(z) = 1

225
π2σ 4n2

0

[
256a2

( z

σ

)2
− 16a2

+ 480a
( z

σ

)
+ 225

]
,

s2(z) − 3v2(z) = 1

225
π2σ 4n2

0

[
256a2

( z

σ

)2
− 196a2

+ 480a
( z

σ

)
+ 225

]
. (A8)

3. Step function

Consider the density n(r) = n0
(z) corresponding to a
system with zero density for z < 0 and a constant density n0

for z > a. In this case, one finds that for − σ
2 < z < σ

2 ,

τ (z) = π

64

∫ z+σ/2

0
[σ − 2(z′ − z)]2[σ + 2(z′ − z)]2n0dz′

= 1

960
πn0(2z + σ )3(6z2 − 9zσ + 4σ 2) (A9)

and

η(z) =
(

− 1

12
πn0(z − σ )(2z + σ )2

)
s(z) = 1

2
πσn0(2z + σ )

v(z) = 1

4
πn0(σ 2 − 4z2)

Tij (z) = δij

(
−1

6

π

σ
n0(z − σ )(2z + σ )2

)
+ δizδjz

(
−1

2
π

z

σ
n0(σ 2 − 4z2)

)
(A10)

so

N (z) = 1

144

π3

σ 3
σ 5σ 4n3

0

[
2
( z

σ

)
+ 1

]5
[
−8

( z

σ

)4
+ 20

( z

σ

)3

− 18
( z

σ

)2
+ 5

( z

σ

)
+ 1

]
(A11)

and

s2(z) − v2(z) = 1

8
(πn0σ

2)2

[
3

2
−

( z

σ

)][
1 + 2

( z

σ

)]3
,

s2(z) − 3v2(z) = 3

4
(πn0σ

2)2
[
1 + 2

( z

σ

)]2
[(

1√
3

+ 1

2

)
−

( z

σ

)][( z

σ

)
+

(
1√
3

− 1

2

)]
. (A12)

In particular,

s2
(
−σ

4

)
− 3v2

(
−σ

4

)
= − 11

256
(πn0σ

2)2. (A13)

4. Step and linear increase in density

For the density that is zero for z < 0 and n0z/a for z > 0,
the generating function for − σ

2 < z < σ
2 is.

τ (z) = π

64

∫ z+σ/2

0
[σ − 2(z′ − z)]2[σ + 2(z′ − z)]2n0

z′

a
dz′

= 1

7680

π

a
n0(2z + σ )4(4z2 − 8zσ + 5σ 2) (A14)

and

η(z) = 1

192

π

a
n0(3σ − 2z)(2z + σ )3,

s(z) = 1

8

π

a
σn0(2z + σ )2,

vz(z) = − 1

12

π

a
n0(z − σ )(2z + σ )2,

W (z) = 1

32

π

aσ
n0(σ 2 − 4z2)2, (A15)

giving

N (z) = − 1

442 368

π3

a3σ 3
σ 8σ 4n3

0

[
1 + 2

( z

σ

)]8
[

3 − 176
( z

σ

)
+ 296

( z

σ

)2
− 192

( z

σ

)3
+ 48

( z

σ

)4
]

(A16)
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and

s2(z) − v2(z) = 1

576

π2

a2
n2

0(5σ − 2z)(2z + σ )5,

s2(z) − 3v2(z) = − 1

192

π2

a2
n2

0(2z + σ )4(4z2 − 8zσ + σ 2).

(A17)

APPENDIX B: CALCULATIONS AT FIXED PARTICLE
NUMBER

An alternative to the introduction of a Lagrange multiplier
to fix the particle number is to introduce an auxiliary field x(r)
and to write

nN∗ (r) = N∗ x(r)∫
x(r′)dr′ (B1)

thus constructing densities with fixed particle number. Mini-
mizing F [nN∗ ] + ∫

φ(r)nN∗ (r)dr with respect to x gives

0 =
∫

δF [nN∗ ]

δnN∗ (r′)
δnN∗ (r′)
δx(r)

dr′ +
∫

φ(r′)
δnN∗ (r′)
δx(r)

dr (B2)

and using

δnN∗ (r′)
δx(r)

= N∗ 1∫
x(r′′)dr′′ δ(r − r′)

−N∗ x(r′)∫
x(r′′)dr′′

1∫
x(r′′)dr′′ (B3)

this becomes

0 = N∗∫
x(r′′)dr′′

{
δF [nN∗ ]

δnN∗ (r)
+ φ(r) −

∫ (
δF [nN∗ ]

δnN∗ (r′)
+ φ(r′)

)
× x(r′)∫

x(r′′)dr′′ nN∗ (r′)
}

(B4)

so that nN∗ satisfies

0 = δF [nN∗ ]

δnN∗ (r)
+ φ(r) − 1

N∗

∫ (
δF [nN∗ ]

δnN∗ (r′)
+ φ(r′)

)
× nN∗ (r′)dr′. (B5)

This is exactly the same as the Eq. (33) derived using a
Lagrange multiplier.

APPENDIX C: ALGORITHM

1. Introduction

This appendix explains the details of the algorithm used in
our calculations. The cDFT functional can be written as

�[n; v] = F (id)[n] + F (ex)[n] + �(V )[n; v] (C1)

with the ideal gas contribution

F (id)[n] =
∫

{n(r) ln[n(r)σ 3] − n(r)}dr, (C2)

the excess (FMT) contribution is

F (ex)[n] =
∫

�(η(r),s(r),v(r),T(r))dr, (C3)

and the contribution due to the external field is

�(V )[n; v] =
∫

n(r){v(r) − μ}dr. (C4)

To evaluate this numerically, we discretize space into a set of
points R = i�x̂ + j�ŷ + k�̂z where � is the lattice spacing
and i,j,k ∈ Z. We assume periodic boundaries so that there
are Nx unique points in the x direction, 0 � i < Nx , etc. The
value of the density at lattice point R will be denoted nR. The
three contributions can be evaluated using, e.g., the simplest
trap-rule expressions

F (id)[n] 

∑

R

{nR ln(nRσ 3) − nR}�3,

F (ex)[n] =
∑

R

�(ηR,sR,vR,TR)�3, (C5)

�(V )[n; v] 

∑

R

nR{vR − μ}�3,

and the only remaining question is the evaluation of local
weighted densities.

2. Weighted densities

The weighted densities all have the form of convolutions,

n(α)(r) =
∫

w(α)(r − r′)n(r′)dr, (C6)

where the weighting functions, w(α)(r), are relatively localized:
w(η) is only nonzero inside a volume of π

6 σ 3 and the others are
nonzero only on the shell defined by r = σ

2 . So one possibility
would be to directly evaluate them in real space. The cost
would be on the order of NxNyNz( σ

�
)3 operations for η(r)

and NxNyNz( σ
�

)2 for the others. Note that in the latter case,
there is the complication that the domain of integration—the
shells of radius σ/2—will, in general, contain no lattice points
so this is not so simple as for the case of the volume integral
needed for η which can be approximated by simply summing
over the lattice points in the volume. An alternative would be
to rewrite the convolution in Fourier space as

ñ(α)(k) = w̃(α)(k)n(k). (C7)

The analytic Fourier transform of the weight functions is
easily calculated and that of the density can be obtained by
means of fast Fourier transform (FFT) at a cost of on the
order of (NxNyNz) log2 (NxNyNz) operations. The product
involves (NxNyNz) operations and the inverse FFT needed
to get the real-space weighted densities gives a total cost of
2(NxNyNz) log2 (NxNyNz) + (NxNyNz) operations. The FFT
method is advantageous provided that( σ

�

)3
> log2(NxNyNz) (C8)

or, if there are the same number of points in each direction, N <

2( σ
�

)3/3. Clearly, the advantage of the FFT method increases as
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the lattice is refined but even for as few as eight points per hard-
sphere diameter the FFT method is advantageous provided the
number of lattice points in each direction is N < 2171.

3. Real space or Fourier space weighting functions?

The FFT method must clearly be the method of choice in
practical calculations. However, if implemented as described
here, there are potential problems. If the FT of the weighting
functions is determined analytically and that of the density nu-
merically, then there is no guarantee that the resulting weighted
densities will be non-negative or that the inequalities discussed
in the main text will be respected (e.g., that s2

R > v2
R). Since

one of our main goals was to investigate the stability of the
models, a more careful implementation of this approach—one
guaranteed to respect these properties—was used. Returning
to the real-space version of the calculation, let us assume that
there is some set of points ra and weights ua with 0 � a < M

that allow us to approximate an integral over a spherical shell
of radius t as∫

f (r)δ(t − r)dr 

N∑

a=1

uaf (tra). (C9)

Then, the values of the weighted density s(r) at the lattice
points could be evaluated as

sR =
N∑

a=1

uan
(

R + σ

2
ra

)
. (C10)

Since we only know the density on the lattice points, the value
of the density on the shell must be evaluated with some sort
of interpolation. The only requirement for the following is that
the method of interpolation be linear in the density: we make
the simplest choice of trilinear interpolation. For any point r in
the domain, a lattice point S(r) = i(r)�x̂ + j (r)�ŷ + k(r)�̂z
can be identified having the property that

i(r)� � rx < [i(r) + 1]�, (C11)

etc., and the value of the density at r is estimated by doing
linear interpolation with respect to the eight corners of this
cube. Defining

�x(r) = [rx − Sx(r)�]/�, (C12)

etc., the result is that

n(r) 

1∑

i=0

1∑
j=0

1∑
k=0

nS(r)+(i�,j�,k�)Bijk(r) (C13)

with

Bijk(r) = {δi0�x(r) + δi1[1 − �x(r)]}{δj0�y(r) + δj1[1

−�y(r)]}{δk0�z(r) + δk1[1 − �z(r)]}. (C14)

Finally, noting that for any lattice vector R, we have that
S(R + r) = R + S(r), it follows that �x(R + r) = �x(r) so
that

n(R + r) 

1∑

i=0

1∑
j=0

1∑
k=0

nR+S(r)+(i�,j�,k�)Bijk(r) (C15)

and

sR =
∑

R′
nR+R′w

(s)
R′ (C16)

with

w
(s)
R′ =

N∑
a=1

1∑
i=0

1∑
j=0

1∑
k=0

uaBijk

(σ

2
ra

)
δR′,S[(σ/2)ra ]+(i�,j�,k�).

(C17)

Analogous expressions for the other shell-averaged densities
are easily found. For the local packing fraction, we obtain
something similar by integrating this shell expression with
respect to the radial variable using a one-dimensional Gauss-
Legendre scheme. These real-space, discretized expressions
for the weighted densities satisfy all of the physical inequalities
and the discrete convolutions can be efficiently (and, up to
numerical noise, exactly) evaluated using discrete FFT.

4. Spherical integrals

One question not addressed so far is what points are used
to do the spherical integrals. If one naively applies one-
dimensional integration schemes to spherical coordinates, it is
easy to see that spatial asymmetries are created that could bias
the calculations. The standard method [66], used for example
in quantum-chemical calculations, is to use points and weights
that integrate all low-order polynomials exactly. The two most
common schemes are Lebedev quadrature and spherical t

schemes [66]. The difference between the two is that the former
strictly enforce octahedral and inversion symmetry whereas
the latter are constructed by demanding that the weights of all
points are equal. The efficiency of the two schemes is similar
[66]. Both have been tested and the differences in the present
calculations are negligible. When using spherical t schemes,
we have enforced cubic and reflection symmetry by expanding
the list of points first so that besides each point (x,y,z) we also
have all permutations of the same values of x,y,z (thus going
from one to six points). We then take this expanded list of
points and include all reflections: (x,y,z),(−x,y,z) . . . (−x, −
y,z) . . . (−x, − y, − z). In total, this expands the list of N

points to N × 6 × 8 = 48N . In our calculations, we have
used point sets from the website of Refs. [67,68]. The results
seem to be robust with respect to the number of points used:
we have typically used sets containing 21 118 points. The
volumetric spherical integrals are performed by supplementing
the integration on the spherical shell with Gauss-Legendre
integration in the radial coordinate using up to 512 points.
Numerical calculations were implemented using the GSL
scientific library [69] and the Armadillo linear algebra library
[70] and Fourier transforms performed using the FFTW library
[71].

5. Minimization

After discretization, the ftDFT functional becomes a func-
tion of the densities at each lattice point. The gradients of this
function are easily calculated “analytically” (i.e., analytic ex-
pressions that are calculated at the same time as the functional

012604-15



JAMES F. LUTSKO AND JULIEN LAM PHYSICAL REVIEW E 98, 012604 (2018)

itself). Indeed, the discretized � functional has the form

�(n) =
∑

i

[ni ln(niσ
3) − ni]�

3 +
∑

i

�(n)�3

+ 1

2
a

∑
i,j

ninjwij�
6 +

∑
i

ni

(
vext

i − μ
)
�3, (C18)

where the sums are over all lattice points, wik is the attractive
part of the potential evaluated at the lattice sites, vext

i is
the external potential evaluated on the lattice sites, and n is
the collection of values of the density on the lattice points.
Minimization requires that

0 = ∂�(n)

∂nk

= ln(nkσ
3)�3 +

∑
i

∂

∂nk

�(n)�3

+ a
∑

i

niwik�
6 + vext

k − μ�3 (C19)

or, upon rearrangement,

nkσ
3 = exp

(
−

∑
i

∂

∂nk

�(n)

− a
∑

i

niwik�
3 − vext

k + mu

)
. (C20)

These forces were used to implement either conjugate gradient
(CG) minimization [72] or the fast inertial relaxation engine
(FIRE) of Bitzek et al. [73]. For the liquid, both methods
achieved convergence quickly and with similar effort. For
the solid phase, the CG would sometimes fail to converge
or converge very slowly while FIRE always converged and
generally with much less effort.

Minimization was terminated using the criterion

ε > max
k

∣∣∣∣∣exp
( − ∑

i
∂

∂nk
�(n) − a

∑
i niwik�

3 − vext
k + μ

)
nkσ 3

− 1

∣∣∣∣∣
= max

k

∣∣∣∣∣exp

(
− ln(nkσ

3) −
∑

i

∂

∂nk

�(n) − a
∑

i

niwik�
3 − vext

k + μ

)
− 1

∣∣∣∣∣
≈ max

k

∣∣∣∣∣ln(nkσ
3) +

∑
i

∂

∂nk

�(n) + a
∑

i

niwik�
3 + vext

k − μ

∣∣∣∣∣, (C21)

where the last approximation is valid when the forces are small
(the case of interest) and avoids the expense of exponentiating
over all of the lattice points. We found that convergence was
generally achieved for ε = 10−2 and, to be sure, the criterion
ε = 10−4 was used throughout the calculations.

APPENDIX D: RESULTS FOR HARD SPHERES

1. Convergence and comparison to previous results

We have implemented these algorithms by discretizing the
density on a cubic grid (details are given in Appendix C). Aside
from the physical parameters, the only numerical parameter
is the grid spacing �. The convergence of the calculations
as the lattice spacing is decreased (at fixed particle number
and using the WBII model) is illustrated by the results in
Table I which includes an extrapolation to the continuum
limit. Even the coarsest grid, with only eight points in each
Cartesisan direction, corresponding to about five points per
hard-sphere diameter, gives free energies accurate to about
6%. At 2563 grid points, the results are within 0.2% of
the continuum limit. Compared to those in Ref. [16], which
are presumably converged to several significant figures, the
present calculations converge more slowly. Most likely this
is due to specific design goals in our algorithm described in
Appendix C which lead to the use of linear interpolation and
simple trap-rule integration.

Table II shows results from calculations using the WBII
functional at constant particle number at different densities. In
each case, the average density n̄ and the vacancy concentration
cvac were fixed thus determining the total number of particles in

a unit cell as N = 4 × (1 − cvac) and thus the lattice parameter
via 4(1 − cvac)/a3 = n̄. Varying the vacancy concentration
while holding the average density constant is therefore equiv-
alent to varying the lattice parameter. Also shown are results
reported in Ref. [16], where the authors state that they used
643 to 2563 grid points per unit cell (increasing as the density
increases) and presumably the numbers given are converged to
a several significant digits. The present calculations using 2563

grid points are consistent with these values with the typical
difference being on the order of 0.1%.

TABLE I. Hard-sphere free energies for density n̄ = 1.040 86
(packing fraction η̄ = 0.545) and vacancy concentration cvac = 1 ×
10−4 as a function of lattice spacing. The first column indicates the
source of the data (WBII are the present calculations), the second the
number of lattice points in each Cartesian direction of the unit cell,
and the third the Helmholtz free energy per particle reduced by the
temperature.

Theory a/� βF/N

WBII 8 5.273
16 5.311
32 5.075
64 5.003
128 4.983
256 4.979
∞ 4.968(7)

WBII (Ref. [16]) 64 4.977
Simulation (Ref. [16]) 4.959
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TABLE II. Hard-sphere free energies: comparison of present
calculations (marked WBII) to Oettel et al. Following Ref. [16], these
calculations were performed at fixed particle number with a constant
vacancy concentration of cvac = 1 × 10−4. The columns are the lattice
density, the lattice packing fraction, the number of points in each
Cartesian direction of the unit cell, and the Helmoltz free energy per
particle reduced by the temperature. All calculations were performed
using the WBII model.

n̄lattσ
3 ηlatt Source a/� βF/N

1.00 0.5236 WBII 64 4.558
WBII 256 4.541

Ref. [16] 64 4.539
1.040 86 0.5450 WBII 64 5.003

WBII 256 4.979
Ref. [16] 64 4.977

1.049 0.5493 WBII 64 5.094
WBII 256 5.069

Ref. [16] 64 5.067
1.08 0.5655 WBII 64 5.457

WBII 256 5.424
Ref. [16] 64 5.422

1.099 75 0.5758 WBII 64 5.701
WBII 256 5.661

Ref. [16] 64 5.658
1.11 0.5812 WBII 64 5.831

WBII 256 5.788
Ref. [16] 64 5.785

1.14 0.5969 WBII 64 6.233
WBII 256 6.176

Ref. [16] 256 6.172
1.15 0.6021 WBII 64 6.375

WBII 256 6.313
Ref. [16] 256 6.308

2. Coexistence

Table III shows the coexistence conditions predicted by the
various theories. While the values are somewhat dependent on
the grid spacing, they are largely insensitive to the vacancy
concentration. The values of the positive-definite (mRSLT)
theory are also given. Even though the latter incorporates the
Carnahan-Starling equation of state, and is therefore equivalent

TABLE III. Liquid-fcc solid coexistence (WBI, WBII, and
mRSLT are the present calculations) for hard spheres.

Source a/dx cvac ηliq ηsol βPσ 3βμ

WBII 64 0.005 0.499 0.545 12.26 16.80
WBII 256 0.005 0.496 0.544 12.00 16.52
WBII 64 0.0001 0.497 0.545 12.14 16.66
WBII 256 0.0001 0.495 0.545 11.89 16.40
WBII (Ref. [16]) 64 0.0001 0.495 0.544 11.89 16.40
WBI 256 0.005 0.490 0.536 11.41 15.78
WBI 256 0.0001 0.489 0.537 11.30 15.89
WBI (Ref. [16]) 64 0.0001 0.489 0.535 11.28 15.75
mRSLT 256 0.0005 0.512 0.548 13.75 18.51
mRSLT 256 0.0001 0.513 0.546 13.92 18.34
Simulation [34] NA NA 0.492 0.545 11.58

to the WBI theory for the liquid phase, it is less accurate in
predicting coexistence due to higher overall predictions for
the solid pressure. It therefore lacks the qualitative accuracy of
the tensor theories.

3. Vacancy concentration

The results for freezing are relatively insensitive to the va-
cancy concentration. Nevertheless, DFT formally requires that
the � functional be fully minimized with respect to the density.
In the present context, this means that it must be minimized
with respect to the vacancy concentration. As discussed in
detail in Ref. [16], such a minimization is not even possible
with functionals such as WBI and the fact that WBII can be
minimized and gives physically reasonable results is one of its
strongest features. In the case of the RSLT functional, there is
no doubt that it can be minimized with respect to the average
density (at fixed lattice constant): this follows simply because
as the local density increases, it must at some point cause the
local packing fraction to increase beyond unity and this will
necessarily lead to a (positive) divergence in the functional.
Figure 8 shows the results of such a minimization, together
with the WBII results and data from simulations. The mRSLT
theory gives physically reasonable results at all densities.

Even more impressive in this context is the fact that there
are no technical difficulties in minimizing at constant chemical
potential rather than constant average density (or, equivalently,
constant vacancy concentration). Even for WBII, Oettel et al.
state that such a minimization at constant chemical potential
is not technically feasible and we have confirmed with the
present code that attempts to do so typically lead to (negative)
divergence of the energy functional. This is not the case with
the mRSLT model and Fig. 8 shows that the resulting vacancy
concentrations are consistent with those obtained from the
constant density minimizations.

1 1.1 1.2
ρσ3

1e-08

1e-06

1e-04

1e-02

n va
c

Simulation (Kwak et al)
Simulation (Bennet and Alder)
WBII (Oettel et al)
Fixed N
Fixed μ

FIG. 8. Vacancy concentration as a function of average density
determined using the mRSLT model both by minimizing the free
energy at constant particle number and at constant chemical potential
with subsequent minimization with respect to the lattice spacing in
both cases. Simulations results due to Kwak et al. [74] and Bennett
and Alder [75] are shown as are the WBII results of Oettel et al. [16].
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