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Nonlinear oscillatory rarefied gas flow inside a rectangular cavity

Peng Wang,' Lianhua Zhu,"> Wei Su,' Lei Wu,' and Yonghao Zhang'-*
James Weir Fluids Laboratory, Department of Mechanical and Aerospace Engineering, University of Strathclyde,
Glasgow G1 1XJ, United Kingdom
2State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, China

® (Received 1 February 2018; published 5 April 2018)

The nonlinear oscillation of rarefied gas flow inside a two-dimensional rectangular cavity is investigated on the
basis of the Shakhov kinetic equation. The gas dynamics, heat transfer, and damping force are studied numerically
via the discrete unified gas-kinetic scheme for a wide range of parameters, including gas rarefaction, cavity aspect
ratio, and oscillation frequency. Contrary to the linear oscillation where the velocity, temperature, and heat flux are
symmetrical and oscillate with the same frequency as the oscillating lid, flow properties in nonlinear oscillatory
cases turn out to be asymmetrical, and second-harmonic oscillation of the temperature field is observed. As a
consequence, the amplitude of the shear stress near the top-right corner of the cavity could be several times
larger than that at the top-left corner, while the temperature at the top-right corner could be significantly higher
than the wall temperature in nearly the whole oscillation period. For the linear oscillation with the frequency
over a critical value, and for the nonlinear oscillation, the heat transfer from the hot to cold region dominates
inside the cavity, which is contrary to the anti-Fourier heat transfer in a low-speed rarefied lid-driven cavity
flow. The damping force exerted on the oscillating lid is studied in detail, and the scaling laws are developed to
describe the dependency of the resonance and antiresonance frequencies (corresponding to the damping force at a
local maximum and minimum, respectively) on the reciprocal aspect ratio from the near hydrodynamic to highly
rarefied regimes. These findings could be useful in the design of the micro-electro-mechanical devices operating

in the nonlinear-flow regime.
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I. INTRODUCTION

Oscillatory gas motion at the micro- and nanoscale has
attracted significant attention due to the development of micro-
electro-mechanical systems (MEMS) including the micro-
accelerometer, inertial sensor, and actuators [1]. Since the
surface-area-to-volume ratio in MEMS devices is large, sur-
face forces such as the damping exerted on the oscillating
parts by the gas are important for the design of moving
microdevices [2].

To understand and quantify the damping, the gas rarefaction
effect, caused by the small characteristic length scale of the
MEMS, should be taken into account. The degree of gas
rarefaction is normally categorized by the Knudsen number
(Kn), which is defined as the ratio of the mean free path of
gas molecules to the characteristic flow length. Most MEMS
devices operate in the slip (107> < Kn < 0.1) and early tran-
sition regimes (0.1 < Kn < 1) [3,4], where the Navier—Stokes
equations fail, and the kinetic theory approach should be
adopted in study of rarefied gas dynamics [5,6].

To date, gas damping has been investigated by seeking
solutions of gas kinetic equations through the direct simulation
Monte Carlo (DSMC) method [3,7-12] and the discrete ve-
locity method (DVM) [4,5,13—17]. Some analytical solutions
have also been obtained for simple one-dimensional (1D) and
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two-dimensional (2D) oscillatory flows in the slip and free
molecular (Kn 2 10) flow regimes [3,13,17-19].

In general, the DSMC and DVM are robust approaches for
the simulation of rarefied gas flows in respectively high-speed
and low-speed flow regimes. However, most of the aforemen-
tioned studies were focused on the oscillatory gas flows in
the transition regime (0.1 < Kn < 10) [5,7,9,10,15,18,20,21].
This is mainly due to the well-known intrinsic limitation that
the computational time step and spatial mesh size in these two
methods should be smaller than the mean collision time and the
mean free path of gas molecules, respectively, resulting in an
extremely expensive computations in the near hydrodynamic
regime, i.e., Kn < 0.1. Special slip boundary treatments were
introduced to improve the predictive capability in studying the
oscillatory rarefied flow in the slip and early transition regimes
[3,13,22]. However, these methods can only capture some of
the bulk properties [12].

The 1D oscillatory Couette flow has been studied exten-
sively, while the 2D oscillatory flow received less attention.
Wu et al. has studied the oscillatory rarefied gas flow [17] and
sound propagation in a 2D rectangular cavity [19] by using
the fast spectral method (FSM) for the linearized Boltzmann
equation [23,24]. It was reported that the damping force on
the oscillating lid in a 2D cavity could be even smaller than
that in 1D oscillatory Couette flow, due to the antiresonance
in gas [17]. Also, the damping force and sound speed near
the oscillating lid are strongly affected by the aspect ratio
[19]. In these works, the velocity amplitude of the oscillating
lid is assumed to be sufficiently small, so that the oscillatory
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FIG. 1. Schematic diagram of the oscillatory flow in a rectangular
cavity. The coordinate origin is located at the bottom-left corner of
the cavity.

flow can be regarded as a linear system. However, the nonlin-
ear oscillation may be possible; for example, the oscillation
frequency of MEMS device could reach 110 GHz, and the
oscillation amplitude could reach several nanometers, so that
the oscillation speed could be 330 m/s which is comparable or
even larger than the sonic speed [16,25-28]. The nonlinear
oscillation may dramatically change the flow behavior and
damping. Besides, high oscillatory frequency could further ag-
gravate the degree of rarefaction [25]. Therefore, to accurately
predict the gas damping in nonlinear oscillatory microsystems,
the nonlinearity and compressibility of the flow should be taken
into account.

In fact, Tsuji [16] et al. and Aoki et al. [27] recently applied
the Boltzmann model equation to study the nonlinear motion of
ararefied gas caused by a plate oscillating in its normal direc-
tion (1D problem). As far as the authors are aware of, however,
direct investigation of the nonlinear oscillation in lid-driven
cavity flows from the hydrodynamic to free molecular regimes
is absent. Little effort has been devoted to understanding the
heat transfer in nonlinear rarefied oscillatory flow, which plays
a significant role in MEMS devices [16,27,29,30].

This work is devoted to studying the nonlinear oscillatory
rarefied gas flow in a 2D rectangular cavity on the basis of the
gas kinetic equation. We introduce the Shakhov model in Sec. IT
and the numerical scheme in Sec. III. Numerical results of the
gas dynamics, heat transfer, and damping force in both linear
and nonlinear oscillations over a wide range of gas rarefaction,
cavity aspect ratio, and oscillation frequency are presented,
compared, and discussed in Sec. IV, which is followed by the
conclusions in Sec. V.

II. PROBLEM FORMULATION

We consider a rarefied gas flow in a 2D rectangular cavity
driven by alid at y = H. The lid oscillates harmonically in the
x direction with a frequency w, see Fig. 1. The velocity of the
oscillating lid is given by

U, = Uycos(wt), (D)

where Uj is the amplitude of the oscillating velocity, and
t is the time. The other three walls at x =0, x = L, and
y = 0 are fixed, and all four walls are isothermal with a fixed
temperature 7.

The problem considered is characterized by the aspect ratio
of the cavity A, the Mach number Ma, the Strouhal number St,
and the Knudsen number Kn, which are, respectively, defined
by

where y is the specific-heat ratio, v,, = +/2RT,, is the most
probable molecular velocity with R being the specific gas
constant, and X is the mean free path of gas molecules, which
is related to the shear viscosity w of the gas as

_ I’L(T = Tw) 7TRTw

= . 7

where p = pRT, is the pressure and p is the density.
In this work, the hard-sphere molecular model is used,

where the shear viscosity of the gas is determined by the gas

temperature in the following way:

A

3

T \05
w=uT = Tw)(_) . @
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The gas kinetic theory is used to investigate how the flow
responds to variations of the Knudsen number, the Strouhal
number, the Mach number, and the aspect ratio of the cavity.
To this end, the Shakhov equation is adopted, which has been
widely used to describe the dynamics of monotonic gases [31].
In the absence of external force, it takes the form of

U ovgvi=—2ir-ri. ®)
ot T
where f(x,£,7r) is the velocity distribution function of gas
molecules at the position x = (x,y,z) and time ¢, with § =
(&:,€y,€;) being the molecular velocity. f° is the reference
distribution function expressed by the Maxwellian distribution
function f°? and a heat flux correction term:

S pea Cpyfd(C
S =f [1 + Pr)spRT (RT 5))] (6)
where ¢ = & — U is the peculiar velocity with U being the
macroscopic flow velocity, ¢ = % i cc? fd§ is the heat flux,
and T is the temperature of the gas. The collision time t in
Eq. (5) is related to the viscosity u and the pressure p = pRT
by t = u/p. The Maxwellian distribution function f¢? is

given by
2
0 c
eq _ " .
I = xR exP( 2RT>' M

The conservative variables W = (p,pU,pE)T are calcu-
lated from the velocity moments of the velocity distribution
function:

W= [y, ®)

where ¢ = (1,£,1£%)7 . Note that the gas temperature is related
to the total gas energy as pE = %,OU2 + %pRT.
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Since only the 2D problem is considered in this work, two
reduced velocity distribution functions are introduced to cast
the three-dimensional molecular velocity space into 2D space
[32]:

g=/f<x,s,r>dsz, h=/s§f(x,s,z>dsz. ©)

For convenience, in what follows we denote § = (§,,&,)
and x = (x,y). The governing equations for the two reduced
distribution functions can be deduced from Eq. (5) as

ag 1 s

e Ve=Q,=——[o — 10

at+§ g < T[g gl (10a)

oh 1

5+§-Vh=$2h=——[h—hs], (10b)
T

where the reduced reference distribution functions are g5 =
g% + gpr and hS = h®9 + hp,, with

2
. S 11
8 = gk P\ Ta2rT ) (11a)
h*t — RT g%, (11b)
2
c-q [c
= (=P (g, 11
ger = ( ﬂSpRT(RT )g (11¢)
2
c.q (c
oy = (1 — P £ _o)\pe, 11d
pr = ( r)SpRT<RT ) (11d)

Itis clear that the governing equations for g and % in Eq. (10)
can be expressed in the following compact form:

d¢
ot

where the symbol ¢ is used to represent g or A.

1
+£-V¢=Q=—;[¢—¢>S], (12)

III. NUMERICAL METHOD

The discrete unified gas-kinetic scheme (DUGKS) is used
to solve the Shakhov equation [33,34], which is essentially
an explicit finite-volume method. With the intrinsic coupling
of molecular collision and transport processes in determining
of the flux across the cell interface, the computational time
step and mesh size are not limited by the mean collision time
and mean free path of gas molecules, respectively, so that the
multiscale-flow physics can be efficiently and self-adaptively
captured from the hydrodynamic to the free-molecular-flow
regimes. In addition, DUGKS has second-order accuracy in
both temporal and spatial discretizations. The capacity of
DUGKS has been evaluated for gas flows by comparing with
the lattice Boltzmann method [35-38], the spectral method
[38,39], the DVM [40], and the DSMC [41,42]. It has also
been successfully applied to study the phonon transport [43],
turbulent flows [38,39,44], and thermally induced nonequilib-
rium flows [42].

To solve Eq. (12), the computational domain is first divided
into control cells (the trapezoidal cells are applied in this study).
By integrating Eq. (12) in a cell V; (centered at x ;) from time
t, to t,11, and by using the midpoint rule for the temporal
integration of the convection term and the trapezoidal rule
for the collision term, one obtains the following evolution

equation [33]:

s N At
n+1 +.n n+1/2
gt . — 2 13
=4 = T (13)
where At = t,.1 — t,, and
Fir? = f (& - m)p(x & 1ys1/2)dS, (14)
av;

is the flux across the cell interface, |V;| and dV; are the
volume and surface of cell V;, n is the outward unit vector
normal to cell interface, and q);.‘ = fV/ o(x,&,1,)dx/|V;] is
the cell average of the distribution function. We have also
introduced two auxiliary functions: ¢ = ¢ — (A7/2)Q and
¢t = ¢ + (At/2)Q.

Since the mass, momentum, and energy are conserved
during the collision, macroscopic variables can be calculated
from

1 .
p= /gds, pU = /Egds, pE = §/<szg+h>ds,
(15)
and the heat flux from

2 1 )
', withg = z/c(c~2g+h)cz.f,=. (16)

1= 21 + AtPr

In practical computations, the evolution of ¢ is tracked
according to Eq. (13), instead of the original distribution
functions ¢, to avoid the implicit computations.

The key procedure in updating ¢ is to evaluate the flux F in
Eq. (14), which is solely determined by the gas distribution
function ¢"*'/2(x ;,€). To do so, in DUGKS, Eq. (12) is
integrated along the characteristic line within a half time step
s = At/2[33],

¢y 8) — ¢ (xy — E5,8)
= SRy B+ (D)

where time integration of the collision term is approximated
by the trapezoidal rule. Again, to remove the implicitness in
Eq. (17), we introduce two other distribution functions:

F=¢-:9 §t=¢+-9 (18)
2 2
Then Eq. (17) is expressed explicitly as
PP (x 8) =Ty — Es.). (19)

Therefore, once ¢+ (x r — &s,&) is obtained, the distribu-
tion function ¢"*'/?(x ;,&) can be determined from Eq. (19).
Note that the conservative variables and heat flux can also be
evaluated from ¢ as

1 _
p=/gds, pu=/§gds, pE=5/<s2g+h>ds,
20)
and

2T

7= 21 + sPr

1 _
g, withg = E/c(cngrh)d.s, @1

which means that W(x ,t,11/2) and ¢*"*/2(x ;&) can be
obtained from ¢"!/2(x ;,&) directly. Therefore, the original
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distribution function across the cell interface can be calculated
from Eq. (18):

2 _
@2 (x ) 8) = ﬁ‘f’nﬂ/z(vas)

N

mqﬁs"’“/z(x 7. (22

In this work, ¢+ (x ; — &s,£) is constructed as

T (x; —Es.8) =T (x;E)+(x; —x; — &) -0,
(x;—£s) €V, 23)

where ¢ ; is the slope of ¢ in the cell j, which is computed
by the central difference method. Note that o ; can also be
approximated by some gradient limiters for problems with
discontinuities [41]. The flux can then be computed from
Eq. (22). Finally, ¢ at the cell center can be updated according
to Eq. (13).

Innumerical simulations, the continuous molecular velocity
space is discretized into a finite discrete velocity set {&;} [32].
Distribution functions such as g and / are defined at a number
of discrete velocity points as g; and /,. Then, the appropriate
quadrature rule is adopted to calculate the moments: p =
Y @igi, pU =3, 0,8, and pE = 53, @i(§28; + hi),
where @; is the weight for the corresponding quadrature rule.
Note that the time step of explicit time marching in the DUGKS
is solely determined by the Courant-Friedrichs—Lewy (CFL)
condition, i.e., At = 1 AXmin/&max, Where 1 is the CFL number,
AXpin 18 the minimum grid spacing, and &, is the maximum
discrete velocity.

IV. RESULTS AND DISCUSSION

The numerical simulations are performed covering a wide
range of rarefaction: Kn = 10, 1, 0.1, 0.01, and 0.001. Two
Machnumbers, i.e., Ma = 0.01 and 1.2, are chosen to represent
the linear and nonlinear oscillations, respectively. Various
aspect ratios and Strouhal numbers are considered.

In the simulation, all the cavity walls are assumed to be
fully diffuse; that s, the velocity distribution of the reflected gas
molecules at the walls is Maxwellian with the wall temperature
and velocity:

é(xwagi’tn +5)= ¢eq(gi;pw’uw)a Ei -n >0, (24)
with
-1

pu=—| Y (& mg s L)

&;n>0

XY (& mg(xu kit +9), (25)

&;n<0

where x,, is a point at the wall located at a cell interface, and n
is the outward unit normal vector at the wall pointing to the cell.

Note that the damping force, which is the average shear
stress acting on the oscillating lid:

_ 1 A
Pyly=H) = f Py = Hdx,  (26)
0

is an important parameter in the design of MEMS devices.
According to the transformation introduced in Sec. III, the
shear stress Py, is calculated as

27 ~ e
Py=s f & — U)E, — V)@ — g)dE,  (27)

with U and V being macroscopic flow velocities along the
horizontal and vertical directions, respectively.

A. Grid convergence and model accuracy

When Ma = 0.01, the 2D continuous molecular velocity
space (&,,&, € [—4,4]) is discretized by the trapezoidal rule
with 32 x 32 nonuniform grid points [24,45], except that 48 x
48 discrete points are used when Kn = 10. When Ma = 1.2,
the molecular velocity space (§x,&, € [—6,6]) is represented
by 48 x 48 nonuniform grid points. In terms of the spatial
discretization, a set of nonuniform meshes are adopted with
Ny x N, grid points, and the mesh resolution is gradually
refined from the cavity center to wall boundaries. The location
of a control volume center (x;,y;) is generated by x; = (¢; +
§i+1)/2, yj = (é‘] + §j+l)/2v0 < i< NX,O < ] < Ny,WhCI'C
g; is defined by

1 tanh[a(i/N —0.5)]

G5t T anh@)2)

L i=0,12,.. Ny — 1,

(28)

in which a is a constant that determines the mesh distribution.
The larger a is, the smaller the mesh size near the walls. Here a
in the x and y directions are set to be 2.5 and 5.0, respectively.
Therefore, for the cases with cavity aspect ratio A of 0.5,1 and
2, Ny x Ny =31 x 61, 61 x 61, and 121 x 61 nonuniform
meshes are adopted, respectively. The independence of the
results with respect to the discretizations of molecular velocity
space and spatial space has been confirmed for the given
conditions.

Note that DUGKS has a distinguished performance in
robustness [35,37]. For instance, for the case of Ma = 0.01,
Kn = 0.1, St =2, and A = 1, the change of the amplitude of
the average shear stress [Eq. (26)] on the oscillating lid is less
than 0.03% when the CFL number varies from 0.01 to 0.8.
Therefore, a relatively large CFL number can be used to save
the computational time. In all the simulations below, the CFL
number n ~ 0.5 is set to satisfy nAr = w,n € Z™.

The primary reason of adopting the DUGKS is that, as
opposed to the traditional DVM, the grid size in the DUGKS
does not have to be smaller than the mean free path in the
near-hydrodynamic regime [40]. For example, for the case of
Kn =0.01, A =1, with St =2 and 10, the changes in the
amplitude of the average shear stress on the driven lid in the
simulation adopting 61 (41 and 21) mesh points in one direction
are less than 0.4% (1% and 6%), compared with the results of
121 points. With 61 grid points, the average mesh size is about
twice the mean free path.

The capacity of DUGKS has been well demonstrated in
the previous works. Particularly, the validation for high-Mach-
number flow has been confirmed by comparing with the DSMC
method [41]. Here we only validate the code by comparing
the amplitude of the average shear stress along the oscillating
lid with the results of the FSM solutions of the linearized
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TABLEI Comparison of the amplitude of the average shear stress
on the oscillating lid at different values of the Strouhal number St,
when Kn = 0.1, Ma = 0.01, and A = 1. Here the reference solutions
are from the linearized Boltzmann equation solved by the FSM [17].

St 2 4 10 20 30

FSM 0.438 0.452 0.535 0.555 0.560
DUGKS 0.437 0.450 0.532 0.552 0.557
Error 0.23% 0.44% 0.56% 0.54% 0.54%

Boltzmann equation [17]. As can be seen from Table I, the
maximum relative difference in the amplitude of the average
shear stress between these two methods is less than 1% for a
wide range of Strouhal number from 2 to 30, which indicates
that the DUGKS for the Shakhov model equation is appropriate
to describe the oscillatory rarefied gas flow.

B. Flow characteristics and heat transfer

The velocity profiles on the oscillating lid at various Knud-
sen and Strouhal numbers are investigated when the cavity
aspectratiois A = 1 and the Strouhal numberis St = 2. We are
interested in the results that have already reached the periodic
“steady-state;” that is, the solution at the next oscillation period
will be exactly the same as the previous period.

Figure 2 presents the horizontal velocity on the oscillating
lid whent = 0forMa = 0.01 and Ma = 1.2, with the Knudsen
number from 10 to 0.001. When Ma = 0.01, the flow is in the
linear oscillation region, and the flow velocity is symmetric
along the central vertical line x = 0.5L; see Fig. 2(a). As
the Knudsen number decreases, the maximum horizontal
velocity on the lid increases towards the limit U = Uy; this is
comprehensible because the smaller the Knudsen number, the
smaller the slip velocity is. Also, as Kn decreases, the velocity
profile becomes more and more flattened across the center of
the 1id; this is probably due to the fact that, when Kn is large,
the Knudsen layer reaches to the center of the cavity, such that
the velocity profile changes rapidly. When Ma = 1.2, the flow
is in the nonlinear oscillation regime, and the velocity profiles
are not symmetrical any more; see Fig. 2(b). Instead, when
Kn is small (Kn = 0.001, 0.01, and 0.1), the maximum flow
velocity occurs near the top-right corner of the 2D cavity, while
when Kn is large (Kn = 1 and 10), the maximum flow velocity
occurs close to the cavity center.

The time evolution of the temperature near the right-top
corner of the cavity, e.g., at (x,y) = (0.95L, 0.95H), is plotted
inFig.3whenKn = 0.1and0.01,Ma = 0.01 and 1.2, and St =
2. The results with other aspect ratios and Strouhal numbers are
similar. When Ma = 0.01, it is seen from Figs. 3(a) and 3(c)
that the average temperature variation is zero, while when
Ma = 1.2, it is seen from Figs. 3(b) and 3(d) that, most of the
time, the top-right corner is heated, which may lead to the burn-
ing of this corner. Also, the amplitude of temperature variation
for Ma = 1.2 is about four orders of magnitude larger than that
for Ma = 0.01; that is, the variation is roughly proportional to
Ma?. With the assistance of the Fourier transform analysis, we
note that the temperature evolves with a single frequency the
same as the oscillation frequency of the lid when Ma = 0.01,
but the second-harmonic frequency emerges when Ma = 1.2,
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FIG. 2. The horizontal velocity on the oscillating lid when
wt/2r =0,St=2, A=1, and (a) Ma = 0.01 and (b) Ma = 1.2.
Along the direction of the arrow, the Knudsen number is respectively
10, 1, 0.1, 0.01, and 0.001 for each line. The velocity has been
normalized by the velocity amplitude U, of the oscillating lid.

which is a strong signature of the nonlinear interaction. The
temperature variation is well-fit by a sinusoidal function as

T(t) = ap + ay sin (wt + ¢1) + a; sin Qwt + ¢,),  (29)

where the coefficients are given in Table II. Third harmonic or
even higher harmonic oscillations are possible when the Mach
number increases further.

The influence of the amplitude and frequency of the
oscillating lid on the heat transfer is also investigated.
Figure 4 shows the temperature contours overlaid by heat flux
streamlines during the first half period when Ma = 0.01 and
1.2, Kn = 0.1, St = 2, and A = 1. The temperature variation
T — T, and flow velocities in the next half period has the
same magnitude as in the first half period, but with reversed
signs. As shown in Fig. 4(a), when Ma = 0.01 and # =0,
the moving lid has the maximum velocity, and the cold and
hot flow fields appear near the top-left and -right corners of
the cavity, respectively. The temperature variation satisfies
the symmetry relation T(x,y) — T, =T, — T(L — x,y), so
that the temperature along the center vertical line x = 0.5L
is always equal to the wall temperature. As the oscillation
of the lid continues, i.e., the lid velocity decreases, the hot
and cold regions move toward each other, and finally swap
their positions when the driving velocity reverses; see the top
row of Fig. 4. In addition, the temperature variation decreases
with the oscillating speed of the lid. When Ma = 1.2, the
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FIG. 3. The evolution of the temperature at (x,y) = (0.95L, 0.95H) for (a) Kn = 0.1, Ma = 0.01, (b) Kn = 0.1, Ma= 1.2, (c) Kn = 0.01,
Ma = 0.01, and (d) Kn = 0.01, Ma = 1.2, with St = 2 and A = 1. The solid lines are obtained by fitting the numerical results (circle symbol)

with Eq. (29). Note that time ¢ has been normalized by the oscillation period 27 /.

temperature and heat flux asymmetrically spread inside the
cavity, which is contrary to the case of Ma = 0.01 where their
distributions are symmetric about the line x = 0.5L. In this
nonlinear oscillation case, when ¢ = 0, the temperature near
the top-right corner of the cavity rise rapidly, while that in
the top-left corner only decreases slightly; see Fig. 4(e). As
time goes on, the hot region gradually expands toward the
left vertical wall and eventually swap positions with the cold
region; see Fig. 4(h).

The velocity and frequency of the oscillating lid change
the behavior of heat transfer. It is recognized that, for the
low-speed rarefied lid-driven cavity flow, the heat could be
transferred from the cold to hot region [41,46]; see Fig. 5(a),
where the Strouhal number is zero. When the lid oscillates,
we find from Fig. 4(a) that the direction of heat flux for
Ma = 0.01 is predominantly from the hot to the cold region
at the beginning of a oscillation period, except in the two
top corners. When the driving velocity deceases to zero, a

heat-transfer circuit emerges near the upper part of the cavity;
see Fig. 4(c). When Ma = 1.2, the hot-to-cold heat transfer

occurs in almost the entire cavity. To assess the influence
of the oscillation frequency on the heat-transfer property, we
present the temperature contours and the heat flux streamlines
att =0,Ma=0.01 and 1.2, and St = 0, 0.5, and 1 in Fig. 5.
As shown, when Ma = 0.01, the direction of heat flux for
St =0 is generally from the cold to hot flow regions, as
is the case of St = 0.5. However, when St = 1, two heat-
transfer circuits appear respectively in the upper and lower
parts of the cavity, suggesting a transition of the dominant
mechanism in heat transfer. Finally, as observed from Fig. 4(a),
the hot-to-cold transfer is already prevailing inside the cavity
when St = 2; this situation does not change when St increases

further.

C. Damping force on oscillating lid

We first try to investigate the behavior of the damping force
at the limit of @ — oo. In this case, binary collisions are neg-
ligible [13] because the high oscillation frequency w is much
larger than the mean collision frequency. As a consequence,

TABLE II. The fitting coefficients corresponding to Eq. (29) when St =2 and A = 1.

(Ma,Kn) ap (a1,91) (a2,92) ®
(0.01,0.1) 4.502 x 10°6 (6.6633 x 10~4,2.0156) (0.0) 27
(0.01, 0.01) —2.869 x 107? (4.1864 x 1074, 2.5843) (0,0) 21
(1.2,0.1) 0.1442 (0.0840, 1.9005) (0.1264, 1.3151) 21
(1.2,0.01) 0.1183 (0.0317, 2.8069) (0.0964, 1.2005) 27
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FIG. 4. Temperature contours and streamlines of heat flux inside the cavity at different times, when Kn = 0.1, St = 2, A = 1, and the Mach
numbers are Ma = 0.01 (top row) and 1.2 (bottom row).

Eq. (5) is equivalent to the collisionless Boltzmann equation: function can be expressed as
0 a 0 .
B_J; + Ex% + Sya_f =0. (30) f@x,y.t.8) = f + Relexp(iot) f'(x, .60, (31)

Clearly, the absence of the nonlinear collision term means where the equation for f” is independent of time:
that the flow system is linear; that is, all the flow properties
oscillate around their equilibrium values with the same fre- e af’ af’ .
quency o of the oscillation lid. Thus, the velocity distribution iStf 4 & ox 6 By 0. (32)
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FIG. 5. Temperature contours overlaid by the heat flux streamlines inside the cavity for St = 0, 0.5 and 1 (from let to right column), and
Ma = 0.01 (top row) and 1.2 (bottom row), with Kn = 0.1 and A = 1, when the horizontal velocity of the lid is maximum along the positive
direction (wt /2w = 0).
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Integrating Eq. (32) with respect to the x, one can obtain

of L e=0)— fi(x = A)

iStf' +&,

where f' = fOA f'dx/A is the average distribution function.

Note that Eq. (33) is exactly the same as Eq. (3.3) given
by Wu et al. [17] but derived without the assumption of
small Mach number. Therefore, for the linear case at high
frequency, the right-hand-side of Eq. (33) can be neglected.
Hence, together with the boundary condition (24) the analytical
solution of the amplitude of the average shear stress on the os-
cillating lid can be obtained, which is equal to 1//7 &~ 0.564.
However, for the nonlinear case, the right-hand-side of Eq. (33)
cannot be neglected due to the asymmetrical distributions
on the two vertical walls, which results in the asymmetrical
distributions of the velocity distribution function; see Fig. 2(b)
for the velocity profile. Unfortunately it is difficult to derive the
analytical solution in this situation, but the numerical results
below show that the asymptotic value of the damping force
when St — oo is very close to that of the linear case.

We now numerically solve the Shakhov model at different
Knudsen numbers, when St =2, and Ma = 0.01 and 1.2,
respectively. Results of the shear stress along the oscillating
lid are plotted in Fig. 6. It is observed that the shear stress
on the lid decreases with the Knudsen number for both linear
and nonlinear oscillations, because the corresponding larger
velocity at lower Kn should exert a smaller shear stress on
the 1lid. For the linear oscillation, distributions of the shear
stress are symmetrical along the line x = 0.5L, the same as
that of the flow velocity in Fig. 2(a). However, for the nonlinear
oscillation, distributions of the shear stress are not symmetrical
along the center vertical line anymore, and the shear stress
adjacent to the right wall is larger than that close to the left
wall. For example, when Kn = 10, the shear stress near the
right wall is about four times that near the left wall.

We continue to investigate the variation of the damping
force on the oscillating 1id as a function of Strouhal number.
The results for the linear and nonlinear oscillations at various
Knudsen numbers and cavity aspect ratios are plotted in
Fig. 7. Note that the case of A = oo corresponds to the 1D
oscillatory Couette flow, where the damping force always
increases monotonically with Strouhal number. However, the
damping force changes nonmonotonically in the 2D cavity.
For example, when Kn = 0.1 and Ma = 0.01, as the Strouhal
number increases, the damping force first increases to a local
maximum, then decreases to a local minimum, and finally
increases toward the limiting value of 1/./7; see Fig. 7(e).
Similar behavior is observed in the nonlinear oscillation case,
except that the limiting value of the damping force when
St — oo for Kn = 10 and 1 is slightly larger than the analytical
value 1/4/7, while for Kn = 0.1 and 0.01, the limiting value
of the damping force is smaller than the analytical solution.
Generally speaking, the maximum deviation of the limiting
value of the damping force when St — oo between Ma = 1.2
and 0.01 is less than 7%.

Intuitively, due to the presence of the two vertical walls, the
damping force in the 2D oscillatory cavity flow should be larger
than that of the 1D oscillating Couette flow. This is indeed
the case when the oscillation frequency is small. However,

0.8 | (a)
\\ Kn /,‘
0'6:'-“.\\\~ ””.:::;
I S~ TCo—==---- - .,
—S O 4 j ......"-..,_ ‘“‘““““‘ L
\\ 'I
| o
02 i \“s _________ Y —— i
' ]
0 : ! ‘ !
0 02 04 06 08 I
x
2.5 (b)

0 0.2 0.4 0.6 0.8 1

FIG. 6. The magnitude of shear stress on the oscillating lid when
t =0, St=2, and (a) Ma =0.01 and (b) Ma = 1.2. Along the
direction of the arrow, Kn is respectively 10, 1, 0.1, 0.01, and 0.001
for each line. Note that the shear stress has been normalized by
,OoRTwU()/U,,,.

as St increases, the damping force in the 2D case could be
even smaller than that of the 1D oscillatory Couette flow. For
instance, see Fig. 7(a), when Kn = 10, Ma = 0.01 and A = 2,
the damping force in the oscillatory cavity flow is larger than
that of the 1D oscillatory Couette flow when St is less than
1, but above this value, the damping force first decreases to
a minimum at St = 1.4, and then increases toward the same
limits for both the 1D and 2D cases. The underlying physics
leading to the minimum in shear stress will be discussed further
in the Sec. IV D below.

When Kn = 0.01, the variation of amplitude of the average
shear stress with respect to the Strouhal number is more
complicated than those at larger Knudsen numbers. This
situation has not been studied in Ref. [17] because the adopted
iterative numerical method can hardly obtain the steady-state
solution due to the strong binary collision. However, the
explicit DUGKS can handle this problem easily. It is found
from Figs. 7(g) and 7(h) that, when the cavity aspect ratio
A is small, the damping force first increases, then decreases,
and eventually increases almost linearly, when St increases.
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FIG. 7. Variation of the average amplitudes of shear stress on the oscillating lid with St, for A = 0.5, 1 and 2, and Kn = 10, 1, 0.1, and 0.01
(from top to bottom), at Ma = 0.01 (left column) and 1.2 (right column).
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FIG. 8. The variation of the amplitude of the average shear stress
on the oscillating lid with the Mach number, when Kn = 0.1, 1
and St = 2, 10. Note that the shear stress has been normalized by
Lo RTw UO/Um .

However, when A is large, the variation of the damping force
with respect to the Strouhal number complicates: there are even
two local peaks and valleys in the damping force when A = 2.
Similar phenomena are observed for Kn = 0.001 (not shown
here).

Finally, the variation of the damping force |Py,| on the
oscillating lid as a function of the Mach number is shown in
Fig. 8. As expected, the normalized damping force increases
monotonically with the Mach number, which is fitted by a
three-order polynomial function, with the coefficients listed in
Table III. As the Mach number changes from 0.01 to 1.8, for
Kn = 0.1 and 1 at St = 2, the damping force is increased by
more than 20%. However, the variation of the damping force for
St = 10 is weaker than that of St = 2. This is comprehensible
because, at large Knudsen numbers, the collision term in
the Shakhov model is negligible so that a linear behavior is
expected; see Eq. (30).

D. Scaling law for resonance frequency and aspect ratio

The drop (rise) in the amplitude of the average shear stress in
Fig. 7 can be interpreted qualitatively by the gas antiresonance
(resonance) inside the cavity [17]. For the free molecular flow,
the molecules leaving the top lid with the velocities v nearly
parallel to the top lid, hitting the right vertical wall, then

TABLE III. Fitting the average shear stress on the oscillating lid
by asMa® + a;Ma? 4+ a;Ma + ay.

(Kn, St) ap a a as

(0.1,2) 04314 —3.415x 107 4.174 x 1072 —5.176 x 1073
(0.1,10) 0.5307 —3.673 x 10~* 1.225 x 1072 —2x 1073
(1,2) 05649 —1.843 x 10~° 5318 x 1072 —7.715x 1073
(1,10) 05623 —1.819 x 107® 3.404 x 1072 —6.89x 1073

being reflected and hitting the left vertical wall, and finally
returning to the point from which they left, should have traveled
a distance about 2L. Thus,

2L ~ vdt, (34
where 6t is the traveling time. Therefore, if

2 2n — 1
8t=ﬂ’ Oru’

w w

ez, (35)

then molecules leaving and hitting the top lid should have the
same (opposite) phases.

When the velocity distribution functions for molecules
leaving and coming back to the oscillating lid are in-phase,
the horizontal velocity of the gas near the oscillating lid will
be maximum, however, the shear stress defined in Eq. (27)
will be minimum, because the molecules leaving and coming
back to the lid have opposite y-component velocity. The
antiresonance and resonance refer to the states where the
shear stress exerting on the oscillating lid are minimum and
maximum, respectively. Equations (34) and (35), together with
Eq. (2), give the resonance and antiresonance Strouhal numbers
as

_@n—1Dm v

St, , z*, 36
24 o, '€ (36)
and
s~ Y ezt (37)
A v,

For the linear oscillation, perturbation of the temperature
inside the cavity could be neglected, so that the molecular
velocity v & v,,(= +/2RT,). Therefore, the dominant reso-
nance Strouhal number St, & 7/2A and the antiresonance
Strouhal number St, &~ /A can be obtained by setting n = 1
in Egs. (36) and (37). On the other hand, for the nonlinear case,
as shown in Fig. 3, the average temperature inside the cavity
is larger than the reference value T, so the most probable
molecular velocity v = v2RT > v,,. As a consequence, St,
and St, should be larger than that of the linear case.

Note that these analyses are for the free molecular flow. As
the Knudsen number decreases, binary collisions of molecules
become more intense. Therefore, free transport of the gas
molecules is more difficult, so the real traveling time is larger
than 2L /v, and the obtained St, may be smaller than the
theoretical values in Egs. (36) and (37).

To conclude, the antiresonance (resonance) Strouhal num-
ber should be related to the degree of gas nonlinearity and
rarefaction. On the other hand, the ability of transferring energy
from the oscillating lid is boosted by frequent collisions at a
smaller Knudsen number, such that the flow inside the cavity
could have sufficient kinetic energy to oscillate against the
lid. Therefore, the resonance is difficult to develop for the
highly rarefied flow, and it is only visible for the small Knudsen
number, see Figs. 7(g) and 7(h).

Figure 9 presents the linear scaling law to describe the
dependency of the antiresonance Strouhal number on the
reciprocal cavity aspect ratio for both linear and nonlinear
cases at Kn = 0.1 and 1. The solutions predicted by the FSM
of the linearized Boltzmann equation [17] are also included for
comparison. The numerical results for Kn = 10 are not shown
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FIG. 9. The antiresonance Strouhal number St,,, at which the amplitude of the average shear stress at the lid is minimum, as a linear function
of the inverse aspect ratio 1/A for (a) Kn = 0.1 and (b) Kn = 1. The results of the linearized Boltzmann equation solved by the FSM [17] are

also included for comparison.

because they almost overlap those for Kn = 1. It is found
that, in the linear case, our simulation results are in excellent
agreement with the fitting functions obtained from the FSM
solutions. In addition, as expected, the predicted antiresonance
Strouhal number St, in the linear oscillation is overall smaller
than that of the nonlinear case.

In addition, as we can see from Figs. 7(g) and 7(h) that
for Kn = 0.01, both resonance and antiresonance appear, even
though their strengths are quite weak relative to the background
value. For the first time, we reveal that the linear scaling law for
the resonance (antiresonance) Strouhal number and the inverse
cavity aspect ratio at Ma = 0.01 and 1.2 with Kn = 0.01 in

14 — T T \
Ma=0.01 DUGKS
2L = Ma=1.2 DUGKS
_Str:1.82/A+0.42
oL —St=179/A+0.45
........ Sta:2.77/A+0.03
8 - Sta:2.94/A+0.03

St

0.5 1 1.5 2 2.5 3 3.5 4 4.5
1/A

FIG. 10. The resonance (antiresonance) Strouhal numbers, at
which the amplitude of the average shear stress at the lid is a local
maximum (minimum), as a linear function of the inverse aspect ratio
1/A when Kn = 0.01, in both the linear (Ma = 0.01) and nonlinear
(Ma = 1.2) oscillations.

Fig. 10, which is in reasonable agreement with the theoretical
St (St,) in Egs. (36) and (37). Furthermore, the fitting lines
of the resonant Strouhal number for both linear and nonlinear
cases almost overlap each other, suggesting that the velocity
amplitude of the lid has little effect on the resonance frequency
in the early slip regime.

V. SUMMARY

We have investigated the oscillatory rarefied gas flow in a
2D rectangular cavity on the basis of the Shakhov equation.
Both the linear and nonlinear oscillations were numerically
studied by using the discrete unified gas-kinetic scheme. The
effects of the gas rarefaction, oscillation frequency, and aspect
ratio of the cavity were investigated. It has been found that the
flow properties, including the flow velocity, temperature, shear
stress, and heat flux, are asymmetrically distributed inside
the cavity for the nonlinear oscillation, which are different
from the linear case where these properties are symmetrical
along the vertical centerline of the cavity. Interestingly, it was
noticed that the hot-to-cold heat transfer could be dominant
inside the linear oscillatory rarefied cavity, which is in contrast
to the well-known anti-Fourier (cold-to-hot) heat transfer
in a low-speed lid-driven rarefied cavity. For the nonlinear
oscillatory flow, the hot-to-cold heat transfer occurs in almost
the entire cavity, which is independent of the oscillation
frequency. It is also noted that double-frequency oscillation of
the temperature evolution is possible in nonlinear oscillation,
where the temperature of the top-right corner is significantly
higher than the wall temperature in almost the whole oscillation
period.

We have also investigated the damping force (i.e., the
average shear stress exerted on the oscillating lid). In the
linear oscillation case, the amplitude of the shear stress is sym-
metrical along the center vertical line, while in the nonlinear
oscillation case it is asymmetrical: when Ma = 1.2, the shear
stress near the top-right corner of the cavity could be four times
larger than that near the top-left corner.
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One of the features of the oscillatory cavity flow is that the
damping force exerted on the oscillating lid has local dips and
peaks when the oscillation frequency changes. This is due to the
antiresonance and resonance of rarefied gas flows, respectively.
Linear scaling laws for the antiresonance frequency and the
inverse aspect ratio of the cavity are established theoretically
for the both linear and nonlinear oscillatory flows from the
near hydrodynamic to highly rarefied regimes, which are then
verified numerically. In particular, the linear scaling law for
resonance frequency is also presented in the early slip regime,
where the resonance is easy to develop.

The present study provides a useful guideline to avoid
damping damage induced by the nonlinear oscillation for
design of MEMS devices.
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