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Nematic liquid crystal director structures in rectangular regions
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We consider a shallow rectangular well of nematic liquid crystal subject to weak anchoring on the sides of
the well. By considering weak anchoring instead of infinitely strong anchoring, we are able to analyze nematic
equilibria in the well without the need to exclude point defects at the corners, as done in previous work in the area.
For relatively weak anchoring, we are able to derive analytic expressions for the director alignment angle in terms
of an infinite series of modes, involving roots of a transcendental equation. The analytic forms of the director
configuration are then used to calculate critical anchoring strengths at which uniform and distorted director
structures exchange stability. We also consider the asymptotic behavior of the director structure and energy for
very strong anchoring. We show that in both cases—for the transitions from uniform to distorted states and the
limit of infinitely strong anchoring—the approximate analytic expansions agree very well with corresponding
numerical calculations of the full model.
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I. INTRODUCTION

Liquid crystals are liquids in which there is some degree
of orientational ordering of the constituent molecules. These
molecules, often elongated organic compounds, arrange in
such a way that an average orientation of one of the principle
molecular axes may be defined [1]. This average molecular ori-
entation is termed the director and is denoted mathematically
by the unit vector n(x, t), an orientation that may vary in both
space and time [2]. One alternative mathematical description
uses both the average molecular orientation and a measure of
the order about that average orientation, the general form of
which leads to an analysis in terms of a second-order tensor
Q, termed the orientation tensor or simply the Q tensor [3].
Liquid crystals may also exhibit positional ordering of the
molecules, for instance, forming relatively distinct layered
structures (smectics). However, for nematic liquid crystals, the
type we consider in this article, only orientational ordering is
present.

Interest in the confinement of liquid crystals between
solid boundaries originally came about out of necessity since
viewing a liquid crystal under a microscope was only possible if
the liquid was held in place by at least one solid boundary. Later
it became clear that the competition between the orientational
influence of a solid boundary and those of internal effects
(such as elasticity) or external effects (e.g., an applied electric
field) could lead to interesting behavior of both scientific and
technological interest. Indeed, in the major application area
of liquid crystals, liquid crystal display (LCD) devices, the
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influence of the bounding surface plays a crucial role in the
optical switching effects upon which the device relies [4].

The influence that a solid boundary has on the molecular
alignment of a liquid crystal is the subject of a considerable
body of research but is often characterized through the specifi-
cation of a surface energy [5]. This surface energy, often termed
an anchoring energy, is a function of a macroscopic variable,
such as the director n or the Q tensor, as well as parameters
that measure the strength of interaction between the molecular
orientation and the boundary. The surface energy is minimized
when the molecular orientation is in a preferred orientation
with respect to the boundary normal, or a certain direction
on the boundary that has been prescribed by a mechanical or
chemical treatment. The actual molecular orientation on the
boundary may differ from the preferred orientation, possibly
due to the influence of elastic effects away from the boundary,
leading to an increase in the surface energy. This ability of
the director to move away from the preferred direction is
termed weak anchoring, while a situation where the director
is fixed at the preferred direction is termed infinite or strong
anchoring. For weak anchoring it is the balance of the surface
energy and other components of the free energy, such as the
elastic energy, that lead to distorted equilibrium structures.
When there are multiple boundaries in a device, each preferring
different orientations, distortion cannot be avoided and it is this
situation that we will consider in this article.

Confining a liquid crystal in shallow rectangular wells has
been studied by a number of authors in recent years because
it offers the possibility of multiple stable director configu-
rations [6]. The relative stability of these different director
structures, and the mechanisms through which the system
switches between different states, is of particular interest if
low-power electro-optic devices are to be developed [7]. This
was the motivation behind the work of Tsakonas et al. [8],
where a device consisting of an array of shallow rectangular
wells was considered experimentally and theoretically. In
their theoretical work, where the director was assumed to
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FIG. 1. (a) Sketch of the rectangular well geometry containing the nematic liquid crystal; (b) cross-sectional area � of the rectangular well.
The director n is described in terms of the angle θ (x, y). Each bounding surface σi (i = 1 to 4) prefers planar director alignment.

stay within a single plane, a two-dimensional analysis was
effective in modeling the experimentally observed director
configurations. The Q-tensor modeling of [8] imposed planar
infinite anchoring of the nematic director on the boundaries of
the well (where the preferred director orientation is tangential
to the boundaries) and predicted multistable configurations of
the director exhibiting defects at the corners of the well, all
in good agreement with experimental data. Their work has
subsequently led a number of researchers to consider similar
geometries of confined nematics. Luo et al. [9] extend the
analysis of [8] to incorporate surface energies and a degree
of weak anchoring, still within the context of Q-tensor, or
Landau—de Gennes, theory. They also propose a dynamic
model for switching between equilibrium director states based
on dielectric effects. Kusumaatmaja and Majumdar [10] also
model the device in [8] with a surface energy potential,
computing minimum energy pathways between the stable
equilibria for variable surface anchoring strength. Robinson
et al. [11] compare molecular and Landau—de Gennes models
for nematic equilibria in square wells. Landau—de Gennes
theory is also employed by Kralj and Majumdar [12], Canevari
et al. [13], and Slavinec et al. [14] in studies which allow for
biaxial order reconstruction. Other work modeling confined
liquid crystal systems include using Monte Carlo techniques
[15,16], while Davidson and Mottram [17] derive the director
orientation in a variety of geometries via conformal mappings.
Studies of confined regions have not been restricted to planar
(or near-planar) surface anchoring. For example, Zheng and Hu
[18,19] examine models for polydimethylsiloxane microchan-
nels where the liquid crystal molecules exhibit homeotropic
ordering on boundary surfaces, so that the preferred director
orientation is perpendicular to the boundaries.

In recent work on colloidal nematics in a rectangular
geometry, Lewis et al. [20] examine a director model of
equilibria in a well when the liquid crystal is subject to
infinite planar anchoring on the four sides. However, in that
situation difficulties arise because of incompatible conditions
on adjacent boundaries, leading to defects at each corner
for which a director-based model breaks down. Therefore,
in order to calculate the energy of the system, Lewis et al.
[20] remove a quarter-disk of small radius around each defect
and calculate a regularized free energy over the reduced
domain. An asymptotic expansion of the regularized energy
is then expressed in terms of the unknown defect core
radius.

In this article, we consider a shallow rectangular well
of nematic liquid crystal, but instead of imposing infinite
planar anchoring on the boundaries of the well, we introduce
weak planar anchoring through a Rapini–Papoular [5] surface
energy at each boundary. This allows us to carry out an
analysis of the director configuration equilibria in the well
without the need to exclude point defects at the corners of
the rectangle, in other words, avoiding the problems faced
in [20]. We are able to derive analytic expressions for the
director alignment angle, written as an infinite series involving
roots of a transcendental equation, finding a critical anchoring
strength at which a uniform director configuration exchanges
stability with a distorted structure. Using the analytic form
for the director orientation, we are then able to examine the
asymptotic behavior of our system both close to the critical
anchoring strength and in the limit of infinite anchoring. The
latter analysis allows a comparison with the results of previous
work in this area. We also show that the asymptotic expansions
agree very well with numerical calculations.

II. MATHEMATICAL MODEL

We will model a static nematic liquid crystal confined in a
rectangular well of depth μd and side lengths d and λd, so that
the aspect ratio in the xy plane is λ [see Fig. 1(a)]. We will
assume that the depth of the well is considerably smaller than
the other two lengths so that μ � 1 and μ � λ, and that planar
degenerate anchoring on the faces z = 0 and z = μd forces the
director to remain in the xy plane. These conditions lead us to
assume that the director lies in the xy plane throughout the well
and we may simplify the mathematical model to consider only
the director configuration in the cross-sectional area specified
as � = {(x, y) ∈ [0, d] × [0, λd]} [see Fig. 1(b)]. Since the
nematic director is now assumed to lie in the xy plane it can
be expressed in the form

n = (cos[θ (x, y)], sin[θ (x, y)], 0),

where θ (x, y) is the director angle measured with respect to
the positive x direction. The director configuration θ (x, y) will
then be determined by a minimization of the total free energy
of the system, namely, the sum of the bulk elastic energy and
the surface energies at the boundaries. Using the standard one-
constant approximation for the Frank elastic constants [21],
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we can write the elastic energy density for the nematic as

wF = K

2
‖∇n‖2 = K

2
(∇θ )2, (1)

where K is the elastic constant, typically of the order 10−11 N
[2], and ∇θ = (θx, θy), where subscripts indicate partial
derivatives with respect to x and y.

The four boundaries of region � are denoted by σi (i = 1 to
4) as indicated in Fig. 1(b). As mentioned in the Introduction,
the preferred director orientation is parallel to each boundary
(i.e., planar alignment). Employing the Rapini–Papoular form
for the surface energy density, we can write the surface energy
density on each boundary as

wσi
= ω

2
(ν · n)2, (2)

where ω is the constant, positive anchoring strength and ν

represents the outward normal for the boundary. Although it
is possible to proceed with the general situation in which the
anchoring strengths on each side of the region are all different
(e.g., ωi for i = 1,2,3,4), the analysis is cumbersome and
little is gained in terms of general insights into this problem.
Therefore, we restrict our attention here to a uniform anchoring
strength ω.

Combining the integration of the elastic energy density (1)
in the bulk of the well with the integration of the surface energy
density (2) on each boundary, we can write the total free energy
as

W = μd

(
K

2

∫
�

(∇θ )2 dx dy +
4∑

i=1

ω

2

∫
σi

(ν · n)2 dsi

)
,

(3)

where dsi represents integration along the surface σi in the
positive direction of the corresponding Cartesian coordinate.
We will nondimensionalize the Cartesian coordinates using
(x̂, ŷ) = (x/d ,y/d) so that the cross-sectional region is now
�̂ = {(x̂, ŷ) ∈ [0, 1] × [0, λ]}. We now need only consider the
case λ � 1 since the transformation λ → 1/λ with (x̂, ŷ) →
(ŷ, x̂) will provide solutions for the case λ < 1.

With the nondimensionalizations mentioned above, we
obtain the dimensionless total free energy

Ŵ = 2W

μdK
=

∫
�̂

(∇̂θ )2 dx̂ dŷ +
4∑

i=1

τ

∫
σ̂i

(ν · n)2 dŝi , (4)

where ∇̂θ = (θx̂, θŷ) and the parameter τ = ωd/K represents
a dimensionless anchoring strength, a ratio of anchoring and
elastic effects or, equivalently, it can be thought of as the ratio
of the well dimension d and the surface extrapolation length
K/ω.

Our aim is now to minimize the dimensionless energy
Ŵ in Eq. (4) with respect to the possible director angle
configurations θ (x̂, ŷ) for a given anchoring parameter τ and
aspect ratio λ. By a standard application of the calculus of
variations (see, for example, Stewart [2]), it is straightforward
to show that θ (x̂, ŷ) must satisfy Laplace’s equation in the bulk
of the nematic cell,

∇̂2θ = 0, (x̂, ŷ) ∈ (0, 1) × (0, λ), (5)

subject to a nonlinear Robin condition on each boundary,

on σ̂1 : θx̂ + τ

2
sin(2θ ) = 0;

on σ̂2 : θx̂ − τ

2
sin(2θ ) = 0;

on σ̂3 : θŷ − τ

2
sin(2θ ) = 0;

on σ̂4 : θŷ + τ

2
sin(2θ ) = 0. (6)

Equations (5) and (6) are solved by the trivial solutions
θ (x̂, ŷ) ≡ 0 and θ (x̂, ŷ) ≡ π/2 [or the equivalent solutions
θ (x̂, ŷ) ≡ nπ and θ (x̂, ŷ) ≡ (n + 1/2)π for n ∈ Z], and in the
next section we will first consider solutions that bifurcate from
these undistorted states as the anchoring parameter increases.
We find that there are four important states, two that bifurcate
from θ (x̂, ŷ) ≡ 0 and two from θ (x̂, ŷ) ≡ π/2. Importantly,
the ordering of the bifurcations to the distorted states can
change for different values of λ. Therefore, as anchoring
increases (or, equivalently, as elasticity decreases) the first
nontrivial state to appear will depend on the value of the aspect
ratio λ.

We will also consider the asymptotic limit for large anchor-
ing parameter, i.e., τ → ∞, which approximates the infinite
anchoring limit considered by Lewis et al. [20]. For the model
with infinite anchoring at the boundaries presented in [20],
there exists a discontinuity in the director angle θ at each of
the four corners. Because of this discontinuity, which can be
thought of as a line defect along the z direction, the free energy
diverges logarithmically on approach to these points [22]. To
remove this singularity, Lewis et al. [20] regularized the free
energy by removing from the region a quarter-disk of radius ε

at each corner of the well, effectively a defect core region. With
infinite anchoring and this form of regularizing the problem,
it is then possible to find an infinite number of equilibrium
solutions. As mentioned by Lewis et al. [20], in the limit of
infinite anchoring the lowest energy solutions correspond, up
to symmetry, to one of three basic types of equilibrium. With
our present approach we also find these three states and can
link them to three of the states that bifurcate from the trivial
solutions at lower values of the anchoring parameters. We also
consider a fourth state found to bifurcate from a trivial solution
and determine the energy of this state in the large anchoring
parameter limit.

In comparison to the work of Lewis et al. [20], the model
presented here in Eqs. (5) and (6) has no director discontinuities
and there is no need to remove any regions to regularize
the energy. Indeed, at each corner the boundary conditions
(6) for two adjacent walls do not contradict each other and
can both be satisfied independently. In the limit as τ → ∞
in Eq. (6), we can also reach the situation modeled by [20]
without their approximation and are able to determine the
global energy minimizer, as well as analyze the director angle
over a range of anchoring parameters and aspect ratios. While it
is relatively straightforward to implement a numerical scheme
to solve Eqs. (5) and (6), the nonlinear nature of our boundary
conditions makes any type of analysis difficult. However, in
the following sections we will show how linearization can
lead to very effective results in certain limits of the anchoring
strength. In the sections that follow, we omit the ˆ from
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all nondimensional quantities (specifically, x̂, ŷ, ∇̂, �̂, σ̂i , Ŵ )
with the understanding that, henceforth, all quantities are
nondimensional.

III. BIFURCATIONS FROM UNDISTORTED STATES

As mentioned in the previous section, regardless of the
anchoring parameter τ and aspect ratio λ, the system in
Eqs. (5) and (6) always admits undistorted solutions θ ≡ 0
and θ ≡ π/2. Using Eq. (4), we see that these two constant
equilibria correspond to total energies W0 = 2λτ and Wπ/2 =
2τ , respectively, so that when λ = 1 the undistorted states have
equal energies, and when λ ≶ 1 we see W0 ≶ Wπ/2. As we will
examine below, distorted states occur at bifurcations from the
two constant equilibria at nonzero τ , with different behavior
depending on the value of λ. Each of these bifurcations is a
supercritical pitchfork from the two undistorted states and we
now proceed by linearizing about these states.

Linearizing the boundary conditions (6) around θ ≡ 0, we
derive

on σ1 : θx + τθ = 0; on σ2 : θx − τθ = 0;

on σ3 : θy − τθ = 0; on σ4 : θy + τθ = 0. (7)

The solution to Laplace’s equation in region � subject to
boundary conditions (7) is then

θ (x, y) = A0

(
sinh(px) − p

τ
cosh(px)

)

×
(

sin(py) + p

τ
cos(py)

)
, (8)

for any constant A0, and where p and τ must satisfy the
simultaneous equations

(τ 2 + p2) sinh(p) − 2pτ cosh(p) = 0, (9)

(τ 2 − p2) sin(λp) + 2pτ cos(λp) = 0. (10)

Equation (9) can be solved to find two solutions for τ in terms
of p,

τ 0
± = p[coth(p) ± csch(p)], (11)

which, upon substitution into Eq. (10), lead to two correspond-
ing transcendental equations for p,

f±(p; λ) := cos(λp) sinh(p) ± sin(λp) = 0. (12)

A similar approach can be adopted when we linearize about
θ ≡ π/2, with the resulting solution being

θ (x, y) = π

2
+ Aπ/2

(
sin(qx) − q

τ
cos(qx)

)

×
(

sinh(qy) + q

τ
cosh(qy)

)
, (13)

with the solution for τ being

τ
π/2
± = q[coth(λq) ± csch(λq)], (14)

and q satisfies the corresponding transcendental equation

g±(q; λ) := cos(q) sinh(λq) ± sin(q) = 0. (15)

The solutions to the transcendental equations (12) and (15)
are an infinite set of values, corresponding to mode numbers
pi and qi , respectively. Each mode has associated with it a
corresponding value τ given by the appropriate equation, (11)
or (14). As we will see later, these values are critical anchoring
strengths at which each mode appears in the system in order
to reduce the free energy. Corresponding to each mode is a set
of amplitudes A0,i and Aπ/2,i so that the general solutions, for
any value of τ , are then

θ (x, y) =
∞∑
i=1

A0,i

(
sinh(pix) − cosh(pix)

coth(pi) ± csch(pi)

)

×
(

sin(piy) + cos(piy)

coth(pi) ± csch(pi)

)
, (16)

for the linearization about θ ≡ 0, and

θ (x, y) = π

2
+

∞∑
i=1

Aπ/2,i

(
sin(qix) − cos(qix)

coth(λqi) ± csch(λqi)

)

×
(

sinh(qiy) + cosh(qiy)

coth(λqi) ± csch(λqi)

)
, (17)

for the linearization about θ ≡ π/2. It is worth noting that,
depending on the choice of ± solutions in Eqs. (12) and (16),
we can combine each x-dependent term in Eq. (16) into the
form cosh[pi(x − 1/2)] or sinh[pi(x − 1/2)]. In other words,
one solution for θ (x, y) in Eq. (16) will be symmetric with
respect to x = 1/2, and the other antisymmetric. [Symmetry
about x = 1/2 is equivalent to θ (x, y) = θ (1 − x, y) and
antisymmetry is θ (x, y) = −θ (1 − x, y).] The same can be
said of Eq. (17) with solutions symmetric or antisymmetric
with respect to y = λ/2 through a combination of hyperbolic
terms.

In Fig. 2(a), we plot the smallest, positive zeros of f±(p; λ)
andg±(q; λ) as the aspect ratioλ varies. These values have then
been used to calculate the corresponding critical anchoring
strengths τ in Fig. 2(b). These four lowest critical values of
τ correspond to four director distortion modes, given by the
appropriate solutions in Eqs. (8) and (13). Plots of these four
director structures are illustrated in Fig. 3 for an aspect ratio
λ = 1.5. For three of these states, D,U1, U2, we have used the
same notation as in [20], indicating the diagonal or U-shaped
nature of the distortion. We denote the fourth state by DD to
recognize that it is essentially a double D state with symmetric
diagonal distortions in 0 < y < λ/2 and λ/2 < y < λ. We are
able to classify the four different branches, and associate them
with solutions in [20], because the states exhibit particular
(anti)symmetries with respect to x = 1/2 and/or y = λ/2. For
example, for the D state, θ (x, y) = θ (1 − x, λ − y).

Figure 2(b) indicates that for the two states which bifurcate
from the θ ≡ π/2 trivial solution (the D and U2 states), it
is always the D state which bifurcates at the lower critical
τ value. In fact, it is simple to show analytically that the first
nonzero solution to g+(q; λ) = 0 tends to q = π/2 from above
as λ → ∞, and the first nonzero solution to g−(q; λ) = 0 tends
to q = π/2 from below as λ → ∞. The asymptotic behavior
for the corresponding critical values of the anchoring parameter
is then τ → π/2+ for the U2 state and τ → π/2− for the D

state.
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FIG. 2. (a) Smallest positive roots of the functions f±(p; λ) (labeled DD and U1) and g±(q; λ) (labeled D and U2) for variable aspect ratio
λ; (b) corresponding critical anchoring strengths τ . The labels D, U1, U2, and DD refer to the solution labels explained in the text and Fig. 3.

For the two states bifurcating from the θ ≡ 0 trivial solution
(the DD and U1 states) the situation is slightly more compli-
cated. While the solutions of f±(p; λ) = 0 both tend to p = 0
from above as λ → ∞, the critical value of the anchoring
parameter behaves as τ → 2+ for the U1 state and τ → 0+ for
the DD state. The values of the critical anchoring parameters
at λ = 1 are found from Eq. (12) to be τ ≈ 2.55 for the U1 state
and τ ≈ 4.61 for the DD state. There is, therefore, a value of λ
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FIG. 3. Four director structures bifurcating from the trivial solu-
tions θ ≡ 0 (DD and U1 states) and θ ≡ π/2 (D and U2 states) for
an aspect ratio λ = 1.5.

at which the critical values of τ for the U1 and DD states cross,
as can be seen in Fig. 2(b). This value is found numerically to
be λc ≈ 1.75, at which τc ≈ 2.24.

The order of the bifurcations is illustrated in Fig. 4, where
we have considered equilibrium states obtained both numeri-
cally from the full nonlinear problem in Eqs. (5) and (6) (solid
lines, calculated using COMSOL [23], a finite element method
package) and analytically using the perturbation approach
around each of the bifurcation points described above (dashed
lines). This figure shows W0 and Wπ/2, the energies for the
trivial solutions, and energies for the bifurcation states when
λ = 1.5 < λc [Figs. 4(a) and 4(c)] and λ = 3 > λc [Figs. 4(b)
and 4(d)]. We see that, for λ < λc, the U1 state bifurcates
at a lower value of τ than the DD state while, for λ > λc,
the ordering exchanges and the DD state bifurcates at the
lower value of τ . In fact, for much larger values of λ, we
would expect a DDD state (or even states we might term
Dn which are similar to n repeated D states) to emerge and
eventually to be the state that bifurcates from the trivial θ ≡ 0
state at the lowest value of τ . For bifurcations from the trivial
state θ ≡ π/2, however, the D state always bifurcates at the
lower value of anchoring parameter τ . As would be expected
with a perturbation method, the analytical energy calculation
is only in good agreement with the full numerical solution
close to the respective bifurcation points. It is worth noting
that relaxation of the one-constant approximation for the Frank
elastic constants may lead to a change in the behavior of
the system since the relative energy cost of splay and bend
distortions would be altered. With differing amounts of splay
and bend distortions in each of the states, we might expect the
values and order of the bifurcations from the trivial states to
be changed. However, previous work in similar systems [24]
suggests that elastic anisotropy may not significantly affect the
stability of states so that the qualitative behavior would remain
the same.

IV. LARGE ANCHORING STRENGTH ANALYSIS

We now consider the situation of a large anchoring strength
τ corresponding to, for example, a well dimension d that is
much larger than the surface extrapolation length K/ω. In
this case, the director is anchored relatively strongly at each
well boundary and we may assume that on σi , away from the
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FIG. 4. Total free energy W as a function of anchoring parameter τ close to the bifurcation points, calculated numerically (solid lines) and
analytically (dashed lines). Also shown are the energies W0 and Wπ/2 for the trivial states. Bifurcations from θ ≡ 0 for (a) λ = 1.5 and (b)
λ = 3, showing that the order of the U1 and DD bifurcations exchanges as λ increases. Bifurcations from the θ ≡ π/2 for (c) λ = 1.5 and (d)
λ = 3. In this case, the D-state bifurcation always occurs at a lower value of τ .

corners, the director angle θ is close to the constant angle the
director takes in the infinite anchoring limit. We will denote
these infinite anchoring limiting angles at each boundary by
i .
This allows us to linearize each of the boundary conditions (6)
about θ = 
i , replacing them with

σ1 : θx + τ (θ − 
1) = 0; σ2 : θx − τ (θ − 
2) = 0;

σ3 : θy − τ (θ − 
3) = 0; σ4 : θy + τ (θ − 
4) = 0.

(18)

The four bifurcation states considered in the previous section
are characterized by the preferred boundary orientations

D state: 
1 = π

2
, 
2 = π

2
, 
3 = 0, 
4 = 0, (19)

U1 state: 
1 = π

2
, 
2 = −π

2
, 
3 = 0, 
4 = 0, (20)

U2 state: 
1 = π

2
, 
2 = π

2
, 
3 = 0, 
4 = π, (21)

with the DD state having a change in orientation along the
walls at x = 0 and x = 1 so that

DD state: 
1,
2 = ±π

2
for y ≶ λ

2
, 
3 = 0,
4 = 0.

(22)

We can associate these linearized boundary conditions with
quadratic forms of the surface energy densities in Eq. (2)

via

(ν · n)2 ≈ (θ − 
i)
2 (i = 1,2,3,4), (23)

up to an additive constant that will play no role in the
minimization of the total energy.

As mentioned above, this linear approximation of the
nonlinear boundary conditions will be valid everywhere except
at the corners of the region and also the points (0, λ/2), (1, λ/2)
for the DD state. However, as we will show later, up to first
order, when τ is large, our analysis suggests that the differences
between the energy associated with solutions of the linear
problem and the nonlinear problem are parameter-independent
constants. Therefore, after these parameter-independent con-
stants are determined [for each of the states (19)–(22)], we
obtain the τ → ∞ asymptotic expressions for the energies of
each state.

The solution of Laplace’s equation in region � subject to
boundary conditions (18) is found by separation of variables.
For the D, U1, and U2 states, since the system is now linear,
one need only derive the solution in the case 
1 
= 0, 
2 =

3 = 
4 = 0, and then employ the principle of superposition
together with appropriate rescaling and rotation, as is done
in [20]. The complication in our analysis is the presence of
Robin boundary conditions which lead to eigenvalues that
are solutions of a transcendental equation [25]. Details of the
calculations for all four distorted states are given in Appendix
A [including an explanation for why we need consider only
odd j in Eq. (24) and subsequent analysis]. The solution for
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the D, U1, or U2 states is most compactly written as

θ (x, y) =
∞∑

j=1
j odd

[

1�j

(
y

λ
,
1−x

λ
,
1

λ
,λτ

)
+ 
2�j

(
y

λ
,
x

λ
,
1

λ
,λτ

)
+ 
3�j (x,λ − y,λ,τ ) + 
4�j (x,y,λ,τ )

]
, (24)

where

�j (U,V,�,T ) = −2[cos(Pj ) − 1] cos[Pj (U − 1/2)][cosh(PjV ) cos(Pj/2) + sinh(PjV ) sin(Pj/2)]

[sin(Pj ) + Pj ][cosh(Pj�) sin(Pj ) + sinh(Pj�)]
, (25)

with the T dependence entering through the eigenvalues Pj (T ), solutions of the transcendental equation

T − Pj tan(Pj/2) = 0, Pj ∈ (jπ − π/2,jπ ) (j = 1,3,5, . . .). (26)

We see immediately from Eq. (25) that �j is symmetric
with respect to U = 1/2 through a single trigonometric term,
cos[Pj (U − 1/2)]. This will lead to symmetry in the x or y

direction about the center of the rectangle for each particular
state, depending on the combination of terms in solution (24)
and the appropriate 
i (i = 1,2,3,4). It is less obvious from
the nature of the V -dependent term in �j , but when combined
with the different choices of 
i in Eq. (24), symmetry or
antisymmetry is also introduced for the other xy coordinate
through the addition of the hyperbolic terms. The special form
of the series solution θ (x, y) for the DD state is given in
Appendix A. Figure 5 shows the director configuration for the
series solutions θ (x, y) for the four different sets of preferred
directions 
i given by Eqs. (19)–(22), restricted to a finite
number, N = 20, of terms in the summation. [The value of N

was chosen so that the solution (24) had an average error of
less than 1% compared to the numerical solution of the full
nonlinear system.]

Having found the equilibrium solution (24), we can cal-
culate the total free energy W in Eq. (4) associated with
the director structure, albeit using the quadratic forms of the
surface energy densities (23). Although W is now quadratic in
θ (x, y), through both the elastic and surface energy terms, it is
possible to simplify the expression using Green’s first identity
[26] and the boundary condition (18):

W ≈
∫

�

(∇θ )2 dx dy +
4∑

i=1

τ

∫
σi

(θ − 
i)
2 dsi

=
4∑

i=1

∫
σi

θ (ν · ∇θ ) + τ (θ − 
i)
2 dsi

=
4∑

i=1

∫
σi

−τθ (θ − 
i) + τ (θ − 
i)
2 dsi

=
4∑

i=1

τ
i

∫
σi

(
i − θ ) dsi .

The free energy can now be calculated using the series solution
(24) integrated along the four boundaries.

We consider first the D-state energy, which is calculated to
be

WD ≈ λτπ2

2
+

∞∑
j=1
j odd

Ej (1 + Fj ), (27)

0 0.5 1
0

0.5

1

1.5

0 0.5 1
0

0.5

1

1.5

0 0.5 1
0

0.5

1

1.5

0 0.5 1
0

0.5

1

1.5

FIG. 5. Director configuration for the series solution (24) re-
stricted to N = 20 terms. The four profiles correspond to the four sets
of preferred directions in Eqs. (19)–(22) for the different bifurcation
states. Aspect ratio λ = 1.5 and anchoring strength τ = 100.
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where

Ej = −4π2λ4τ 4

Pj
2(λτ + Pj )(λ2τ 2 + Pj

2 + 2λτ )
,

Fj = Pj { λτ [sech(Pj/λ) + tanh(Pj/λ) − 1] + Pj [sech(Pj/λ) − tanh(Pj/λ) + 1]}
(λ2τ 2 + P 2

j ) tanh(Pj/λ) + 2Pjλτ
,

and the positive eigenvalues Pj (odd j � 1) satisfy the tran-
scendental equation

λτ − Pj tan(Pj/2) = 0, Pj ∈ (jπ − π/2, jπ ). (28)

In order to derive a compact expression for the WD energy,
we first consider the Ej term in Eq. (27). Given that we are

considering large anchoring strengths, we can simplify and
solve the transcendental equation (28) to obtain

Pj = jπ
(

1 − 2

λτ

)
+ O(τ−2) (j = 1,3,5, . . .). (29)

This allows us to approximate Ej as

Ej ≈ −4λ9τ 9

(λτ − 2)2j 2[jπ (λτ − 2) + λ2τ 2][j 2π2(λτ − 2)2 + λ3τ 3(λτ + 2)]
. (30)

It is possible to express the sum of the approximation for Ej

over odd j � 1 in terms of the digamma function 
(z); the
full expression is given in Appendix B and we will denote it
by Esum(λ,τ ). Hence we may now write WD as

WD ≈ π2λτ

2
+ Esum(λ,τ ) +

∞∑
j=1
j odd

EjFj . (31)

Asymptotic expansions for EjFj and Esum are then possible as
τ → ∞, leading to

WD ≈ 2π

[
ln(τ ) + γ − π

4
+ ln

(
2λ

π

)
+ s1

(
1

λ

)
− s2

(
1

λ

)]
,

where γ ≈ 0.57721 is the Euler–Mascheroni constant [27] and
we have introduced the functions

s1(�) = 2
∞∑

j=1
j odd

coth(jπ�) − 1

j
,

s2(�) = 2
∞∑

j=1
j odd

csch(jπ�)

j
.

With analysis similar to that above, we can also derive the
asymptotic expansion of the energies of the U1 and U2 states.
The analysis for the DD state is more complicated, but we
recognize that, in the limit of infinite anchoring, the DD state
in a confined region of aspect ratio λ is effectively the same
as two adjacent D states of aspect ratio λ/2. The approximate
energies for the four states are then

WD ≈ 2π

[
ln(τ ) + γ − π

4
+ ln

(
2λ

π

)
+ s1

(
1

λ

)
− s2

(
1

λ

)]
,

(32)

WU1 ≈ 2π

[
ln(τ ) + γ − π

4
+ ln

(
2λ

π

)
+ s1

(
1

λ

)
+ s2

(
1

λ

)]
,

(33)

WU2 ≈ 2π

[
ln(τ ) + γ − π

4
+ ln

(
2

π

)
+ s1(λ) + s2(λ)

]
,

(34)

WDD ≈ 4π

[
ln(τ ) + γ − π

4
+ ln

(
λ

π

)
+ s1

(
2

λ

)
− s2

(
2

λ

)]
.

(35)

Following Bruckman [28], we could write the two infinite
sums s1(·) and s2(·) in the alternative forms

s1(λ) = −1

4
ln(1 − m) − ln

(
2K(m)

π

)
,

s2(λ) = −1

4
ln(1 − m), (36)

where m is related to λ by λ = K(1 − m)/K(m) and K is
the complete elliptic integral of the first kind. The energies
(32)–(35) now reduce to

WD ≈ 2π

[
ln(τ ) + γ − π

4
− ln(K(m))

]
, (37)

WU1 ≈ WD − π ln(m), (38)

WU2 ≈ WD − π ln(1 − m), (39)

WDD(λ) ≈ 2WD(λ/2). (40)

The differences between the approximate energies in
Eqs. (32)–(35) and an asymptotic result for the full nonlinear
problem using Rapini–Papoular boundary conditions (6) are
the errors due to the linear approximation of the boundary
conditions close to the corners of the region. However, com-
parison of Eqs. (37)–(40) with numerical calculations for
the nonlinear system (discussed in the following section),
restricting attention to large values of τ , indicates that this error
is neither a function of λ nor τ . This suggests that, in the leading
order, O(ln(τ )), and first order, O(1), terms, these errors need
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FIG. 6. Comparison of the leading terms in the asymptotic energy expansions in Eqs. (41)–(44) (dashed lines) with numerical calculations
(solid lines) for (a) τ = 10 and (b) τ = 100.

only be obtained numerically once, and are the same for all
instances of a nematic confined in a rectangular region being
independent of any geometric or material properties. It should
be noted that the parameter independence of these constants,
εDU and εDD in the expressions below, is numerically obtained
and we have not proved this result analytically. However, after
extensive calculations for a wide range of physically relevant
parameters we can have a high level of confidence in this
assertion. The asymptotic results for the four full nonlinear
energies are then

WD = 2π

[
ln(τ ) + γ − π

4
+ ln

(
2λ

π

)
+ s1

(
1

λ

)

− s2

(
1

λ

)
+ εDU

]
+ O

(
ln(τ )

τ

)
, (41)

WU1 = 2π

[
ln(τ ) + γ − π

4
+ ln

(
2λ

π

)
+ s1

(
1

λ

)

+ s2

(
1

λ

)
+ εDU

]
+ O

(
ln(τ )

τ

)
, (42)

WU2 = 2π

[
ln(τ ) + γ − π

4
+ ln

(
2

π

)
+ s1(λ)

+ s2(λ) + εDU

]
+ O

(
ln(τ )

τ

)
, (43)

WDD = 4π

[
ln(τ ) + γ − π

4
+ ln

(
λ

π

)
+ s1

(
2

λ

)

− s2

(
2

λ

)
+ εDD

]
+ O

(
ln(τ )

τ

)
, (44)

where εDU = −0.06 and εDD = 0.22.
From Eqs. (41)–(44), we see that the asymptotic expressions

for WU1 and WU2 coincide for the special case of a square
domain, i.e., λ = 1. (This is to be expected from the symmetry
of a square nematic well.) When λ is small, for which m is
close to 1 in Eqs. (37)–(39), it follows from Eqs. (37) and
(38) that the asymptotic behavior of WD is very similar to
that of WU1 . The same can also be said about WD and WU2

when λ is large, corresponding to m close to zero in Eqs. (37)–
(39). Given that WDD(λ) ≈ 2WDD(λ/2), we can find similar
relationships between WDD and WU1 or WU2 , except that the

constant error εDD 
= εDU due to the presence of high distortion
regions at the midpoints of the side walls x = 0 and x = 1. The
asymptotic expansions for the U1 and U2 states differ from
the D state through the logarithmic terms in Eqs. (38) and
(39), respectively. Therefore, since m ∈ (0, 1), it follows that,
in the limit τ → ∞, WD is the state with lowest energy. As
mentioned in the previous section, anisotropy in the elastic
constants could influence the nature of the minimum energy
state.

Comparing Eqs. (37)–(40) to equivalent expressions in
Lewis et al. [20], we see that we have agreement in a number of
terms [for example, those involving ln(τ ), ln(2λ/π ) and the
s1(·), s2(·) functions], but we have additional terms at O(1)
which are missing from [20]. Presumably this is due to the
need in [20] to remove parts of the region (at the corners) to
produce an analytically tractable problem.

V. COMPARISON OF ANALYTICAL AND NUMERICAL
ENERGIES

We can now compare various aspects of the approximate
asymptotic expansions found in Eqs. (41)–(44) to the energies
derived from the numerical solution of the full nonlinear
problem in Eqs. (5) and (6). Unlike the previous section, here
we consider a range of anchoring strengths, including those
close to the critical bifurcation values derived in the analysis of
very weak anchoring. We solve the full nonlinear system using
COMSOL with a nonuniform mesh, refined at the corners and
sides of the region, ensuring that the mesh is fine enough so
that further refinement does not alter the energy calculation by
more than 1%.

In Fig. 6 we plot the four asymptotic energy expansions from
Eqs. (41)–(44), up to O(ln(τ )/τ ), against λ for τ = 10 and
τ = 100 (dashed lines). In addition, we also plot the numerical
energies for the nonlinear system (solid lines). As expected,
there is a significant difference between the asymptotic forms
and numerical results for a relatively small value τ = 10,
whereas for a large value τ = 100, the leading terms in the
asymptotic results show good accuracy over a range of aspect
ratios λ.

Figure 7 combines our previous analytical results for bifur-
cation from trivial states and strong anchoring, and compares
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FIG. 7. Comparison of the numerically obtained energies (solid lines) with the approximate analytic forms close to bifurcations from the
trivial states (dash-dot) and for the leading terms in the high τ asymptotic expansion (dashed lines) as a function of τ for λ = 1.5. To illustrate,
the analytic curves are drawn for (a) τ ≶ 15 and (b) τ ≶ 10 as appropriate.

them to the energies obtained numerically (solid lines) for λ =
1.5. The solutions in Eqs. (16) and (17) provide approximate
energies for the weakly anchored system close to bifurcations
from the trivial states (small τ , dash-dot lines), while the
asymptotic behavior as τ → ∞ is given by the leading terms
in Eqs. (41)–(44) (large τ , dashed lines). The energies W0 and
Wπ/2 are also indicated. Note that it is difficult to distinguish
the graphs of U2 and D states in Fig. 7(b), as was suggested by
the form of the asymptotic expansions in Eqs. (41), (43), and
mentioned earlier. The analytical approximate energies agree
very well with the equivalent numerical graphs at anchoring
strengths that are close to the bifurcation from the trivial states
and also at large values of τ , with less than 1% discrepancy for
τ � 102.

VI. CONCLUSIONS

We have found approximate analytical solutions for the
nematic director angle configuration in a weakly anchored
rectangular region. The use of a standard weak anchoring
energy (the Rapini–Papoular surface energy) means we are
able to find solutions and calculate energies, without the need
to extract the core of defects to allow the system to be tractable
analytically. In two important limits, for anchoring strengths
very close to the bifurcation from a trivial state (i.e., close to
the point at which the distorted state comes into existence), and
in the high anchoring strength or weak elasticity limit, we find
good agreement with a numerical solution of the full nonlinear
problem.

Given typical values of the Frank elastic constants K ≈
10−11 N and anchoring strength ω ≈ 10−4 N m−1 [2], the
high-τ energy expressions in Eqs. (41)–(44) will be good
approximations for wells of side length d � 10 μm, so
that τ = ωd/K � 100. For larger anchoring strengths of

ω ≈ 10−3 N m−1, the energy expressions are accurate for a
wider range of well dimensions, with d � 1 μm. Since the
accuracy of most common forms of construction of such wells
(i.e., photolithography) is around the length scale of microns,
it is clear that the asymptotic energies are most likely to be
valid for all but the weakest of anchoring strengths. However,
in this high-τ limit it will always be the D state that is the
global energy minimizer. Therefore, if bistability is required,
with the possibility of switching between stable states, it may
be useful to consider anchoring strengths closer to those which
occur at the critical anchoring parameters for bifurcation from
trivial states. It is at these anchoring strengths that it will be
easiest to switch between states since the energy barriers are
smaller.
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APPENDIX A

A standard separation of variables approach to find the
solution of Laplace’s equation in region � subject to Robin
boundary conditions (18) leads to series solutions for the
D, U1, and U2 states in the form of Eq. (24), only with the
sums taken over all j ∈ Z+ rather than restricted to odd values.
In their most general forms, �j (U,V,�,T ) = Mj × Nj (j =
1,2,3, . . .), where

Mj (U,T ) =
√

2[cos(PjU )Pj + T sin(PjU )]√
Pj

2 + T 2 + 2T

are orthonormal with respect to U ∈ (0, 1) and

Nj (V,�,T ) =
√

2T 2
[(

Pj
2 + T 2

)
cos(Pj ) + Pj

2 − T 2
]
[cosh(PjV )Pj + T sinh(PjV )]

Pj

(
P 2

j − T 2
)√

Pj
2 + T 2 + 2T

[(
Pj

2 + T 2
)

sinh(Pj�) + 2 PjT cosh(Pj�)
] .
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The eigenvalues Pj (T ) are the positive solutions of the tran-
scendental equation

tan(Pj ) − 2T Pj

P 2
j − T 2

= 0 (j = 1,2,3, . . .). (A1)

For large T (representing an anchoring parameter), we can
simplify and solve Eq. (A1) to find

Pj = jπ

(
1 − 2

T

)
+ O(T −2) (j = 1,2,3, . . .).

In other words, Pj must lie in the second quadrant for j odd and
the fourth quadrant for j even, both corresponding to tan(Pj ) <

0. Restating Eq. (A1) in terms of T (> 0), we can now show

that

T = (−1)j+1Pj [tan(Pj/2)](−1)j+1
(j = 1,2,3, . . .).

However, upon substitution of T we subsequently find
Nj (V,�,T ) = 0 for j even. Therefore, the only contributions
to θ (x, y) come from eigenvalues Pj (T ) lying in the second
quadrant satisfying the transcendental equation (26). Further-
more, if we also replaceT in�j withPj tan(Pj/2) (odd j � 1),
we eventually obtain the simplified form given by (25). This
expression is then used to construct the solution θ (x, y) for the
D, U1, and U2 states.

The DD solution can also be found by separation of
variables, though the derivation is slightly different due to the
piecewise nature of boundary condition (22). Following some
analysis, we can show that the director angle θ (x, y) for the
DD state can be expressed as the series

θ (x, y) =
∞∑

j=1

π cos(Qj )[cos(Qj ) − 1] cosh[Qj (2x − 1)/λ] sin[Qj (2y − λ)/λ]

[cos(Qj ) sin(Qj ) − Qj ][sinh(Qj/λ) sin(Qj ) − cosh(Qj/λ) cos(Qj )]
,

where the eigenvalues Qj are the positive solutions of the transcendental equation

λτ tan(Qj ) + 2Qj = 0.

One obvious feature of this director profile is its symmetry in the horizontal direction with respect to x = 1/2 and antisymmetry
about the center in the vertical direction.

APPENDIX B

The approximation for the energy WD in Eq. (31) contains a term Esum(λ,τ ) defined to be the sum of the rational approximation
for Ej in Eq. (30) over odd j from 1 to ∞. It is possible to express this sum in terms of the digamma function 
(z) by expanding
in partial fractions in terms of j and using the identity


(z) = −γ +
∞∑

n=1

( 1

n + 1
− 1

n + z

)
(z 
= 0, − 1, − 2, . . .),

where γ ≈ 0.57721 is the Euler–Mascheroni constant. Following this approach, we obtain

Esum(λ,τ ) =
∞∑

j=1
j odd

−4λ9τ 9

(λτ − 2)2j 2[jπ (λτ − 2) + λ2τ 2][j 2(λτ − 2)2 + λ3τ 3(λτ + 2)]

= πλ2τ 2

2(λ2τ 2 − 4)

{
4γ + 8 ln(2) − πτ 2λ2

λτ − 2
+ 2(λτ + 2)

λτ + 1



(
1

2
+ λ2τ 2

2π (λτ − 2)

)

+ λτ (
√

λτ + 2 + i
√

λτ )

(λ τ + 1)
√

λ τ + 2



(
1

2
− iλτ

√
λτ (λτ + 2)

2π (λτ − 2)

)

+ λτ (
√

λτ + 2 − i
√

λτ )

(λ τ + 1)
√

λ τ + 2



(
1

2
+ iλτ

√
λτ (λτ + 2)

2π (λτ − 2)

)}
.

For large anchoring strength, this expression behaves asymptotically as

Esum(λ,τ ) = −π2λτ

2
− π2

2
+ 2γπ + 2π ln

(
2λτ

π

)
+ O

(
ln(τ )

τ

)
,

contributing to the energy WD in Eq. (31).
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