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Qing Li," P. Zhou, and H. J. Yan
School of Energy Science and Engineering, Central South University, Changsha 410083, China
(Received 27 August 2017; published 4 December 2017)

In this paper, an improved thermal lattice Boltzmann (LB) model is proposed for simulating liquid-vapor
phase change, which is aimed at improving an existing thermal LB model for liquid-vapor phase change
[S. Gong and P. Cheng, Int. J. Heat Mass Transfer 55, 4923 (2012)]. First, we emphasize that the replacement
of V- (AVT)/pcy with V - (xVT) is an inappropriate treatment for diffuse interface modeling of liquid-vapor
phase change. Furthermore, the error terms 0, (T'v) + V - (T'vv), which exist in the macroscopic temperature
equation recovered from the previous model, are eliminated in the present model through a way that is consistent
with the philosophy of the LB method. Moreover, the discrete effect of the source term is also eliminated in the
present model. Numerical simulations are performed for droplet evaporation and bubble nucleation to validate
the capability of the model for simulating liquid-vapor phase change. It is shown that the numerical results of the
improved model agree well with those of a finite-difference scheme. Meanwhile, it is found that the replacement
of V. (AVT)/pcy with V - (xVT) leads to significant numerical errors and the error terms in the recovered
macroscopic temperature equation also result in considerable errors.
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I. INTRODUCTION

The lattice Boltzmann (LB) method, which originates from
the lattice gas automata method [1], has been developed into an
efficient numerical approach for a wide range of phenomena
and processes in the past three decades [2-9]. The LB equation
can be viewed as a special discrete solver for the kinetic
Boltzmann equation with a certain collision operator, such as
the Bhatnagar-Gross-Krook (BGK) collision operator [3,10]
and the multiple-relaxation-time (MRT) collision operator
[11-16]. The fluid flow is simulated by tracking the evolution
of the particle distribution function and then the distribution
function is accumulated to obtain the macroscopic properties.
The LB method is easy to parallelize and is far less costly in
terms of data exchange owing to its explicit scheme and the
local interactions.

In recent years, the LB simulations of liquid-vapor phase
change have attracted much attention and three categories
of thermal LB models have been developed for simulating
liquid-vapor phase change. The first category is based on
the phase-field multiphase LB method, such as the models
developed by Dong et al. [17], Safari et al. [18,19], and
Sun et al. [20]. In these models, the liquid-vapor interface
is captured by solving an interface-capturing equation (e.g.,
the Cahn-Hilliard equation) and a source term is incorporated
into the continuity equation or the interface-capturing equation
to mimic the phase change. Hence the rate of the liquid-vapor
phase change in these models is an artificial input.

The second category is based on the pseudopotential multi-
phase LB method, which is a very popular multiphase approach
in the LB community [7]. In the pseudopotential multiphase
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LB method, the phase separation between different phases is
achieved via an interparticle potential [21,22]. Therefore the
liquid-vapor interface can naturally arise, deform, and migrate
without using any interface-tracking or interface-capturing
technique. The thermal multiphase LB models proposed by
Zhang and Chen [23], H4zi and Markus [24,25], Biferale et al.
[26], Gong and Cheng [27], Kamali et al. [28], and Li et al.
[29] can be classified in this category. The third category is the
multispeed thermal LB method, which employs a single set of
distribution functions like the standard isothermal LB method
but utilizes more discrete velocities [30,31]. The equilibrium
distribution function usually includes higher-order velocity
terms so as to recover the energy equation. The thermal LB
models presented by Gonnella et al. [32] and Gan et al. [33]
for thermal liquid-vapor flows fall into this category.

In many of the aforementioned thermal multiphase LB
models, a thermal LB equation is employed to recover a
target temperature equation at the Navier-Stokes level. The
target temperature equation is usually a convection-diffusion
equation with a source term. Therefore a thermal LB equation
with a source term was devised in these models. However, it
has been widely found [34-37] that there exist error terms in
the macroscopic equation recovered from the standard thermal
LB equation, which should be treated using appropriate
correction techniques. In addition, the temperature field can
also be simulated by traditional numerical methods such as
the finite-difference method. In Ref. [29], Li et al. devised a
hybrid thermal LB model for liquid-vapor phase change, which
employs a finite-difference scheme to solve the temperature
equation.

Owing to the fact that many researchers prefer to use
a thermal LB equation rather than a traditional numerical
scheme, the thermal LB equation—-based models are widely
utilized in the literature for simulating liquid-vapor phase
change. In particular, the thermal LB model proposed by
Gong and Cheng [27] was recently used in some studies
because of its simplicity, which results from the replacement
of V-(AWVT)/pcy with V - (xVT), where A is the thermal
conductivity, cy is the specific heat at constant volume, and
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X = A/pcy is the thermal diffusivity. Such a treatment is based
on the assumption that the density p is constant everywhere.
Although the density in multiphase flows is constant in each
single-phase region, it varies significantly within the liquid-
vapor interface, which is usually a diffuse interface (around
four to five lattices) in LB simulations.

In this work, we aim at presenting an improved thermal
LB equation-based model for liquid-vapor phase change.
The error terms 9,(7v) + V - (T'vv), which exist in some
previous thermal LB equation—based models for liquid-vapor
phase change, are eliminated in a way that is consistent with
the philosophy of the LB method. The discrete effect of
the source term is also eliminated in the present improved
model. Numerical simulations show that the replacement
of V.-(AWVT)/pcy with V. (xVT) leads to considerable
numerical errors. The rest of the present paper is organized
as follows. The macroscopic temperature equation for liquid-
vapor phase change and the thermal LB model proposed by
Gong and Cheng are described in Sec. II. The improved
thermal LB model is proposed in Sec. III. The numerical
simulations and discussions are presented in Sec. IV. Finally,
Sec. V concludes the present paper.

II. MACROSCOPIC TEMPERATURE EQUATION
AND THE GONG-CHENG MODEL

A. Target temperature equation

Historically, the first thermal LB model for liquid-vapor
phase change was proposed by Zhang and Chen [23]. In their
work, the macroscopic energy equation was given by

o(de+v-Ve)=V.-(AVT)— pV -v, (1)

where e = cy T is the internal energy of ideal gases and X is the
thermal conductivity. In 2009, Hazi and Markus [24] derived
a target temperature equation from the local balance law for
entropy [38],

> _v.ovn )
PTo, = :

where s is the entropy and D(---)/Dt = 0,(---)+v-V(--+)
is the material derivative. The viscous heat dissipation has been
neglected in Eq. (2). According to the thermodynamic relations
of nonideal gases, the following equation can be obtained:

9
ds = Lar + ( ZPEOS ) gy, 3)
T oT ),

where pgos is a nonideal equation of state and V = 1/p is the
specific volume. The above equation is the first ds equation
in thermodynamics. According to Eq. (3) and the continuity
equation D, p = —pV - v, the following temperature equation
can be derived from Eq. (2) for nonideal gases:

9
pey(T +v-VT) =V .(OVT) — T(%) V.vy
p

“4)

This equation can also be found in Ref. [39]. For ideal gases
(pros = pRT), the last term on the right-hand side of Eq. (4)
reduces to pgosV - v. The above equation can be rewritten as

PHYSICAL REVIEW E 96, 063303 (2017)

follows:

| T (8
3T +v-VT = —V .(AVT) — —(ﬂ> V.vy
pcy pcy \ oT /,

&)

In the literature, some other forms of the energy equation

for nonideal fluids can be found [40—42]. For example, Onuki

[41,42] established a general equation for the total energy

density of nonideal fluids (see Eq. (9) in Ref. [41]), which

can be transformed to the following equation for the internal
energy density (see Eq. (2.40) in Ref. [42]):

4e+V.-(ve)=V-(AVT) -l —0): Vy, (6)

where é = pe, is the internal energy density (e, is the internal
energy of nonideal fluids), o is the dissipative stress tensor,
and II = pgpsI + T is the nonviscous stress, in which pgos
is the nonideal equation of state, I is the unit tensor, and T is
the contribution to the pressure tensor depending on density
gradients [32]. Using the continuity equation and I: Vv =
V - v, the following equation can be derived from Eq. (6):
De,
"D
According to thermodynamics, the relationship between the
internal energy and the entropy is given by

de, = T'ds — pgosdV, )

where V = 1/p. Using Eq. (8), the internal energy equation
(7) can be transformed to

TDs D /1
o Dt PEOS Dr \ o
=V .-AVT)— pgosV-v— (T —0): Vv. (&)

Substituting the continuity equation Dp/Dt = —pV - v into
Eq. (9) yields

=V .-(AVT) = prosV - v— (T —a): Vv. (7)

Ds
pTD_t =V.-(AVT)— (T —0): Vv. (10)

The term o : Vv represents the viscous heat dissipation.
Comparing Eq. (2) with Eq. (10), we can see that these two
equations are basically consistent except that (T — a): Vv is
neglected in Eq. (2).

B. Chapman-Enskog analysis of the Gong-Cheng model

For simplicity, Gong and Cheng [27] replaced
V.-(VT)/pcy in Eq. (5) with V.- (xVT), where x =
Af(pcy) is the thermal diffusivity, and then established the
following temperature equation:

&T +V -(vT)

—V.(xVT) + T[l — L(8”‘505) i|V~V. (11)
pCy aT o

The corresponding thermal LB equation for Eq. (11) was given
by [27]

1 e
Zu(X+€x8, 1 +8) — gu(x, 1) = —T—(ga —8%%) +8,Gq,
8

12)

where g, is the temperature distribution function, e, is the
discrete velocity in the «ath direction, 7, is nondimensional
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relaxation time for the temperature field, and the source term
G, = wy¢, in which ¢ represents the second term on the
right-hand side of Eq. (11), namely [27],

_ I (9peos '
e MR

The equilibrium temperature distribution function g’ was
given by
ch)
) (14)

where I is the unit tensor, ¢, = ¢/+/3 is the lattice sound speed,
and w, are the weights, which are given by (for the D2Q9
lattice) wg = 4/9, w;_4 = 1/9, and ws_g = 1/36.

The macroscopic equation recovered from Eq. (12) can
be derived through the Chapman-Enskog analysis, which
can be implemented by introducing the following multiscale
expansions:

& =8 +88,, ga=289+88"+82¢P, (15
where fy and #; are two different time scales, and §, serves as

the expansion parameter [43]. The Taylor series expansion of
Eq. (12) yields

v (egey —

4
2c¢y

€y -V
eq _
8e _a)aT|:1+ 2 +

2

)
8i(3 +ey-V)gy + 3'(8, +e,-V)g, +

1
= (80— &) +5,G. (16)
8

With the help of Eq. (15), Eq. (16) can be rewritten in the
consecutive orders of §; as follows:

0@ : (O, +eu Vgl =——g'+Go,  (17)
8
O(87) 1 3,850 + (3, + €y - V) <”+1(a +e, - V)2g
t . t|ga Io o g 2 To eot go{
1
@, 18
tgga (18)

T +V.-(vT) =

V-(xVT)+ ¢+ V -{(z,
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Substituting Eq. (17) into Eq. (18) leads to

1
3,850 + (0, + €y - V)(l ~ 5 ) M4 (8f0 +e, - V)G,
8

1

—g?. (19)
Tg

Taking the summations of Eqgs. (17) and (19), the following
equations can be obtained, respectively:

3T +V-(vT)=¢, (20)
1 1
N I — (M Z =
3, T +V (1 2Tg><§a u,ga>+23to¢ 0. (I

In the above derivations, the relations Y, g = )" ¢? =
> 4 Go=¢,and ), e,G, = Ohave beenused. From Eq. (17)

we can obtain
Z egl) =1, |:8t0 (Z eag;") +V. (Z eaeagg">:|.
o o
(22)

With the aid of Eq. (14), we have

ko) = —uld(T0+V T+ EVT]. @3

Substituting Eq. (23) into Eq. (21) gives
T =V -{(ry —0.5)[3,(TV)+ V- (Tww) + c;VT]}
~ 3040 (24)

Combining Eq. (20) with Eq. (24) through 0, = 9, + 6,0;,, we
can obtain

—0.5)8,[0,(Tv) +V - (Tvv)]} — %8,045, (25)

where x = A/(pcy) = (15 — 0.5)638,. The above equation
is the macroscopic temperature equation recovered from
Eq. (12). The underlined terms in Eq. (25) are unwanted
(error) terms, which also exist in some other thermal LB
equation—based models for liquid-vapor phase change. Among
these error terms, the error terms 9, (7v) + V - (Tvv) result
from ", e, g, while the last term on the right-hand side of
Eq. (25) is caused by the discrete effect of the source term,
which can be seen from Eqgs. (19) and (21).

Remark 1. The replacement of V - (AVT)/pcy with V -
(x VT) is an inappropriate treatment for multiphase flows. In
fact, such a treatment requires that the following term can be
neglected:

_V-(VT)

_v. (AVT) (AVT)-V(pcy)
pcy pCy '

26
(pey)? (20

For single-phase incompressible flows, the aforementioned
replacement is applicable since the density variation is very
small. For multiphase flows, the density varies significantly
within the liquid-vapor interface, which usually has a thickness
of four to five lattices in the LB simulations of multiphase
flows. Therefore the term given by Eq. (26) cannot be neglected
at the liquid-vapor interface. Some researchers [44] found that
under certain conditions ¢ is small in comparison with the
source term ¢ given by Eq. (13). In fact, not only ¢ but also
the thermal conductivity term V - (AVT)/pcy can be small as
compared with the term ¢ in Eq. (13), but it does not mean that
@ or the thermal conductivity term in the temperature equation
can be dropped. The comparison should be made between
¢ and the thermal conductivity term instead of comparing ¢
with the source term ¢ in Eq. (13), because it arises from the
replacement of V - (AVT)/pcy with V - (x VT).
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Remark 2. The error terms in the recovered macroscopic
temperature equation are usually very small for single-phase
incompressible flows. Nevertheless, they may result in consid-
erable errors for multiphase flows. For example, the error term
0, (T'v) can be split into 9,,(Tv) = v, T + T 9,,v, in which
d;,v is given as follows according to the Chapman-Enskog
analysis of the LB equation for the flow field [36]:

0, v=—v-Vv+ %[F - V(,ocf)], (27)

where F is the force acting on the system. Obviously, F/p and
V p/p are non-negligible within the liquid-vapor interface for
multiphase flows.

J

PHYSICAL REVIEW E 96, 063303 (2017)

III. IMPROVED THERMAL LB MODEL
A. Theoretical analysis based on the BGK collision operator

The improved thermal LB model will be constructed
based on the MRT collision operator. Before presenting the
improved model, we would like to provide some analyses about
removing the error terms in Eq. (25) within the framework
of the BGK collision operator, which may be useful for
general readers to better understand the improved thermal
LB model in the next subsection. The target temperature
equation given by Eq. (5) can be rewritten as follows
[25]:

T +V-(WT)=V .- (kVT)+ 1y, (AVT)=V - (kVT) + T[l - —<8PE°S) }V V. (28)
pcy 1% p

The source term ¢ is now given by the underlined terms in
Eq. (28).

According to Egs. (22) and (23), the error term V - (T'vv) in
Eq. (25) can be removed by dropping the second-order velocity
terms in g5, and then g5’ becomes

€y -V
g = a)aT<l +— > 29)

Cs

Meanwhile, the error term 9,,(7 v) in Eq. (25) can be eliminated
by adding a correction term to the thermal LB equation,

ga(x+ea8t’ t+8t) - gOl(Xv t)
1

= —— (8« — &) +8:Gu +8,C, (30)
4

where the correction term C, is given by

1 €y 0:(T
c, - (1__)ca)e—2,(v), a1
21, cs
which satisfies >4Ca=0 and > y€Co=

(1 =0.5/t4)0,(T).

Theoretically, to remove the discrete effect of the source
term, namely, the error term 0,¢ in Eq. (25), the source
term G, in Eq. (30) should also contain the coefficient
(1 —0.5/t,) in the correction term given by Eq. (31), which
has been extensively demonstrated in the literature when a
forcing or source term is incorporated into the LB equation
[45,46]. However, when this coefficient is placed in front
of the source term, the temperature should be calculated by
T=7Y,8 +055), G, Since Gy = wy¢, in which ¢
contains V - (AVT), the calculation of the temperature will
become implicit and iterations will be required.

Hence another treatment is considered. If we retain the def-
inition of the temperature 7 = Za Zu» the source term should
take the form of 0.58,[G (X + €,8;, t + 8;) + G4 (X, 1)] so as
to remove the discrete effect of the source term. Fortunately,
we have Za e, G, = 0; hence the term e, - VG, in Eq. (19)
does not affect the summation of Eq. (19). Therefore the source

(

term can take the following form:
) )
é[Ga(x, 1+38)+ Gux, D]~ 5;<1 + E’&)GX(X, 0.

(32)
Then the thermal LB equation becomes
Ba(X + €48y, 1+ 81) — gu(X, 1)

1 . 8
= —— (8« — &) + 8:Cat8i( Go + 5Ga ).  (33)
T, 2

The Chapman-Enskog analysis can also be performed for
Eq. (33). Using the multiscale expansions given by Eq. (15),
the correction term C, should be expanded as C, = Cyo +
8:Cq1 since it contains 9;(7'v). Then the following equations
can be obtained:

1
0@5,) : (B, + € - Vgl = —;gg1> +Coo+ Gy, (34)
8

1
O(F7) : g5 + (B, + - V)85 + 53 + € - V)

1 o 1
= __ga + Cal + _atoGa~ (35)
T, 2

Substituting Eq. (34) into Eq. (35) yields

eq . _ 1 1) l .
811 ga + (ato + ea V) 1 ga + (eot V)Ga
27, 2

1 )
+ (0 +e - V)Coo = ——g," + Car. (36)
2 T,
Note that the last term on the right-hand side of Eq. (35) has
been used to eliminate the same term generated on the left-hand
side of Eq. (36). The summations of Eqgs. (34) and (36) lead
to, respectively,

0,T+V - -(vT)=¢, 37

1 1
0,T+V. (1 - £> (Za eag((xl)) + EV : (Za eacao)
=0. (38)
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In the above derivations, the relations Zw Gy, =9,
Y o€Ge=0,and Y, Coo =), Co1 =0 have been used.
From Eq. (34) we can obtain

5 o[0T 5 (5 o)
-y eaCao]. (39)

Using Eq. (29), we have

T =V {(tg —0.5)[3,(TV)+c.VT]}

~V- (%Y €uCuo)- (40)

Since ), €,Cq0 = (1 — 0.5/14)9,,(T'v), the error term 9,,(7'v)
in Eq. (40) can be eliminated. Then the target temperature
equation can be correctly recovered as follows:

WT +V-(WI) =V -(kVT) + ¢, 41)

where k = (7, — 0.5)0328, and ¢ denotes the underlined terms
in Eq. (28). Note that k£ has no physical meaning and is usually
taken as a constant.

The above analyses are provided for the purpose of helping
general readers to better understand the improved model in the
next subsection. It can be seen that the error terms 9, (Tv) +
V - (T'vv) are removed by dropping the second-order velocity
terms in the equilibrium temperature distribution function
and adding a correction term to the thermal LB equation.
Furthermore, the discrete effect of the source term is eliminated
by incorporating an additional term into the thermal LB
equation.

B. Improved thermal MRT-LB model

In this subsection, the improved thermal LB model is
presented based on the MRT collision operator. Using the MRT
collision operator, the thermal LB equation can be written as
follows:

8a(X + €48;,1 + ;)
= 8o(X,1) = Ao (8p — g5") Iy + 8 S(x,1),  (42)

where S, is the source term in the discrete velocity space and
[\a,g = (M"AM)a,g is the collision matrix [11,47], in which
M is an orthogonal transformation matrix and A is a diagonal
matrix given by (for the D2Q9 lattice)

A = diag(so, 1, 52, 53, S4, S5, S, 57, 58). (43)

Through the transformation matrix M, the temperature dis-
tribution function g, and its equilibrium distribution g5’
can be projected onto the moment space via m = Mg and
m‘? = Mg?, respectively, where g = (go,81,-- -, gg)T and
geq = (g(iq?gfq? s vggq)T~

The second-order velocity terms in the equilibrium distri-
bution function gg’ should be dropped to remove the error term
V - (T'vv). The equilibria m*? that correspond to Eq. (29) are

given by

m =T, =2, 1, v, — v, vy, —1,,0,07. (44)

PHYSICAL REVIEW E 96, 063303 (2017)

The right-hand side of Eq. (42) can be implemented in the
moment space as follows:

m* =m— A(m — m*) 4+ §,8S, 45)

where m* = (mg,mj, ... ,m§)T and S is the source term in the
moment space. We are not concerned about the detailed form
of S, in the discrete velocity space since the source term S
can be directly specified in the moment space. For the present
improved model, the source term S is given by

S=(S,0,0,0,0,0,0,0, 07, (46)

where Sy = ¢ + 0.56,0,¢. As discussed in the previous sub-
section, the additional term 0.56,0,¢ is used to eliminate the
discrete effect of the source term. With Eq. (45), the streaming
process is given by

g(X(X + ed8t7 t + 8t) = g:(xa t)v (47)

where g* = M~'m*. By adopting the above treatments, it can
be found that the error term V - (T'vv) and the discrete effect
of the source term have been eliminated. However, the error
term 9y, (7'v) still exists, which can be seen from the Chapman-
Enskog analysis given in the Appendix.

Similar to the treatment based on the BGK collision
operator, the error term 0,,(7'v) can be eliminated by adding
correction terms to the collision processes of ms and ms,
respectively,

N
m; new — m: + 81 (1 - 53)8,0(7111_,(), (48)

N
m; new — m; + 81 (1 - g)ato(TUy)» (49)

where m} and m? are given by Eq. (45). Meanwhile, according
to the Chapman-Enskog analysis, we can find that [see
Egs. (A14) and (A15) in the Appendix]

— 3o (Tve) + 18, (m}" +m37) = —sym{”, (50)

— 3, (Tvy) + 13, (m}" +m57) = —sem. (51)

Setting m{? + m5" = 0, the following relations can be ob-
tained:

3 (Tvy) = sgm’, 8, (Tv,) = seml”, (52)

which means that 9, (T'v,) and 9,,(T v,) can be evaluated from
mi]) and m(6]), respectively. According to the setting of m{? +

m5" = 0, the equilibria m*? can be changed from Eq. (44) to
m =T, —2,2, v, — v, vy, — 1y, 0,07, (53)

The above equilibria can also be found in Ref. [37]. Using
Eq. (52), the modifications given by Eqgs. (48) and (49) can be
rewritten as follows:

* * §3

M e =15+ 5,(1 - 3>s4m£3>, (54)
* * S5

M5 pew = M5 + 8f<1 - E)Sﬁm(ﬁl)’ (55)
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where the nonequilibrium parts mil) and m(61) are calculated

through §,m" ~ m, — mg!. The Chapman-Enskog analysis
in the Appendix shows that the target temperature equation can
be correctly recovered. The idea of using the nonequilibrium
parts of certain components in the moment space to adjust
the macroscopic equations was introduced by Zheng et al.
in Ref. [16], where they modified the collision processes of
a D2Q17 MRT-LB model to achieve a consistent viscosity
in the macroscopic momentum and energy equations. Similar
treatments can also be found in the studies of Li et al. [12] and
Huang and Wu [37].

To sum up, Egs. (45)—(47) and (53) together with Egs. (54)
and (55) constitute the improved thermal LB model for liquid-
vapor phase change. In numerical implementations, 9;¢ in
Eq. (46) is calculated with 9,¢ ~ [¢(¢) — ¢ (t — 8;)]/5; [34],
but note that such a treatment is first-order accurate in time. The
isotropic difference schemes (see Eqgs. (73) and (74) in Ref. [7])
are applied to the spatial gradients and the Laplacian of T in the
source term. For the flow field, an improved pseudopotential
multiphase LB model proposed by Li ef al. is employed (see
Refs. [13,29] for details).

The coupling between the multiphase LB model for the flow
field and the present thermal LB model for the temperature
field is established via the nonideal equation of state, and we
adopt the Peng-Robinson equation of state following the work
of Ref. [48]:

PRT av(T)p?

— , 56
1—bp 1+2bp— b2p? (56)

PEOS =

where  9(T) = [1 + (0.374 64 + 1.54226w — 0.269 92w?)
(1 — JT/THP?, a = 0.457 24R2T62/pc, and
b =0.0778RT,/p.. The parameter = 0.344 is the
acentric factor and T is the critical temperature, which can
be obtained from the formulations of @ and b. The saturation
temperature of the system is chosen as Ty = 0.867,.
According to Ref. [48] and the relationship between a and the
interface thickness [13], we utilize a = 3/49, b = 2/21, and
R =1 in the present study.

IV. NUMERICAL SIMULATIONS

In this section, numerical simulations are carried out to
validate the capability of the improved thermal LB model
for simulating liquid-vapor phase change. For comparison,
a compromised model is established, which is the same as
the improved model except that no treatments are applied to
eliminate the error term 9,,(7'v) and the discrete effect of the
source term (i.e., the error term 9;,¢).

Hence the effects of the error terms can be identified
by comparing the numerical results of the compromised
model with those of the improved model, while the influence
of the replacement of V - (AVT)/pcy with V - (xVT) can
be identified via a comparison of the numerical results
between the Gong-Cheng model and the compromised model.
For different thermal models and a finite-difference scheme
mentioned below, the flow simulation is fixed at using
the aforementioned improved pseudopotential multiphase LB
model so as to identify the performances of different solvers
for the temperature equation.

PHYSICAL REVIEW E 96, 063303 (2017)

A. Droplet evaporation

First, the well-known D2 law for droplet evaporation is
considered, which predicts that the square of the droplet
diameter changes linearly over time [18,49]. This law is
established based on the following conditions: The liquid
and vapor phases are quasisteady, the evaporation occurs in
an environment with negligible viscous heat dissipation and
no buoyancy, and the thermophysical properties (e.g., cy and
A) are constant. The simulations are carried out in a square
domain with a grid size of N, x N, = 200 x 200 (lattice unit).
Initially, a droplet with a diameter of Dy = 60 is located in the
center of the computational domain.

According to the requirement of the D2 law, no buoyant
force is employed and the thermal conductivity is chosen to be
constant: A = 2/3 (lattice unit). Then theterm V - (AVT)/pcy
in Eq. (5) reduces to AV2T /pcy . At the initial state, the temper-
ature of the droplet is set to its saturation temperature, while
a temperature T, is applied to the surrounding vapor of the
droplet and the superheat AT = T, — T, is chosen as 0.147.
The droplet evaporation is driven by the temperature gradient
at the liquid-vapor interface. At the boundaries, a constant
temperature condition is employed (I" = T;). The relaxation
parameters s3 and ss are set to 1.0, which corresponds to k =
¢28,/2 in Eq. (28). For the Gong-Cheng model, the relaxation
time 7, is given by 7, = A/(pcZcy$;) + 0.5. The specific heat
at constant volume is chosen as ¢y = 5 and the kinematic
viscosity is taken as v = 0.1 in the computational domain.

The snapshots of the density contours obtained by the
Gong-Cheng model, the compromised model, and the im-
proved model are shown in Fig. 1. The variation of (D /Dy)?
with time is displayed in Fig. 2. For comparison, the available
data in Ref. [50], which were obtained using a finite-difference
scheme to solve Eq. (5), are also shown in Fig. 2. The figures
show that the evaporation process predicted by the Gong-
Cheng model is much faster than those predicted by the
compromised model and the improved model. Moreover, Fig. 2
clearly shows that the numerical results of the Gong-Cheng
model do not obey the D2 law (the square of the droplet
diameter should change linearly over time), while the linear
relationship can be observed in the results of the compromised
model and the improved model. Furthermore, from Fig. 2 it
can be seen that the numerical results given by the improved
model are in excellent agreement with the data in Ref. [50].

As mentioned earlier, the influence of the replacement
of V.-(AVT)/pcy with V.(xVT) can be identified by
comparing the numerical results of the Gong-Cheng model
with those of the compromised model. In Fig. 2 the severe
deviations between the results of these two models indicate
that such a treatment greatly affects the numerical results.
These deviations are expected since evaporation is a type of
vaporization that takes place at the surface of a liquid and
in LB simulations the density varies remarkably within the
liquid-vapor interface, which is usually a diffuse interface
with a thickness of four to five lattices. Obviously, the
aforementioned replacement is invalid within the liquid-vapor
interface. Furthermore, from Fig. 2 we can observe some
visible differences between the results of the compromised
model and those of the improved model, which means that the
error terms also yield considerable numerical errors.
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@
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FIG. 1. Validation of the D2 law. Snapshots of the density
contours obtained by (a) the Gong-Cheng model, (b) the compromised
model, and (c) the improved model. The snapshots are taken at (from
left to right) r = 2 x 10%8,, 5 x 10*§,, and 1.6 x 10°5,.

To further illustrate the above points, the droplet evapora-
tion on a solid surface is also considered. In the above test,
the thermal conductivity is chosen to be constant according
to the requirement of the D2 law. In the present test, the
thermal conductivity is taken as A = pcy x with x = 0.08.
Then V - (A\VT) should be treated as V - (AWVT) = AV?T +
VXL -VT. The simulations are performed in a rectangular
domain with a grid size of N, x N, =300 x 150. A droplet
with a radius of r = 40 is initially placed on the center of

1.0
—— Ref. [50]
0.9 —@— The Gong-Cheng model
—A— The compromised model
0.8} —@— The improved model
o~ 071
o
[a)
8 06
05F
04+
0.3} ) ) ) ) )
0 50000 100000 150000
time (s,)

FIG. 2. Validation of the D2 law. Comparison of the numerical
results given by the Gong-Cheng model, the compromised model, and
the improved model with the data in Ref. [50], which were obtained
by a finite-difference scheme.

PHYSICAL REVIEW E 96, 063303 (2017)

(YD1 O 1 &

(a)

. /\ V. N
(b)

. ) )\
(©)

FIG. 3. Droplet evaporation on a solid surface. Snapshots of the
density contours obtained by (a) the Gong-Cheng model, (b) the
compromised model, and (c) the improved model. The snapshots are
taken at (from left to right) t = 5 x 10*8;, 1.5 x 10°8;, and 2.5 x
10°6,. The displayed domain is x € [50, 250] and y € [0, 115].

the bottom surface. The kinematic viscosity and the specific
heat at constant volume are still set to v =0.1 and ¢y = 5,
respectively. The temperature of the bottom surface is fixed at
T = 0.875T.. The Zou-He boundary scheme [51] is applied to
the solid surface and the open boundary condition is employed
atthe top boundary. The periodic boundary condition is utilized
in the x direction. The first 20 000 steps of the simulations
are carried out without evaporation so that the droplet can
reach its equilibrium state. The equilibrium contact angle is
taken as 6 &~ 108°. The thermal LB models are added after
t =2 x 10*5, and the contact angle hysteresis [52] is taken
into consideration with a hysteresis window of (0°, 180°).

Figure 3 displays the snapshots of the density contours
obtained by the Gong-Cheng model, the compromised model,
and the improved model. Owing to the contact angle hysteresis,
the droplet evaporates in the constant contact radius (CCR)
mode; namely, the contact angle decreases whereas the contact
line is pinned on the solid surface. Figure 3 shows that
in the present test the evaporation process predicted by the
Gong-Cheng model is slower than those predicted by the
compromised model and the improved model, which is found
to be related to the choice of a variable thermal conductivity
in the present test. When a constant A is applied in the present
test, the evaporation process given by the Gong-Cheng model
is faster than those given by the other two models.

The variation of the droplet volume with time is shown in
Fig. 4, where “l.u.” represents lattice units. For comparison, the
numerical results obtained by a finite-difference scheme (see
Egs. (11)—(14) in Ref. [53]), which employs the second-order
Runge-Kutta scheme for time discretization and the isotropic
difference schemes for spatial discretization, are also shown
in Fig. 4. From the figure we can see that the numerical results
of the improved model agree well with those obtained by the
finite-difference scheme. Similarly, Fig. 4 also shows that there
are significant deviations between the numerical results of the
Gong-Cheng model and those of the compromised model,
which arise from the replacement of V - (AVT)/pcy with V -
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5000

4000

3000 -

2000
—O— Finite-difference scheme

—— The improved model
1000 - —O— The Gong-Cheng model
—/— The compromised model

droplet volume (l.u.)

50000 100000 150000 200000 250000 300000
time (J,)

FIG. 4. Droplet evaporation on a solid surface. Comparison
of the numerical results obtained by the Gong-Cheng model, the
compromised model, the improved model, and a finite-difference
scheme. Here “l.u.” denotes lattice units.

(xVT). Moreover, considerable deviations, which are caused
by the error terms, can be observed between the compromised
model and the improved model.

B. Bubble nucleation and departure

In this subsection, numerical simulations are performed for
bubble nucleation and departure involved in nucleate boiling.
Our simulations are carried out in a rectangular domain with
a grid size of N, x Ny = 150 x 300. The kinematic viscosity,
the specific heat at constant volume, the saturation temper-
ature, and the relaxation parameters are the same as those
used in the previous subsection. The thermal conductively is
taken as A = pcy x with x = 0.06. The initial setting of the
computational domain is a liquid (0 < y < 0.5N,) below its
vapor, and the temperature in the domain is set to Tg,. The
temperature of the bottom wall is fixed at T, except that a
high temperature 7;, = 1.257; is applied to the central three
grids of the wall. The equilibrium contact angle is taken as
6 ~ 45°. The periodic boundary condition is applied to the
x direction. The buoyant force is given by F, = (0 — pave)8,
where g = (0, — g) is the gravitational acceleration and P,y
is the average density in the domain.

The snapshots of the density contours obtained by the
improved model, the compromised model, and the Gong-
Cheng model with the gravitational acceleration g = 1.5 x
107> are shown in Fig. 5. From the results of the improved
model, it can be seen that a bubble has been nucleated on
the center of the bottom wall at r = 20008, owing to the
high temperature. The vapor bubble gradually grows until
its diameter reaches the departure diameter. Then the bubble
detaches from the solid wall, which can be seen from the third
snapshot of the numerical results of the improved model. After
the detachment, a tiny attached bubble remains on the bottom
wall, which repeats the behavior of the first bubble. Similar
to the previous two tests, the present test also shows that
the numerical results of the Gong-Cheng model significantly
deviate from those of the other two models and some visible
differences can be observed between the numerical results of
the compromised model and those of the improved model.

PHYSICAL REVIEW E 96, 063303 (2017)

FIG. 5. Simulation of bubble nucleation and departure (g =
1.5 x 1073). Snapshots of the density contours obtained by (a)
the improved model, (b) the compromised model, and (c) the
Gong-Cheng model. The snapshots are taken at (from left to right)
t = 20006,, t = 50008,, and r = 14 0004;.

Figure 6 displays the snapshots of the density contours
obtained by the improved model, the compromised model,
and the Gong-Cheng model with the gravitational acceleration
g = 2.5 x 107>, Similarly, the numerical results of the Gong-
Cheng model are remarkably different from those of the
other two models, further confirming that the replacement
of V-(AVT)/pcy with V -(xVT) results in significant
numerical errors. Moreover, a comparison of the numerical
results in Figs. 5 and 6 between the compromised model
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FIG. 6. Simulation of bubble nucleation and departure (g =
2.5 x 1073). Snapshots of the density contours obtained by (a)
the improved model, (b) the compromised model, and (c) the
Gong-Cheng model. The snapshots are taken at (from left to right)
t = 20006,, t = 50008,, and r = 12 0008;.

and the improved model shows that the error terms 9,,(T'v)
and 9,,¢ affect bubble growth and the bubble departure
diameter. Meanwhile, the numerical results of the improved
model in Figs. 5 and 6 show that the bubble departure
diameter decreases with the increase of the gravitational
acceleration. Quantitatively, the bubble departure diameter
obtained by the improved model is plotted in Fig. 7 against
the gravitational acceleration, where the symbols represent
the numerical results while the solid line represents the results
of 0.209g7%3. The figure illustrates that the bubble departure

PHYSICAL REVIEW E 96, 063303 (2017)

B The improved model

’3:‘ 80 —— D, =0.209g™"
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g

FIG. 7. Simulation of bubble nucleation and departure. The
bubble departure diameter (“l.u.” denotes lattice units) predicted by
the improved model. The squares represent the numerical results
obtained by the improved model and the solid line denotes the results
given by Dy = 0.209g7%3,

diameter predicted by the improved model is proportional to
g%, which is consistent with the correlations in the literature
[54].

V. CONCLUSIONS

In this paper, we have presented an improved thermal
LB model for simulating liquid-vapor phase change. The
Chapman-Enskog analysis has been performed for the Gong-
Cheng thermal LB model, which shows that the term
V - (AVT)/pcy in the target temperature equation was re-
placed by V - (x VT) in the model and some unwanted terms
exist in the recovered macroscopic temperature equation. The-
oretical analyses have been provided about removing the error
terms within the framework of the BGK collision operator.
The improved thermal LB model was constructed based on the
MRT collision operator. The error terms 9,,(Tv) + V - (T'vv)
as well as the discrete effect of the source term have been
eliminated in the improved model.

Numerical simulations have been carried out for droplet
evaporation and bubble nucleation involved in nucleate boiling
to validate the capability of the improved model. For compari-
son, a compromised model was established, which is the same
as the improved model except that no treatments are applied
to eliminate the error terms 9;,(7v) and d;,¢. By comparing
the numerical results of the Gong-Cheng model with those of
the compromised model, it is shown that the replacement of
V -(AVT)/pcy with V - (xVT) yields significant numerical
errors. Moreover, by comparing the numerical results of the
compromised model with those of the improved model, it is
found that the numerical errors caused by the error terms are
non-negligible. We believe that the theoretical analyses and
the numerical results shown in the present paper are helpful
for clarifying some critical issues relating to the thermal LB
modeling of liquid-vapor phase change.

Finally, we would like to make some statements about the
thermal LB equation—based models and the finite-difference
schemes [29,53] for solving Eq. (5). When the thermal
conductively term is correctly treated, it can be found that
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there are actually no significant differences between the
finite-difference computations in the thermal LB models and
those in the finite-difference schemes. For general cases, in
the thermal LB models the gradient terms VT, V - v, and VA
also require finite-difference computations. Furthermore, these
gradient terms should be evaluated at the boundaries so as to
implement the thermal LB equation at the boundaries, while
in the finite-difference schemes there is no need to evaluate
these gradient terms at the boundaries since the temperature
is known for the Dirichlet boundary condition and can
be extrapolated from the interior flow field for the Neumann
boundary condition.
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APPENDIX: CHAPMAN-ENSKOG ANALYSIS OF
THE IMPROVED THERMAL MRT-LB MODEL

The Taylor series expansion of Eq. (42) yields

82
8,3 + ey - Vg + 5’(8, + e V)gy + -

= —Rap(8p — g5 )l + 8 Se(x,1). (A1)

Using the multiscale expansions, Eq. (A1) can be rewritten
in the consecutive orders of §; as follows:

O+ (B, + o V) = —Rapgy’| o, + 5.7, (A2)

0(s7) :

= —Rupg}s I + S, (A3)

3,850 + (3, + e - V)g + (3, + e, - V)2

Multiplying Eqgs. (A2) and (A3) with the transformation
matrix M leads to the following equations:

0(;): Dym* = —Am® + S(O)’ (A4)

0(512) : 9,m% 4 Dom + %Démeq = —Am® + 8O,
(AS)
where Dg=9,I+C-V, in which C.V=C,d,
+C,dy, SO =(¢,0,0,0,0,0,0,0, 07, and

SM = (0.59,,¢, 0, 0,0,0,0,0,0,0)7. The detailed forms
of C, and C, for the D2Q9 lattice can be found in Ref. [55].
Substituting Eq. (A4) into Eq. (AS), we can obtain

A 1
3, m* + Dy (1 - 3>m(” + D68 = —Am® 45,

(A6)
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According to Eq. (A4), we have

8T + 8x(Tvy) + 8,(Tvy) = ¢, (A7)
3 (Tvy) + 8, (2T) = —s3my), (A8)
3 (Tvy) + 8, (c2T) = —ssm. (A9)

From Eq. (A6), we can obtain

53 1) §5 1) 1
wreal(i- 5o~ 5] duo

1
= 500 (A10)
which further yields
9T + ax[(1—sg)mg”}ay[(l—%)mg”} =0.
(A11)

With the aid of Eqs. (A8) and (A9) and setting s5 = s3,
Eq. (A11) can be written as

3, T = 0x(nc;0:T) + 3y(nc;d,T) + d[nd, (T v,)]
+ 9y[n0;,(Tvy)]

= V.- (neIVT) + V- [n,(TV)], (A12)
where 7 is given by
(- (L-1 (A13)
= s3 2) \ss 2)
Meanwhile, according to Eq. (A4), we can obtain
1

—0;(Tvx) + gax(qu + mgq) = —S4m$), (A14)

1 eq e
—0,(T'vy) + gay(mll +m5') = _S6m(61)- (A15)

When the equilibria m* are defined by Eq. (44), m{? +
m5? = —T. However, when the equilibria m* are given by
Eq. (53), wehave m? + m5" = 0. Then the following relations

can be obtained:

3y (Tvy) = sam’, (A16)
3 (Tvy) = sem. (A17)

In other words, 9;,(T v,) and 9,,(T v,) can be evaluated with

mgl) and m(6l ) respectively.
With the modifications given by Egs. (54) and (55), the
following equations can be obtained:

3y (Tvy) + 8, (2T) = —s3m$” + (1 — %)umg”, (A18)
3y (Tvy) + 8, (2T) = —ssm{” + (1 - %5>s6m<6”. (A19)
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Similarly, Eq. (A10) will become

o, T+ 0| (1-2 )P | +a,] (1= 2 )l
2 2
1 K
a3
i (1= 5 ) sem®| =0
27 2 6 ’

Using Egs. (A16) and (A17), the following equations can
be obtained from Eqs. (A18) and (A19):

(A20)

1 1
my) = ——8,(2T) — ~sam}), (A21)
53 2

PHYSICAL REVIEW E 96, 063303 (2017)

1 1
mgl) = _gay (ch) — §s6m(61). (A22)

Substituting Eqgs. (A21) and (A22) into Eq. (A20) yields

1 1), 1 1),
8t1T=8x g—z CsaxT +8y ;—5 CsayT .
(A23)

Setting s5 = s3 and combining Eq. (A23) with Eq. (A7)
through 9, = 0;, + §;9;,, we have
T +V-(vTI)=V-(kVT)+ ¢, (A24)

where k = ncfS, and n is given by Eq. (A13).
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