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Reconstruction of three-dimensional porous media using generative adversarial neural networks
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To evaluate the variability of multiphase flow properties of porous media at the pore scale, it is necessary to
acquire a number of representative samples of the void-solid structure. While modern x-ray computer tomography
has made it possible to extract three-dimensional images of the pore space, assessment of the variability in the
inherent material properties is often experimentally not feasible. We present a method to reconstruct the
solid-void structure of porous media by applying a generative neural network that allows an implicit description
of the probability distribution represented by three-dimensional image data sets. We show, by using an adversarial
learning approach for neural networks, that this method of unsupervised learning is able to generate representative
samples of porous media that honor their statistics. We successfully compare measures of pore morphology, such
as the Euler characteristic, two-point statistics, and directional single-phase permeability of synthetic realizations
with the calculated properties of a bead pack, Berea sandstone, and Ketton limestone. Results show that generative
adversarial networks can be used to reconstruct high-resolution three-dimensional images of porous media at
different scales that are representative of the morphology of the images used to train the neural network.
The fully convolutional nature of the trained neural network allows the generation of large samples while
maintaining computational efficiency. Compared to classical stochastic methods of image reconstruction, the
implicit representation of the learned data distribution can be stored and reused to generate multiple realizations
of the pore structure very rapidly.
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I. INTRODUCTION

Image reconstruction

The reconstruction and evaluation of the material properties
of porous media plays a key role across many engineering
disciplines. Many physical processes such as the movement
of multiple phases of fluids through sedimentary rocks are
controlled by individual pores at the micron and submicron
scales [1].

In carbon capture and sequestration (CCS), the long-term
storage behavior is controlled by the physical and chemical
interaction of supercritical CO2 with the reservoir brine, as well
as the spatial distribution and connectivity of minerals in the
pore space [2,3]. The variability of the controlling properties
such as the permeability of the host rock is determined
by repeated experiments or numerical modeling of these
processes.

Using modern computer tomographic methods, it is pos-
sible to observe porous materials and evaluate their ma-
terial properties at the micrometer scale [micro computed-
tomography (micro-CT)] under static and transient conditions
at high pressures and temperatures in near real time. Perform-
ing micro-CT imaging of porous media requires specialized
expensive equipment and in the case of CCS, only a single
image of the investigated rock type is typically acquired.
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To evaluate the variability associated with the geometrical
and mineralogical morphology of the pore space, numerous
physical experiments using the same rock type would have to
be performed to obtain a distribution over larger volumes. Due
to time and cost limitations inherent with the experimental
acquisition of high-resolution images, this is often deemed
unfeasible. Material properties governing the single- and
multiphase flow behavior of porous media can be estimated
from numerical solution of partial differential equations at a
scale larger than that of a representative elementary volume
(REV) and verified by experimental results [4].

Many sedimentary rocks consist of granular siliciclastic
or carbonate materials. Boolean models use this fundamental
characteristic of natural granular materials to emulate the shape
of the arising pore space, due to an underlying random process
that controls the distribution of the individual grains [5,6].
While for the classical Boolean model the centers of the grains
are uniformly distributed in space and grains can arbitrarily
overlap, more complicated models with rigid hard-sphere
grains and more complex grain interaction functions have
been developed [7–10]. The framework of Boolean models
also allows extension beyond spherical particles and enables
derivation of the properties of material models as a function
of the parameters of the underlying random process [11–14].

In clastic rocks, the arrangement of individual grains occurs
due to the transport of material from a high-energy source
to a low-energy sink. Process models, where depositional
mechanisms are simulated, have been shown to reproduce
realistic granular reconstructions capturing the pore-space
morphology of granular sedimentary rocks [15].

Spatial probabilistic models such as truncated Gaussian
processes or sequential indicator simulation have been widely
applied in the geosciences to model the spatial distribution
of materials [16]. Many of these methods rely on two-point
probability functions as a measure of spatial variability,
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whereas recent methods in geostatistics use training images
as a basis for sample reconstruction [17–19]. These images
are usually assumed to exhibit stationarity of the probability
distribution of the properties of interest and rely on higher-
order multiple-point statistics (MPS) to reconstruct stochastic
random media.

With MPS, the probability distributions are represented by
training images and are sampled using a limited multiscale
neighborhood that captures the variation on a large scale
as well as fine-structural details on smaller scales [20].
Multiple-point-statistics–based methods have been used in
two- and three-dimensional conditional simulations of spatial
properties in reservoir-scale earth modeling applications [21].
The computational complexity of these methods is highly
dependent on individual algorithms as well as the size of
the domains used to sample from the training images [22].
Parallelized versions have been developed, reducing the
computational time required to perform reconstruction using
MPS [23,24].

Three-dimensional porous media have been reconstructed
using a modified multiple-point statistics approach based on
two-dimensional images of porous media [25–27]. Stochastic
methods based on simulated annealing allow the incorporation
of arbitrary cost functions of statistical and morphological
properties used in unconditional three-dimensional image
reconstruction [28,29]. Recent advances have reduced the
computational run time of simulated-annealing-based methods
for reconstruction of porous media, to the order of tens of hours
per realization at the scale of 3003 voxels [30].

In the following section we introduce a recently devel-
oped class of unsupervised machine learning methods called
generative adversarial networks (GANs) that allow simulation
of probability distributions given a set of training data [31].
Volumetric generative adversarial networks have previously
been applied to low-resolution three-dimensional computer-
aided design model synthesis and practical applications of
three-dimensional (3D) GANs are few compared to their two-
dimensional counterparts [32]. Integration of multiresolution
data sets incorporating image data across a number of length
scales is possible in the GAN framework by using a Laplacian
pyramid approach such as LapGAN [33].

We investigate the applicability of GANs to model three-
dimensional textures of rocks based on three-dimensional
binary representations of porous media acquired at the mi-
crometer scale. We compare statistical, morphological, and
transport properties of the simulated images with those of
the training images. We evaluate the single-phase directional
permeability to show that the synthetic realizations sampled
from the learned representation of the input data can capture
single-phase flow properties of sedimentary rocks.

Training of these neural networks involves finding a set of
hyperparameters that lead to stable training [34]. While this
training can take on the order of tens of hours, the sampling
of large volumetric domains occurs on the order of seconds
on the current generation of graphical processing units. We
show that in favorable cases convolutional neural networks
incorporated in the GAN framework allow the generation
of synthetic reconstructions of porous media that exceed the
dimensions of their training images. Contrary to most existing
simulation techniques, the set of parameters used to generate

synthetic realizations can be stored once trained, allowing
rapid generation of new samples to assess the variability of
material properties.

While we apply GANs to a set of micro-CT images of
porous media, the method can readily be applied to volumetric
images of porous media obtained from other three-dimensional
microscopy instruments such as nano- or medical-CT instru-
ments. We discuss the challenges involved in training GANs
for stochastic image reconstruction of porous media as com-
pared to other stochastic image reconstruction methods and
we evaluate the computational efficiency of GAN-based image
reconstruction. Finally, we provide empirical guidelines on the
requirements of the input data set to allow successful training
of GANs on large three-dimensional voxel representations of
natural porous media.

All data used in this study are available in the public domain
and we have made the code used for training, as well as
example pre-trained models, available online [35]. A public
data set of high-resolution micro-CT images made available
by the Imperial College Pore-Scale Modelling Group [36],
of a spherical bead pack, Berea sandstone, and oolitic
Ketton limestone will serve as benchmark cases to study the
application of GANs to three-dimensional stochastic image
reconstruction.

II. GENERATIVE ADVERSARIAL NETWORKS

In the following section we present GANs for three-
dimensional image generation. Generative neural networks
have been developed in the context of deep learning by
Goodfellow et al. as a methodology to learn a representation of
a high-dimensional probability distribution from a given data
set [31]. In the context of image reconstruction, we refer to
this data set as a set of training images that are representative
samples of the probability distribution underlying the image
space.

Generative adversarial networks learn an implicit represen-
tation of the probability density as opposed to explicit density
models. The main drawback of explicit density models is
their computational cost, which grows with the dimensionality
of the samples and often requires sequential simulation. For
high-dimensional samples such as volumetric image data, the
computational cost is O(N ), where N represents the number
of voxels in the domain of interest and can easily exceed 109

voxels for modern high-resolution micro-CT images. Using
any of these methods would make it intractable to generate
a large number of very large samples. Generative adversarial
networks have been designed to perform fast sampling from
the learned density representation and allow full parallel
generation, making them an ideal candidate to generate large
volumetric images [34].

Generative adversarial networks consist of two differen-
tiable functions: a discriminator D and a generator G. The
discriminator receives samples of the “real” data set (label
1) x ∼ pdata and “fake” samples G(z) (label 0) created by
the generator from the hidden latent space Z (see Fig. 1).
The latent space Z is composed of independent real random
variables, typically normally or uniformly distributed, that
represent the random input to the generator G. The generator
G maps random variables from the latent space into the space
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of images. The discriminator’s role is to assign a probability
that a random sample is from the real data distribution pdata.
The discriminator tries to label each sample correctly, while
the generator tries to “fool” the discriminator into labeling the
fake images as part of the true data distribution and therefore
achieving D[G(z)] close to one.

More formally we can define the loss, i.e., the cost function
for GANs as a minimization-maximization problem

min
G

max
D

[Ex∼pdata(x){log[D(x)]}
+Ez∼pz(z)(log{1 − D[G(z)]})]. (1)

Solutions to this optimization problem have been shown to be
Nash equilibria, where each player achieves a local minimum
of their loss function with respect to their parameters [34].

In practice we represent G and D by convolutional
neural networks that are trained by a gradient-descent-based
optimization method. Training is performed in two steps. First,
the discriminator is trained to maximize

J (D) = Ex∼pdata(x){log[D(x)]}
+Ez∼pz(z)(log{1 − D[G(z)]}) (2)

while the parameters of the generator are fixed. This improves
the ability of the discriminator to distinguish between real and
fake images. Second, we generate synthetic samples G(z) by

drawing samples z from an N -dimensional normal distributed
latent space and train the generator to minimize

J (G) = Ez∼pz (log{1 − D[G(z)]}) (3)

while keeping the discriminator fixed.
By minimizing Eq. (3) the generator tries to fool the

discriminator into believing that the samples G(z) are real
data samples. In this way the generator learns to repre-
sent a distribution pg(x) that is as close as possible to
the real data distribution pdata(x). When convergence is
reached pg(x) = pdata(x) and the value of the discrimina-
tor becomes 1

2 as it cannot distinguish between the two
anymore.

Initially, the discriminator D outperforms the generator sig-
nificantly, making the gradient used to train the generator close
to zero. Therefore, instead of minimizing log{1 − D[G(z)]}
for the generator, it is helpful to maximize log{D[G(z)]} [34].

Generative adversarial networks show highly unstable
behavior during training and a large number of trial and error
runs are required to find an optimal set of hyperparameters
that allow stable training. A number of heuristics have been
published that have been shown to stabilize GAN training,
such as one-sided label smoothing and adding white noise to
the input layer of the discriminator [37,38].

FIG. 1. Overview of the GAN training process. Segmented volumetric images are split into 643- or 1283-voxel training images. The
generator G is a function that is applied to a sample from a latent random space Z and creates a synthetic realization. We assume that samples
drawn from the hidden latent space Z are normally distributed (see Sec. II). The discriminator’s role is to determine whether a sample is part of
the training image data set (label 1) or from the generator (label 0). The misclassification error is computed as a binary cross-entropy criterion
and the error backpropagated to improve the discriminator’s ability to distinguish real from fake images. Then the generator is updated to
improve the quality of the produced samples and fool the discriminator. When sufficient image quality is obtained, training is stopped and the
discriminator may be discarded. The generator can now be used to create new samples. By providing larger latent vectors than used initially
for training, larger output images can be produced.
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FIG. 2. Comparison of S2(r) for a Boolean model and a packing
of hard spheres at a porosity φ = 0.5. Here S2 exhibits exponential
decay for the Boolean model, whereas a dampened oscillation is
characteristic for packings of spheres. The mean chord length can be
found at the intersection of the slope of S2 at the origin with the x

axis [see Eq. (6)].

We provide a more detailed overview of the neural networks
used in this study in Sec. III B (Table I) and later provide
suggestions on how to facilitate efficient training (see Sec. VI)
for volumetric image data sets of porous media.

III. METHODOLOGY

In the following section we outline the criteria used to
evaluate the quality of simulations based on the training
image data sets. We treat all images under the assumption
of stationarity and the existence of a representative elementary
volume.

A. Evaluation criteria

1. Two-point statistics

We characterize the second-order structure of the porous
media by calculating the two-point probability function of

the pore phase. By assuming stationarity, this function is
equivalent to the noncentered covariance [7]

S2(r) = P(x ∈ P,x + r ∈ P ) for x,r ∈ Rd , (4)

which is the probability P that two points x and x + r, separated
by the lag vector r, are located in the pore phase P . At the
origin, S2(0) is equal to the porosity φ; S2 stabilizes around
φ2 as r → ∞ (Fig. 2). Due to the anisotropic nature of many
porous media, we compute S2(r) along the three Cartesian
directions, as well as the radial average of S2(r).

It is a well known result that the specific surface area SV of a
porous medium can be expressed as a function of S2 [39]. In the
case of an isotropic porous medium and in three-dimensions
SV is related to S2 by

SV = −4S ′
2(0), (5)

where S ′
2(0) is the derivative of S2(r) at the origin. Furthermore,

the average chord lengths within the pore and the grain phases
are [10]

l
pore
c = φ

S ′
2(0)

, (6a)

l
grain
c = 1 − φ

S ′
2(0)

, (6b)

which for the pore phase can be readily found from the
intersection of the slope of S2(r) with the x axis (Fig. 2).

In favorable cases, it is possible to find analytical expres-
sions of S2(r) from the spatial distribution and geometry
of the grains. A Boolean model of overlapping spherical
grains of uniform spatial distribution exhibits an exponential
decay of the covariance until the lag distance is equal to the
diameter of the grains where it becomes zero [7]. For porous
media that can be well described by a Boolean model, we can
estimate the size of the elementary Boolean grain from the
decay of S2.

Semianalytical expressions for more complex models, such
as for a packing of hard spheres, have been developed [40].
Models of S2(r) for spherical packings exhibit a dampened
oscillation (also called hole effect). The shape of the estimated
covariance therefore allows us to obtain information on the
structure of the porous medium (Fig. 2).

The covariance S2(r) was estimated for the training images
and the stochastic reconstructions generated by the trained
GAN model. For each GAN model, we evaluate the noncen-
tered covariance S2 and the specific surface area SV [Eq. (5)]

TABLE I. Neural network configurations and hyperparameters used to train on voxelized image subsets.

Parameter Training image data set

Bead pack Berea Ketton

training image size 1283 voxels 643 voxels 643 voxels
latent space z dimension 100 512 100
generator filters NG 64 64 64
discriminator filters ND 8 16 16
optimizer generator + discriminator: ADAM
learning rate; momentum 2 × 10−4; 0.5 2 × 10−4; 0.5 2 × 10−4; 0.5
stabilization white noise (σ = 0.1) label smoothing (ε = 0.1) white noise (σ = 0.1)
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FIG. 3. Cross sections of the three image data sets. The bordered regions indicate the size of the training images extracted from the full
data set. (a) The bead pack consists of spheres of equal diameter (d = 50 voxels). (b) The Berea sandstone is an angular granular sandstone
that shows traces of dispersed clay. (c) The oolitic Ketton limestone consists of ellipsoidal grains showing inter- and intragranular porosity. The
voxel sizes are 3 μm for the bead pack and Berea sandstone and 15.2 μm for the Ketton sample.

and compare these to the values obtained from the original
training images.

In our discussion of the required training image sizes
(Sec. VI), we will use the average chord length and the specific
surface area as possible indicators of the necessary training
image size.

2. Morphological measures

It has been shown that flow properties at the pore scale can
be related to morphological characteristics of the void-solid

interface of a porous medium [41]. Hadwiger’s theorem
states that any continuous rigid motion invariant valuation on
compact-convex subsets of Rd can be described by a linear
combination of d + 1 independent parameters characterizing
the body. In three dimensions we can therefore define four
so-called Minkowski functionals that characterize the topology
of a three-dimensional object. We compute estimates of three
Minkowski functionals: the porosity φ, the specific surface
area SV , and the Euler characteristic χV corresponding to
the zeroth-, first-, and third-order functionals. We compute

FIG. 4. Value of the cost function, i.e., loss of the discriminator and generator [Eqs. (2) and (3)] for the GAN trained on the Berea sandstone.
The samples shown were computed with the same random number seed, showing the evolution of a single realization during training. Initially,
image quality is very low and random noise can be observed. After 2000 generator iterations a drop in the generator loss function is observed
and coarse structures can be identified in the resulting sample. Loss functions in GAN models do not reflect improvement in image quality,
which can be observed from samples. Learning rates [see Eq. (13)] were reduced after sufficient image quality was reached and training stopped
based manual inspection of Minkowski functionals and two-point statistics.
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FIG. 5. Radial averaged covariance S2(r) for the bead pack
sample and 20 synthetic realizations generated by the GAN model.
The specific surface area SV and mean chord lengths lC are derived
from the slope of the covariance at the origin [see Eqs. (5) and (6)].

the densities of the Minkowski functionals by dividing
by the volume V .

The Minkowski functional of order zero is the porosity,
defined as the ratio of volume of the void space to the bulk
volume of the sample

φ = Vpore

V
, (7)

and is therefore a measure of the ability of a porous medium
to store fluids. The Minkowski functional of rank one is the
specific surface area SV ,

SV = 1

V

∫
dS, (8)

where integration occurs over the void-solid interface S. The
specific surface area SV has dimensions of 1

length and its inverse
allows us to define a characteristic pore size.

The specific Euler characteristic is closely related to the
order-3 Minkowski functional and is defined as

χV = 1

4πV

∫
1

r1r2
dS, (9)

where r1 and r2 are the principal radii of curvature of the
void-solid interface. To compute χV we do not directly evaluate
the integral in Eq. (9) but instead make use of a relationship
for the Euler characteristic of arbitrary polyhedra

χ = V − E + F − O, (10)

where V is the number of vertices, E the number of
edges, F the number of faces, and O the number of
objects [1]. This expression is the basis for efficient algorithms
to compute Minkowski functionals of arbitrary geometric
bodies represented as volumetric voxelized domains [42].
To compute these three Minkowski functionals we have
used the open-source image morphological software library
MorphoLibJ [43].

While the porosity expresses the ability to store fluids in
a porous medium, adsorption and dissolution processes are
controlled by the specific surface area. The Euler charac-
teristic allows the connectivity of the porous medium to be
characterized, which is a critical component in the ability
of fluids to flow. Reconstructions of porous media should
therefore closely match the observed Minkowski functionals
to represent the behavior of relevant physical processes at
the pore scale. The direct computation of the specific surface
area SV and porosity φ from images allows us to perform a
comparison with the values obtained from estimates obtained
by computing the empirical noncentered covariance S2(r) [see
Eq. (5)].

3. Single-phase permeability

To evaluate the single-phase permeability of the porous
media and their generated synthetic reconstructions we solve
the Stokes equations for slow incompressible flow assuming
small inertial forces

∇ · v = 0, (11a)

μ∇2v = ∇p. (11b)

The Stokes equations are solved on the domain that is
connected to the fluid inlet and outlet. This allows us to define

TABLE II. Chord lengths lC for the pore and grain phase [Eq. (6)] determined from the radial averaged covariance S2(r) of each training
image and corresponding realizations generated by the GAN model. The specific surface area SV and porosity φ were evaluated for each of the
samples using direct image morphological computation and derived from the covariance. Close agreement between estimates of the porosity
and specific surface area can be observed for values determined by direct image morphological estimation and derived values obtained from
the radial averaged covariance.

Parameter Bead pack Berea Ketton

l
pore
C (voxel) 20 10 9
l
grain
C (voxel) 36 41 64

Training image Synthetic Training image Synthetic Training image Synthetic

Minkowski functional S2(r) direct S2(r) direct S2(r) direct S2(r) direct S2(r) direct S2(r) direct
porosity φ 0.363 0.359 0.368 0.366 0.196 0.198 0.199 0.197 0.127 0.119 0.119 0.119
SV × 10−2 ( 1

voxel ) 7.0 7.3 6.9 7.5 7.5 8.2 7.9 8.5 5.2 5.2 4.7 5.2
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FIG. 6. Comparison of three Minkowski functionals [(a) porosity, (b) specific surface area, and (c) Euler characteristic] for the bead pack
evaluated on 2003-voxel subdomains of the original training image and realizations of the GAN model. An error of less than 5% can be observed
for the porosity and surface area. (d) Comparison of the estimated values of permeability.

an effective porosity where only the fraction of the pore space
that also contributes to flow is considered

φeff = Vflow

V
. (12)

A finite-difference method to solve Eqs. (11a) and (11b) on
pore-space representations has been implemented as a parallel
flow solver, in the free open source numerical framework
OpenFOAM [4,44].

B. Neural network architecture

The neural network architecture used for the three-
dimensional image reconstruction corresponds to a volumetric
version of the DCGAN network [45]. The network consists
of two independent fully convolutional neural networks, the
generator G and the discriminator D. Upsampling from the
input latent vector z is performed by volumetric transposed
convolution, followed by batch normalization and a rectified
linear unit (ReLU) activation function in all layers except the
last [46,47].

The discriminator D receives images sampled from the
latent space by the generator G(z) and images from the set of
training images representing pdata(x). Therefore, the size of the
input layer of the discriminator corresponds to the dimensions
of the input training images. The discriminator consists of
volumetric convolution layers combined with LeakyReLU
activation functions [48]. The final convolutional layer of the
discriminator is followed by a hyperbolic tangent activation
function.

This combination of generator and discriminator neural net-
work architectures has previously been applied to subsets of the
Imagenet and CIFAR-10 data sets [45]. The hyperparameters
for the generator to be used in the optimization of the neural
network architecture are the number of trainable convolutional
filters in each layer of the neural network NG,F and ND,F and
the size of the latent vector z.

The generator and discriminator are optimized using a
gradient-descent-based method where the parameters w are
changed by taking k steps in the gradient

wk+1 = wk − α∇f (wk), (13)

FIG. 7. Comparison of the directional covariance [(a) x direction, (b) y direction, and (c) z direction] of the bead pack and the average
covariance of GAN-based synthetic realizations. A clear hole effect can be observed in the original data set, which is captured by the GAN
model.
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FIG. 8. Comparison of the numerically estimated single-phase
permeability of the bead pack for 1283-voxel subdomains of the
original image and equal-size GAN-based realizations shows a slight
overestimation of the effective porosity for the synthetic models. The
mean and variance of both permeability distributions are in close
agreement (see Fig. 6).

where α is the learning rate. We have used the gradient-
descent-based optimizer ADAM for optimization of both the
generator and discriminator [49].

Generative adversarial networks have been shown to exhibit
unstable behavior during training. The addition of Gaussian
noise to the input of the discriminator is an effective way to
stabilize the training process [38]. An additional stabilization
measure called one-sided label smoothing, wherein the class
label of 1 for real images is replaced by a new value of 1 − ε,
has been empirically shown to improve training of GANs [37].

Both label smoothing and white noise addition to the input
of the discriminator have been used in this study to stabilize
the training based on the volumetric image data sets. Table I
gives an overview of the neural network hyperparameters
used for each evaluated sample, the hyperparameters, and the
stabilization measure used during training.

Images generated by the GAN were postprocessed using
a 33 median filter to remove single-pixel noise. The resulting
images are grayscale images with all voxel values close to
zero or one. To compare the resulting images to the binary
training images, we segment the generated images using Otsu’s
method [50].

IV. EXPERIMENTAL DATA

A. Image data and processing

To evaluate the applicability of GANs for reconstruction
of natural porous media we use three previously acquired data
sets. All images have been segmented into a three-dimensional
binary voxel representation of the pore space (white) and

grain (black) (Fig. 3). We create a training database of images
by extracting subvolumes from the voxelized binary images.
Ideally, these training images should represent independent
domains, but due to the limited size of these images, we extract
subsets that overlap.

Training image sizes were chosen based on an estimate
of the average grain size for each sample. To be able to
match the covariance S2(r) [Eq. (4)] and image morphological
characteristics, training images larger than the structuring
element were necessary. We discuss this requirement in more
detail in the discussion of our results (see Sec. VI). Due to
computational limitations, training image sizes exceeding 1283

voxels were not considered.

1. Bead pack

The bead pack is based on a real packing of equally sized
grains in a disordered close packing [51]. The image consists
of 5003 voxels with a size of 3 μm. The size of an individual
sphere is 50 voxels. 1727 training images were extracted of size
1283 voxels corresponding to a spacing of 32 voxels between
them in the original image.

2. Berea

Berea sandstone is a fluvial sandstone of medium to fine
grain size (Wentworth classification) [52]. The individual
grains are bonded by clays. The sample analyzed in this study
was acquired from an outcropping of the Berea sandstone in
a quarry near Berea, Ohio. De Witt showed that the Berea
sandstone was deposited in the early Carboniferous [354–323
million years ago (mya)] [53].

The image of Berea sandstone consists of angular grains
with no clay present in the intergranular pore space. The
image has dimensions of 4003 voxels with a voxel size
of 3 μm.

To capture the local interaction of grains we have extracted
training images at 643 voxels, which allows a number of grains
to be present in one training image (see Sec. VI). Due to the
small image size of 4003 voxels, subvolumes were extracted
at a spacing of 16 voxels. In all, 10 647 training images were
used for the image reconstruction.

3. Ketton

The Ketton sample is an oolitic limestone of Jurassic age
(201.3–145 mya). The sample was acquired from a quarry of
Lincolnshire limestone in the northeast of England. The oolites
contained in the Lincolnshire formation are mainly nonferroan
calcite grains. The oolitic limestones of the Lincolnshire show
a wide variety of cementation, ranging from uncemented
oolite sands with no intergranular cement to heavily ferroan
spar-cemented oolites with infilled microporosity [54]. Mi-
crostructures in the pore space can be observed that lead to a
reduction in porosity (Fig. 3).

The Ketton sample chosen for this study consists of large
grains compared to the overall image size. The image used for
the following evaluation has been downsampled from a 5003

voxel representation to an image size of 2563 voxels. This
allows more grains to be resolved per training image extracted
from the full volume. The downsampled voxel size is 15.2 μm.
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FIG. 9. Twenty realizations of the spherical bead pack (top) generated to evaluate the statistical, image morphological, and transport
properties considered in this study. Also shown is a cross-sectional view of the bead pack training image data set (bottom).

Training images were extracted at a subvolume size of 643

with a spacing of 8 voxels leading to a total of 15 624 training
images. The small spacing of the training images results from
the small CT image size of 2563 voxels.

V. RESULTS

Three GANs were trained based on the network architec-
tures highlighted in Sec. III B. The training time for each
data set was 24 h. Manual inspection of synthetic realizations
was performed during training to ensure convergence and
intermediate evaluation of the covariance and Minkowski
functionals.

Figure 4 shows the training curve for the Berea sandstone
data set. Initially, the generator loss function [see Eq. (3)] is
very high and no structural components can be observed in
the samples. After a large reduction in the loss function of the
generator, initial structures are observed. Image reconstruction
quality significantly improves with the number of generator
iterations, but cannot be linked to the loss function of the
generator. This can be observed from the increase in generator
loss at the end of training while image quality improves
significantly.

The final GAN models were subsequently evaluated in
terms of their directional and radial averaged noncentered

covariance S2(r), Minkowski functionals, and the single-phase
permeability. For all data sets, 20 realizations were generated
using the trained GAN model. In the following section we
present the results of the evaluation of the properties outlined
in Sec. III A and compare these to the properties of the original
input training image.

A. Bead pack

The evaluation of the noncentered covariance S2(r) for the
bead pack (Fig. 5) shows a strong hole effect reflecting the
spherical nature of the grains. A GAN model was trained for
24 h on the bead pack training image data set. The GAN
model achieves a small error in the porosity of the generated
images with a tendency towards higher porosities (Fig. 6). A
bias can be observed for the specific surface area and the Euler
characteristic of the microstructure (Table II).

This bias can be explained by the deviation of the grains
from a perfect spherical shape in the synthetic realizations.
Due to the smooth nature of the spherical particles in the
training image, any deviation from this geometry will lead to
an increase in the surface area. This is reflected by a higher
specific surface area for the synthetic realizations. In addition,
we observe a reduction in connectivity, represented by a less
negative Euler characteristic.
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FIG. 10. Radial averaged covariance S2(r) for Berea sandstone
training images and 20 synthetic realizations generated by the GAN
model.

The directional covariance S2 measured on the generated
samples shows excellent agreement up to the training image
size of 1283 voxels and stabilizes at φ2 (see Fig. 7). As
expected, no directional variation of the covariance is observed
and the sample is therefore assumed to be isotropic.

Single-phase permeability shows close agreement in both
magnitude and variance between the measured training image
and the synthetic realizations (Fig. 6). Figure 8 shows a cross-
plot of the effective porosity φeff , i.e., the porosity open to
flow [Eq. (12)], and the single-phase permeability exhibiting a
similar trend in the distribution of values computed on training
images and synthetic realizations.

We provide a comparison of all 20 realizations generated
by the GAN model in cross sections through the x-y plane
of the original model and a synthetic realization in Fig. 9.

Many of the grains show a circular to ellipsoidal shape, for
which, considering the fact that a priori the GAN model
does not have any knowledge of the geometry of the grains,
learning a representation of a perfect sphere can be considered
challenging (see Sec. VI). The complex grain-grain interface
where individual beads are in contact at single points can be
observed for numerous grain arrangements in the generated
realizations.

B. Berea

The radial averaged covariance S2(r) in Fig. 10 shows a near
exponential decay and stabilization occurs at a lag distance
of 30 voxels for both covariance functions obtained from
the Berea training image and synthetic realizations generated
by the GAN model. Additionally, Fig. 11 shows that the
directional two-point statistics characterized by the directional
covariances is captured in the generated images. In all three
directions, the GAN model shows excellent agreement and
closely follows the trend of the empirical estimates of S2.

The results of the direct computation of the Minkowski
functionals are presented in Fig. 12 and show comparable
distributions for the porosity φ, the specific surface area
SV , and the Euler characteristic χV of the training images
and the synthetic realizations. A comparison of the specific
surface area SV obtained from the covariance and the direct
computation of the Minkowski functional show nearly equal
values (Table II).

The estimates of the single-phase permeability show a sim-
ilar distribution covering the range of effective permeability
measured on the training images. Figure 13 shows the com-
puted values of permeability and the corresponding effective
porosity. The permeability of the synthetic realizations capture
the values, variability, and trend obtained from the Berea
training image data set.

Figure 14 shows a comparison of 20 realizations of the GAN
model trained on the Berea data set. A smaller training image
size of 643 voxels was used, as compared to the bead pack
(1283 voxels). This is due to the smaller size of the structuring
elements observed in the training image. A smaller training

FIG. 11. Directional noncentered covariance comparison for Berea sandstone. The trained GAN model shows good agreement with the
noncentered covariance S2 of the training image.
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FIG. 12. Comparison of three Minkowski functionals [(a) porosity, (b) specific surface area, and (c) Euler characteristic] for Berea sandstone.
The porosity, specific surface area, and specific Euler characteristic show good agreement between the training image and samples from the
trained GAN model. (d) Estimates of permeability for the Berea sandstone and generated samples.

image size was therefore sufficient to capture the long- and
short-range correlations found in the Berea sample.

C. Ketton

The covariance S2(r) of the Ketton limestone shown in
Fig. 15 shows a pronounced hole effect due to the ellipsoidal
oolitic grains. Due to the hole effect observed in the radial
averaged covariance (Fig. 15), we relate the Ketton sample
to a hard-sphere model (Fig. 2). Figure 16 indicates that the
images generated by the GAN model trained on the Ketton
image capture the oscillatory and anisotropic behavior of the
covariance observed in Ketton. The specific surface area SV

derived from the generated images is in close agreement with

FIG. 13. Distribution of numerically obtained permeability val-
ues on 1283-voxel subdomains and sampled realizations obtained
from a GAN model trained on the Berea sandstone data set show
close agreement in the effective porosity, as well as the evaluated
permeability.

the training data. An error of approximately 1% was achieved
in the porosity of the GAN generated images compared to the
original Ketton data set (Fig. 17).

The measured specific surface area of the synthetic images
shows a higher variance compared to the original training
images. Nevertheless, the average values of the porosity φ

and specific surface area SV derived from the noncentered
covariance S2(r) [see Eq. (5)] are in good agreement with
values obtained from direct image morphological estimation
(see Table II).

The distribution of single-phase permeability estimates of
the synthetic GAN realizations overlies the permeability val-
ues of the Ketton training images (Fig. 18). The Euler charac-
teristic χV and the permeability of the Ketton training data set
are closely matched by the synthetic images and therefore cap-
ture the connectivity observed in the oolitic Ketton limestone.
We present an overview of the 20 realizations generated by the
GAN model trained on the Ketton data set in Fig. 19.

VI. DISCUSSION

This paper presents a method for three-dimensional
stochastic image reconstruction based on generative
adversarial neural networks trained on three-dimensional
segmented images. To summarize, the objectives of this contri-
bution are threefold. First, generate stochastic reconstructions
of porous media such as sedimentary rocks exceeding the
size of the acquired image data sets. Second, evaluate the
ability of GAN models to capture the image morphological
and physical properties of microscale porous media. Third,
establish a method of stochastic image reconstruction that
allows a probabilistic treatment of pore-scale properties such
as permeability without the need to acquire numerous images
of a single rock type.

The first objective stems from technical limitations of
micro-CT data acquisition. Images are acquired as a trade-off
between sample size, i.e., how many representative structures
can be captured in one image versus the resolution at which
these pore-scale structures are resolved. The generation of
large porous domains based on high-resolution images enables
this gap in scales to be bridged and microscale features to be
incorporated in macroscale models.
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FIG. 14. Realizations generated by the GAN model (top) compared to training images (bottom) for Berea sandstone.

Our findings show that GANs can learn an implicit
representation of the image space given a limited number
of training images subsampled from larger images. These
subdomains were extracted based on characteristic length
scales (see Sec. III A 1) and serve as a training set for the
GAN model. For the Ketton limestone, a small spacing
of the extracted subdomains was required to increase the size of
the training image data set. While we did not find any evidence
of an introduced bias by using correlated subdomains, we
believe that these extracted training images should represent
independent regions.

We have evaluated the ability to train GANs for a number
of training image sizes less than and up to twice the size
of the structuring elements. We have found that models
trained on images smaller than the average grain size results
in artifacts and distorted shapes occurring in the generated
microstructures. For the bead pack, the size of an individual
sphere is 50 voxels. A training image of 643 voxels would
typically only contain parts of an individual grain and only
capture the interaction of the particles, but not the geometry
of the structuring element. For the bead pack, models trained
on 643 voxels were successful in learning a representation
of the short-scale microstructure but failed to reproduce the
long-distance correlation. A larger training image of 1283

voxels, as was used to model the bead pack, has a much higher
chance to represent the full geometry of the particles and

therefore learn not only interactions, but also the shapes of
grains.

We therefore suggest that training images extracted from
large data sets must be larger than the average grain size.
For models that are well described by a Boolean model,
the size of the structuring element can be readily estimated
from stabilization of the covariance S2(r). For more complex
samples a different measure must be used to estimate the size
of the required training image.

The chord length is one additional measure that can be
obtained to characterize the grain space of porous media.
While we have found that the mean chord length of the
grain space l

grain
C is always less than or equal to that of our

chosen training image size, l
grain
C increases with decreasing

porosity. This contradicts the need to have the largest training
domain for the bead pack sample, which also has the
highest porosity. A better estimate may be derived from
the representative elementary volume of the specific surface
area, which by definition is the same for the grain and pore
space and is therefore more representative of the morphology
of the porous medium [55]. Based on the properties we
have evaluated we could not find a measure derived from
two-point statistical or image morphological properties that
is closely related to the required training image size and
we see a theoretical discussion of this as possible future
work.
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FIG. 15. Radial averaged covariance S2(r) for the oolitic Ketton
limestone training image and 20 synthetic realizations generated by
the GAN model.

Conceptually, the simplest model considered in this study,
the spherical bead pack, has proven to be the most challenging
as a training image for the GAN model (Sec. V A). While
we observe spherical and ellipsoidal shapes in the resulting
realizations (see Fig. 9), the shape is exactly defined by the
spherical nature of the grains. Any deviation from this shape,
which for GANs is learned implicitly from the data itself, will
lead to a misrepresentation of the effective properties. Random
hard-sphere models with spherical grains will efficiently
capture the nature of this data set. Therefore, we suggest a
fit-for-purpose application of GANs, for training images that
exhibit variability of grain sizes and shapes, which are not
readily captured by a simpler model.

While for many sedimentary granular rocks representative
volumetric images can be obtained, this may be more challeng-
ing for carbonate samples with complex pore-grain structures.
The three training images considered in this study were all
treated under the assumption of stationarity, i.e., we do not
expect a systematic variation in the mean and variance of the
averaged properties as a function of location. In theory, GANs
are not limited to learning representations of stationary data
sets. This is shown by the many successful applications for
two-dimensional image and texture synthesis of nonstationary
domains, such as learned image representations of human
faces [56] or galaxies [57,58]. Therefore, a model that
incorporates nonstationarity for a single rock type would tech-
nically be possible in the GAN framework but would require
the acquisition of many images of the same porous medium.

A valid representation of the microscale variability and
connectivity of the pore space is critical to assess the single-
and multiphase flow behaviors of porous media. Therefore,
any stochastic reconstruction method used in the process of
deriving or evaluating the variability of microscale properties
must capture the statistical and image morphological charac-
teristics of the reconstructed porous medium. While we have
shown that for the evaluated data sets the GAN-based image
reconstructions capture the variation and characteristics of
these porous media, a number of challenges remain in this
task that are different from those encountered by classical
stochastic methods of image reconstruction.

For porous media, many flow-related properties can be
related to the porosity. Classical stochastic methods are able
to capture the porosity efficiently by defining a specific
proportion of the grain and pore domain. The GAN-based
model presented in this study initially has no knowledge of
the porosity. The porosity therefore arises as a feature of
the training image data. Matching the porosity distribution
of the training image data set was found to be the main
challenge in training a GAN model. An error of 3% in porosity,
for instance, could lead to a significant mismatch in the
permeability of the synthetic images. It is therefore necessary
to continuously monitor the derived properties such as the

FIG. 16. The directional covariance of the Ketton sample shows (a) oscillating behavior in the x direction, whereas a nearly exponential
decrease can be observed for the (b) y and (c) z directions. This anisotropy in S2(r) is also reflected in the covariance of the samples obtained
from the GAN model.
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FIG. 17. Comparison of the Minkowski functionals [(a) porosity, (b) specific surface area, and (c) Euler characteristic] for the Ketton
training image. The three evaluated Minkowski functionals show good agreement. The evaluated Euler characteristic indicates that the sampled
synthetic realizations show a degree of connectivity similar to that of the training image. (d) Estimated permeability values for the Ketton
sample.

Minkowski functionals or estimates of the permeability in the
course of training the neural networks to ensure that synthetic
realizations created by the GAN model are able to capture the
effective properties of the microscale domains.

While this can be considered one of the main challenges
in the application of GANs for synthetic image reconstruc-
tion, learning an implicit representation of the training data
itself can be seen as a strength. Many classic stochastic
methods rely on the formulation of an objective function
that ensures that statistical properties are captured in the
generated realizations, e.g., matching S2(r) and the specific
surface area SV of the stochastic reconstructions to a de-
sired precision. The GAN approach does not require an

FIG. 18. Evaluated single-phase permeability for the Ketton
training image. The synthetic realizations show effective porosity
and permeability similar to those of the Ketton sample.

explicit objective function a priori. The objective function
is encoded in the discriminator and adapted in the course of
training.

During adversarial training both the generator and
discriminator are continuously improved. The discriminator’s
sole purpose is to be able to distinguish real training data from
generated synthetic data. On the other hand, the generator tries
to generate synthetic data that the discriminator is not able
to distinguish from the training data. Due to the multiscale
representation of the convolutional neural networks, these
features must be learned across the full range of length scales
present in the training data, leading to a high-resolution image
that captures small- and large-scale features of the image
data set. A number of stacked GAN models can be trained
on, e.g., low-resolution medical-CT data and high-resolution
micro-CT allowing incorporation of spatial information
across multiple length scales [59].

Once the GAN model has successfully learned to create
physically representative samples of the porous medium,
one possible application is to evaluate the variability in
the flow properties by evaluating the properties of a large
number of samples. This not only requires a physically valid
representation of the porous medium but also requires a
method that allows fast image reconstruction. In Sec. V we
have shown that training was performed for approximately
24 h and may vary due to the need for manual inspection
of the generated samples in the training process. Figure 20
shows the CPU time required for generation of images at
increasing image size. The fully convolutional nature of the
GAN architecture allows very large images, exceeding the
size of the original sample to be generated very efficiently and
at low computational cost and run-time.

While training requires considerable time and computa-
tional resources in the form of modern graphics processors
as well as optimized neural network frameworks, image
reconstruction requires little computational effort and scales
linearly in the total number of voxels of the generated
images. This therefore enables the generation of ensembles
of large domains based on volumetric images acquired from
3D microscopy that capture the physical behavior of the porous
medium. The learned representation of the generator consists
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FIG. 19. Realizations generated by the GAN model (top) compared to training images (bottom) for Ketton limestone.

of the weights of the convolutional filters learned in the training
process and can therefore be stored for future use once training
has finished.

VII. CONCLUSION

We have evaluated the application of generative adversarial
neural networks for stochastic image reconstruction of porous

FIG. 20. Measured CPU time for generating synthetic realiza-
tions of Berea sandstone at increasing image size. One hundred
realizations were computed at each image dimension and CPU time
averaged. Computational cost increases linearly with the number of
voxels in the generated image.

media based on previously acquired images of sedimentary
rocks. Three image data sets were used as training images: a
bead pack, a Berea sandstone, and an oolitic Ketton limestone.

By evaluating two-point statistical measures and image
morphological features and computing the single-phase ef-
fective permeability we have shown that the synthetic images
generated by the GAN model are able to match key char-
acteristic statistical and physical parameters of these porous
media. While a large computational effort is required to train
the GAN model, the generation of samples from the learned
representation is highly efficient and learned models are easily
stored for future use.

Future work in the application of GANs to stochastic image
reconstruction of porous media will include improving the
quality of the image reconstruction by evaluating various
generator-discriminator architectures, the use of grayscale
and multichannel training images, and the application of
large-multiscale domains of porous media to evaluate the
ensemble behavior of single- and multiphase flow properties
in porous media. Recent advances in the understanding of
GANs should lead to a more stable and consistent training
process [60,61].
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