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Since its original formulation in 2000, transfer entropy has become an invaluable tool in the toolbox of nonlinear
dynamicists working with empirical data. Transfer entropy and its generalizations provide a precise definition
of uncertainty and information transfer that are central to the coupled systems studied in nonlinear science.
However, a canonical definition of state-dependent transfer entropy has yet to be introduced. We introduce
a candidate measure, the specific transfer entropy, and compare its properties to both total and local transfer
entropy. Specific transfer entropy makes possible both state- and time-resolved analysis of the predictive impact
of a candidate input system on a candidate output system. We also present principled methods for estimating total,
local, and specific transfer entropies from empirical data. We demonstrate the utility of specific transfer entropy
and our proposed estimation procedures with two model systems, and find that specific transfer entropy provides
more, and more easily interpretable, information about an input-output system compared to currently existing
methods.
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I. INTRODUCTION

One of the hallmarks of a complex system is that the inter-
action of relatively simple units gives rise to complex overall
dynamics. Beyond the microscale behavior of individual units
and the macroscale behavior of the overall system, an under-
standing of how the units interact and influence each other is
also desired. In the absence of a model for a system, researchers
turn to statistics of available observations from the system
to quantify the relationship(s) between its components. For
example, one of the earliest statistical measures for quantifying
the impact of one system on another was Granger causality [1].
Granger causality quantifies the predictive impact of a candi-
date input system on a candidate output system accounting
for the past of the candidate output system. In his original
paper, Granger operationalized causality by considering if
inclusion of the history of the input system reduces the residual
variance of the optimal, in the minimum mean-squared error
sense, predictor of the output future relative to the residual
variance of the optimal predictor for the output future without
the input system’s history. He then further operationalized
this definition in terms of optimal linear predictors, which
he called “linear causality in mean.” Thus, in the original
formulation, Granger foreshadowed the so-called nonlinear or
nonparametric Granger causalities [2,3], while restricting his
main analysis to the linear case. A more modern formulation
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that subsumes and includes as special cases both linear and
nonlinear Granger causality [4] is the transfer entropy [5,6]
from the input system to the output system. Transfer entropy
has the desirable property that it is zero precisely when the
future of the output system is independent of the history of the
input system conditional on the history of the output system.
Thus, when transfer entropy is zero, the input system provides
no predictive information about the output system beyond
the predictive information already provided by its own past.1

Transfer entropy has been applied across many disciplines,
from the social sciences [10] and ecology [11] to genetics
[12], neuroscience [13,14], and physiology [15]. It has become
especially popular in neuroscience due to the availability of
many open-source toolboxes [16,17].

Transfer entropy is defined via an ensemble average over
all input-output pasts and output futures. As such, it quantifies
the total predictive impact of the input system on the output
system. However, for nonlinear systems, we expect the pre-
dictability, and thus the predictive impact of the input, to vary
across the input-output state space. To this end, a local transfer
entropy was proposed in Ref. [18] to quantify how predictive
information varies across the input-output state space. How-
ever, the local transfer entropy has counterintuitive properties
that make its interpretation difficult. In this paper, we develop a
state-dependent transfer entropy, the specific transfer entropy,

1It is in this restricted sense that transfer entropy and Granger
causality can be considered as measures of causality or information
flow. We will always consider transfer entropy as a measure of
predictive information, since that is precisely what it measures.
See Ref. [7] for additional discussion of interpretational pitfalls
with transfer entropy. See Refs. [8,9] for discussions of alternative
definitions of causality in the time series setting.
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that does not share these counterintuitive properties and
provides a direct information theoretic measure of the state-
dependent impact of an input process on an output process.

Moreover, though the transfer entropy of a given stochastic
input-output system is well defined,2 the properties of es-
timators of transfer entropy in the absence of a model are
not well studied. Since its formulation for continuous-valued
input-output systems, it has been noted that the transfer
entropy can be estimated using kernel density estimator-based
[19] and kth-nearest-neighbor-based [20] estimators. From
this perspective, the estimation of transfer entropy has two
components: model selection, in the choice of the model order,
and model estimation, in the choice of bandwidths for kernel
density estimators and k in kth-nearest-neighbor estimators.
Heuristics are typically used for model selection, for example
the Ragwitz criterion [21] in the neuroscience literature or
embedology-based approaches adopted from attractor recon-
struction [22].3 After model selection, parameters for model
estimation are also chosen in an ad hoc fashion by resorting
to asymptotic results in, for example, choosing the nearest
neighbor for kth-nearest-neighbor estimators. However, since
we are always dealing with finite, and often quite small
(relative to the dimension of the estimation problem) data
sets, appeals to asymptotic results should be treated with
skepticism. After model selection and estimation, the transfer
entropy estimate is most often used for null hypothesis
significance testing [24]. Thus, rather than attempting to
estimate the transfer entropy with precision and accuracy, the
easier problem of determining whether an input has any, no
matter how small, predictive impact on an output is solved.
This is typically done using a bootstrap method based on
surrogates [25]. Because of this, little attention has been
paid to how well proposed estimators perform. When the
statistical properties of estimators of transfer entropy have
been considered, it is typically in the context of linear vector
autoregressive models for which transfer entropy has been
computed analytically from Granger causality [4]. However,
such systems are precisely those for which transfer entropy is
least appropriate.

In the rest of this paper, we investigate the properties of
total, local, and specific transfer entropies for an input-output
process, and consider the statistical properties of estimators
for these transfer entropies from finite samples. We present
the total and local transfer entropies and develop the specific
transfer entropy in Sec. II. In Sec. III, we present three
methods for model selection and estimation of the transfer
entropies from observations of an input-output system. We
then consider how the transfer entropies and their estimators
behave for an analytically tractable system in Sec. IV, and for
a stochastic chaotic system in Sec. V. Finally, we conclude

2We emphasize that the system must be stochastic in a well-defined
way for the requisite quantities to be well behaved. For example,
if a purely deterministic relationship exists between the input and
output, then infinities may occur among the quantities occurring in
the definition of transfer entropy.

3See Ref. [23] for a discussion of how embedology techniques used
for model selection in the predictive context can lead to suboptimal
results.

and consider potential directions for future research related to
transfer entropy and its state-dependent variants in Sec. VI.

II. TOTAL, LOCAL, AND SPECIFIC TRANSFER
ENTROPIES

We begin by considering a nominal input-output system
where we denote the time series for the input system by {Yt }t∈Z
and the time series for the output system by {Xt }t∈Z. In this pa-
per we consider the case where both the input and output time
series are real valued. We will denote blocks of a time series
from time a to time b > a by Zb

a = (Za,Za+1, . . . ,Zb−1,Zb).
We denote the order-p input-blind predictive density of
the output process by fXt |Xt−1

t−p
(xt | xt−1

t−p) and the order-p
input-conditioned predictive density of the output process by
fXt |Y t−1

t−p ,Xt−1
t−p

(xt | yt−1
t−p,xt−1

t−p). That is, fXt |Xt−1
t−p

(· | xt−1
t−p) specifies

the density over the output future Xt conditional on the output
past xt−1

t−p and fXt |Y t−1
t−p ,Xt−1

t−p
(· | yt−1

t−p,xt−1
t−p) specifies the density

over the output future Xt conditional on the input-output
past (yt−1

t−p,xt−1
t−p). We will assume that the output process is

stationary conditional on its own past as well as on its own
past and the past of the input process, that is the input-blind
predictive density satisfies

fXt |Xt−1
−∞ = fXt+τ |Xt+τ−1

−∞ (1)

and the input-conditioned predictive density satisfies

fXt |Y t−1
−∞ ,Xt−1

−∞ = fXt+τ |Y t+τ−1
−∞ ,Xt+τ−1

−∞ (2)

for all values of t and τ . In other words, the statistical properties
of the future output of the process does not vary in time
conditional on a sufficiently long output or input-output past.
This assumption, called conditional stationarity [26], is weaker
than the usual assumption of strong-sense stationarity. For
example, a homogeneous Markov process of order p with
initial density not equal to a stationary density of the process
is conditionally stationary after conditioning on p steps into
its past but is not strong-sense stationary. Because of this
assumption, we will suppress the subscripts of the predictive
densities where their arguments make their identities clear.

The transfer entropy from the input process to the output
process is determined by the two predictive entropies for
the output process. In the absence of information about the
input process, the output process has an input-blind predictive
entropy of order p given by

h
[
Xp+1

∣∣Xp

1

] = −E
[

ln f
(
Xp+1

∣∣Xp

1

)]
, (3)

and all logarithms are taken base-e where E[·] is the expec-
tation operator. The input-blind predictive entropy quantifies
the intrinsic uncertainty in the next output conditional on the
previous p outputs. Taking the limit as p goes to infinity
recovers the entropy rate of the process. With inclusion of the
input process, the input-conditional predictive entropy is given
by

h
[
Xp+1

∣∣Yp

1 ,X
p

1

] = −E
[

ln f
(
Xp+1

∣∣Yp

1 ,X
p

1

)]
. (4)

Because conditioning reduces entropy [27], the inclusion of
Y

p

1 can only decrease the predictive uncertainty relative to
the input-blind predictive density. This motivates considering
the difference between the input-blind and input-conditioned
predictive entropies, which gives the transfer entropy of
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order p [5,6],

T(p)
Y→X = h

[
Xp+1

∣∣Xp

1

] − h
[
Xp+1

∣∣Xp

1 ,Y
p

1

]
(5)

= E

[
ln

f
(
Xp+1

∣∣Yp

1 ,X
p

1

)
f

(
Xp+1

∣∣Xp

1

) ]
. (6)

By manipulating (6), one can also show that the transfer
entropy is equivalent to the mutual information between the
next step future of the output process and the input past
conditional on the output past, I [Xp+1 ∧ Y

p

1 |Xp

1 ]. In this form,
we therefore immediately see that the transfer entropy is zero
if and only if the next-step future of the output process is
independent of the past of the input process conditional on the
past of the output process.

The traditional transfer entropy as given by (6) averages
over all input-output pasts and output futures. As such, it
quantifies the total transfer entropy from the input process
to the output process. However, one of the hallmarks of
nonlinear dynamical systems is that their predictability can
vary widely depending on where in state space the prediction
occurs [28]. Thus, a state-dependent version of transfer entropy
that quantifies the predictive impact of an input process on
an output process as a function of the joint state space is
desirable. One version of a state-dependent transfer entropy,
the local transfer entropy, was developed in Refs. [18,29].
Local transfer entropy is derived from the expression (6) for
the overall transfer entropy. The local transfer entropy of order
p, denoted by t̃Y→X(yp

1 ,x
p

1 ,xp+1), is taken to be the expectand
of (6):

t̃Y→X

(
y

p

1 ,x
p

1 ,xp+1
) = ln

f
(
xp+1

∣∣yp

1 ,x
p

1

)
f

(
xp+1

∣∣xp

1

) . (7)

The local transfer entropy has several desirable properties: it is
identically zero precisely when total transfer entropy is zero,
and taking its average over all input-output pasts and output
futures gives total transfer entropy. However, its interpretation
is made difficult by the fact that, though it averages to a
non-negative value, for any given evaluation point it may be
negative. In fact, it can take any real value. As an example,
consider the right panel of Fig. 1, which shows the input-blind
predictive density f (xt |xt−1) and several input-conditional
predictive densities f (xt |yt−1,xt−1) for various values of the
input yt−1 for the input-output system developed in Sec. IV.
We see that the input-blind predictive density can be less
than, equal to, or greater than the input-conditioned predictive
density depending on the value of any one of yt−1,xt−1, or
xt . What, then, does a negative local transfer entropy mean in
terms of the predictive impact of the input on the output? In
Refs. [18,30], the authors state that in these cases the input
is misleading and/or misinformative. This interpretation does
not, however, agree with the fact that, conditional on that
particular input-output past, the future will agree statistically
with the input-conditioned predictive density and not the
input-blind predictive density [31]. Thus, rather than being
misinformative, the input is precisely correctly informative in
these cases.

We now develop an alternative to local transfer entropy
that shares its desirable properties while also having direct

FIG. 1. A demonstration of (a) specific transfer entropy and
(b) input-blind f (xt |xt−1) and input-conditional predictive densities
f (xt |yt−1,xt−1) for the model system developed in Sec. IV at
xt−1 = 2. The colors of the input-conditioned predictive densities
correspond to colors of the points on specific transfer entropy
curve, and the red density corresponds to the input-blind predictive
density.

interpretability in terms of the state-dependent predictive
impact of the input process on the output process. Like
local transfer entropy, we begin from the definition of total
transfer entropy given by (6). However, rather than taking
the expectand as our definition, we first apply an iterated
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expectation,

T(p)
Y→X = E

[
ln

f
(
Xp+1

∣∣Yp

1 ,X
p

1

)
f

(
Xp+1

∣∣Xp

1

) ]
(8)

= E

[
E

(
ln

f
(
Xp+1

∣∣Yp

1 ,X
p

1

)
f

(
Xp+1

∣∣Xp

1

) ∣∣∣∣∣Yp

1 ,X
p

1

)]
(9)

and consider the internal conditional expectation

E[ln f (Xp+1|Yp

1 ,X
p

1 )
f (Xp+1|Xp

1 )
|Yp

1 = y
p

1 ,X
p

1 = x
p

1 ]. Unpacking this
conditional expectation,

E

[
ln

f
(
Xp+1

∣∣Yp

1 ,X
p

1

)
f

(
Xp+1

∣∣Xp

1

) ∣∣∣∣Yp

1 = y
p

1 ,X
p

1 = x
p

1

]
(10)

=
∫
R

f
(
xp+1

∣∣yp

1 ,x
p

1

)
ln

f
(
xp+1

∣∣yp

1 ,x
p

1

)
f

(
xp+1

∣∣xp

1

) dxp+1 (11)

= DKL

[
f

( · ∣∣yp

1 ,x
p

1

)∥∥f
( · ∣∣xp

1

)]
, (12)

we see that it is equal to the Kullback-Leibler divergence from
the input-blind predictive density to the input-conditioned
predictive density conditional on the specific input-output past.
We take this Kullback-Leibler divergence as our definition of
specific transfer entropy tY→X(yp

1 ,x
p

1 ) of order p,

tY→X

(
y

p

1 ,x
p

1

) = DKL

[
f

( · ∣∣yp

1 ,x
p

1

)∥∥f
( · ∣∣xp

1

)]
. (13)

This transfer entropy is specific in the sense that it depends on
the specific history (yp

1 ,x
p

1 ) of the input-output system. This is
in analogy to the specific entropy rate introduced in Ref. [32],
which quantifies the intrinsic uncertainty associated with a
specific past of a stochastic process. In fact, by expanding
(13), we see that

tY→X

(
y

p

1 ,x
p

1

) =
∫
R

f
(
xp+1

∣∣yp

1 ,x
p

1

)
ln f

(
xp+1

∣∣yp

1 ,x
p

1

)
× dxp+1 −

∫
R

f
(
xp+1

∣∣yp

1 ,x
p

1

)
× ln f

(
xp+1

∣∣xp

1

)
dxp+1 (14)

= −h
[
Xp+1

∣∣Yp

1 = y
p

1 ,X
p

1 = x
p

1

]
+ cY→X

(
y

p

1 ,x
p

1

)
, (15)

where h[Xp+1|Yp

1 = y
p

1 ,X
p

1 = x
p

1 ] is an input-conditioned
specific entropy rate and cY→X(yp

1 ,x
p

1 ) is a specific cross
entropy.

The specific transfer entropy shares the desirable properties
of local transfer entropy. Taking its expectation with respect
to the input-output past recovers the overall transfer entropy.
Moreover, in the case that the overall transfer entropy T(p)

Y→X

is zero, we immediately have that specific transfer entropy
tY→X(yp

1 ,x
p

1 ) is identically zero, since in that case the input-
conditioned predictive density is equal to the input-blind pre-
dictive density. Unlike local transfer entropy, specific transfer
entropy, as a Kullback-Leibler divergence, is non-negative
and zero precisely when the input-blind and input-conditional
predictive densities are identical almost everywhere. Its
deviation from 0 indicates how much the input-blind predictive
density differs from the input-conditioned predictive density,

giving a state-specific quantification of the predictive impact
of the input-output past on the output future. Moreover, we can
relate specific transfer entropy to local transfer entropy via a
conditional expectation of the latter,

E
[̃
tY→X

(
Y

p

1 ,X
p

1 ,Xp+1
)∣∣Yp

1 = y
p

1 ,X
p

1 = x
p

1

]
(16)

=
∫
R

f
(
xp+1

∣∣yp

1 ,x
p

1

)
ln

f
(
xp+1

∣∣yp

1 ,x
p

1

)
f

(
xp+1

∣∣xp

1

) dxp+1 (17)

= tY→X

(
y

p

1 ,x
p

1

)
. (18)

Thus, specific transfer entropy is equivalent to local transfer
entropy averaged over future outputs. For an illustration of
the interpretation of specific transfer entropy, again consider
Fig. 1. We see that specific transfer entropy initially decreases
as a function of the input y, since as y increases the
input-blind predictive density becomes an increasingly better
approximation of the future relative to the input-conditioned
predictive density. However, for values of y greater than 0,
specific transfer entropy again increases since the input-blind
predictive density becomes an increasingly poor approxima-
tion.

III. ESTIMATION OF TOTAL, LOCAL, AND SPECIFIC
TRANSFER ENTROPIES FROM OBSERVATIONS

Thus far we have presented the definitions of the total and
local transfer entropies, and a specific transfer entropy, which
can be computed when a model input-output process is known.
In practice, the model for a set of observations is unknown, and
we must estimate the transfer entropies from the data in hand.
We consider three approaches to estimating total, local, and
specific transfer entropies from data: plug-in estimators via
kernel density estimators with bandwidths based on a normal
reference, plug-in estimators using kernel density estimators
with bandwidths tuned by l-block cross validation, and plug-in
estimators using kth-nearest-neighbor estimators.

We first consider the plug-in estimators using kernel density
estimators. We present the estimator for the input-conditioned
predictive density, for which the estimator for the input-
blind predictive density immediately follows. Consider a time
series {(Yt ,Xt )}Tt=1 from a proposed input-output system. To
estimate the total, local, and specific transfer entropies requires
the predictive density f (xp+1|yp

1 ,x
p

1 ). A plug-in estimator
substitutes an estimator f̂ (xp+1|yp

1 ,x
p

1 ) for the true predictive
density in their definitions. Recalling that the predictive density
is given by f (xp+1|yp

1 ,x
p

1 ) = f (yp

1 ,x
p

1 ,xp+1)/f (yp

1 ,x
p

1 ) we
can estimate the predictive density by estimating the joint
density f (yp

1 ,x
p

1 ,xp+1) and its marginal density f (yp

1 ,x
p

1 ) and
taking their ratio. We estimate the marginal and joint densities
using kernel density estimators with product kernels and band-
widths ky = (ky,1, . . . ,ky,p),kx = (kx,1, . . . ,kx,p), and kx,p+1.
Note that the joint and marginal density estimators are
coupled through the common bandwidths kx and ky used
in both estimators. This coupling is necessary to ensure
that f̂ (xp+1|yp

1 ,x
p

1 ) is a probability density function, i.e., it
integrates to 1 with respect to xp+1.

The kernel density estimators require the specification
of the kernel K , the model order p, and the bandwidths
kx,ky,kx,p+1. In practice, the kernel choice has little effect on

022121-4



SPECIFIC TRANSFER ENTROPY AND OTHER STATE- . . . PHYSICAL REVIEW E 96, 022121 (2017)

the estimator, and we use a multivariate product kernel with
each univariate kernel given by K(x) = φ(x), the probability
density function for a standard normal random variable. The
bandwidths and model order will have a larger impact on the
estimation of the transfer entropies. A rule of thumb for the
bandwidths of a d-variate kernel density estimator using a nor-
mal reference density suggests bandwidths kj = T −1/(d+4)σ̂j

where σ̂j is the sample standard deviation of the j th variate
[33]. Thus, for the input-blind predictive density we take
kx,j = T −1/(p+5)σ̂X and for the input-conditioned predictive
density we take kx,j = T −1/(2p+5)σ̂X and ky,j = T −1/(2p+5)σ̂Y .
This leaves the choice of the model order p. We choose the
model order via l-block cross validation [34] of the negative
log likelihood of the conditional density as in Ref. [32]. That
is, we take the model order p∗ ∈ {0,1, . . . ,pmax} for some
prespecified pmax that minimizes

− 1

T − pmax

T∑
t=pmax+1

ln f̂−t :l
(
Xt

∣∣Y t−1
t−p,Xt−1

t−p

)
, (19)

where f̂−t :l is the kernel density estimator for the conditional
density constructed using all of the data except the 2l + 1
observations about and including t . The half-window length l

is taken to be a fixed fraction of the time series length, typically
1/6 or 1/8 of the total length T . Thus, this objective function
quantifies our average surprise at seeing a particular output
future following a particular input-output past, without biasing
the result by including the temporal dependencies around each
evaluation point. For p too small, we will have excess surprise
about the future because we have not sufficiently modeled the
input-output process. For p too large, we will have excess
surprise due to overfitting the predictive density. We therefore
take a value of p that balances these two sources of excess
surprise.

The rule-of-thumb bandwidths are asymptotically optimal
for the mean integrated squared error using a normal kernel
with respect to a normal reference distribution. The rule-of-
thumb bandwidths have the advantage that they are quick to
compute, but they may result in suboptimal bandwidths for
densities that deviate from joint normality or for small sample
sizes. We thus also consider a kernel density estimator where
the bandwidths are also chosen to minimize a cross-validation
score, following Ref. [35]. In addition to the model order,
we also choose the bandwidths to minimize the l-block
cross-validation score given by (19). Both theoretical and
empirical work has shown that choosing the bandwidth via
cross validation can automatically remove irrelevant predictors
by setting their bandwidths very large [35,36]. This is clearly
desirable in the input-output time series case, since we desire
to induce conditional independence between the future of
the output process and the distant past of the input-output
process, as well as to detect when the proposed input process
is not relevant to the output process. Consider, for example,
the extreme case where the past of a nominal input process
is irrelevant to the future of the nominal output process for
prediction. By this coupling, we can ignore the input past by
setting the bandwidths ky to large values. This has the effect
of giving f̂ (xp+1|yp

1 ,x
p

1 ) ≈ f̂ (xp+1|xp

1 ) and recovering the
appropriate conditional independence relationship. A similar

advantage is gained if the most recent past of the input-output
process screens off its distant past. We minimize the l-block
cross-validation score with respect to the bandwidths using
Nelder-Mead [37]. To accelerate the bandwidth selection
process, we apply a warm start strategy in choosing the initial
bandwidths for each new value of p. That is, after the optimal
bandwidths for an order-p model have been determined,
we then take those bandwidths as the initial guess for the
bandwidths for the output future and input-output past up to
order p, and set the (p + 1)st bandwidths according to the
normal reference rule of thumb. In addition, if a bandwidth is
set very large after optimization, we remove that lag from the
model for all additional p.

We next consider estimators of the transfer entropies based
on nearest-neighbor statistics. There are many kth-nearest-
neighbor estimators for total transfer entropy. For a recent re-
view, see Ref. [38]. We use the first estimator from Ref. [39] as
implemented in JIDT [16]. This estimator applies the Kraskov-
Stögbauer-Grassberger estimator for mutual information [40]
to transfer entropy estimation. For a fixed nearest-neighbor
value of k, the estimator is given by

T̂
(p)
Y→X = 1

T − p

T∑
t=p+1

ψ(k) + ψ[NX p (t ; ρt,k) + 1]

−ψ[NX p+1 (t ; ρt,k) + 1] − ψ[NYp×X p (t ; ρt,k) + 1],

(20)

where ψ is the digamma function, ρt,k is the distance to the kth
nearest neighbor of (Y t−1

t−p,Xt−1
t−p,Xt ) under the infinity norm,

and NS (t ; ρt,k) is the number of sample points within a distance
ρt,k in the spaceS. The kth-nearest-neighbor estimator of local
transfer entropy is then given by undoing the averaging in (20),
giving

̂̃t (p)

Y→X

(
yt−1

t−p,xt−1
t−p,xt

) = ψ(k) + ψ[NX p (t ; ρt,k) + 1]

−ψ[NX p+1 (t ; ρt,k) + 1]

−ψ[NYp×X p (t ; ρt,k) + 1]. (21)

The free parameters for the kth-nearest-neighbor estimators
for total and local transfer entropy are the model order p and
the nearest-neighbor number k. For a fixed model order p,
the nearest-neighbor number k balances between the bias and
variance of the estimator T̂

(p)
Y→X. The kth-nearest-neighbor esti-

mator on which the Kraskov-Stögbauer-Grassberger estimator
is based is known to be asymptotically unbiased for any fixed
k. However, for finite sample sizes, the bias is nonzero, and
will be smaller for smaller k. However, smaller k will also
result in a higher variance for the estimator. We follow the
standard practice and fix k = 4 in all of our investigations. For
model selection for the kth-nearest-neighbor-based estimator
of the transfer entropies, we choose the model order p to
minimize the mean squared error between the kreg-nearest-
neighbors prediction of the output future based on the output
pasts of order p and the true output future. This is the
self-predictively optimal (SPO) formulation of [41] using the
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model selection criterion from Ref. [21]. That is, we seek the
p that minimizes 1

T −pmax

∑T
t=pmax +1

(X̂(p)
t − Xt )2 where X̂

(p)
t =∑T

t ′=pmax+1 Wt ′,kregXt ′ is the kreg-nearest-neighbors predictor of

Xt with Wt ′,kreg = 1/kreg when Xt ′−1
t ′−p is one of the kreg nearest

neighbor to Xt−1
t−p and zero otherwise. This requires the choice

of kreg for the kreg-nearest-neighbors predictor. While the
number of nearest neighbors could be chosen in a data-driven
manner, for computational efficiency we rely on a rule of
thumb based on consistency results for kreg-nearest-neighbors
regression. In particular, it has been shown that under relatively
general conditions [42], a kreg-nearest-neighbors estimator is
consistent if kreg(T ) is taken to grow faster than ln T but slower
than T . We thus take kreg(T ) = 	√T �, which satisfies these
bounds.

As noted in Sec. II, specific transfer entropy can be written
as the expected value of local transfer entropy conditional
on the input-output past. As such, an estimator of specific
transfer entropy can be obtained from (21) by regressing local
transfer entropy on the input-output past. Any nonparametric
smoother may be used. We perform the smoothing using
a kreg-nearest-neighbors regression. For a nearest-neighbor
number kreg, the estimator of specific transfer entropy is then
given by

t̂ (p)
Y→X

(
y

p

1 ,x
p

1

) =
T∑

t=p+1

Wt,kreg ·̂̃t (p)

Y→X

(
Y t−1

t−p,Xt−1
t−p,Xt

)
, (22)

where Wt,kreg = 1/kreg when (Y t−1
t−p,Xt−1

t−p) is one of the kreg

nearest neighbors to (yp

1 ,x
p

1 ) and zero otherwise. We take
kreg = 	√T � as we did in model selection. Note that unlike
the kernel density-based estimators of specific entropy rate,
the kth-nearest-neighbor-based estimator can result in negative
specific transfer entropies.

IV. A SMOOTH THRESHOLD AUTOREGRESSIVE MODEL
WITH EXOGENOUS DRIVER

As our first model system, we consider a smooth threshold
autoregressive model with an exogenous driver (STARX) [43].
Threshold autoregressive (TAR) models were first systemati-
cally developed in Ref. [44] as simple nonlinear autoregressive
models that captured many properties of nonlinear time series
including subharmonics, amplitude-frequency dependence,
and time irreversibility. In the simplest case, they achieve
this goal by a piecewise linearization of the update equation
according to thresholds in the state space of the system.
Thus, such models are locally linear, and can parsimoniously
approximate a nonlinear system.

For our purposes, we consider the STARX class of nonlinear
input-output systems to allow for both nontrivial nonlinearity
and analytical tractability. The STARX model incorporates an
exogenous input whose value induces a smooth thresholding
between two or more linear autoregressive models for the
output. For our model system, we take the exogenous input
time series {Yt }t∈Z to be a linear autoregressive process
of order 1 [AR(1)], and the output time series {Xt }t∈Z to
switch smoothly between two AR(1) models depending on
the previous value of the input time series. This model can be

expressed as

Yt = cYt−1 + dηt (23)

Xt = w(Yt−1)(b(1)Xt−1 + a(1)εt )

+ (1 − w(Yt−1))(b(0)Xt−1 + a(0)εt ), (24)

where {ηt }t∈Z and {εt }t∈Z are mutually and serially indepen-
dent, identically distributed standard normal random variables.
The threshold function w(y) controls the switching between
the two AR(1) models, and we take w(y) = 	( y

s
), a sigmoidal

function given by the rescaling of the cumulative distribution
function 	(y) of a standard normal random variable.

To compute the specific transfer entropy of this system,
we require the specific input-conditioned entropy rate and and
specific cross entropy. The specific input-conditioned entropy
rate h[Xt |Xt−1 = x,Yt−1 = y] of this model can be computed
exactly. To see this, we begin by regrouping the state and
dynamical noise terms in (24),

Xt = {w(Yt−1)b(1) + [1 − w(Yt−1)]b(0)}Xt−1

+{w(Yt−1)a(1) + [1 − w(Yt−1)]a(0)}εt , (25)

which shows that conditional on Xt−1 and Yt−1, Xt is normally
distributed with mean

E[Xt |Xt−1 = x,Yt−1 = y]

= {w(y)b(1) + [1 − w(y)]b(0)}x (26)

= [b(0) + (b(1) − b(0))w(y)]x = m(x,y) (27)

and variance

Var[Xt |Xt−1 = x,Yt−1 = y]

= {w(y)a(1) + [1 − w(y)]a(0)}2 = v(y). (28)

Because Xt is conditionally normal, we immediately have that
the specific input-conditioned entropy rate of Xt is

h[Xt |Xt−1 = x,Yt−1 = y] = 1
2 ln [2πe · v(y)]. (29)

Thus, while our prediction of the future value of Xt depends
on both x and y, our uncertainty about the future value of
Xt only depends on y. Depending on the conditional variance
function v(y), the output will be more or less predictable for
different values of y. To compute the specific cross entropy,
we also require the input-blind predictive density. Under the
assumption of stationarity, the input-blind predictive density
is computable from the joint transition density, and can be
approximated numerically. See Appendix A for additional
details.

We next consider the STARX system with parameters
c = 0.8, d = 1, a(1) = 2, a(0) = 1, b(1) = 1/2, b(0) = −1/2,
and s = 1. Figure 2 shows a particular realization from the
input-output system. The output Xt is shaded according to Yt−1

to indicate how the dynamics vary according to the input, with
red corresponding to negative Yt−1 and blue corresponding
to positive Yt−1. When the previous inputs are negative, the
output exhibits a negative autocorrelation (red), while when
the previous inputs are positive, the output exhibits positive
autocorrelation (blue). Thus, as the slowly varying input shifts
from negative to positive values, the output shifts from exhibit-
ing high-frequency dynamics to low-frequency dynamics, and
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FIG. 2. An example realization of the input (top) and output
(bottom) from the STARX input-output system with the parameters
given in the text. The output Xt is shaded according to Yt−1

to indicate how the dynamics vary according to the input, with
blue corresponding to negative Yt−1 and red corresponding to
positive Yt−1.

the STARX system exhibits an amplitude-frequency coupling.
Figure 3 shows the specific transfer entropy tY→X(y,x) for
the STARX system with these parameters. We see that if we
fix the output past, the input past becomes more predictively
informative away from 0, and becomes most informative
as it becomes more negative. As the input past becomes
more negative, w(yt−1) → 0, and the output dynamics are
governed by Xt = −1/2Xt−1 + εt . In contrast, as the input
past becomes more positive, w(yt−1) → 1, and the output
dynamics are governed by Xt = 1/2Xt−1 + 2εt . Thus, for a
negative input, the input-conditioned predictive density has
a much smaller variance than for a positive input relative to
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FIG. 3. A contour plot of the specific transfer entropy tY→X(y,x)
from the input process to the output process for the STARX model.

the input-blind predictive density, and thus provides a greater
amount of predictive information. If we fix the input past,
as the output past deviates from 0, the input past provides
more predictive information because with the input it can
distinguish between the negative lag-1 autocorrelation when
yt−1 is negative, and the positive lag-1 autocorrelation when
yt−1 is positive. Because the output process viewed marginally
has a positive lag-1 autocorrelation, the input past is most
informative for negative values.

To determine how well the three estimators for the total,
local, and specific transfer entropies perform, we generated
B = 1000 independent input-output time series of length
T = 1000 and estimate the transfer entropies as described
in Sec. III for the first Tsub = 100,200,500,1000 time points
of the 1000-time-point series. For all estimators, we fix
pmax = 10, and use l = 	 Tsub

8 � for the kernel density estimators
and k = 4 and kreg = 	√Tsub� for the kth-nearest-neighbor
estimators. By considering the values of the estimates across
the 1000 time series, we approximate the sampling distribution
of the estimators. Figure 4 shows the local and specific transfer
entropies as a function of time for a 100-time-step portion
of one of the realizations. The top panels show the transfer
entropies in the input-to-output direction where TY→X > 0
and the bottom panels show the transfer entropies in the
output-to-input direction where TX→Y = 0. The solid lines
indicate the exact transfer entropies and the dotted lines
indicate the transfer entropies estimated from the data. As
expected, we see that both the exact local and specific transfer
entropies vary with time for the input-to-output direction and
are identically zero for the output-to-input direction. Moreover,
we observe that while the local transfer entropy takes both
positive and negative values, as discussed above, the specific
transfer entropy is always non-negative. The estimates of local
and specific transfer entropies track the true local and specific
entropies with varying precision.

We summarize the sampling distributions of the different
estimators for the total transfer entropy in Fig. 5 in the input-
to-output (Y → X) and output-to-input (X → Y ) directions.
The points indicate the mean value of the estimates, the
thick lines cover from the 0.25 sample quantiles to the
0.75 sample quantiles, and the thin lines cover from the
0.025 sample quantiles to the 0.975 sample quantiles. In
the input-to-output direction where TY→X > 0, we see that
the sampling distribution becomes more concentrated as Tsub

increases. The dashed horizontal line indicates the order-1
total transfer entropy, T(1)

Y→X ≈ 0.0939. The mean value of
the estimators approach a value smaller than T(1)

Y→X. This is
because the estimators are designed to estimate T(∞)

Y→X. While
the overall STARX input-output system is a Markov process
of order 1, the output process considered alone appears to have
a Markov order larger than 1. This is typical for a subprocess
of a vector autoregressive process [45], where the subprocess
may have an infinite order despite the overall process having
a finite order. Because the model selection process determines
estimators for the best order-p∗ approximation to T(∞)

Y→X, the
estimators will generally give values for the total transfer
entropy less than T(1)

Y→X. In the output-to-input direction, we
have that T(∞)

X→Y = T(1)
X→Y = 0. For this direction, the sampling

distributions for the estimators based on the kernel density
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FIG. 4. The (a) local and (b) specific transfer entropies and their
estimates in the input-to-output (top of panels) and output-to-input
(bottom of panels) directions from a particular realization of the
STARX system with Tsub = 1000. The exact transfer entropies are
indicated by black (solid) lines, while the estimates based on kernel
density estimation with rule of thumb (RoT) and tuned bandwidths
and kth nearest neighbor (kNN) are indicated by red (dot-dashed),
blue (short dashed), and green (long dashed) lines, respectively.

estimator with a tuned bandwidth and the kth nearest neighbors
both concentrate at 0, with less sampling variability for the
kernel density estimator with a tuned bandwidth. The reduced
variability in this case occurs because with a long enough
time series, the bandwidth tuning eliminates the irrelevant
past of the output time series for predicting the input time
series, and thus exactly recovers T̂

(1)
Y→X = 0. The estimator

based on the kernel density estimators with rule-of-thumb
bandwidths maintains a negative finite sample bias away from
the true value of 0. Thus, we see the benefit of estimating
the input-output predictive density directly via tuning the
bandwidths rather than indirectly via attempting to estimate
both the numerator and denominator of the input-conditioned
predictive density.

We next consider the finite sample properties of the
estimators of the local transfer entropy viewed as a time series.

FIG. 5. A summary of the sampling distribution for the total
transfer entropy estimates based on kernel density estimation with
rule-of-thumb (RoT) and tuned bandwidths and kth nearest neighbor
(kNN) in the (a) input-to-output and (b) output-to-input directions.
Thick lines indicate the 0.25–0.75 quantiles of the 1000 realizations,
and thin lines indicate the 0.025–0.975 quantiles. The dashed
horizontal lines indicate T(1)

Y→X ≈ 0.0939 and TX→Y = 0.

For each value of Tsub, we compute the mean absolute error
between the true local transfer entropy and the estimate for
the local transfer entropy over time. Figure 6 summarizes the
performance of estimators under the mean absolute error. We
see that in both the input-to-output and output-to-input direc-
tions, the estimators based on kernel density estimation have
decreasing error with increasing time series length. The error
in the input-to-output direction does not approach zero. This is
again due to the discrepancy between considering an estimator
for t̃Y→X(yt−1

−∞,xt−1
−∞,xt ) and comparing to t̃Y→X(yt−1,xt−1,xt ).

In contrast, we see that the estimator based on the kth nearest
neighbors has increasing error with increasing time series
length. This counterintuitive result occurs because while the
total transfer entropy estimator (20) is consistent for the total
transfer entropy, each term in that estimator is not a consistent
estimator for the local transfer entropy. This is due to the in-
consistency of the kth-nearest-neighbor density estimator with
k fixed [46]. To recover consistency, we would need to take k

to grow with T . Thus, we see that if an estimator for the local

FIG. 6. A summary of the sampling distribution for the mean
absolute error between the true local transfer entropy and the estimates
based on kernel density estimation with rule-of-thumb (RoT) and
tuned bandwidths and kth nearest neighbor (kNN) in the (a) input-
to-output and (b) output-to-input directions. Thick lines indicate the
0.25–0.75 quantiles of the 1000 realizations, and thin lines indicate
the 0.025–0.975 quantiles.
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FIG. 7. A summary of the sampling distribution for the mean
absolute error between the true specific transfer entropy and the
estimates based on kernel density estimation with rule-of-thumb
(RoT) and tuned bandwidths and kth nearest neighbor (kNN) in the
(a) input-to-output and (b) output-to-input directions. Thick lines
indicate the 0.25–0.75 quantiles of the 1000 realizations, and thin
lines indicate the 0.025–0.975 quantiles.

transfer entropy is desired, the kth-nearest-neighbor estimator
should use a k that scales with the length of the time series.

Finally, we consider the finite sample properties of the
estimators of the specific transfer entropy viewed as a time
series. Now we compute the mean absolute error between
the true specific transfer entropy and the estimate for the
specific transfer entropy over time. Figure 7 summarizes the
performance of estimators under the mean absolute error.
Once again, all of the estimators exhibit decreasing error
with increasing sample size. The estimator (22) based on
kth nearest neighbors regains its consistency because the
estimator incorporates an averaging over kreg neighbors with
kreg growing with time series length. Thus, while the kth-
nearest-neighbor estimator with k fixed is inappropriate for
local transfer entropy, it can be used for specific transfer
entropy. However, we see that for moderate length time series,
the estimators based on kernel density estimation outperform
the kth-nearest-neighbor estimator. The estimator using kernel
density estimation with tuned bandwidths performs especially
well in the output-to-input direction, since the bandwidth
tuning screens off the irrelevant output past for the input
process, and thus recovers t̂X→Y ≡ 0.

V. COUPLED STOCHASTIC HÉNON MAPS

As our second example, we consider a stochastic version
[47] of the coupled Hénon maps studied in [48]. We first
consider the unidirectionally coupled case. The dynamics of
the input system Y and the output system X are given by

Y1,t = 1.4 − Y 2
1,t−1 + 0.3Y2,t−1 + σε1ε1,t (30)

Y2,t = Y1,t−1 + σε2ε2,t (31)

X1,t = 1.4 − [CY1,t−1 + (1 − C)X1,t−1]

×X1,t−1 + 0.3X2,t−1 + ση1η1,t (32)

X2,t = X1,t−1 + ση2η2,t , (33)

FIG. 8. Results for the unidirectionally coupled stochastic Hénon
maps. (a) Input and output time series. (b) Local transfer entropy. (c)
Specific transfer entropy.

where {ε1,t }t∈Z,{ε2,t }t∈Z,{η1,t }t∈Z,{η2,t }t∈Z are mutually and
serially independent, identically distributed standard normal
random variables with associated dynamical noise amplitudes
of σε1 ,σε2 ,ση1 ,ση2 and C is the coupling strength from Y to X.

To explore the local and specific transfer entropies for this
system, we generate a length T = 80000 time series with
C = 0.6 and σε1 = σε2 = ση1 = ση2 = 0.004 and estimate
the total, local, and specific transfer entropies using the
kth-nearest-neighbor estimators with the first state variables
{(Y1,t ,X1,t )}Tt=1 as the observations from the input-output
system. Model selection chose p∗ = 4 in the input-to-output
direction and p∗ = 2 in the output-to-input direction. The total
transfer entropies were estimated to be T̂Y→X = 0.47 in the
input-to-output direction and T̂X→Y = −0.04 in the output-
to-input direction. Thus, the total transfer entropy correctly
identifies that predictive information is positive from the input
to the output and zero from the output to the input. Figure 8
shows the estimates for the [Fig. 8(a)] local and [Fig. 8(b)]
specific transfer entropies for the first 2000 time steps of
the time series. The estimate of the local transfer entropy in
the input-to-output direction is generally positive, and varies
dramatically depending on the state of the input-output system.
The estimate of the local transfer entropy in the output-to-input
direction varies around 0, and as with the STARX system, we
see that the estimate has nonvanishing sampling variability
due to fixing k = 4. The estimates of the specific transfer
entropy more clearly show that predictive information is only
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FIG. 9. The specific transfer entropies as a function of the
observed state variables for coupled stochastic Hénon maps with
unidirectional coupling. (a) and (c) show the nominal output future
as a function of the nominal input-output past in the input-to-output
and output-to-input direction while (b) and (d) show the nominal
output future as a function of two lags of the nominal output past.
The projections onto the planes show the nominal output future as a
function of the most recent nominal output past. Each point is shaded
according to the estimated specific transfer entropy associated with
that nominal input-output state in the input-to-output direction [(a)
and (b)] and output-to-input direction [(c) and (d)], with black (dark)
indicating low specific transfer entropy and yellow (light) indicating
high specific transfer entropy.

transferred from the input to the output: t̂Y→X is clearly
positive for most values of the input-output past, while t̂X→Y

is approximately zero for all values of the input-output past.
We have seen how the specific transfer entropy varies as a

function of time. Next we consider how the specific transfer
entropy varies as a function of the input-output pasts. Because
the model orders p∗ are greater than 1, we cannot directly
visualize the output future as a function of the p∗ lags of the
input and output pasts. Instead, we consider two projections
of the input-output pasts: the previous input-output pair and
the previous two output pairs. We show the nominal output
future as a function of these two projections in Fig. 9. For
reference, we also show the nominal output future as a function
of the most recent nominal output past projected onto the
plane. Each point is shaded according to the order-p∗ specific
transfer entropy estimated for that input-output past. Consider
Figs. 9(a) and 9(b). These correspond to the case with a positive
coupling. We see that the regions of the input-output past that
provide predictive information correspond to those regions
where inclusion of the input past unfolds the attractor more
than inclusion of an additional lag of the output past. For
example, for large magnitude X1,t−1, Y1,t−1 provides more
information about X1,t , while for X1,t−1 close to 0, this is not

the case. This agrees with the update equation for X1,t , since
the impact of Y1,t−1 is modulated by the magnitude of X1,t−1.
Contrast this with Figs. 9(c) and 9(d), which correspond to the
output-to-input direction. Here, X1,t−1 provides no predictive
information for Y1,t , and thus the attractor does not unfold upon
inclusion of X1,t−1, while it unfolds completely after inclusion
of Y1,t−2. Again, this agrees with the update equation for Y1,t

since knowledge of Y1,t−1 and Y1,t−2 completely specifies Y1,t

up to dynamical noise.
As our final example, we consider stochastic Hénon maps

where the system switches from no coupling to bidirectional
coupling. In the case of time-dependent coupling, the dynamics
of the two systems are given by

Y1,t = 1.4 − (CX→Y (t)X1,t−1 + (1 − CX→Y (t))Y1,t−1)

×Y1,t−1 + 0.3Y2,t−1 + σε1ε1,t (34)

Y2,t = Y1,t−1 + σε2ε2,t (35)

X1,t = 1.4 − (CY→X(t)Y1,t−1 + (1 − CY→X(t))X1,t−1)

×X1,t−1 + 0.3X2,t−1 + ση1η1,t (36)

X2,t = X1,t−1 + ση2η2,t , (37)

FIG. 10. Results for the stochastic Hénon maps with switched
coupling. (a) Input and output time series. (b) Local transfer entropy.
(c) Specific transfer entropy. The dashed orange line indicates when
the coupling switches on.
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FIG. 11. The specific transfer entropies as a function of the
observed state variables for coupled stochastic Hénon maps with
switching coupling. (a) shows the nominal output future as a function
of the nominal input-output past and (b) shows the nominal output
future as a function of two lags of the nominal output past. The
projections onto the planes show the nominal output future as a
function of the most recent nominal output past. Each point is
shaded according to the specific transfer entropy associated with that
nominal input-output state, with black (dark) indicating low specific
transfer entropy and yellow (light) indicating high specific transfer
entropy.

where the dynamical noise terms are as before and the coupling
terms CX→Y (t) and CY→X(t) can vary as a function of time.

We again generate a length T = 80000 time series from
this system with the dynamical noise amplitudes as before and
with the coupling terms in both directions given by CX→Y (t) =
CY→X(t) = 0 for t � 40000 and CX→Y (t) = CY→X(t) = 0.27
for t > 40000. Note that in this case, the input-output system is
not conditionally stationary: to induce conditional stationarity,
we would also have to condition on CX→Y (t) and CY→X(t).

However, we proceed to see how the estimators for total, local,
and specific transfer entropies behave under this violation.
Model selection chose p∗ = 3 in both directions. The overall
transfer entropy estimates are T̂Y→X = 0.06 and T̂X→Y =
0.06. This is a mixing of the estimates from the first half of
the time series, where T̂Y→X = −0.04 and T̂X→Y = −0.04,
and the second half, where T̂Y→X = 0.15 and T̂X→Y = 0.15.
Figure 10 shows the estimates for the (a) local and (b) specific
transfer entropies from 500 time points before to 500 time
points after the switch from CX→Y (t) = CY→X(t) = 0 to
CX→Y (t) = CY→X(t) = 0.27. After an initial transient, we
see that the coupled system transitions from asynchronous
dynamics to synchronous dynamics. This is especially
apparent from the estimated specific transfer entropy, which
transitions from being nearly identically zero before the
coupling to positive after the coupling. The transition is less
obvious from the local transfer entropy.

As with the unidirectionally coupled system, we also
consider how the specific transfer entropy varies across the
input-output state space. Figure 11 shows the nominal output
future as a function of [Fig. 11(a)] the nominal input-output
past and [Fig. 11(b)] two time steps of the nominal output
past again colored according to the estimated specific transfer
entropy. We only consider a single direction, Y → X, due
to the symmetric nature of the system. We see that during
the period without coupling the specific transfer entropy is
nearly identically zero because, as expected, the nominal input
past provides no predictive information relative to the nominal
output pasts. However, once coupling begins and after an initial
transient, the nominal input past now does provide predictive
information but only for positive values of the nominal output
past. In the coupled state, the system exhibits quasiperiodic
dynamics, and the nominal input past only helps resolve the
nominal output future during a portion of the quasiperiod.

VI. CONCLUSION

In this paper, we have developed specific transfer entropy,
and compared its theoretical properties to both total and
local transfer entropies. Specific transfer entropy shares the
favorable properties of total and local specific entropies, and
does not share their undesirable properties. We have seen
that specific transfer entropy provides a directly interpretable
measure of the predictive impact of a nominal input on a
nominal output as a function of the input-output state. As
such, specific transfer entropy provides both time-dependent
and state-dependent information about input-output systems.

We have seen that total, local, and specific transfer entropies
can be reliably estimated from observations of input-output
systems. We found that for short to moderate length time series,
plug-in estimators based on kernel density estimators outper-
formed plug-in estimators based on kth nearest neighbors.
Moreover, we found that kth-nearest-neighbor-based estima-
tors of local transfer entropy with k fixed do not consistently
estimate the local transfer entropy, and should not be used if a
state- or time-resolved analysis of the system is desired. One
topic we have not addressed is the computational complexity
of these estimators. The kernel density estimators require
O(T 2) operations to evaluate, compared to O(T ln T ) for
kth-nearest-neighbor estimators. In addition, the optimization
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of the bandwidths for the tuned kernel density estimator may
require many evaluations of the kernel density estimator. Thus,
for long enough time series, to gain computational tractability,
the kth-nearest-neighbor-based estimator may be preferred
despite worse statistical performance. In addition, for an input-
output system where the specific transfer entropy varies greatly
over the input-output state space, the kth-nearest-neighbor
estimator may perform better since it adapts locally to the
density at any given point.

In this paper, we have focused on transfer entropies for
discrete-time systems. Extensions to continuous-time systems
are clearly of universal interest. Extensions along these lines
have been made for Granger causality for stochastic delay
differential equations [49] and transfer entropy for jump and
point processes [50]. A related literature on multiscale systems
has also been developed [51–53]. We leave extensions of
specific transfer entropy to continuous time for future work.

Specific transfer entropy may find applicability anywhere
that Granger causality, total transfer entropy, or local transfer
entropy have been used. As one example, local transfer entropy
was found to perform well as a spatiotemporal filter for
discrete-state systems [18,54]. The extension of this approach
to continuous-state systems via the specific transfer entropy is
straightforward. This approach might then be used, for exam-
ple, to filter a network of coupled oscillators in order to deter-
mine those regions of the network and durations of its dynamic
when predictive information is maximized or minimized.
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APPENDIX: APPROXIMATION OF THE LOCAL AND
SPECIFIC TRANSFER ENTROPY FOR THE STARX

SYSTEM

To compute the first-order local and specific transfer
entropies t̃Y→X(yt−1,xt−1,xt ) and tY→X(yt−1,xt−1), we require
the conditional density of Xt given Xt−1. By the law of total
probability, we have that

f (xt

∣∣xt−1) =
∫
R

f (xt

∣∣xt−1,yt−1)f (yt−1

∣∣xt−1) dyt−1. (A1)

The first density in the integral is known from (24), thus we
only require the conditional density of Yt−1 given Xt−1. By
assuming stationarity, we can compute this conditional density
from the stationary density of the joint process {(Xt,Yt )}t∈Z.
The stationary density of the joint process is given as the
solution to the eigenproblem

f (xt ,yt ) =
∫
R2

K(xt−1,yt−1,xt ,yt )f (xt−1,yt−1) dxt−1dyt−1,

(A2)
where K is the transition kernel given by

K(xt−1,yt−1,xt ,yt ) = f (xt ,yt

∣∣xt−1,yt−1), (A3)

i.e., the transition density from (xt−1,yt−1) to (xt ,yt ). Note that
because of the conditional independence relationships implicit
in the STARX model, we have that the transition density fac-
tors as f (xt ,yt |xt−1,yt−1) = f (xt |xt−1,yt−1)f (yt |yt−1), where
both of these conditional densities are normal by (23)–(24).
We thus approximate the solution to (A2) using Nyström’s
method with Gauss-Legendre quadrature [55,56], and then
compute the conditional densities f (yt−1|xt−1) and f (xt |xt−1)
via Gauss-Legendre quadrature.
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