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Lattice Boltzmann modeling and simulation of liquid jet breakup
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A three-dimensional color-fluid lattice Boltzmann model for immiscible two-phase flows is developed in the
framework of a three-dimensional 27-velocity (D3Q27) lattice. The collision operator comprises the D3Q27
versions of three suboperators: a multiple-relaxation-time (MRT) collision operator, a generalized Liu–Valocchi–
Kang perturbation operator, and a Latva-Kokko–Rothman recoloring operator. A D3Q27 version of an enhanced
equilibrium distribution function is also incorporated into this model to improve the Galilean invariance. Three
types of numerical tests, namely, a static droplet, an oscillating droplet, and the Rayleigh–Taylor instability,
show a good agreement with analytical solutions and numerical simulations. Following these numerical tests,
this model is applied to liquid-jet-breakup simulations. The simulation conditions are matched to the conditions
of the previous experiments. In this case, numerical stability is maintained throughout the simulation, although
the kinematic viscosity for the continuous phase is set as low as 1.8 × 10−4, in which case the corresponding
Reynolds number is 3.4 × 103; the developed lattice Boltzmann model based on the D3Q27 lattice enables
us to perform the simulation with parameters directly matched to the experiments. The jet’s liquid column
transitions from an asymmetrical to an axisymmetrical shape, and entrainment occurs from the side of the jet.
The measured time history of the jet’s leading-edge position shows a good agreement with the experiments.
Finally, the reproducibility of the regime map for liquid-liquid systems is assessed. The present lattice Boltzmann
simulations well reproduce the characteristics of predicted regimes, including varicose breakup, sinuous breakup,
and atomization.
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I. INTRODUCTION

Multiphase and multicomponent flows appear in many nat-
ural and industrial processes. A liquid jet injected into another
fluid is an interesting example of such a flow. Significant
efforts have been put into understanding the breakup of a
liquid jet for more than a century. Since the pioneering works
of Plateau [1] and Rayleigh [2], extensive studies on this
subject have been performed theoretically, experimentally, and
numerically [3–6].

Drops form directly from the nozzle at low injection
velocities, and a liquid jet issues from the nozzle and then
breaks into droplets in various patterns at higher injection
velocities. The occurrence of such a regime is of interest in the
study of liquid-jet breakup. Ohnesorge [7] classified his results
into four types of breakup regimes: (0) dripping, (I) varicose,
(II) sinuous, and (III) atomization [8,9]. He also provided a
regime map of liquid jets in a gas using the Ohnesorge and
Reynolds numbers. After Ohnesorge’s work, much research
on this subject has been performed (e.g., Refs. [10–12]).
The majority of investigations have focused upon liquid-gas
systems (liquid jet into gaseous atmosphere). Breakup of
jets in liquid-liquid systems (liquid jets into another liquid)
has not been investigated as extensively. Our focus in this
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paper is therefore on the breakup of liquid jets in immiscible
liquid-liquid systems.

The liquid-liquid-jet systems can also be found in several
fields, e.g., chemical processing [13–15] and CO2 storage in
oceans [16,17]. In the field of nuclear engineering, interactions
between melt and coolant must be well understood for safety
design of nuclear reactors and have therefore been extensively
investigated in the literature [18–20]. In experiments, a
high-temperature melt is often used to simulate the core
melt materials. Abe et al. [20] discussed the relationships
between the fragment size and the Rayleigh–Taylor and
Kelvin–Helmholtz interfacial instabilities [21].

To better understand the fundamental interactions between
melt-jet and coolant interactions, experiments using appropri-
ate test fluids under isothermal conditions are also effective
approaches as a separate effect of such interactions [19,22].
Saito et al. [22] developed a breakup-regime map for a jet
in immiscible liquid-liquid systems based on experiments
and phenomenological considerations. Figure 1 shows the
dimensionless map and the corresponding visual images. The
Ohnesorge classification [7] was extended to liquid-liquid
systems. As can be seen, various flow regimes occur during
liquid-jet-breakup processes. The breakup transitions from the
dropping regime to the atomization regime, and the generated
droplet size drastically changes depending on the conditions.
This implies that the breakups of liquid jets are essentially
three-dimensional flows and possess multiscale phenomena,
such as droplet pinch-off and atomization.

Numerical simulations of liquid-liquid jets involve the
solution of the Navier–Stokes equations for two fluids with
specified boundary and interface conditions. Several ap-
proaches to solving these types of free-surface problems are

2470-0045/2017/96(1)/013317(18) 013317-1 Published by the American Physical Society

https://doi.org/10.1103/PhysRevE.96.013317
https://creativecommons.org/licenses/by/4.0/


SHIMPEI SAITO, YUTAKA ABE, AND KAZUYA KOYAMA PHYSICAL REVIEW E 96, 013317 (2017)

Re

O
h

III

II

0 / I
Dripping / Varicose

Sinuous

Atomization

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4 0 I IIa IIb III

Regimes

FIG. 1. Left: Breakup regime map for jets in immiscible liquid-liquid systems. Right: Corresponding visualization images: Regime 0,
dripping; Regime I, varicose breakup; Regime IIa, sinuous breakup without entrainment; Regime IIb, sinuous breakup with entrainment; and
Regime III, atomization [22].

available in the literature. As a first attempt, Richards et al. [23]
investigated the axisymmetric steady-state laminar jet based
on the volume-of-fluid (VOF) method [24]. Thakre et al. [25]
also used the VOF method provided by a commercial code,
FLUENT, to simulate a melt jet into water. They successfully
reproduced a variation in the breakup length [26]; later, a sim-
ilar variation was confirmed by experiments [22,27]. Homma
et al. [28] numerically investigated liquid-liquid-jet breakup
using a front-tracking method [29,30]. They mapped different
breakup modes on a plot of Weber number versus viscosity
ratio. The drawback of their front-tracking simulations was
that they neglected the coalescence of generated drops. The
aforementioned numerical simulations [23,25,28] were limited
to two-dimensional cases.

A completely different approach is the use of a lattice
Boltzmann method. Several authors have investigated liquid-
liquid-jet flows using multiphase lattice Boltzmann mod-
els [31–33]. In recent years, this method has been recognized
as a powerful tool for analysis of complex fluid dynamics,
including multicomponent and multiphase flows [34]. Com-
pared with other macroscopic CFD methods based on the
Navier–Stokes equations, the lattice Boltzmann method, which
is constructed using mesoscopic kinetic equations, has several
advantages. For instance, it is easy to incorporate mesoscale
physics, such as interfacial breakup or coalescence. Moreover,
the computational cost for simulating realistic fluid flows
is reasonable compared with particle-based methods (e.g.,
molecular dynamics). The relations of the scale properties in
fluid flows are schematically illustrated in Fig. 2.

Two-phase or multiphase lattice Boltzmann models can be
classified into four categories:

(1) Color-fluid model [35,36],
(2) Pseudopotential model [37,38],
(3) Free-energy model [39,40],
(4) Mean-field model [41].

This classification may not be exhaustive, for instance, the
latter two models are sometimes identified as phase-field
models [42], since the Cahn–Hilliard or similar interface

tracking equations can be derived from them. For details about
the multiphase lattice Boltzmann models, interested readers
can refer to the comprehensive review papers [34,42–46] and
references therein. In this paper, we focus upon the color-fluid
model. This model possesses many strengths in simulations of
multiphase or multicomponent flows, including strict mass
conservation for each fluid and flexibility in adjusting the
interfacial tension [47]. A static drop test is no longer needed
to determine the interfacial tension; it can be directly obtained
without any analysis or assumptions. Moreover, the color-fluid
model shows a very small dissolution property for tiny droplets
or bubbles [46].

Color-fluid models, which are often referred to as
R-K or color-gradient models, were first developed by
Gunstensen et al. [35], who extended the two-component
lattice gas automata model of Rothman and Keller [48].
Later, Grunau et al. [36] enabled the introduction of density
and viscosity ratios by modifying the forms of the distri-
bution functions. Latva-Kokko and Rothman [49] replaced
Gunstensen’s maximization-recoloring step with a formulaic
segregation algorithm. Instead of widening the interface width,
Latva-Kokko–Rothman’s recoloring algorithm solves some
issues with the previous color-fluid-type model, namely, the

Molecular dynamics Lattice Boltzmann Navier–Stokes

Microscopic Mesoscopic Macroscopic

FIG. 2. Relationship between multiscale properties of a fluid
flow and a simulation method. The lattice Boltzmann method is the
so-called mesoscopic simulation method between the microscopic
particle-based (e.g., molecular dynamics) and macroscopic Navier–
Stokes-based methods.
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lattice-pinning problem and the spurious velocities. Reis
and Phillips [50] extended the model to common a two-
dimensional nine-velocity (D2Q9) lattice. They modified the
perturbation operator to recover the Navier–Stokes equations
correctly.

Leclaire et al. [51] demonstrated that integrating Latva-
Kokko–Rothman’s recoloring operator [49] into Reis–Phillips’
perturbation operator [50] greatly improves the numerical
stability and accuracy of solutions over a wide range of
parameters. Using an isotropic gradient operator also enhanced
numerical stability and accuracy [52]. Liu et al. [53] derived
a generalized perturbation operator using the phase-field (or
order parameter) instead of a color-gradient and formulated the
color-fluid model in three dimensions. Very recently, Leclaire
et al. [54] generalized the color-fluid-type lattice Boltzmann
model in two and three dimensions.

Galilean invariance is one of the issues to be improved
in the color-fluid family. Following Holdych et al. [55], a
source term to improve the Galilean invariance was derived
by Leclaire et al. [56] and incorporated into an equilibrium
distribution function. The enhanced equilibrium distribu-
tion function showed an improvement of the momentum-
discontinuity problem through numerical tests on a layered
Couette flow. Recently, Ba et al. [47] have modified an
equilibrium distribution function based on the third-order
Hermite expansion of the Maxwellian distribution. They also
showed that discontinuous velocities were improved by this
modification.

It is known that the LB method suffers from numerical
instability in low-viscosity conditions. Modification of the
collision operator is one method for overcoming this issue [57].
A multiple-relaxation-time (MRT) collision operator or gen-
eralized lattice Boltzmann equation [58–60] has been widely
used, even for multiphase flows, to enhance numerical stability
and accuracy and to reduce spurious current near the interface.

We return to the issue of lattice Boltzmann simulations
of liquid-jet breakup. McCracken and Abraham [61] success-
fully introduced an MRT operator to the multiphase lattice
Boltzmann model and performed liquid-jet breakup simula-
tions [31]. They assumed that the flow was axisymmetric in
two dimensions. They investigated the influence of interfacial
tension, injection velocity, and liquid viscosity under a
density ratio of 5. However, three-dimensional simulations are
required to further understand breakup characteristics, since
liquid-jet breakup is an essentially three-dimensional flow, as
shown in Fig. 1.

The authors carried out lattice Boltzmann simulations
of liquid-jet breakup in three dimensions [32,33]. Matsuo
et al. [32] used the three-dimensional two-phase lattice Boltz-
mann model, which was developed by Ebihara and Watan-
abe [62] based on the model of He et al. [41]. They compared
their simulation results with experiments and investigated the
effect of the Froude number upon the jet-breakup length. In

their simulations, however, the Reynolds number was limited
to O(102). This was an order of magnitude smaller than that in
the target experiments. In addition, the model of He et al. [41]
suffered from the dissolution of tiny droplets [46]; thus, it
would not be appropriate for liquid-jet-breakup simulations
with tiny-droplet formation.

Saito et al. [33] incorporated the MRT operator into
the three-dimensional 19-velocity (D3Q19) color-fluid model
proposed by Liu et al. [53] and applied this model to
liquid-jet-breakup simulations. Although they could simulate
liquid-jet breakup with the Reynolds number up to O(103), the
kinematic-viscosity ratio was set to unity to avoid numerical
instability. This meant that the kinematic viscosity of the
surrounding liquid in their simulation was more viscous than
that in the target experiment. Further improvement is required
to compare the numerical results with experiments; this is the
motivation of the present study.

In this paper, we present the three-dimensional two-phase
lattice Boltzmann model for immiscible two-phase flows
and its application to liquid-jet breakup. In Sec. II, we
formulate the three-dimensional two-phase lattice Boltzmann
model for immiscible two-phase flows in the framework of a
three-dimensional 27-velocity (D3Q27) lattice. The collision
operator consists of D3Q27 versions of three suboperators:
an MRT-collision operator, a generalized-perturbation opera-
tor [53], and a formulatic-recoloring operator [49]. A D3Q27
version of the enhanced equilibrium distribution functions [56]
is also incorporated into this model to improve its Galilean
invariance. In Sec. III, numerical tests, including those of a
static droplet, an oscillating droplet, and the Rayleigh–Taylor
instability, are used to validate the developed model. In Sec. IV,
this model is applied to liquid-jet-breakup simulations. A
simulation in which the parameters are exactly matched
to the target experiment is performed and compared with
experimental data. Finally, we assess the reproducibility of
the breakup regimes expected by the dimensionless-regime
map [22]. Section V concludes this paper.

II. METHODOLOGY

The present model is formulated on a D3Q27 lattice. The
key to the formulation is the combination of previous work
and their extension to the D3Q27 framework. The main points
of this process can be briefly summarized as follows:

(1) Introducing a D3Q27 MRT collision operator [63] and
relaxation parameters [64],

(2) Extending an enhanced equilibrium distribution func-
tion [56] to the D3Q27 lattice,

(3) Extending a generalized perturbation operator [53] to
the D3Q27 lattice.

For the present three-dimensional lattice Boltzmann model,
distribution functions move on a D3Q27 lattice with the lattice
velocity ci defined as follows:

ci = (cix,ciy,ciz) =

⎧⎪⎪⎨
⎪⎪⎩

(0,0,0)c, i = 1,

(±1,0,0)c,(0, ± 1,0)c,(0,0, ± 1)c, i = 2,3, . . . ,7,

(±1, ± 1,0)c,(0, ± 1, ± 1)c,(±1,0, ± 1)c, i = 8,9, . . . ,19,

(±1, ± 1, ± 1)c, i = 20,21, . . . ,27,

(1)
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FIG. 3. Three-dimensional 27-velocity (D3Q27) lattice.

where c = δx/δt , δx is the lattice spacing and δt is the time
step. The schematic structure of the D3Q27 lattice is shown in
Fig. 3. The D3Q27 model is a straightforward extension of the
D2Q9 model [65].

In this model, two immiscible fluids are represented as
pseudo red and blue fluids, respectively. The distribution
function, f k

i , is introduced to represent the fluid k, where
k = r and b denote the colors “red” and “blue”, respectively,
and i is the lattice-velocity direction. The total distribution
function is defined as fi = f r

i + f b
i . The evolution of the

distribution function is expressed by the following lattice
Boltzmann equation:

f k
i (x + ciδt ,t + δt ) − f k

i (x,t) = �k
i (x,t), (2)

where x and t are the position and time, respectively. The
collision operator �k

i is made up of three suboperators [66]:

�k
i = (

�k
i

)(3)[(
�k

i

)(1) + (
�k

i

)(2)]
, (3)

where (�k
i )(1) is the single-phase collision operator, (�k

i )(2) is
the perturbation operator, and (�k

i )(3) is the recoloring operator.
Using the MRT operator, the single-phase collision operator
can be written as

(|�k〉)(1) = −M−1KM(|f k〉 − |f k(e)〉) + |F 〉. (4)

The density of the fluid k is given by

ρk =
∑

i

f k
i . (5)

The total fluid density is given by ρ = ∑
k ρk , and the total

momentum is defined as

ρu =
∑

i

∑
k

f k
i ci + 1

2
Fδt , (6)

where F is the body force. Note that Eq. (6) indicates that the
local velocity is modified to incorporate the spatially varying
body force [67]. In Eq. (2), M and K are, respectively, the
27 × 27 transformation and relaxation matrices. In this paper,
Dirac’s bra-ket notation is employed. Here, the “bra” operator
〈f | denotes a row vector along each lattice-velocity direction,
i.e., (f1,f2, . . . ,f27), and the “ket” operator |f 〉 denotes a
column vector, i.e., (f1,f2, . . . ,f27)T, where the superscript
“T” is the transpose operator.

The MRT collision operator in three dimensions is usually
implemented with the D3Q15 or D3Q19 lattices. As an early
attempt for the D3Q27 MRT collision operator, Dubois and
Lallemand [68] and Premnath and Banerjee [69] presented
the formulation independently in 2011. Dubois and Lalle-
mand [68] arranged the D3Q27 orthogonal basis vectors for
the moments according to their character (scalars, vectors, and
tensors, etc.) and then used raw moments to formulate an MRT
lattice Boltzmann model. On the other hand, Premnath and
Banerjee [69] arranged the D3Q27 orthogonal basis vectors
based on the increasing order of moments and used central
moments to formulate an MRT lattice Boltzmann model. Later,
Geier et al. [63] provided the following orthogonal moment
set for the D3Q27 lattice:

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

〈1|
〈cix |
〈ciy |
〈ciz|

−2〈1| + 〈|ci |2|
2
〈
c2
ix

∣∣ − 〈
c2
iy + c2

iz

∣∣〈
c2
iy − c2

iz

∣∣
〈cixciy |
〈ciyciz|
〈cizcix |

−4〈cix | + 3
〈
cixc2

iy + c2
izcix

∣∣
−4〈ciy | + 3

〈
ciyc2

iz + c2
ixciy

∣∣
−4〈ciz| + 3

〈
cizc

2
ix + c2

iyciz

∣∣
4〈cix | − 6

〈
cixc2

iy + c2
izcix

∣∣ + 9
〈
cixc2

iyc2
iz

∣∣
4〈ciy | − 6

〈
ciyc2

iz + c2
ixciy

∣∣ + 9
〈
c2
ixciyc2

iz

∣∣
4〈ciz| − 6

〈
cizc

2
ix + c2

iyciz

∣∣ + 9
〈
c2
ixc2

iyciz

∣∣
4〈1 − |ci |2| + 3

〈
c2
ixc2

iy + c2
iyc2

iz + c2
izc

2
ix

∣∣
− 8〈1| + 12〈|ci |2| − 18

〈
c2
ixc2

iy + c2
iyc2

iz + c2
izc

2
ix

∣∣+ 27
〈
c2
ixc2

iyc2
iz

∣∣
2
〈
c2
iz + c2

iy

∣∣ + 3
〈
c2
ixc2

iy + c2
izc

2
ix

∣∣ − 4
〈
c2
ix

∣∣ − 6
〈
c2
iyc2

iz

∣∣
2
〈
c2
iz − c2

iy

∣∣ + 3
〈
c2
ixc2

iy − c2
izc

2
ix

∣∣
−2〈cixciy | + 3

〈
cixciyc2

iz

∣∣
−2〈ciyciz| + 3

〈
c2
ixciyciz

∣∣
−2〈cizcix | + 3

〈
cixc2

iyciz

∣∣〈
cixc2

iy − c2
izcix

∣∣〈
ciyc2

iz − c2
ixciy

∣∣〈
cizc

2
ix − c2

iyciz

∣∣
〈cixciyciz|

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(7)

where |ci | =
√

c2
ix + c2

iy + c2
iz. The transformation matrix

transfers the distribution functions from velocity space to
moment space. Using the MRT collision operator instead
of a traditional single-relaxation-time (or BGK) collision
operator contributes to enhancement of numerical stability
and accuracy, even with additional computational costs. The
practical forms of the transformation matrix and its inverse are
given in Appendix A. The relaxation matrix K is the diagonal
matrix given by [64]

K = diag[s1,s2, . . . ,s27]

= diag[s1,s1,s1,s1,s5,s6,s6,s8,s8,s8,s11,s11,s11,s14,s14,

s14,s17,s18,s19,s19,s21,s21,s21,s24,s24,s24,s27], (8)
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where the elements 0 < si < 2 represent both the hydro-
dynamic and nonhydrodynamic relaxation parameters. The
hydrodynamic parameters satisfy the following relations:

ν = c2

3

(
1

s6
− 1

2

)
δt = c2

3

(
1

s8
− 1

2

)
δt , (9)

ζ = 5 − 3c2

9

(
1

s5
− 1

2

)
δt , (10)

where ν and ζ are the kinematic viscosity and the bulk
viscosity, respectively. In this paper, we use the optimized
parameters proposed by Suga et al. [64]: s1 = 0, s5 = 1.5,
s11 = 1.5, s14 = 1.83, s17 = 1.4, s18 = 1.61, s19 = s21 = 1.98,
and s24 = s27 = 1.74. We confirmed that these parameters sig-
nificantly enhanced the numerical stability even at extremely
low kinematic viscosity with the order of O(10−4).

For the single-phase collision operator, an enhanced equi-
librium distribution function proposed by Leclaire et al. [56]
is used in this paper:

f
k(e)
i (ρk,u,αk) = ρk

{
ϕk

i + wi

[
3

c2
(ci · u) + 9

2c4
(ci · u)2

− 3

2c2
u2

]}
+ 	k

i . (11)

In the case of 	k
i = 0, Eq. (11) recovers the common form of an

equilibrium distribution function. Using the form of Eq. (11),
the Galilean invariance is improved for variable density and
viscosity ratios under the hypothesis of a small pressure
gradient [56,70,71]. However, it should be noted that this
can only partly restore Galilean invariance, as still the third-
order diagonal equilibrium moments are not independently
supported and are related to the corresponding first moments.
Consequently, there will be cubic velocity errors in Galilean
invariance even for the D3Q27 lattice, which could become
perceptible for flows under high shear. This issue can be
solved by making some additional corrections to the collision
operator, as suggested recently by Dellar [72].

The weights, wi , are those of a standard D3Q27 lattice [65]:

wi =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

8/27, i = 1,

2/27, i = 2,3, . . . ,7,

1/54, i = 8,9, . . . ,19,

1/216, i = 20,21, . . . ,27.

(12)

Moreover, in the D3Q27 lattice, one can derive

ϕk
i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

αk, i = 1,

2(1 − αk)/19, i = 2,3, . . . ,7,

(1 − αk)/38, i = 8,9, . . . ,19,

(1 − αk)/152, i = 20,21, . . . ,27,

(13)

and

	k
i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−3ν̄(u · ∇ρk)/c, i = 1,

+16ν̄(Gk : ci ⊗ ci)/c3, i = 2,3, . . . ,7,

+4ν̄(Gk : ci ⊗ ci)/c3, i = 8,9, . . . ,19,

+1ν̄(Gk : ci ⊗ ci)/c3, i = 20,21, . . . ,27,

(14)

where ⊗ is the tensor product and the symbol “:” indicates
tensor contraction; ν̄ is the kinematic viscosity interpolated
by [53,66]

ν̄ = 1 + φ

2
νr + 1 − φ

2
νb. (15)

Here, φ is the order parameter to distinguish the two compo-
nents in a multicomponent flow, defined as [53]

φ(x,t) = ρr (x,t) − ρb(x,t)

ρr (x,t) + ρb(x,t)
. (16)

The values of the order parameter φ = 1, − 1, and 0 cor-
respond to a purely red fluid, a purely blue fluid, and the
interface, respectively [66]. In the framework of D3Q27 lattice,
the tensor Gk in Eq. (14) is defined as

Gk = 1
48 [u ⊗ ∇ρk + (u ⊗ ∇ρk)T]. (17)

As established in Ref. [36], the density ratio between the fluids,
γ , must be taken into account as follows to obtain a stable
interface:

γ = ρ0
r

ρ0
b

= 1 − αb

1 − αr

, (18)

where the superscript “0” indicates the initial value of the
density at the beginning of the simulation [56]. In each
homogeneous phase region, the pressure of the fluid k is
given by

pk = ρk

(
ck
s

)2 = ρk

9(1 − αk)

19
c2, (19)

for the D3Q27 lattice. This corresponds to an isothermal
equation of state. In this paper, we choose αb = 8/27, in which
cb
s = 1/

√
3 [33,70].

The term |F 〉 in Eq. (4) represents the discrete forcing term
accounting for the body force F. In the MRT framework, the
forcing term reads as [73]

|F 〉 = M−1
(
I − 1

2 K
)
M|F ′〉, (20)

where I is a unit matrix, |F 〉 = (F1,F2, . . . ,F27)T, and |F ′〉 =
(F ′

1,F
′
2, . . . ,F

′
27)T is given by

|F ′〉 = wi

[
3

ci − u
c2

+ 9
(ci · u)ci

c4

]
· Fδt . (21)

Equations (20) and (21) reduce to Guo et al.’s original forcing
scheme [67] when using a single-relaxation time [73].

To model the interfacial tension, Liu et al. [53] derived
a generalized perturbation operator based on the CSF [74]
concept, and the work of Reis and Phillips [50] is employed
to obtain the interfacial tension:

(
�k

i

)(2) = Ak

2
|∇φ|

[
wi

(ci · ∇φ)

|∇φ|2 − Bi

]
. (22)

Equation (22) satisfies the correct form of the interfacial-
tension force in the Navier–Stokes equations when the
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lattice-specific variables Bi are chosen correctly. We derived
the values of Bi in the framework of the D3Q27 lattice as
follows:

Bi =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−(10/27)c2, i = 1,

+(2/27)c2, i = 2,3, . . . ,7,

+(1/54)c2, i = 8,9, . . . ,19,

+(1/216)c2, i = 20,21, . . . ,27.

(23)

In this model, the interfacial tension can be directly given by

σ = 4
9Aτc4δt , (24)

where we assumed that A = Ar = Ab, τ is the relaxation time.
Parameter A controls the strength of interfacial tension, σ .

Although the perturbation operator, (�k
i )(2), generates inter-

facial tension, it does not guarantee the immiscibility of both
fluids. To promote phase segregation and maintain the inter-
face, the following recoloring operator is applied [49,51,75]:

(
�r

i

)(3) = ρr

ρ
fi + β

ρrρb

ρ2
cos(θi)f

(e)
i (ρ,0,ᾱ), (25)

(
�b

i

)(3) = ρb

ρ
fi − β

ρrρb

ρ2
cos(θi)f

(e)
i (ρ,0,ᾱ), (26)

where

cos(θi) = ci · ∇φ

|ci ||∇φ| , (27)

and f
(e)
i is evaluated using Eq. (11), a zero velocity, and

ᾱ = 1
2 (1 + φ)αr + 1

2 (1 − φ)αb. (28)

In the present model, the following continuity and Navier–
Stokes equations can be derived via Chapman–Enskog analy-
sis [53,67,76],

∂ρ

∂t
+ ∇ · (ρu) = 0, (29)

∂(ρu)

∂t
+ ∇ · (ρuu) = −∇p + ∇ · � + ∇ · S + F, (30)

where

� = ρν[∇u + (∇u)T] + ρ(ζ − ν)(∇ · u)I (31)

is the viscous stress tensor with the shear viscosity ν given by
Eq. (9) and the bulk viscosity ζ given by Eq. (10); p = pr + pb

is the pressure. In Eq. (30), the term ∇ · S arises from the
perturbation operator given by Eq. (22) and is equivalent to the
interfacial force based on the CSF concept [53]; the capillary
stress tensor, S, is given by

S = −τδt

∑
i

∑
k

(
�k

i

)(2)
cici . (32)

For the computation of the gradient operator for an
arbitrary function χ , the second-order isotropic central scheme
[53,77–79]

∇χ (x,t) = 3

c2

∑
i

wiχ (x + ciδt ,t)ci

δt

(33)

is adopted.
All the simulations in this paper are carried out in lattice

units. In this paper, δx and δt are set to 1 as in the usual

lattice Boltzmann simulations. The aforementioned formu-
lation focuses on the two-component systems. It should be
straightforward to implement the present model in three or
more component systems according to the work of Leclaire
et al. [80].

One can consider the key to the developed lattice Boltzmann
model in this paper to be based on a combination of previous
works and their extension to the framework of the D3Q27
lattice. A brief procedure to determine the related lattice-
specific coefficients [Eqs. (13), (14), and (23)] is described
in Appendix B.

III. NUMERICAL TESTS

A. Static droplet

Static-droplet tests are performed to test the validity of
interfacial tension predicted by Eq. (24). The computational
domain is discretized into an 85 × 85 × 85 lattice. A steady
red droplet with radius R is immersed in a blue fluid. The
density field of each phase is initialized as follows:

ρr (x,y,z) = ρ0
r

2

[
1 − tanh

(
2(r − R)

W

)]
, (34)

ρb(x,y,z) = ρ0
b

2

[
1 + tanh

(
2(r − R)

W

)]
, (35)

where W = 4 and r =
√

(x − xc)2 + (y − yc)2 + (z − zc)2

with the central position of the computational domain
(xc,yc,zc). We set the density and kinematic-viscosity ratios as
1.5 and 1, respectively. The kinematic viscosity for each phase
is set to be 1.0 × 10−3, and gravity is neglected throughout
the simulations. The parameters are A in Eq. (24) and initial
droplet radius R (see Table I). Periodic boundary conditions
are imposed on all sides of the computational domain.

The Laplace equation in three dimensions is given by

�p = 2σ

R
, (36)

where �p is the pressure difference across the droplet inter-
face. The pressure for each phase is evaluated by Eq. (19) and
is measured after 80 000 iterations using the same procedure
as Leclaire et al. [51]. Figure 4 shows the measured pressure
differences. For both the higher [Fig. 4(a)] and lower [Fig. 4(b)]
interfacial tensions, the results are in proportion to the droplet
curvature 1/R, with which the Laplace law was satisfied.
The theoretical prediction by Eq. (24), shown in Fig. 4 as
a solid line, also agrees well with the measured pressure

TABLE I. Parameters and evaluated errors of static droplet tests.

R A E%

30 1.0 × 10−2 0.77

25 1.0 × 10−2 0.92

20 1.0 × 10−2 1.6

30 4.0 × 10−4 0.63

25 4.0 × 10−4 0.77

20 4.0 × 10−4 1.1
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FIG. 4. Laplace’s law for a static droplet: (a) A = 1.0 × 10−2 and
(b) A = 4.0 × 10−4. The solid line is the theoretical prediction given
by Eq. (24). The present simulations show a good agreement with the
theoretical prediction.

differences. Table I summarizes the simulation parameters and
the evaluated error. The error E is calculated as [53]

E = |σth − σLap|
σth

, (37)

where σth and σLap are the interfaceial tension predicted by
Eq. (24) and that measured by the Laplace equation Eq. (36),
respectively. We confirm that the lattice Boltzmann model
developed in Sec. II can predict the interfacial tension for a
static case within a maximum error of 1.6%.

We should mention the influence of lattice isotropy on the
so-called spurious velocity. Figure 5 compares the droplet
shape and velocity field at the equilibrium state for D3Q19
[Fig. 5(a)] and D3Q27 lattices [Fig. 5(b)]. The numerical test
using D3Q19 is based on Ref. [33]. The maximum spurious

velocities |u|max are 1.2 × 10−2 for D3Q19 and 5.8 × 10−3

for D3Q27, respectively. Although the conditions are same
except for the employed lattice geometry, the simulation using
the D3Q27 lattice shows better result. Enhancing the lattice
isotropy (from D3Q19 to D3Q27) contributes to reducing the
spurious velocity.

B. Oscillating droplet

Oscillatory-droplet tests are performed to test the model
validity in an unsteady case. The simulation setup and
parameters for the present numerical tests follow Premnath and
Abraham [81], except for the interfacial-tension coefficient. A
droplet with a prolate-spheroid shape is placed at the center
of a computational domain discretized by a 41 × 41 × 41
lattice. The droplet’s minimum and maximum radii are 11
and 15, respectively. We set a density ratio of 4. The kinematic
viscosity ratio is set to be unity (ν = νr = νb), and gravity
is neglected throughout the simulations. The parameters are
ν and A (see Table II). Parameter A is the same as the ones
provided in Sec. III A.

The analytical solution of Miller and Scriven [82] is used
for comparison with the computed time periods. The frequency
of the nth mode is given by

ωn = ω∗
n − 1

2χω∗
n

1
2 + 1

4χ2, (38)

where ωn is Lamb’s natural resonance frequency [83]

(ω∗
n)2 = n(n + 1)(n − 1)(n + 2)

R3
e [nρ2 + (n + 1)ρ1]

σ. (39)

FIG. 5. Influence of lattice isotropy on the spurious velocities: (a) D3Q19 [33] and (b) D3Q27. The parameters are R = 30, A = 1.0 × 10−2,
ρr/ρb = 1.5, and νr/νb = 1.0 (νr = νb = 1.0 × 10−3). The velocity vectors are magnified 200 times. The maximum spurious velocities |u|max

are 1.2 × 10−2 for D3Q19 and 5.8 × 10−3 for D3Q27. Enhancing the lattice isotropy from D3Q19 to D3Q27 contributes to reducing the
spurious velocity.
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TABLE II. Parameters and evaluated errors of oscillating droplet
tests.

ν A σ E%

3.333 × 10−3 1.0 × 10−2 2.27 × 10−3 0.60

6.667 × 10−3 1.0 × 10−2 2.31 × 10−3 0.83

1.667 × 10−2 1.0 × 10−2 2.44 × 10−3 2.4

3.333 × 10−3 4.0 × 10−4 9.07 × 10−5 2.7

6.667 × 10−3 4.0 × 10−4 9.24 × 10−5 10.8

1.667 × 10−2 4.0 × 10−4 9.78 × 10−5 –

Note that Re in Eq. (39) is the equivalent radius of a droplet.
Subscripts 1 and 2 refer to the dispersed and continuous phases,
respectively, so they can be replaced by r and b in this paper.
Parameter χ is given by

χ = (2n + 1)2(μ1μ2ρ1ρ2)
1
2

2
1
2 Re[nρ2 + (n + 1)ρ1][(μ1ρ1)1/2 + (μ2ρ2)1/2]

. (40)

We are only interested in the second mode (n = 2) here. The
analytical expression for the time period is obtained by Tth =
2π/ω2.

Figure 6 shows the transient change of the oscillating
droplet shapes with ν = 3.333 × 10−3 and A = 1.0 × 10−2.
After assuming a spherical shape at t = 700, the droplet
becomes an oblate spheroid at t = 1 400. The configuration
turns into a prolate spheroid at t = 2 500. Such a series of
oscillations can be also seen in Ref. [81]

The interfacial location is measured, and the results are
shown in Fig. 7 as a function of time. The interfacial locations
are recorded per 10 time steps. Under higher-interfacial tension
[Fig. 7(a)], all cases attenuate with oscillation regardless of the
kinematic viscosity. The higher the kinematic viscosity, the
earlier attenuation occurs. For the lower-interfacial-tension
case [Fig. 7(b)], the timescale of oscillation becomes qual-
itatively longer; this tendency agrees with the theoretical
expectation by Eqs. (38) and (39). Only in the case of ν =
1.667 × 10−2 does the interfacial location reach an equilibrium
spherical shape without a series of oscillations, as shown in
Fig. 6. The effect of viscous damping distinguishes rather than
the effect of interfacial tension in this case.

The simulation parameters and evaluated errors in the
oscillating period are summarized in Table II. The error E

t = 100 t = 700 t = 2500t = 1400z

x

y

FIG. 6. Typical snapshots of shape change of an initially elon-
gated drop. After a spherical shape (t = 700), the droplet becomes
an oblate spheroid (t = 1 400). The configuration turns into a prolate
spheroid (t = 2 500).
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FIG. 7. Time history of the interfacial location of an oscillating
droplet: (a) A = 1.0 × 10−2 and (b) A = 4.0 × 10−4. (a) Under
higher-interfacial tension, all cases attenuate with oscillation regard-
less of the kinematic viscosity. (b) For the lower-interfacial-tension
case, the timescale of oscillation becomes longer; this tendency agrees
with the theory.

is calculated as

E = |Tth − Tsim|
Tth

, (41)

where Tsim is the measured oscillation period. Note that, in
the case of ν = 1.667 × 10−2 and A = 4.0 × 10−4, we cannot
measure the oscillation period since no oscillation occurred.
The maximum errors are 2.4% for A = 1.0 × 10−2 and 10.8%
for A = 4.0 × 10−4, respectively. Throughout, the accuracy is
better when the kinematic viscosity is lower. It is found that
the accuracy of the low-interfacial-tension case is difficult to
assess via droplet-oscillation tests; however, the tests show
that the present lattice Boltzmann model can be applied to
unsteady two-phase-flow simulations.

C. Rayleigh–Taylor instability

To assess the validity of the body force implementation
[Eqs. (20) and (21)], the Rayleigh–Taylor instability is selected
as the next numerical test. The Rayleigh–Taylor instability is
a fundamental interfacial instability that is induced when a
heavy fluid is placed over a light one subjected to a slightly
disturbed interface in a gravitational field [21]. The Rayleigh–
Taylor instability has received considerable attention owing to
its extensive applications, e.g., in the fundamental process of
melt jet breakup [20,22]. To our knowledge, this is the first time
a color-fluid model has been applied to the three-dimensional
Rayleigh–Taylor instability.

We refer to the computational setup adopted in He
et al. [84]. A schematic diagram of the computational setup
is illustrated in Fig. 8. The top and bottom boundaries are
no-slip walls; the lateral boundaries are periodic. As in the
manner of Ref. [84], the single-mode initial perturbation is
initially imposed as

h(x,y) = 0.05W

[
cos

(
2πx

W

)
+

(
2πy

W

)]
, (42)

at the midplane, where W is the width of the computational
domain. The body force in Eq. (21) for this problem is
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incorporated as

F(x,t) = −
[
ρ(x,t) − ρ0

r + ρ0
b

2

]
g, (43)

with g = (0,0, − g). The gravitational acceleration g is chosen
to satisfy (Wg)1/2 = 0.04 [41]. The computational domain is
set to be W × W × 4W with W = 128. The domain’s size
resulted in a 128 × 128 × 512 lattice.

The Atwood number,

At = ρ0
r − ρ0

b

ρ0
r + ρ0

b

, (44)

is fixed at 0.5 throughout the simulations. The interface tension
is neglected; thus, the perturbed interface is expected to always
be unstable in the inviscid case. The kinematic-viscosity ratio
is set to unity. Another dimensionless group is the Reynolds
number, defined as

Re =
√

WgW

ν
. (45)

We use three patterns of Reynolds numbers: Re = 512, 1 024,
and 5 120.

Figure 9 shows the interfacial evolution of the
Rayleigh–Taylor instability. The dimensionless time is given
by

t∗ = t√
W/g

. (46)

In the initial stages by t∗ = 2, the Reynolds number depen-
dence on the interfacial configuration is small. We can see
the edge of the spike rolled up at t∗ = 3. At later stages
(t∗ = 3,4), the higher the Reynolds number is, the more
unstable the interface becomes. For the Re = 5 120 case
[Fig. 9(c)], the interface becomes especially complicated. The

z

x

y z

x

(a) (b)
No-slip

Periodic

No-slip

W

ρr

ρb

g

4W
Initial perturbation

FIG. 8. Boundary conditions for the Rayleigh–Taylor instability.
(a) The computational domain is discretized into an 128 × 128 × 512
lattice and the single-mode initial perturbation is initially imposed. (b)
The top and bottom are no-slip boundaries and the lateral boundaries
are periodic.

(b)

(c)

t* = 2t* = 1 t* = 3 t* = 4

(a)

Bubble

Spike

Saddle

FIG. 9. Interface evolution of the single-mode Rayleigh–Taylor
instability with (a) Re = 512, (b) Re = 1 024, and (c) Re = 5 120.
The Atwood number [Eq. (44)] is fixed at 0.5 in all simulations. At
later stages, the higher the Reynolds number is, the more unstable the
interface becomes.

Kelvin–Helmholtz instability appears conspicuously as the
Reynolds number increases.

The time history of the positions of the bubble front, spike
tip, and saddle point are calculated and plotted in Fig. 10(a)
(see Fig. 9 for the locations of the bubble front, spike tip, and
saddle point). As can be seen in Fig. 10(a), the differences in the
positions are very small in our simulations, unlike the interface
structure shown in Fig. 9. He et al. [84] pointed out that, when
Re > 512, the Reynolds number dependence is negligible.
The present simulation, using the forcing scheme in Eqs. (20)
and (21), shows a similar trend, supporting their suggestion.

Using the same computational setup and the parameters of
He et al. [84], three-dimensional Rayleigh–Taylor simulations
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z/
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FIG. 10. Time history of the positions of the bubble front, spike
tip, and saddle point. (a) Reynolds number dependence of the
positions with Re = 512 (dash-dotted line), Re = 1 024 (solid line),
and Re = 5 120 (dotted line). As pointed out by He et al. [84],
when Re > 512, the Reynolds number dependence is negligible. (b)
Comparison of the present study (solid line) and previous works with
the lattice Boltzmann [84,85] and phase-field methods [86], where all
simulations are performed with Re = 512. For the spike-tip evolution,
no significant difference is observed among the lattice Boltzmann
simulations. At later stages, these simulations are found to penetrate
more deeply than the phase-field simulation.

were carried out using the lattice Boltzmann [85] and phase-
field methods [86]. Wang et al. [85] used the phase-field–
based MRT lattice Boltzmann model; Lee and Kim [86]
directly solved the Navier–Stokes–Cahn–Hilliard equations.
Here, we compare our results with previous works [84–86].
Figure 10(b) shows the time histories of the positions at
Re = 1 024 and At = 0.5. Comparing the results, the time
changes of the bubble front and the saddle point are almost
the same, irrespective of the method used. For the spike-tip
evolution, no significant difference is observed among the
lattice Boltzmann simulations. At later stages, these simu-
lations are found to penetrate more deeply than the phase-field
simulation. The difference between the lattice Boltzmann and
phase-field methods is considered to arise from the different
wall-boundary conditions implemented.

IV. LIQUID JET BREAKUP

A. Setup

Figure 11 illustrates a schematic diagram of the boundary
conditions for liquid-jet-breakup simulations. This computa-
tional setup is the same as that of Saito et al. [33], except for
the outflow boundary. In the initial state, the computational
domain is filled with blue-particle-distribution functions, f b

i ,
with zero velocity. The boundaries consist of an inflow
boundary, a wall boundary, and an outflow boundary. A circular
inflow boundary is implemented at the top within (x − xc)2 +
(y − yc)2 < (Dj0/2)2, where xc and yc are central locations
on the x-y plane. The uniform velocity uj0 is implemented,
with the corresponding equilibrium functions given at this
site. No artificial disturbances are considered at the inflow
boundary. A wall boundary is implemented on the top (except
for an inflow-boundary site) and on the lateral sites. A free-slip
condition [87] is implemented as a wall boundary condition.
At the outflow, a convective boundary condition [88] is used,

z

x

y
inlet

wall

outlet

Convective boundary

Free-slip wall

Uniform velocity, uj0

Inlet diameter, Dj0

z

x

Gravity, g

(No artificial disturbances)

(a) (b)

FIG. 11. Boundary conditions for a liquid-jet simulation. (a) The
computational domain is discretized into a 8Dj0 × 8Dj0 × 20Dj0

lattice. The boundaries consist of an inflow boundary, a wall boundary,
and an outflow boundary. (b) A circular inflow boundary with a
uniform velocity uj0 is implemented at the top within Dj0. Free-
slip [87] and convective boundary conditions [88] are implemented
as the wall and outflow boundaries, respectively.

in which the convective equation for the distribution functions,

∂f k
i

∂t
+ Uc

∂f k
i

∂z
= 0, at z = N, (47)

is solved, where N is the node on the outflow boundary.
Following Lou et al. [88], we set two ghost-nodes N + 1 and
N + 2. The discretized form can be given by the first-order
implicit scheme,

f k
i (x,y,N,t + δt ) = f k

i (x,y,N,t) + λf k
i (x,y,N − 1,t + δt )

1 + λ
,

(48)

where λ = Uc(t + δt )δt/δx . For the convective velocity normal
to the outflow boundary Uc, several choices can be considered,
e.g., the local velocity, the average velocity, and maximum
velocity [89]. Through some numerical tests, we determine
that the local velocity is suitable to the present system, that is

Uc(x,y,N,t) = uz(x,y,N − 1,t), (49)

where uz(x,t) = uz(x,y,z,t) is the z-direction component of
fluid velocity u.

The body force in Eq. (21) for the liquid-jet simulations is
set as

F(x,t) = (
ρ(x,t) − ρ0

b

)
g, (50)

with g = (0,0,g). Equation (50) means that the gravitational
force acts only in the dispersed phase [45].

B. Comparison with experiments

Using the lattice Boltzmann model developed in Sec. II
and the boundary conditions provided in Sec. IV A, we
perform here numerical simulations of liquid-jet breakup. The
parameters for this simulation are set to be exactly the same as
in the experiments [33], and the results are compared. In the
target experiments, a glycerin-water-mixture jet was injected
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TABLE III. Conditions of the experiments and simulations.

Experiment and present simulation Previous simulationa

γ 1.4 1.4
η 4.2 1.0
Re 3.4 ×103 3.4 ×103

We 2.2 ×102 2.2 ×102

Fr 8.5 8.5

aThe D3Q19 MRT color-fluid model was used. In the simulation, the
kinematic-viscosity ratio η was set to be unity owing to the limitation
of numerical stability.

into a silicon-oil pool. These test fluids were immiscible with
each other. In Ref. [33], the lattice Boltzmann simulation was
also carried out using the MRT color-fluid model based on the
D3Q19 lattice.

In the framework of linear theory, one can choose the
following dimensionless groups to describe the problem [4]:

γ = ρj

ρc

, (51)

η = νj

νc

, (52)

Re = ρjuj0Dj0

μj

, (53)

We = ρju
2
j0Dj0

σ
, (54)

Fr = u2
j0

gDj0
. (55)

The conditions of the experiments and simulations are sum-
marized in Table III and in the dimensionless groups in
Eqs. (51)–(55). The parameters for the target experiments and

the present simulation match exactly. In Table III, only the
kinematic-viscosity ratio η in the previous simulation differs
from the others. This was because the previous D3Q19 MRT
color-fluid model could not maintain the numerical stability
when η = 4.2. Note that the present lattice Boltzmann model
remains stable under the condition in Table III.

According to the grid refinement study in Ref. [33], we
determine the inlet diameter Dj0 = 25 and the computational
domain 8Dj0 × 8Dj0 × 20Dj0. In this paper, the density of the
dispersed phase ρj (= ρ0

r ) and the inlet velocity uj0 are set to be
1.0 and 0.1, respectively. Other parameters can be determined
using the relations of dimensionless groups [Eqs. (51)–(55)]
in lattice units: ρc = ρ0

b = 0.70, σ = 1.1 × 10−3, νj = νr =
7.4 × 10−4, νc = νb = 1.8 × 10−4, and g = 4.7 × 10−5.

Figure 12 shows the interface evolution of the present
simulation. Time is nondimensionalized by the inlet diameter
Dj0 and the inlet velocity uj0 as

t∗ = t

Dj0/uj0
, (56)

in the liquid-jet-breakup simulations. At t∗ = 3, a mushroom-
like head shape is created. At t∗ = 9 to 15, the interface of the
jet becomes unstable. Observation shows that this interfacial
instability is triggered by the return flow of a mushroom head
generated in an initial stage of jet injection. Such a character-
istic flow pattern leads to the onset of interfacial instability,
although no artificial spatial or temporal perturbation has
been assumed in the initial or boundary conditions. At later
stages (t∗ = 30 and 72), the jet’s leading-edge collapses, and
the entrainment behavior, namely, the droplet formation from
the side of the jet, is also observed. Finally, the liquid core
becomes asymmetric, as can be seen at t∗ = 72. Such a series
of processes is similar to an experimental observation [33].

t* = 3 t* = 9 t* = 15 t* = 21 t* = 30 t* = 72

FIG. 12. Interface evolution of liquid-jet breakup under the same conditions as the target experiment: γ = 1.4, η = 4.2, Re = 3.4 × 103,
We = 2.2 × 102, and Fr = 8.5. The computational domain is set to be 200 × 200 × 500. The interfacial instability is triggered by the return
flow of a mushroom head generated in an initial stage of jet injection. The liquid core finally becomes asymmetric with entrainment behavior.
Numerical stability is maintained throughout the simulation, although the kinematic viscosity for the continuous phase is set as low as
1.8 × 10−4.
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FIG. 13. Time history of jet penetration: the present simulation
(solid line), previous simulation (dashed line) [33], and experimental
result (square symbol) [33]. The present simulation shows a better
agreement with the experimental data than that using the previous
D3Q19 model.

The history of jet penetration can be evaluated by
both experiments and simulations. A comparison between
experiments and simulations in terms of the position of the
jet’s leading-edge is provided in Fig. 13, where the position
is normalized by the inlet diameter Dj0. Focusing on the
results of lattice Boltzmann simulations, the time histories
are almost the same until t∗ = 15. Afterward, the differences
in positions gradually increase and the present simulation
results tend to be close to the experimental data. This is
thought to be due to the influence of ambient viscosity. In the
present simulation, the lower viscosity of the surrounding fluid
facilitates the penetration of the jet. The simulation using the
developed lattice Boltzmann model shows a better agreement
with the experimental data than that using the previous D3Q19
model [33]. The enhanced numerical stability of the model
enables us to simulate more realistic conditions.

C. Transition of breakup regimes

Recently, Saito et al. [22] have classified jet breakup
regimes in liquid-liquid systems based on observations. This
was an extension of Ohnesorge’s classification for liquid-gas
systems [7–9]. The classified breakup regimes are as follows:
0, dripping; I, varicose breakup; II, sinuous breakup; and
III, atomization. Regime II was further divided into two
sub-regimes: IIa, sinuous without entrainment; IIb, sinuous
with entrainment. On the basis of the observations and
phenomenological considerations, the flow-transition criteria
were derived in Ref. [22]:

Oh = 2.8Re−1, (57)

for Regimes I and II, and

Oh = 22Re−1, (58)

TABLE IV. Simulation conditions for dimensionless numbers to
be investigated. The density ratio, viscosity ratio, and Froude number
are set to be the same as in Table III.

Re Oh We = (ReOh)2

Ref. case 3.4×103 4.4×10−3 2.2×102

Case 1 4.6×102 4.4×10−3 4.1
Case 2 3.4×103 3.0×10−3 1.0×104

for Regimes II and III, where the Reynolds number Re is
defined as in Eq. (53) and the Ohnesorge number Oh can be
given by Eqs. (53) and (54) as Oh = We1/2/Re. By using the
above transition criteria, one can predict the breakup regimes
of an immiscible liquid-liquid jet from initial parameters.
With the present lattice Boltzmann model, we assess here the
potential for the reproducibility of the breakup regimes.

The simulation conditions are summarized in Table IV.
The corresponding values on the dimensionless diagram are
shown in Fig. 14. The description “Ref. case” represents the
same condition as mentioned in Sec. IV B. As can be seen,
the simulation results provided in the previous section are in
Regime II, where sinuous breakup with or without entrainment
is expected. The other parameters, namely, density ratio γ ,
viscosity ratio η, and Froude number Fr, are set to be the same
as in Table III. In Case 1, Re is decreased by increasing the jet
viscosity νj and decreasing jet velocity uj0, while Oh is fixed
at the same value as in the Ref. case. As can be seen in Fig. 14,
Case 1 is in Regime 0 or I. It is expected that the dripping- or
varicose-breakup regimes will appear. In Case 2, Re is fixed
at the same value as in the Ref. case, while Oh is increased by
decreasing the interfacial tension σ . Since Case 2 is in Regime
III in Fig. 14, it is expected that atomization will appear.
Note that it is impossible to change only one parameter in the

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

Re

O
h

Ref.

III

II

0 / I

Case 2

Case 1

Dripping / Varicose

Sinuous

Atomization

FIG. 14. Location of simulation parameters on the regime map
proposed in Ref. [22]. The description “Ref.” represents the same
condition as mentioned in Sec. IV B. In Ref. case, sinuous-type regime
is expected and will appear; in Case 1 and Case 2, it is expected that
dripping/varicose and atomization, respectively, will appear.
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t* = 17 t* = 26 t* = 30 t* = 38 t* = 63

FIG. 15. Simulation results of Case 1 in Table IV: γ = 1.4, η =
4.2, Re = 4.6 × 102, We = 4.1, and Fr = 8.5. The computational
domain is set to be 120 × 120 × 300. A droplet forms mainly at
the tip of the jet; the characteristics of varicose breakup (Regime I)
appear.

experimental procedures; only the effect of a focused param-
eter can be taken into account in the numerical simulations.

Figure 15 shows the simulation results for Case 1 in
Table IV. We set the inlet diameter and velocity to Dj0 = 15
and uj0 = 0.05, respectively. The other parameters are as
follows: σ = 9.1 × 10−3, νj = νr = 1.6 × 10−3, νc = νb =
3.9 × 10−4, and g = 2.0 × 10−5. At t∗ = 17, the swollen part
is generated around the inlet. The mushroom-like head does
not appear. The swollen part moves downward with the growth
of the neck part at t∗ = 26, and the corresponding part breaks
up into a single droplet at t∗ = 30. At this time, the following
swollen part is generated on a liquid column. The formation of
the swollen part, the growth of the neck part, and breakup
into a single droplet are observed through simulation. In
this case, the so-called satellite-droplet formation just after
the primary-droplet formation is not observed. According
to the experimental data in liquid-liquid systems [22], the
average size of satellite droplet is about 0.3 times smaller than
the nozzle diameter Dj0. To reproduce the satellite-droplet
formation, the higher resolution would be required. The order
of the droplet sizes has the same extent as the inlet diameter or
is larger than it. This series of processes is a characteristic of the
so-called pinch-off behavior, which is similar to the scenario
considered in Rayleigh’s breakup for a liquid column [2].
This corresponds to the varicose breakup or Regime I in
(Fig. 14). The characteristics of the varicose breakup regime
are reproduced by the present lattice Boltzmann simulation.

Figure 16 shows the simulation results for Case 2 in
Table IV. We set the inlet diameter and velocity to Dj0 = 30
and uj0 = 0.1, respectively. The other parameters are as
follows: σ = 3.0 × 10−5, νj = νr = 8.8 × 10−4, νc = νb =
2.1 × 10−4, and g = 3.9 × 10−5. As in the Ref. case, a
mushroomlike head appears at t∗ = 8. Through t∗ = 18–33,
the jet continues penetration with active entrainment. The
sizes of the generated droplets are much smaller than the inlet
diameter, and the number of droplets is much greater than in
the Ref. case and Case 1. Owing to the entrainment from a jet

t* = 8 t* = 18 t* = 25 t* = 33 t* = 77

FIG. 16. Simulation results of Case 2 in Table IV: γ = 1.4,
η = 4.2, Re = 3.4 × 103, We = 1.0 × 104, and Fr = 8.5. The com-
putational domain is set to be 240 × 240 × 600. A large number
of droplets are entrained from the jet surface; the characteristics of
atomization (Regime III) appear.

interface, the liquid column is fully covered, and it is difficult
to identify this column in the snapshots shown in Fig. 16.
The series of processes corresponds to the atomization or
Regime III in Fig. (14). The characteristics of the atomization
regime are also reproduced by the present lattice Boltzmann
simulations.

Before summarizing the simulation results, let us mention
the jet-breakup regime shown in Fig. 12 again. During the
penetration, the jet maintains an axisymmetric configuration.
This is reasonable because the computational setup described
in Sec. IV A is exactly symmetric on the x-y plane. However,
the jet column finally winds and becomes an asymmetric shape
(see t∗ = 72 in Fig. 12). In addition, the entrainment also can
be seen in this case. This type of breakup regime corresponds to
Regime IIb in Fig. (14). This implies that the physical balance
among hydrodynamic forces, including inertia, viscous force,
and interfacial-tension force can be naturally reproduced
via the lattice Boltzmann simulation. This fact numerically
supports the validity of the dimensionless diagram proposed
in Ref. [22].

Finally, we summarize the simulation results in the di-
mensionless diagram of Fig. 14. Typical snapshots of liquid-
jet breakup from Figs. 12, 15, and 16 are summarized in
Fig 17. The characteristics of varicose breakup (Regime I),
sinuous breakup (Regime II), and atomization (Regime III)
are successfully simulated. On the breakup regimes, we can
conclude that the lattice Boltzmann model developed in Sec. II
under the boundary conditions described in Sec. IV A well
reproduce the breakup characteristics expected by the regime
map proposed in Ref. [22].

V. CONCLUSIONS

In this paper, a three-dimensional lattice Boltzmann model
for immiscible two-phase flows was developed in the frame-
work of a D3Q27 lattice. An MRT collision operator for the
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FIG. 17. Summary of the present results of liquid-jet-breakup
simulations in the dimensionless diagram for liquid-liquid sys-
tems [22]. The lattice Boltzmann model developed in this paper
well reproduces the breakup characteristics expected by the regime
map.

D3Q27 lattice [63,68] was introduced. The choice of relaxation
parameters optimized by Suga et al. [64] greatly improved the
numerical stability of the model. A generalized perturbation
operator [53] and an enhanced equilibrium distribution func-
tion [56] were also successfully incorporated into the present
D3Q27 model.

Using the formulated lattice Boltzmann model, three types
of numerical tests were carried out: a static droplet, an
oscillating droplet, and the Rayleigh–Taylor instability. The
static-droplet test shows that the measured pressure difference
satisfied the Laplace law, and the interfacial tension agreed
well with that predicted by Eq. (24) within a maximum
error of 1.6%. The oscillating-droplet test was performed to
compare the oscillation period with the analytical solution. For
the high-interfacial-tension case, the error with the analytical
solution was within 2.4%. Under low interfacial tension, a
droplet reached equilibrium without oscillations in the most
viscous case; the maximum error for the available data was
10.8%. The Rayleigh–Taylor simulations were performed with
a computational setup and parameters that were strictly similar
to those of He et al. [84]. The positions of the bubble front,
spike tip, and saddle point were measured for comparison
with previous works using the lattice Boltzmann [84,85] and
phase-field methods [86]. The time changes of the bubble
front and the saddle point were almost the same, irrespective
of the method used. At later stages, a little difference
between the lattice Boltzmann and phase-field simulations was
observed for the spike-tip evolution owing to the difference in
implementation of the wall-boundary conditions.

The developed model was applied to liquid-jet-breakup
simulations. First, we chose the parameters to match the
experimental conditions [33]. The five dimensionless groups
were employed to determine the physical properties in lattice
units. The developed D3Q27 model maintained numerical
stability throughout the simulations; the previous work using
a D3Q19 color-fluid lattice Boltzmann model [33] failed to
simulate stably under the same conditions. The present results
showed that the characteristic interfacial evolution captured
the experimental results. A mushroomlike head was formed
at the early stages; later, the configuration of the liquid core
transitioned from asymmetric to axisymmetric, and interface
entrainment also naturally occurred. The time history of
the jet’s leading-edge was compared with that obtained by
experiment. Quantitative comparisons agreed well with the
experimental data.

By choosing the parameters based on the regime map
for jet breakup in liquid-liquid systems [22], we performed
simulations to evaluate the reproducibility of the regime map.
In the varicose regime, pinch-off-type breakup, i.e., the droplet
formation in the tip of the liquid column, occurred. Satellite-
drop formation was not confirmed in the present simulation. In
the atomization regime, entrainment from the liquid column
was distinguished. The liquid column was fully covered with
entrainment droplets, which were much smaller than the
inlet diameter. In conclusion, the breakup regimes appearing
in the simulations successfully reproduced the predicted
regimes, including the varicose, sinuous, and atomization
regimes.

The authors also tested the stable ranges of the developed
color-fluid model through simple test cases as in Sec. III A.
For such a static case, at least, it is confirmed that the
available maximum density ratio γ (= ρr/ρb) was up to 1 000
at the unit kinematic-viscosity ratio (νr = νb = 1.0 × 10−3);
the maximum kinematic-viscosity ratio η(= νr/νb) was up to
1 000 at γ = 1.5. From such a point of view, the authors
believe that the three-dimensional color-fluid lattice Boltz-
mann model developed in this paper is generally suitable for
various other applications within the aforementioned stability
ranges.
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APPENDIX A: TRANSFORMATION MATRIX

A transformation matrix in practical form is obtained by
substituting the velocity set [Eq. (1)] into the moment set
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[Eq. (7)]:

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 −1 0 0 0 0 1 −1 1 −1 0 0 0 0 1 −1 −1 1 1 −1 1 −1 −1 1 1 −1
0 0 0 1 −1 0 0 1 −1 −1 1 1 −1 1 −1 0 0 0 0 1 −1 1 −1 1 −1 −1 1
0 0 0 0 0 1 −1 0 0 0 0 1 −1 −1 1 1 −1 1 −1 1 −1 −1 1 1 −1 1 −1

−2 −1 −1 −1 −1 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 2 2 −1 −1 −1 −1 1 1 1 1 −2 −2 −2 −2 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 1 1 −1 −1 1 1 1 1 0 0 0 0 −1 −1 −1 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 −1 −1 0 0 0 0 0 0 0 0 1 1 1 1 −1 −1 −1 −1
0 0 0 0 0 0 0 0 0 0 0 1 1 −1 −1 0 0 0 0 1 1 −1 −1 1 1 −1 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 −1 −1 1 1 −1 −1 −1 −1 1 1
0 −4 4 0 0 0 0 −1 1 −1 1 0 0 0 0 −1 1 1 −1 2 −2 2 −2 −2 2 2 −2
0 0 0 −4 4 0 0 −1 1 1 −1 −1 1 −1 1 0 0 0 0 2 −2 2 −2 2 −2 −2 2
0 0 0 0 0 −4 4 0 0 0 0 −1 1 1 −1 −1 1 −1 1 2 −2 −2 2 2 −2 2 −2
0 4 −4 0 0 0 0 −2 2 −2 2 0 0 0 0 −2 2 2 −2 1 −1 1 −1 −1 1 1 −1
0 0 0 4 −4 0 0 −2 2 2 −2 −2 2 −2 2 0 0 0 0 1 −1 1 −1 1 −1 −1 1
0 0 0 0 0 4 −4 0 0 0 0 −2 2 2 −2 −2 2 −2 2 1 −1 −1 1 1 −1 1 −1
4 0 0 0 0 0 0 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 1 1 1 1 1 1 1 1

−8 4 4 4 4 4 4 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 1 1 1 1 1 1 1 1
0 −4 −4 2 2 2 2 1 1 1 1 −2 −2 −2 −2 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 −2 −2 2 2 1 1 1 1 0 0 0 0 −1 −1 −1 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −2 −2 2 2 0 0 0 0 0 0 0 0 1 1 1 1 −1 −1 −1 −1
0 0 0 0 0 0 0 0 0 0 0 −2 −2 2 2 0 0 0 0 1 1 −1 −1 1 1 −1 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 −2 2 2 1 1 −1 −1 −1 −1 1 1
0 0 0 0 0 0 0 1 −1 1 −1 0 0 0 0 −1 1 1 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 1 1 −1 1 −1 1 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −1 1 1 −1 1 −1 1 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 1 −1 1 −1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(A1)

and its inverse is analytically given by

M−1 = 1

216

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

8 0 0 0 −24 0 0 0 0 0 0 0 0 0 0 0 24 −8 0 0 0 0 0 0 0 0 0
8 12 0 0 −12 12 0 0 0 0 −12 0 0 12 0 0 0 4 −12 0 0 0 0 0 0 0 0
8 −12 0 0 −12 12 0 0 0 0 12 0 0 −12 0 0 0 4 −12 0 0 0 0 0 0 0 0
8 0 12 0 −12 −6 18 0 0 0 0 −12 0 0 12 0 0 4 6 −18 0 0 0 0 0 0 0
8 0 −12 0 −12 −6 18 0 0 0 0 12 0 0 −12 0 0 4 6 −18 0 0 0 0 0 0 0
8 0 0 12 −12 −6 −18 0 0 0 0 0 −12 0 0 12 0 4 6 18 0 0 0 0 0 0 0
8 0 0 −12 −12 −6 −18 0 0 0 0 0 12 0 0 −12 0 4 6 18 0 0 0 0 0 0 0
8 12 12 0 0 6 18 18 0 0 −3 −3 0 −6 −6 0 −6 −2 3 9 −18 0 0 27 −27 0 0
8 −12 −12 0 0 6 18 18 0 0 3 3 0 6 6 0 −6 −2 3 9 −18 0 0 −27 27 0 0
8 12 −12 0 0 6 18 −18 0 0 −3 3 0 −6 6 0 −6 −2 3 9 18 0 0 27 27 0 0
8 −12 12 0 0 6 18 −18 0 0 3 −3 0 6 −6 0 −6 −2 3 9 18 0 0 −27 −27 0 0
8 0 12 12 0 −12 0 0 18 0 0 −3 −3 0 −6 −6 −6 −2 −6 0 0 −18 0 0 27 −27 0
8 0 −12 −12 0 −12 0 0 18 0 0 3 3 0 6 6 −6 −2 −6 0 0 −18 0 0 −27 27 0
8 0 12 −12 0 −12 0 0 −18 0 0 −3 3 0 −6 6 −6 −2 −6 0 0 18 0 0 27 27 0
8 0 −12 12 0 −12 0 0 −18 0 0 3 −3 0 6 −6 −6 −2 −6 0 0 18 0 0 −27 −27 0
8 12 0 12 0 6 −18 0 0 18 −3 0 −3 −6 0 −6 −6 −2 3 −9 0 0 −18 −27 0 27 0
8 −12 0 −12 0 6 −18 0 0 18 3 0 3 6 0 6 −6 −2 3 −9 0 0 −18 27 0 −27 0
8 −12 0 12 0 6 −18 0 0 −18 3 0 −3 6 0 −6 −6 −2 3 −9 0 0 18 27 0 27 0
8 12 0 −12 0 6 −18 0 0 −18 −3 0 3 −6 0 6 −6 −2 3 −9 0 0 18 −27 0 −27 0
8 12 12 12 12 0 0 18 18 18 6 6 6 3 3 3 6 1 0 0 9 9 9 0 0 0 27
8 −12 −12 −12 12 0 0 18 18 18 −6 −6 −6 −3 −3 −3 6 1 0 0 9 9 9 0 0 0 −27
8 12 12 −12 12 0 0 18 −18 −18 6 6 −6 3 3 −3 6 1 0 0 9 −9 −9 0 0 0 −27
8 −12 −12 12 12 0 0 18 −18 −18 −6 −6 6 −3 −3 3 6 1 0 0 9 −9 −9 0 0 0 27
8 −12 12 12 12 0 0 −18 18 −18 −6 6 6 −3 3 3 6 1 0 0 −9 9 −9 0 0 0 −27
8 12 −12 −12 12 0 0 −18 18 −18 6 −6 −6 3 −3 −3 6 1 0 0 −9 9 −9 0 0 0 27
8 12 −12 12 12 0 0 −18 −18 18 6 −6 6 3 −3 3 6 1 0 0 −9 −9 9 0 0 0 −27
8 −12 12 −12 12 0 0 −18 −18 18 −6 6 −6 −3 3 −3 6 1 0 0 −9 −9 9 0 0 0 27

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(A2)

where c = 1 is assumed.
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APPENDIX B: DERIVATION OF LATTICE-SPECIFIC
COEFFICIENTS

The lattice-specific coefficients for the D3Q27 lattice are
ϕk

i in Eq. (13), 	k
i in Eq. (14), and Bi in Eq. (23). Derivations

of these coefficients are provided in this appendix.
First, we focus on ϕk

i in the equilibrium function Eq. (11).
The equilibrium function f

k(e)
i can be chosen arbitrarily to

satisfy the conservations of mass and momentum:

ρ =
∑

i

∑
k

f
k(e)
i , (B1)

ρu =
∑

i

∑
k

f
k(e)
i ci . (B2)

The form of the target equation here is

f
k(e)
i = ρk

{
ϕk

i + wi

[
3

c2
(ci · u) + 9

2c4
(ci · u)2 − 3

2c2
u2

]}
.

(B3)

To satisfy Eqs. (B1) and (B2), the required condition for ϕk
i is∑

i

ϕk
i = 1. (B4)

As in Ref. [50], we assume

ϕk
0 = αk (B5)

and

ϕk
2−7

ϕk
8−19

= ϕk
8−19

ϕk
20−27

= r, (B6)

where r is some constant. By choosing r = 4 from the relations
of weight factors wi (i.e., w2−7/w8−19 = w8−19/w20−27 = 4),
one can obtain the following form:

ϕk
i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

αk, i = 1,

2(1 − αk)/19, i = 2,3, . . . ,7,

(1 − αk)/38, i = 8,9, . . . ,19,

(1 − αk)/152, i = 20,21, . . . ,27.

(B7)

Next, we derive coefficients of the additional term 	k
i in

Eq. (11). Let us consider the conservation of color-blinded
variables 	i = ∑

k 	k
i for simplicity. From the conservation

of the zeroth- to third-order moments in the equilibrium
functions, f

(e)
i = ∑

k f
k(e)
i , the relations to be satisfied are

as follows [44,56]:
∑

i

	i = 0, (B8)

∑
i

	ici = 0, (B9)

∑
i

	icici = ν̄[u ⊗ ∇ρ + (u ⊗ ∇ρ)T + u · (∇ρ)I], (B10)

∑
i

	icicici = 0. (B11)

To satisfy Eqs. (B8)–(B11), we use a form similar to [56]

	i =
{
Aiν̄(u · ∇ρk)/c, i = 1,

Ai ν̄(G : ci ⊗ ci)/c3, others,
(B12)

with

G = C[u ⊗ ∇ρ + (u ⊗ ∇ρ)T], (B13)

where Ai are the lattice-specific coefficients to be determined
and C is the arbitrary constants. We assume

A2−7

A8−19
= A8−19

A20−27
= r, (B14)

with r = 4. The resultant form is

	i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−3ν̄(u · ∇ρ)/c, i = 1,

+16ν̄(G : ci ⊗ ci)/c3, i = 2,3, . . . ,7,

+4ν̄(G : ci ⊗ ci)/c3, i = 8,9, . . . ,19,

+1ν̄(G : ci ⊗ ci)/c3, i = 20,21, . . . ,27,

(B15)

with

G = 1
48 [u ⊗ ∇ρ + (u ⊗ ∇ρ)T]. (B16)

Finally, we move on Bi in Eq. (23). Following Ref. [53],
the conditions for Bi to be satisfied are

∑
i

Bi = 1

3
c2, (B17)

∑
i

Bici = 0, (B18)

∑
i

Bicici = 1

3
c4I. (B19)

In addition to the relations Eqs. (B17)–(B19), we assume

B2−7

B8−19
= B8−19

B20−27
= r, (B20)

with r = 4. One can choose the following coefficients:

Bi =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−(10/27)c2, i = 1,

+(2/27)c2, i = 2,3, . . . ,7,

+(1/54)c2, i = 8,9, . . . ,19,

+(1/216)c2, i = 20,21, . . . ,27,

(B21)

to satisfy Eqs. (B17)–(B19). Note that the choice of coefficients
in Eq. (B21) is somewhat arbitrary as in Ref. [53].
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