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Graph spectral characterization of the XY model on complex networks
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There is recent evidence that the XY spin model on complex networks can display three different macroscopic
states in response to the topology of the network underpinning the interactions of the spins. In this work we present
a way to characterize the macroscopic states of the XY spin model based on the spectral decomposition of time
series using topological information about the underlying networks. We use three different classes of networks
to generate time series of the spins for the three possible macroscopic states. We then use the temporal Graph
Signal Transform technique to decompose the time series of the spins on the eigenbasis of the Laplacian. From
this decomposition, we produce spatial power spectra, which summarize the activation of structural modes by the
nonlinear dynamics, and thus coherent patterns of activity of the spins. These signatures of the macroscopic states
are independent of the underlying network class and can thus be used as robust signatures for the macroscopic
states. This work opens avenues to analyze and characterize dynamics on complex networks using temporal
Graph Signal Analysis.
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I. INTRODUCTION

Activity of brain regions [1], car flow on roads [2],
meta-population epidemic [3], all these arguably very different
systems have in common that they can be represented as the
activity of a quantity of interest on the nodes of a network. The
coupling between the dynamics on the nodes and their network
of interactions often leads to emergent collective states. In
simple cases, such as the Kuramoto and XY spin models, these
macroscopic states can be classified according to the behavior
of an order parameter that measures the global coherence of
the units comprising the system.

Unfortunately, this order parameter is blind to the structure
of the underlying interaction network and does not allow one
to investigate how the system behaves at different structural
scales. To gain a better understanding of the effect of network
structure on its activity, we need a method to characterize a
macroscopic state that combines both aspects. Having such a
method will then help us to understand the functioning and
mitigate disruption of complex systems or even engineer new
ones.

In this paper we consider the problem in the spectral domain
by exploiting tools from temporal Graph Signal Analysis. In
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particular, we show that the collective patterns of a dynamical
system can be robustly characterized by decomposing its nodal
activity in an adequate basis associated with its structural
properties.

To illustrate our method, we will study the XY spin
model on complex networks. Spin models are paradigmatic
examples of systems where pairwise interactions give rise
to emergent macroscopic stationary states. Historically, the
behavior of these models was studied on lattices [4], but
other types of topologies have been considered in recent
years and in particular researchers have investigated the
effect of the topology on equilibrium and out-of-equilibrium
states, for example, the Ising model [5–9] and the XY

model [10–13]. Remarkably, a new stationary state has been
observed on complex networks in addition to the well-known
nonmagnetized and magnetized states in the XY spin model:
the supraoscillating state, in which magnetization coherently
oscillates indefinitely [10–18]. Interestingly, these three states
can be found on several network models, which suggests that
the topology constrains the XY spins in a given phase.

Although it is possible to analytically connect the param-
eters of the network models to thermodynamics in some
simple situations [12], the nonlinearity of the interactions
in the XY model complicates the construction of a direct
general theory linking the underlying network topology and
the phenomenology. It is therefore desirable to develop a
framework that links the structure to the dynamics.

We are in a situation where different topologies give rise
to the same macroscopic states and thus in a perfect setting
to explore the interplay between structure and dynamics,
using a network theoretical approach. As we are studying a
global emergent property of a system, it is natural to seek a
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description that uses systemwide features of the underlying
network. To explore the relationship between the structure
of the network and the evolution of the individual spins,
we leverage the spectral properties of networks and use the
temporal Graph Signal Transform (TGST). The temporal
Graph Signal Transform is an extension to time series of
the Graph Signal Transform for static signals on complex
networks [19–23]. We use the TGST to decompose the time
series of the spins in the Laplacian eigenbasis, which carries
information about the structure of the network.

The projection of the dynamics on the Laplacian eigenvec-
tors has emerged in the realm of dynamical systems to suc-
cessfully uncover, in reaction-diffusion and synchronization
systems, complex patterns of activity on networks [20–31].
On the other hand, in the signal processing community, the
Graph Signal Transform has recently acquired resonance in
the wider context of graph signal processing with a more
pronounced data-driven streak. Indeed, in this latter field,
such tools have already been applied, in different forms,
for signal analysis such as functional Magnetic Resonance
Imaging time series [32] or image compression [33] as well
as graph characterization and community detection [34,35].
The crucial feature of the TGST, which explains its power and
versatility, is its ability to analyze data on irregular domains
such as complex networks.

By using the TGST, we can quantify the importance of
each eigenmode by computing the spatial power spectrum. We
find that irrespective of the specific topology, the functional
form of the power spectrum characterizes a state. This clearly
shows that a selection of modes is at play. In this paper we
will show that the XY dynamics resonates with specific graph
substructures, leading to the same macroscopic state.

This paper is structured as follows. We briefly introduce the
XY spin model in Sec. II A along with the several macroscopic
behaviors it displays on networks in Sec. II B. We then proceed
by introducing the general framework of the Graph Signal
Transform in Sec. II C. We present and discuss our findings in
Sec. III and summarize in Sec. IV.

II. METHODS

A. The XY spin model on networks

We consider the XY spin model, a well known model in
statistical mechanics, on various network topologies. In this
model, the dynamics of the spins is parametrized by an angle
θi(t) and its canonically associated momentum pi(t). Each
spin i is then located on a network vertex and interacts with the
spins in Vi , the set of vertices connected to i. The Hamiltonian
of the system reads

H =
N∑

i=1

p2
i

2
+ J

2〈k〉
N∑

i=1

∑
j∈Vi

[1 − cos(θi − θj )], (1)

where θi ∈ [0,2π ], J > 0, and 〈k〉 is the average degree of the
network. The dynamics is given by the following Hamilton
equations:

θ̇i = pi,

ṗi = − J

〈k〉
∑
j∈Vi

sin(θi − θj ). (2)

As we are in the microcanonical ensemble, the energy H

[Eq. (1)] is conserved along with the total momentum P ≡∑
i pi/N , which itself is conserved because of the translational

invariance of the system.
In order to determine the amount of coherence in the

system, we define the order parameter M = |M|, where the
magnetization M is defined by

M ≡
(

1

N

∑
i

cos θi,
1

N

∑
i

sin θi

)
. (3)

In the stationary state, it is possible to measure M , where the
bar stands for the temporal mean. In the magnetized phase,
all rotors point in the same direction and M ∼ 1, while in the
nonmagnetized phase there is no preferred direction for the
rotors and M ∼ 0.

B. Phenomenology on networks

Our choice of the XY model was motivated by the variety of
macroscopic behaviors displayed when the rotors interact on a
complex network at low energies. We now briefly recapitulate
this phenomenology in order to give the background upon
which the present work is based. The behavior of the XY model
on complex networks has been explored in Refs. [12,14,15,36],
where the authors considered the thermodynamics on three
different topologies: k-regular networks, Watts-Strogatz (WS)
small-world networks [37], and Lace networks [15]. Here
a k-regular networks refers to a network where nodes are
arranged on a one-dimensional ring and connected to their k/2
next-nearest neighbors on each side [14]. The Lace networks
are generated from a k-regular network where each link can be
rewired with probability p to a node within a range r ∝ �Nδ	,
0 < δ � 1, where the distance is measured by hops along
the original ring (see Fig. 1). The Lace network model is a
variant of the WS network model with an additional constraint
on the rewiring process. In the following we will review the
behavior of the XY spin model on the three network models
we considered (see Table I for a summary of the topological
conditions for each phase to exist).

1. k-regular graphs

The nodal degree k ∝ �Nβ	, with 0 < β � 1, determines
the stationary state of the model. A nonmagnetized phase is
present at all energies H for β < 0.5. By contrast, a magne-

FIG. 1. Practical construction of a Lace network for N = 14,
k = 2, and r = �√N	 = 3. The starting configuration is in orange
and the dotted green links are the possible rewirings allowed within
the range r .
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TABLE I. Summary of the topological conditions leading to a specific macroscopic state: For WS networks pWS ∝ 1/Nβ+1 [12] and for
Lace networks p∗(N,r) is the probability required for the network to display an effective dimension of 2 [15]. For a given N , the exponents β

and δ determine k and r as k ∝ Nβ and r ∝ Nδ , respectively. With the values listed in the table below, these conditions yield, for N = 2048,
k = 45 for the SO generated by k-regular networks and r = 45 in the Lace generated SO state. For all Lace networks we use β = 0.2 in order
to obtain sparse networks.

State k-regular WS Lace

Magnetized β > 0.5 p > pWS δ > 0.5 ∧ p � p∗

Supraoscillating β = 0.5 δ = 0.5 ∧ p � p∗

Nonmagnetized β < 0.5 β < 0.5 ∧ p < pWS δ < 0.5,δ � 0.5 ∧ p < p∗

tized phase is observed for β > 0.5 and low-energy densities,
i.e., ε = H/N � 0.8 [14]. For β = 0.5, a highly oscillating
state emerges, in which the order parameter M is affected by
persistent macroscopic fluctuations (Fig. 2) [14,15]. At odds
with the classic behaviors, these fluctuations are persistent over
time: They have been observed in simulations up to 10 times
longer than the usual relaxation to equilibrium time. Moreover,
it has been shown that they are not due to finite-size effects:
The fluctuations cannot be tamed by increasing the system
size as their variance displays a remarkable stability across
different system sizes [12,36]. We will refer to this state as the
supraoscillating state.

2. WS networks

The only topological parameter governing the thermo-
dynamics is the rewiring probability p. When p > pWS ∝
1/Nβ+1, the network possesses the small-world property. The
proportion of long-range links introduced by the rewiring
process increases the effective correlation length and the
system is in the magnetized state for all values of β (Fig. 3). For
p < pWS, we recover the existence of a nonmagnetized phase.
Interestingly, it is not possible to observe the supraoscillating
state on a WS network between p < pWS and p > pWS as in

FIG. 2. Temporal behavior of the magnetization M(t) for the
three asymptotically stable regimes of the XY model: the nonmag-
netized regime (bottom line), the supraoscillating regime (middle
line), and the magnetized regime (top line). The underlying topology
here is a Lace network of 16 384 nodes at ε = 0.365 with
the following parameters: nonmagnetized, δ = 0.5 and p = 0.001;
supraoscillating, δ = 0.5 and p = 0.9; and magnetized, δ = 0.75 and
p = 0.9.

the case of the k-regular graph, for any value of β. Even a small
amount of unconstrained randomness has a homogenizing
effect on the dynamics, making the potential parameter space
in which the supraoscillating state could exist extremely small,
and precludes its observation in practice.

3. Lace networks

Lace networks sit on the boundary between the k-regular
graphs and WS networks. The constraint on the rewiring
range partially preserves the regularity of the k-regular graph.
This additional constraint enables the network to retrieve the
supraoscillating state that disappears for WS networks. It is
worth stressing that Lace networks display the supraoscillating
state without the need for a density of links that was necessary
for the k-regular networks. All the results for Lace networks are
actually obtained in an extremely sparse setting, namely, β =
0.2. The reason is that for those networks the crucial parameter
is the rewiring range δ: For δ = 0.5, a rewiring probability
p∗ exists above which the supraoscillating phase sets in. The
nonmagnetized and magnetized phases are separated by the
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FIG. 3. Phase portrait of the XY model on k-regular and small-
world networks. On the x axis is the rewiring probability of the
WS small-world model and on the y axis is the β parameter giving
the degree k ∝ Nβ . The bold line for 0 < β < 0.5 indicates the
nonmagnetized regime. The dot at β = 0.5 represents the oscillating
regime. The stars mark the parameters set of the k-regular and WS
networks used in Figs. 4 and 5. Finally, “MF” stands for the classical
mean-field second order phase transition, occurring at ε = 0.75, while
in the region marked by “second order phase transition” the transition
energy is affected by the (β,p) parameters [12].
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same probability p∗ for δ > 0.5, as long-range interactions
are needed to keep the system in the magnetized phase. In
the δ < 0.5 case, the rewiring range is too short to allow
the emergence of a coherent state. Finally, we note that the
probability p∗ depends on the size of the network, as it is
related to an effective network dimension [15]. It is therefore
not possible to have a phase portrait for Lace networks as it is
for k-regular and WS networks in Fig. 3. In the present study,
the parameters δ and p are chosen according to the system size
N in order to obtain a specific target state.

C. Temporal Graph Signal Transform

In the preceding section we summarized the topological
conditions for each phase of the XY spin model on the network
models we considered. The three phases are identified by
the behavior of the magnetization that is blind to the finer
coherence patterns in the evolution of the spins. From the
conditions on the parameters summarized in Table I to generate
underlying networks, it is evident that topology plays a crucial
role in the emergence of a specific phase. It is therefore natural
to use structural information about the underlying network
to characterize each phase. To disentangle the relationship
between the structure and the macroscopic behavior induced
by the dynamics, we will use the TGST approach to highlight
the importance of whole network structures to explain the
temporal evolution of the orientation of the spins.

Before going into the specifics of the present analysis, we
present the general framework of the TGST. Let us suppose
that we have a static undirected graph G in which the state of
the nodes change over time. The activity of node i at time t is
denoted by the scalar variable xi(t) and the state of the system
is represented by the vector x(t) ≡ [x1(t),x2(t), . . . ,xN (t)].
When the activities of the nodes are coupled, it is then
convenient to use an N × N matrix A, whose (i,j ) element
describes the interaction between nodes i and j such that the
evolution of x can be written in all generality as x(t + 1) =
F (A,x). For instance, the XY model dynamic equations (2)
can be recast in matrix form as

θ̇ = p,

ṗ = − J

〈k〉 sin(θ)ᵀA cos(θ ) − cos(θ )ᵀA sin(θ), (4)

where A is the underlying network adjacency matrix, sin(θ ) =
[sin(θ1), . . . , sin(θN )]ᵀ and similarly for cos(θ), and T denotes
the vector transposition. Let us furthermore suppose that the
matrix A is real and symmetric. By the spectral theorem, A
has the eigenvectors {vα} and their associated eigenvalues λα

(α = 0,2, . . . ,N − 1). The Graph Signal Transform consists
in projecting the activities x(t) at time t onto the set of
eigenvectors vα:

x̂α(t) =
N∑

i=1

xi(t)v
i
α, (5)

where vi
α is the ith component of vα . Up to proper nor-

malization of x(t), x̂α(t) can be interpreted as the similarity
between the signal x(t) and the structure described by vα .
Common examples of the matrix A are the adjacency matrix
A, describing the connectivity of the network or the Laplacian

matrix L, governing diffusion processes. The Laplacian L is
defined by L ≡ D − A, where is D ≡ diag(k1,k2, . . . ,kN ) and
ki is the degree of node i.

The choice of interaction matrix, and its associated eigen-
basis for the TGST, can be chosen freely: The choice of the
operator used to decompose the signal, e.g., the adjacency
matrix or a Laplacian-type operator, will emphasize different
aspects of the original signal due to their intrinsic filtering
properties [38]. In this study we used the Laplacian eigenbasis
to decompose the time series of the spins in the three states
of the XY model, because from an operator point of view, it
quantifies the signal smoothness [39]. The Laplacian operator
has been used to study systems close to synchronization: For
example, the dynamics of Kuramoto oscillators interacting
on networks via diffusive coupling close to synchronisation
can be linearized and written with the Laplacian L. The
Laplacian eigenbasis is therefore a natural choice to investigate
the synchronization phenomena [40–42]. Examples of such
analysis include the master stability function analysis of the
synchronous states [43–45], the effects of network structure on
synchrony [20,21,46,47], and the synchrony of nonidentical
oscillators [48]. We also note that the XY dynamics in the
magnetized state can be well approximated by the Laplacian
dynamics, but we stress that using the Laplacian operator to
decompose the time series yields compelling results for all
phases, including when the dynamics is nonlinear, indicating
that the TGST approach is versatile and a powerful and generic
tool to analyze time series on networks.

The correspondence between the Graph Signal Transform
and the discrete spatial Fourier transform is evident from
Eq. (5). This gives the keys for a better grasp of signal smooth-
ness and how eigenvectors are be used to represent signal
at different levels of granularity. Indeed, each eigenvector
vα represents a specific weighted node structure associated
with the corresponding eigenvalue λα . In this context, the
eigenvalue can be interpreted as a coherence length, in the
same way that each Fourier mode is associated with a wave
of specific wavelength. With this parallel in mind, a small
eigenvalue is associated with a long wavelength, the extreme
example being the zero eigenvalue λ0 = 0 that corresponds
to the connectedness of the network and to the uniform
eigenvector v0 ∝ (1 . . . 1). Due to the possible degeneracy of
the eigenvalues, it is in general not possible to establish a
bijection between the wavelength, i.e., the eigenvalue, and
the wave, i.e., the eigenvector. This is, for example, the
case for k-regular graphs that have very high symmetries
(see Sec. III B). We also note that as the eigenvalues of the
Laplacian satisfy 0 = λ1 � λ1 � · · · � λN , the eigenvalues
are naturally ordered by decreasing wavelength.

III. RESULTS

In this section we apply the TGST using the Laplacian
eigenbasis to the time series generated by the XY spin model
in the three stationary phases on the three network models. By
doing this analysis, we aim at (i) finding the eigenmodes that
support each macroscopic phase, (ii) investigating the spectral
features of each phase that are commonly observed across
different network models, and (iii) interpreting these spectral
features in a geometric or structural way.
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A. Numerical simulations

In this section we describe the specifics of the numerical
simulations we performed. We run molecular dynamics simu-
lations of the isolated system in Eqs. (2), starting with Gaussian
initial conditions N (0,T ) for {θi,pi}, with T the temperature.
With these initial conditions, the total momentum P is
therefore set at 0 without loss of generality. The simulations
are performed by integrating the dynamic equations (2) with
the fifth-order optimal symplectic integrator, described in
Ref. [49], with a time step of 	t = 0.05. This integrating
scheme allows us to check the accuracy of the numerical
integration; we verified at each time step that the conserved
quantities of the system, energy H and total momentum P , are
effectively constant over time. Once the network topology and
the size N are fixed, we monitor the average magnetization
M(ε) for each energy ε = H/N in the physical range. We
compute the temporal mean M on the second half of the
simulation, after checking that the magnetization has reached
a stationary state and only use this part of the simulations in
our analyses. The simulation time tf is typically of O(105).
Finally, the system sizes considered for our analyses range
from N = 210 to N = 213.

B. Laplacian mode excitation

As detailed in Sec. II B, the XY spin model possesses the
potential to display three macroscopic regimes in response

to different network topologies and Fig. 2 demonstrates the
typical temporal behavior of the magnetization M for the mag-
netized, nonmagnetized, and supraoscillating phases. We point
out that the fluctuations of the magnetization are due to
finite-size effects and only disappear in the thermodynamic
limit, with the exception of the supraoscillating state, for which
they are intrinsic [12,36].

The first step of our analysis aims at characterizing the
stationary states and their fluctuations: A finite magnetization
triggers the tendency of the spins, on average, to rotate coher-
ently, thus displaying a symmetry breaking, while they rotate
almost incoherently when M ∼ 0. As we are interested in char-
acterizing the stationary states of the XY model, we detrend
the time series of the spins θ(t) ∈ [0,2π ]N by removing their
temporal mean value θ̄ . We therefore express the detrended
time series using the decomposition in Eq. (5) and compute
the power spectrum |θ̂α(t)|2 and consider its temporal average

Īα ≡ 1

tf − tf /2

tf∑
s=tf /2

|θ̂α(s)|2, (6)

which we refer to as the spatial power spectrum. We can thus
associate a power spectrum with each macroscopic phase. We
will now detail the Laplacian spectra and power spectra for
each macroscopic state shown in Fig. 4. We observe that
the power spectra for each state are strikingly similar for
the different topologies, which are nevertheless characterized

FIG. 4. Spatial power spectra (top row) and the spectra (bottom row) for the different macroscopic states and network topologies considered
in this article: k-regular, Watts-Strogatz, and Lace networks. (a) Nonmagnetized state, where the spectra for the Lace and WS networks are
quasioverlapping. (b) Supraoscillating state without Watts-Strogatz networks, as they do not have parameters that accommodate this state. The
power spectra are displayed on a log-log scale to show the hierarchy in eigenmodes. (c) Magnetized state. The networks have size N = 2048 and
the following topological parameters: For Lace networks β = 0.2 and (a) δ = 0.5 and p = 0.0001, (b) δ = 0.5 and p = 0.5, and (c) δ = 0.75
and p = 0.5; for k-regular networks (a) β = 0.25, (b) β = 0.5, and (c) β = 0.75; and for WS networks (a) β = 0.25 and p = 0.000 07 and
(c) β = 0.25 and p = 0.5.

012312-5



EXPERT, DE NIGRIS, TAKAGUCHI, AND LAMBIOTTE PHYSICAL REVIEW E 96, 012312 (2017)

FIG. 5. Average spectra (insets) and average spatial power spectra for n = 10 realizations of WS and Lace networks, with error bars
in purple. The small magnitude of the variability of the eigenvalues across realizations justifies the averaging of the power spectra across
realizations, which are shown in each figure, with error bars. The figures presented here make evident the robustness of our findings with respect
to noise that could be introduced by different realizations of the same network model: (a) nonmagnetized and (b) magnetized small-world
networks and (c) nonmagnetized, (d) supraoscillating, and (e) magnetized Lace networks.

by different spectra and eigenbasis, as we display in Figs. 4
and 5. This strongly suggests the existence of some specific
substructures that drive the spatial power spectrum and that
must be common to all networks on which the dynamics is run.

1. Magnetized state

The Laplacian spectrum for the k-regular graph is highly
degenerated, reflecting the regularity of the network, while
the spectra for the WS and the Lace networks are very
similar, showing similar structure and nondegeneracy due the
random rewiring. On the other hand, the power spectra are
unsurprisingly largely dominated by the first eigenvalue as it
represents the constant component of the signal that dominates
as the magnetization is essentially constant. While the spectra
for the Lace and WS networks are very close, the spectrum
for the k-regular network is very different, strengthening our
point that specific substructure, potentially independent of the
network model considered, drives the macroscopic dynamics.

2. Nonmagnetized state

The nonmagnetized state is akin to a random state, as
the spins only weakly interact and no long-range order is
present. This is directly reflected by the small contributions
from all eigenmodes, as there is barely an order of magnitude
difference between the largest and smallest amplitudes. The
contribution of the eigenvalues decays monotonically and
slower than algebraically and the spectra for the three network

models are very similar; the Lace and WS spectra are even
quasioverlapping.

3. Supraoscillating state

The power spectrum signature of the state that only exists
for the k-regular and Lace networks is the most interesting. The
fat tail and its seemingly power-law decrease hints at the notion
of hierarchy in the spatial modes that explain the nontamable
oscillating patterns, as the magnetization is eventually a result
of the superposition of all the spatial modes.

It is worth stressing once more that the persistence of the
power spectra shape across the k-regular, WS, and Lace net-
works is highly nontrivial: Those networks are fundamentally
different from a structural point of view and these differences
are mirrored by their dissimilar spectra. Nevertheless, our
analysis shows how the stationary dynamics of the XY model
selects specific eigenvectors whose properties are likely shared
by these graphs.

To conclude this section, it is interesting to note that
although the contribution of the eigenmodes decreases with
the eigenvalues, they do so nonmonotonically. We investigate
this phenomenon in the next section.

C. Consistency across network realizations

The WS and Lace networks have an element of randomness
in their construction. It is therefore crucial to verify that
the properties of the spectra and power spectra we observed
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FIG. 6. Effect of the system size on the power spectra for the (a) nonmagnetized, (b) supraoscillating, and (c) magnetized states. The
underlying networks are Lace networks of sizes 1000, 2048, 4096, and 8192 nodes with the following parameters: nonmagnetized, δ = 0.5 and
p = 0.0001; supraoscillating, δ = 0.5 and p = 0.5; and magnetized, δ = 0.75 and p = 0.5. We used a log-log scale for (b) to emphasize the
particular participation of the modes in the spectra.

in the preceding section are not accidental, but genuinely
representative of a class of networks. We generated n = 10
realizations of the two types of networks in each state they
can support (see Fig. 5). The spectra of the Laplacians are
remarkably consistent, as shown by the small error bars.
This small magnitude of the variability of the eigenvalues
across realizations justifies the averaging of the power spectra
across realizations. It is remarkable that this variance, affecting
particular structures of the networks, does not have any effect
on the power spectra, as they are all very consistent with
low variance, except for some noise at the beginning of the
power spectra. The emerging macroscopic properties are not
affected by the local differences induced by the variance and
the structural differences between the Lace and WS, which
make Lace networks support the supraoscillating state and not
the WS network, are robust to the noise that is introduced by
different realizations of the same network model.

Earlier, we pointed out the nonmonotonic decrease of the
eigenmodes amplitude with the eigenvalues, on top of a clear
overall decreasing trend. On the one hand, these fluctuations
could be due to stochastic effects of particular network
realization that are ironed out when an ensemble average is
taken. On the other hand, they could be genuine and due solely
to the dynamics. To investigate the cause of these fluctuations,
we averaged the power spectra for the different realization
of Lace networks and observed that both scenarios happen.
In the case of the magnetized and supraoscillating states,
the curves become very smooth and decrease monotonically
and the nonmagnetized power spectrum remains intrinsically
noisy. This is not particularly surprising, as the first two
states contain some degree of order and even a handful of
realizations are enough to even out the fluctuations. On the
contrary, the behavior of the spins in the nonmagnetized state
is essentially uncorrelated. This randomness is heightened by
the randomness inherent to the generation of the Lace networks
and the power spectrum strongly carries the mark of this
structural randomness, contrary to the case of the two other
states, where the temporal structure, induced by underlying
network structure, is enough to cancel the variations in
the structure. Finally, in Fig. 6 we present evidence that
the power spectral signatures for the Lace networks are not

due to finite-size effects. The shape of the power spectra and
the relative importance of the eigenmodes are consistent for
networks of sizes N = 1000,2048,4096,8192.

IV. CONCLUSION

In this paper we presented the temporal Graph Signal
Transform, a method to decompose time-dependent signals
existing on the nodes of a network, using a basis that
incorporates structural information. We applied the TGST
to the time series of the spins of the XY spin model in
its three possible macroscopic states on three different network
topologies. We found clear spatial power spectral signatures
that characterize each state. Importantly, these signatures
are robust across topologies and to structural variability in
different realizations of the Watts-Strogatz and Lace networks.
In all cases, the power spectra are dominated by small
eigenvalues, which correspond to smoother structures. The
shape of the power spectra and their decrease reflect the
behavior of the macroscopic magnetization of the three states
in Fig. 2: The only significant contribution of the magnetized
state is the constant eigenvector; the nonmagnetized state is
also dominated by the constant eigenvector, but there are
non-negligible contributions from higher modes, whose power
decays exponentially. This is consistent with the notion that
in the nonmagnetized state, the spins oscillate in a random
fashion. Finally, the power spectrum of the supraoscillating
state displays a power-law-like decay, hinting that a hier-
archy of modes exists and elucidating the origin of this
state.

These results offer an avenue to characterize not only
macroscopic states in statistical mechanics models but also
the behavior of real-world systems. This technique is powerful
enough to circumvent traditional problems such as the need to
use finite-size scaling to take into account finite-size effects.
This study constitutes a step to quantify and identify key
network features that support collective states and opens many
questions to fully understand this tool. An investigation of
the characterization of the structures of the eigenvectors to
clearly pinpoint the key mesoscopic structures that support
the dynamics, effectively constituting a centrality measure

012312-7



EXPERT, DE NIGRIS, TAKAGUCHI, AND LAMBIOTTE PHYSICAL REVIEW E 96, 012312 (2017)

for network structures, would be relevant to understand the
localisation properties of the Laplacian eigenvectors and their
effect on the dynamics. A parallel line of investigation is
the combination of spatial and temporal frequencies to define
dispersion relations for networks, potentially giving a simple
criterion to classify networks. Finally, the effect of the basis
chosen for the decomposition of the signal, as a different basis
will emphasize different properties of the original signal, is
left for future investigation.
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