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In estimating the complexity of objects, in particular, of graphs, it is common practice to rely on graph-
and information-theoretic measures. Here, using integer sequences with properties such as Borel normality, we
explain how these measures are not independent of the way in which an object, such as a graph, can be described
or observed. From observations that can reconstruct the same graph and are therefore essentially translations of
the same description, we see that when applying a computable measure such as the Shannon entropy, not only
is it necessary to preselect a feature of interest where there is one, and to make an arbitrary selection where
there is not, but also more general properties, such as the causal likelihood of a graph as a measure (opposed
to randomness), can be largely misrepresented by computable measures such as the entropy and entropy rate.
We introduce recursive and nonrecursive (uncomputable) graphs and graph constructions based on these integer
sequences, whose different lossless descriptions have disparate entropy values, thereby enabling the study and
exploration of a measure’s range of applications and demonstrating the weaknesses of computable measures of

complexity.
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I. THE USE OF SHANNON ENTROPY
IN NETWORK PROFILING

One of the major challenges in modern physics is to provide
proper and suitable representations of network systems for
use in fields ranging from physics [1] to chemistry [2]. A
common problem is the description of order parameters with
which to characterize the “complexity of a network.” Graph
complexity has traditionally been characterized using graph-
theoretic measures such as the degree distribution, clustering
coefficient, edge density, and community or modular structure.

More recently, networks have also been characterized using
classical information theory. One problem in this area is the
interdependence of many graph-theoretic properties, which
makes measures more sophisticated than single-property
measurements [3] difficult to come by. The standard way to
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address this is to generate graphs that have a certain specific
property while being random in all other aspects, in order to
check whether or not the property in question is typical among
an ensemble of graphs with otherwise seemingly different
properties.

Approaches using measures based upon the Shannon
entropy’s claim to quantify the information content of a
network [4] as an indication of its “typicality” are based
on the assumption of associated ensembles provided by the
entropy evaluation: the more random, the more typical. The
claim is that one can construct a “null model” that captures
some aspects of a network (e.g., graphs that have the same
degree distribution) and see how different the network is from
the null model as regards particular features, such as the
clustering coefficient, graph distance, and other features of
interest. The procedure aims at producing an intuition of an
ensemble of graphs that are assumed to have been sampled
uniformly at random from the set of all graphs with the same
property to determine whether such a property occurs with
a high or a low probability. If the graph is not significantly
different, statistically, from the null model, then the graph is
claimed to be as “simple” as the null model; otherwise, the
measure is claimed to be a lower bound on the “complexity”
of the graph as an indication of its random versus causal
nature.
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Here we highlight some serious limitations of these ap-
proaches that are often neglected and provide pointers to ap-
proaches that are complementary to Shannon entropy, in order
to partially circumvent some of the aforesaid limitations by
combining it with a measure of local algorithmic complexity
that better captures the recursive and thus causal properties
of an object—in particular, a network—beyond statistical
properties.

One of the most popular applications of the entropy is to
graph the degree distribution, as first suggested and introduced
in [5]. Similar approaches have been adopted in areas such as
chemical graph theory and computational systems biology [6]
as functions of the layered graph degree distribution under
certain layered coarse-graining operations (sphere covers),
leading to the hierarchical application of the entropy, a version
of the graph traversal entropy rate. In chemistry, for example,
the Shannon entropy of a graph degree sequence has been
used as a profiling tool to characterize molecular complexity
[7-11].

While the application of the entropy to graph degree
distributions has been relatively more common, the same
entropy has also been applied to other graph features, such
as functions of their adjacency matrices [12], and to distance
and Laplacian matrices [13]. Even more recently, the Shannon
entropy on adjacency matrices was used to attempt the
discovery of CRISPR regions in an interesting transformation
of DNA sequences into graphs [14]. A survey contrasting
adjacency-matrix-based (walk) entropies and other entropies
(e.g., on degree sequence) is offered in [12]. It finds that
adjacency-based entropies are more robust vis-a-vis graph
size and are correlated with the graph algebraic properties,
as these are also based on the adjacency matrix (e.g., graph
spectrum).

Finally, hybrid measures have been used, such as the graph
heterogeneity index [15] as a function of degree sequence
and the Laplacian matrix, where some of the limitations
of quantifying only the diversity of the degree distribution,
i.e., its entropy (or that of any graph measure as a func-
tion of the entropy of the degree distribution), have been
identified.

It is thus of the greatest interest to researchers in physics,
chemistry, and biology to understand the reach, limits, and
interplay of measures of entropy, in particular, as applied to
networks. Likewise, it is of great interest to understand how
unserviceable for extracting causal content—as opposed to
randomness—the use of entropy as a measure of randomness,
complexity, or information content can be. The use of entropy
has, however, been extended, because its numerical calculation
is computationally very cheap compared to richer, but more
difficult to approximate universal measures of complexity,
which are better qualified to capture more general properties
of graphs. Some of these properties to be captured are related
to the nature of the graph-generating mechanisms, which
were what most of the previously utilized measures were
supposed to quantify in the first place, in one way or another,
from the introduction of the first random graph model by
Erdos and Rényi [16] to the most popular models such as
“scale-freeness” [17] and more recent ones such as network
randomness typicality [4].
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II. NOTATION AND BASIC DEFINITIONS

Definition II.1. A graph is an ordered pair G = (V,E)
comprising a set V of nodes or vertices and a set E of edges
or links, which are two-element subsets of V.

Definition 11.2. A graph G is labeled when the vertices are
distinguished by labels u;,u,, ... ,u,, with n = |V(G)| the
cardinality of the set V(G).

Definition 11.3. Graphs G and H are isomorphic if there is
a bijection between the vertex sets of G and H, A : V(G) —
V(H), such that any two vertices u and v € V(G) are adjacent
in G if and only if A(«) and A(v) are adjacent in H.

Definition I1.4. The degree of a node v, denoted d(v), is the
number of (both incoming and outgoing) links to other nodes,
and d is the unordered list of all v € V(G).

Definition I1.5. An Erdos-Rényi (E-R) graph G(n,p) is a
graph of size n constructed by connecting nodes randomly
with probability p independent of every other edge.

Usually E-R graphs are assumed to be nonrecursive (i.e.,
truly random), but E-R graphs can be constructed recursively
using pseudorandom generating algorithms.

A. Graph entropy

One of the main objectives behind the application of the
Shannon entropy is the characterization of the randomness
or “information content” of an object such as a graph. Here
we introduce graphs with interesting deceptive properties,
particularly, disparate entropy (rate) values for the same
object looked at from different perspectives, revealing the
inadequacy of classical information-theoretic approaches to
graph complexity (Figs. 1-3).

Central to information theory is the concept of Shannon’s
information entropy, which quantifies the average number of
bits needed to store or communicate the statistical description
of an object. For an ensemble X(R, p(x;)), where R is the set
of possible outcomes (the random variable), n = |R| and p(x;)
is the probability of an outcome in R. The Shannon entropy of
X is then given by

Definition I1.6.

H(X)= =" p(x;)log, p(x;). ()

i=I

which implies that to calculate H(X) one has to know or
assume the mass distribution probability of ensemble X. One
caveat regarding Shannon’s entropy is that one is forced to
make an arbitrary choice regarding granularity. Take, for
example, the bit string 01010101010101. The Shannon entropy
of the string at the level of single bits is maximal, as there are
the same number of 1s and Os, but the string is clearly regular
when two-bit (nonoverlapping) blocks are taken as basic units,
in which case the string has minimal complexity because it
contains only one symbol (01) among four possibilities (00, 01,
10, 11). A generalization consists in taking into consideration
all possible “granularities” or the entropy rate:

Definition I1.7. Let Pr(s;, 841, - . .,8i+1) = Pr(s) with |s| =
L denote the joint probability over blocks of L consecutive
symbols. Let the Shannon entropy rate [21] (also known as
the granular entropy or n-gram entropy) of a block of L
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FIG. 1. Basic node and link growth properties and corresponding fitted (polynomial) lines. The relation between node and link growth

determines the edge density, which at the limit is 0.

consecutive symbols—denoted H(L)-be

Hip(s)=—) ...) Pr(si,....s;)log, Pr(sy., ...

sleA

L)

2

Thus to determine the entropy rate of the sequence, we
estimate the limit when L — o0. It is not hard to see, however,
that Hy (s) will diverge as L tends to oo if the number of
symbols increases, but if applied to a binary string Hy(s), it
will reach a minimum for the granularity in which a statistical
regularity is revealed.

The Shannon entropy [21] of an object s is simply Hj(s)
for fixed block size L = i, so we can drop the subscript. We
can define the Shannon entropy of a graph G, with respect to
i, by:

Definition I1.8.

SLEA

|G|

H(G,P)=—)_ P(Gy)log, P(G), 3)

where P is a probability distribution of G, i is a feature of
interest of G, e.g., the edge density, degree sequence, number
of overrepresented subgraphs/graphlets (graph motifs), and
so on. When P is the uniform distribution (every graph of the
same size is equally likely), it is usually omitted as a parameter
of H.

The most common applications of the entropy to graphs
are to the degree sequence distribution and edge density
(adjacency matrix), which are labeled graph invariants. In
molecular biology, for example, a common application of

the entropy is to count the number of “branchings” [9] per
node by, e.g., randomly traversing a graph starting from a
random point. The more extensive the branching, the greater
the uncertainty of a graph’s path being traversed in a unique
fashion, and the higher the entropy. Thorough surveys of graph
entropy are available in [9,13,22], so we will avoid providing
yet another one. In most, if not all, of these applications of
entropy, very little attention is paid to the fact that the entropy
can lead to completely disparate results depending on the ways
in which the same objects of study are described, that is, due
to the fact that entropy is not a graph invariant—for either
labeled or unlabeled graphs—vis-a-vis object description, a
major drawback for a complexity measure [23,24] of typicality,
randomness, and causality. In the survey [9], it is suggested
that there is no “right” definition of entropy. Here we formally
confirm this to be the case in a fundamental sense.

Indeed, the entropy requires the preselection of a graph
invariant, but it is itself not a graph invariant. This is because
ignorance of the probability distribution makes the entropy
necessarily dependent on the graph invariant description, there
being no such thing as an invariance theorem [25-27] for
the Shannon entropy to provide a convergence of values
independent of description language as there is in algorithmic
information theory for algorithmic (Kolmogorov-Chaitin)
complexity.

Definition I1.9. The algorithmic complexity of an object G is
the length of its shortest computational description (computer
program) in a reference language (of which it is independent),
such that the shortest generating computer program fully
reconstructs G [25-28].
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FIG. 2. Graph-theoretic and dynamic properties of the recursive ZK graph. Despite the trivial construction of the recursive network, it
displays all sorts of interesting convergent and divergent nontrivial graph-theoretic, dynamic, and complexity properties. For example, the
clustering coefficient of the undirected graph asymptotically converges to 0.65 and some properties increase or decrease linearly while others do
so polynomially. The entropy of different graph descriptions (even for fully accurate descriptions, and not because of a lack of information from
the observer point of view) diverge and become trivially dependent on other simple functions (e.g., edge density or degree sequence normality).
In contrast, methods based on the algorithmic probability (cf. V) assign a lower complexity to the graph than both entropy and lossless
compression algorithms (e.g., Compress, depicted here) that are based on the entropy rate (word repetition). While useful for quantifying
specific features of the graph that may appear interesting, no graph-theoretic or entropic measure can account for the low (algorithmic)

randomness and therefore (high) causal content of the network.

III. CONSTRUCTION OF ENTROPY-DECEIVING GRAPHS

If we can show that we can artificially fool entropy, we
will show how the entropy may fail to characterize natural
or socially occurring networks: especially because, as we
demonstrate, different values of the Shannon entropy can be
retrieved for the same graph as functions of different features
of interest of said graph, thereby showing that there is no such
thing as the “Shannon entropy of a graph” but, rather, the
“Shannon entropy of an identified property of a graph,” which
can easily be replaced with a function that simply quantifies
such a property directly.

A. Entropy of pseudorandom graphs

By using integer sequences, in particular, Borel-normal
irrational numbers, one can construct pseudorandom graphs,
which can in turn be used to construct networks.

Definition I1I.1. A real number x is said to be normal if all
n-tuplets of x’s digital expansion are equally likely, thereby
of natural maximal n-order entropy rate, by the definition of
Borel normality.

For example, the mathematical constant 7 is believed to
be an absolute Borel normal number (Borel normal in every
base), and so one can take the digits of 7 in any base and take
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FIG. 3. ZK randomness and information content according to the lossless compression entropy and a technique, other than compression, that
uses the concept of algorithmic probability to approximate the algorithmic complexity [18—20]. This means that randomness characterizations
by algorithmic complexity are robust, as they are independent of object description and are, therefore, in an essential way, parameter-free,
meaning that there is no need for preselection or arbitrary selection of features of interest for proper graph profiling.

n x n digits as the entries for a graph adjacency matrix of size
n X n by taking n consecutive segments of n digits w. The
resulting graph will have n nodes and an edge density of 0.5
because the occurrence of 1 or 0 in 7 in binary has probability
0.5 (the same as 7 in decimals after transformation of digits
to 0 if digiti < 5 and 1 otherwise ori < b/2 and 1 otherwise
in general for any base b), thus complying with the definition
of an Erdos-Rényi graph (albeit of a high density).

As theoretically predicted and numerically demonstrated in
Figs. 4(a) and 4(b), the degree distribution will approximate a
normal distribution around ». This means that the graph adja-
cency matrix will have maximal entropy (if 7 is Borel normal)
but low degree-sequence entropy because all values are around
n and they do not span all the possible node degrees (in particu-
lar, low degrees). This means that algorithmically constructing
a graph can give rise to an object with a different entropy when
the feature of interest of the said graph is changed.

A graph does not have to be of low algorithmic complexity
to yield incompatible observer-dependent entropy values. One
can take the digits of an Q Chaitin number (the halting
probabilities of optimal Turing machines with prefix-free
domains), some of the digits of which are uncomputable. But
in Fig. 4(c) we show a graph based on the first 64 digits of an
€2 Chaitin number [29], thus a highest-algorithmic-complexity
graph in the long run (it is ultimately uncomputable). Since
randomness implies normality [30], the adjacency matrix has
maximal entropy, but for the same reasons as obtained in
the case of the 7w graphs, it will have low degree-sequence
entropy. For algorithmic complexity, in contrast, as we see

in Theorem III.6, all graphs have the same algorithmic
complexity regardless of their (lossless) descriptions (e.g.,
adjacency matrix or degree sequence), as long as the same
and only the same graph (up to an isomorphism) can be
reconstructed from their descriptions.

One can also start from completely different graphs. For
example, Fig. 5 shows how the Shannon entropy is applied
directly to the adjacency matrix as a function of the edge
density, with the same entropy values retrieved despite their
very different (dis)organization.

The entropy rate will be low for the regular antelope graph
and higher, but still far removed from randomness, for the
E-R, because by definition the degree-sequence variation of an
E-R graph is small. However, in scale-free graphs the degree
distribution is artificially scaled, spanning a large number of
degrees as a function of the number of connected edges per
added node and resulting in an overestimation of their degree-
sequence entropy, as can be numerically verified in Fig. 6. The
degree-sequence entropy points in the opposite direction to the
entropic estimation of the same graphs arrived at by looking at
their adjacency matrices, when, in reality, scale-free networks
produced by, e.g., Barabasi-Albert’s preferential attachment
algorithm [17], are recursive (algorithmic and deterministic,
even if probabilities are involved), as opposed to the E-R
construction built (pseudo-)randomly. The entropy of the
degree sequence of scale-free graphs would suggest that they
are almost as random as, or even more random than, E-R graphs
for exactly the same edge densities. To circumvent this, ad hoc
measures of modularity have been introduced [31], to precisely
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FIG. 4. Histograms of degree distributions of 7 networks using 10 000 (left) and 10 x 10 (right) digits of 7 (a) in base 2 and (b) in base
10 undirected and with no self-loops. (c) A graph based on the 64 calculated bits of a partially computable € Chaitin number [29]. It appears
to have some structure but any regularity will eventually vanish, as it is a Martin-L6f algorithmic random number [30].

FIG. 5. A regular antelope graph (left) and an Erdos-Rényi graph
(right) with the same number of edges and nodes and, therefore, the
same adjacency matrix dimension and exactly the same edge density,
0.03979.. . ., can have very different properties. Specifically, one can
be recursively (algorithmically) generated, while the other is random
looking. One would wish to capture this essential difference.

capture how removed a graph is from ‘“scale-freeness” by
comparing any graph to a scale-free randomized version of
itself and, thereby, compelling consideration of a preselected
feature of interest (scale-freeness).

Furthermore, an E-R graph can be recursively (algorithmi-
cally) generated or not, and so its Shannon entropy has no
connection to the causal, algorithmic information content of
the graph and can only provide clues for low-entropy graphs
that can be characterized by other graph-theoretic properties,
without the need for an entropic characterization.

B. A low-complexity and high-entropy graph

We introduce a method to build a family of recursive graphs
with maximal entropy but low algorithmic complexity, hence
graphs that appear statistically random but are, however, of
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FIG. 6. Box plot of entropy values applied to the degree-sequence
distribution of 10 scale-free (B-A) and 10 E-R graphs with n = 50
nodes and the same parameters. Results may mislead as to the
generative quality of each group of graphs, suggesting that B-A
graphs are as random as or more random than E-R graphs, despite
their recursive (causal/algorithmic and deterministic) nature, whereas
in fact this should make B-A networks more random than E-R graphs.
Here the E-R graphs have exactly the same edge density as the B-A
graphs for four and five preferential attached edges per node. This
plot illustrates how, for all purposes, the entropy can be easily fooled
and cannot tell higher causal content from apparent randomness. One
can always update the ensemble distribution to accommodate special
cases but only after gaining knowledge by other methods.

low algorithmic randomness and thus causally (recursively)
generated. Moreover, these graphs may have maximal entropy
for some lossless descriptions but minimal entropy for other
lossless descriptions of exactly the same objects, with both
descriptions characterizing the same object and only that ob-
ject, thereby demonstrating how entropy fails at unequivocally
and unambiguously characterizing a graph independent of
a particular feature of interest. We denote by ZK a graph
(unequivocally) constructed as follows:

(1) Let 1 — 2 be a starting graph G connecting a node
with label 1 to a node with label 2. If a node with label n
has degree n, we call it a core node; otherwise, we call it a
supportive node.

(2) Tteratively add a node n + 1 to G such that the number
of core nodes in G is maximized. The resulting graph is typified
by the one in Fig. 7.

C. Properties of the ZK graph

The degree sequence d of the labeled nodesd = 1,2, ...,n
is the Champernowne constant [32] C in base 10, a transcen-
dental real whose decimal expansion is Borel normal [33],
constructed by concatenating representations of successive
integers whose digits are the labeled node degrees of G for
n = 20 iterations (sequence A033307 in the OEIS).

The sequence of edges is a recurrence relation built upon
previous iteration values between core and supportive nodes,
defined by

[(1/r1+12/r]1+---+[n/r],

where r = (1 + \/g)/Z is the golden ratio and [-] the floor
function (sequence A183136 in the OEIS), whose values are
1,2,4,7,10, 14, 18, 23, 29, 35, 42, 50, 58, 67, 76, 86, 97, 108,
120, 132, 145, ....

Definition I11.2. ZK" is a graph with at least one node with
degree x, where Vx € 1...n.

PHYSICAL REVIEW E 96, 012308 (2017)

ZK] is used where we want to emphasize the number of
generation or time steps in the process of constructing ZK".
The symbol A(Z K) denotes the maximum degree of the graph.
Nodes in the ZK graph belong to two types: core and supportive
nodes.

Definition II1.3. Node x is a core node iff 3m e {1 ...
n — 3} such that x € A(ZK;,). Otherwise it is a supportive
node.

Theorem II.1. To convert ZK"~! to ZK", we need to add
two supportive nodes to ZK"~! if r is odd or one supportive
node if r is even.

Proof. By induction:

The basis: Z K> has three core nodes, denoted ¢, and two
supportive nodes, denoted s3. As described in the construction
procedure, to convert ZK3 to ZK*, we choose a supportive
node with maximum degree. Here, since we have only s°
nodes, their degree is 1. So we need to connect to three other
supportive nodes. As we have only one left, we need to add two
supportive nodes. Now, ZK* has three supportive nodes, two
of them new, s*, and one old, s3. The old one is of degree 2, and
we need to convert it to degree 5; we have two other supportive
nodes left, so we need a new supportive node, s*. Therefore,
the assumption is true for ZK 3 and ZK* (the basis).

Inductive step: Now, if we assume that it is true for Z K n=1
then it is true for ZK".

We consider two cases:

(1) n —1isodd;

(2) n— liseven.

Case 1.1If n — 11is odd, then n — 2 is even, which means we
have added one supportive node with degree 1, and to convert
ZK" ! to ZK" we need to have a core node with degree n.
The maximum degree of a supportive node is n — 3, and we
have only one supportive node which is not connected to the
core candidate node, which implies that the core candidate
node will be n — 2, and we would need to add two extra
supportive nodes to our graph.

Case 2. If n — 1 is even, then n — 2 is odd, and therefore
ZK""! has two supportive nodes with degree 1 (they have
only been connected to the last core nodes). So we would
need to add only one node to convert the supportive node with
maximum degree to a core node with degree n.

Corollary I11.1.

(1) If nisodd, then |[V(ZK")| =2n — 2.

(2) n—1liseven, |[V(ZK")| =2n — 1.

Theorem II1.2. ¥r € 1...n there is a maximum of three
nodes with degree r in ZK".

Proof. By induction:

The basis: The assumption is true for ZK?>.

Inductive step: If we assume ZK"~',Vr € 1...n — 1, there
is a maximum of three nodes with degree r € ZK"~!, then
Vr € 1...n; there is a maximum of three nodes with degree
reZK".

The proof is direct using Theorem.1. To generate ZK", we
add a maximum of two supportive nodes. These nodes have
degree 1 and there is no node with degree 1 except the first core
node (core node with degree 1). Thus we have a maximum of
three nodes with degree 1. The degree of all other supportive
nodes will be increased by 1, which, based on the hypothesis
of induction, has not been repeated more than three times.

Theorem II1.3. ZK is of maximal degree-sequence entropy.
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FIG. 7. (a) Treelike and (b) radial representation of the same ZK graph with maximal entropy degree sequence by construction, starting

from iteration 2 and proceeding to iteration 8, adding a node at a time.

Proof. The degree sequence of the ZK graph can be divided
into two parts:

(1) A dominating degree subsequence associated with
the core nodes (always longer than subsequence 2 of the
supporting nodes) generated by the infinite series,

oo 10"-1

k
C = ,
10 Z Z lOn(k_lon—l+])+9 Zz;ll 10¢-1¢

n=1 k=10”"

that produces the Champernowne constant Cjg, which is Borel
normal [32,33].

(2) A second-degree sequence associated with the support-
ive nodes, whose digits do not repeat more than three times,
and therefore, by Theorem III.2, it has a maximal n-order
entropy rate for n > 2 and a high entropy rate for n < 2.

Therefore, the degree sequence of ZK for an uninformed
observer is asymptotically of maximal entropy rate for
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the natural probability distribution suggested by the degree
sequence of ZK itself, that is, over the set of all sequences
of the same sequence length and up to the same number of
alphabet elements.

Theorem Il1.4. The ZK graph is of low algorithmic
(Kolmogorov-Chaitin) complexity.

Proof. By demonstration: The computer-generated program
of the ZK graph written in the Wolfram language is as follows.

AddEdges[graph_] :=

EdgeAdd [graph,
Rule@@@Distribute [{Max [VertexDegree [graph]]
+ 1,
Table[i, {i, (Max[VertexDegreel[graphl] +
2), (Max[VertexDegree[graph]] +
1) + (Max[VertexDegreel[graphl]l + 1) -

VertexDegree [graph, Max[VertexDegree[graph]]
+ 11}1}, List]]

The graph can be constructed recursively for any number
of nodes n by nesting the AddEdges [] function as
Nest [AddEdges, Graph[{1 -> 2}, nl]
starting from the graph defined by 1 — 2 as the initial
condition. The length of NestList with AddEdges and the
initial condition in bytes is the algorithmic complexity of ZK,
which grows by only log,, i and is therefore of low algorithmic
randomness.

We now show that we can fully reconstruct ZK from the
degree sequence. As we know that we can also reconstruct ZK
from its adjacency matrix [denoted Adj(ZK)], we therefore
have that both are lossless descriptions from which ZK can
be fully reconstructed and for which the entropy provides
contradictory values depending on the feature of interest.

Theorem II1.5. Vn € N, all instances of ZK" are isomor-
phic.

Proof. The only degree of freedom in the graph recon-
struction is the selection of a supportive node to convert to a
core node when there are several supportive nodes of maximal
degree. As proven in Theorem III.1, the number of nodes
which are added to a graph is independent of the supportive
nodes selected for conversion to a core node. In any instance
of a graph the numbers of nodes and edges are equal, and it
is clear that by mapping the selected node in each step in any
instance of a graph to the selected node in the corresponding
step in another instance of ZK, say ZK’, then ZK™, we
get f: V(ZK™) = V(ZK'™), such that f is a bijection (both
one-one and superimposed one on the other).

Finally, we prove that all isomorphic graphs have about the
same (e.g. low) algorithmic complexity:

Theorem I11.6. Let G’ be an isomorphic graph of G. Then
K(G") ~ K(G) for all K(G') € Aut(G), where Aut(G) is the
automorphism group of G.

Proof. The idea is that if there is a significantly shorter pro-
gram p’ for generating G compared to a program p generating
Aut(G), we can use p’ to generate Aut(G) via G and arelatively
short program c that tries, e.g., all permutations, and checks for
isomorphism. Let us assume that there exists a program p’ such
that || p’| — |pl| > ¢, i.e., the difference is not bounded by any
constant, and that K(G) = |p’|. We can replace p with p’ + ¢
to generate Aut(G) such that K(Aut(G)) = p’ + ¢, where ¢
is a constant independent of G’ that represents the size of the
shortest program that generates Auth(G), given any G. Then
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we have that |K (Aut(G)) — K(G)| < ¢, which is contrary to
the assumption.

The number of Borel-normal numbers that can be used as
the degree sequence of a graph is determined by the necessary
and sufficient conditions in [34] and [35] and is numerable
infinite.

D. Degree-sequence-targeted entropy-deceiving
graph construction

Taking advantage of the correlation between two variables
X, and X, (starting independently) with the same probability
distribution, let M be a 2 x 2 matrix with the rows normalized
to 1. Consider the random variables Y; and Y;, which satisfy

(Y1,Y2) = (M.X1,M.X2),

The correlation between Y; and Y5 is just the inner product
between the two rows of M. This can be used to generate
a degree distribution of a graph with any particular entropy,
provided the resulting degree sequence is graphable [34,35].

IV. GRAPH ENTROPY VERSUS GRAPH
ALGORITHMIC COMPLEXITY

The ensemble of the graphs compatible with the ZK graph
for the entropy of its degree distribution thus consists of the set
of networks that have near-maximal degree sequence, as the
sequence distribution is uninformative (nearly every degree
appears only once) and thus does not reduce the statistical
uncertainty, despite the algorithmic nature of the ZK graph (and
assuming one does not know that the graph is deterministically
generated, a reasonable assumption of ignorance characteristic
of the general observer in a typical, realistic case). The size
of the ensemble is thereby close to |d|!, the number of
permutations of the elements of the degree distribution d of
the ZK graph, constrained by the number of sequences that can
actually construct a graph [34,35]. This means that, without
loss of generality, any entropy-based measure (in this case
applied to the degree sequence) will be misleading, assigning
a high randomness after a large ensemble of equally high
entropy values when it is in fact a simple recursive graph and,
thereby, illustrating the limits of classical information theory
for graph profiling.

A. Algorithmic complexity invariance vis-a-vis
full object description

Better and complementary alternatives to graph entropy (if
semicomputable) have been introduced [20,36], together with
numerical methods showing that one can robustly define the
algorithmic complexity (even when semicomputable) more
independently of the description language not only of labeled
graphs, but also of unlabeled graphs, as set forth in [18], in
particular:

Definition 1V.1. Algorithmic complexity of unlabeled
graphs. Let D(G) be a lossless description of G and Aut(G)
its automorphism group. Then

K(G) = min{K (D(G))|D(G) € S(Aut(G))},

where K(G) is the algorithmic (Kolmogorov-Chaitin) com-
plexity of the graph G as introduced in Refs. [18,20] (the
shortest computer program that produces G upon halting)
and S(Aut(G)) is the set of all D descriptions for all
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graphs in Aut(G), independent of D (per the invariance
theorem), which, unlike the graph entropy, is robust [18]. In
Ref. [20], it was in fact shown that the algorithmic complexity
estimation of a labeled graph is a good approximation of
the algorithmic complexity of the graph automorphism group
(i.e., the unlabeled graph complexity) and is correlated in one
direction with the automorphism group count.

B. The fragility of entropy and computable measures
vis-a-vis object description

In contrast to algorithmic complexity, no computable
measure of complexity can test for all (Turing) computable
regularities in a data set [30]. That is, there is no test that
can be implemented as a Turing machine that takes the data
as input and indicates whether they have a regularity upon
halting (regularities such as “every fifth place is occupied by
a consecutive prime number,” to mention one example among
an infinite number of possibilities).

Definition IV.2. A computable regularity is a regularity for
which a test can be set as a computer program running on a
specific-purpose Turing machine testing for the said regularity.

Common statistical tests, for example, are computable
because they are designed to be effective, but no com-
putable universal measure of complexity can test for every
computable regularity. In other words, for every computable
measure capturing a data feature X intended to quantify the
random content of the data, one can devise a mechanistic
procedure producing X that deceptively simulates the said
measure for all other features.

Moreover, for every effective feature, one can de-
vise/conceive an effective measure to test for it, but there is no
computable measure able to implement a universal statistical
test [30]. This means that for every effective (computable)
property/feature X of a computable object S, there is a com-
putable measure T to test for X in S (or any object like S), but
no computable measure 7" exists to test for every feature X in S
(and all the effectively enumerable computable objects like §).

Let D(G) be a lossless description of an object G, meaning
that G can be reconstructed from D(G) without any loss of
information. Then there is no essential distinction between D
and G from the algorithmic point of view because K(G) =
K(D(G)) + ¢, where c is the length of the translation program
(in bits) between D and G.

Theorem IV.I. For a computable measure H, such as
the Shannon entropy, there is no constant ¢ or logarithmic
term such that VG, |H(Gp,) — H(Gp,)| < c or |H(Gp,) —
H(Gp,)| < log|G| bounding the difference as a function of
the size of G.

In other words, as we have proven by exhibiting a counter-
example (the ZK graph), the Shannon entropy H of an object
may diverge when applied to different lossless descriptions of
the same object and cannot therefore be considered a robust
measure of complexity. A measure of complexity should thus
look not for a single property X in (any possible) object S but
for potentially an unbounded (and potentially unidentified)
number of possible properties X = xg,xy, ... in any object S.

A sound characterization of a complexity measure can
thus be established as a function that captures strictly more
information about (any) S than any (computable) function.
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All computable functions are thus not good candidates for
universal measures of complexity, as they can be replaced by
a measure as a function of the property (or combination) of
properties of interest and nothing else.

C. Dependence on assumed probability distributions

An argument against the claim that the entropy yields
contradictory values when used to profile randomness (even
statistical randomness) is that one can change the domain of
the entropy measure in such a way as to make the entropy
consistent with any possible description of a graph. For
example, because we have proven that the ZK algorithm is
deterministic and can produce only a single ZK graph, it
follows that there is no uncertainty in the production of the
object, there being only one graph for the formula. In this way,
building a distribution of all formulas generating the ZK graph
will always lead to the Shannon entropy H(ZK) = 0 for the
“right” description using the “right” probability distribution
containing only the ZK formula(s).

According to the same argument the digits of the mathe-
matical constant 7 (to mention only the most trivial example)
would have Shannon entropy H () = 0, because the digits are
produced deterministically and the right ensemble for 7 should
be that containing only formulas deterministically generating
the digits of , because 7 is not a random variable.

Directly changing the ensemble on which the entropy
operates for a specific object only facilitates conformity
to some arbitrary entropy value dictated by an arbitrary
expectation, e.g., that H(w,) = 0 for any initial segment of
7 of length n (entailing an entropy rate of 0 as well) because
7 is deterministic and therefore no digit is surprising at all or,
alternatively, lim,_, », H(7r,) = oo if the Shannon entropy is
supposed to measure the statistical randomness of a random
variable if the digits coming from 7 were not known to be
7. Moreover, this misbehavior has to do not with a lack of
knowledge but with the lack of an invariance theorem, because
7 is deterministically generated and hence its digits do not
fundamentally reduce the uncertainty. But if one assumes that
the digits of w do not look stochastic in order to assign it a
Shannon entropy equal to 0, then one is forced to concede that
even perfect statistical randomness, produced by a supposedly
Borel-normal number, has, in objective terms, a Shannon
entropy (and entropy rate) equal to 0, but the highest Shannon
entropy (and entropy rate) from an observer perspective (as
it will never be certain that the streaming digits are truly ).
In other words, the asymptotic behavior of a random variable
producing the digits of 7 in base n will approximate maximum
Shannon entropy over the probability space of all possible
n-ary sequences, but 7 itself has Shannon entropy 0 because
it is not a random variable.

D. An algorithmic maximum entropy model

Following the statistical mechanics approach [4], a typical
recursively generated graph such as the ZK graph would, based
on its degree sequence, be characterized as being typically
random from the observer perspective—because the Shannon
entropy will find the graph to be statistically random and thus
just as random as any member of the set of all graphs with
a (near-) maximal degree-sequence entropy—thus giving no
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indication of the actual recursive nature of the ZK graph and
misleading the observer.

In contrast, the type of approach introduced in [20], based
upon trying to find clues to the recursive nature of an object
such as a graph, would asymptotically find the causal nature
of a recursively generating object such as the ZK graph,
independent of probability distributions, even if it is more
difficult to estimate.

Rectifying the approaches based on models of maximum
entropy involves updating and replacing the assumption of the
maximum entropy ensemble. An example illustrating how to
achieve this in the context of, e.g., a Bayesian approach, has
been provided in [37] and consists in replacing the uninforma-
tive prior with the uninformative algorithmic probability dis-
tribution, the so-called universal distribution, as introduced by
Levin [28]. The general approach has already delivered some
important results [38] by, e.g., quantifying the degree of human
cognitive randomness that previous statistical approaches and
measures such as the entropy made it impossible to quantify.
Animated videos have been made available explaining appli-
cations to graph complexity (https://youtu.be/E238zKsPCgk)
and to cognition in the context of random generation tasks
(https://youtu.be/E-YjBESqm7c). A tool has also been placed
online (http://complexitycalculator.com/) for sequences and
arrays, and thus the reader can experiment with an actual
numerical tool and explore the differences between the
statistical and the algorithmic approaches.

V. CONCLUSIONS

The methods introduced here allow the construction
of “Borel-normal pseudorandom graphs,” uncomputable
number-based graphs, and algorithmically produced
graphs, while illustrating the shortcomings of computable
graph-theoretic and entropy approaches to graph complexity
beyond random feature selection and their failure when it
comes to profiling randomness and hence causal content (as
opposed to randomness).

We have shown that the entropy is highly observer depen-
dent even in the face of full accuracy and access to lossless
object descriptions and thus has to be complemented with
measures of algorithmic content. We have produced specific
complexity-deceiving graphs for which the entropy retrieves
disparate values when an object is described differently
(thus with different underlying distributions), even when the
descriptions reconstruct exactly the same, and only the same,
object. This drawback of the Shannon entropy, ultimately
related to its dependence on the distribution, is all the more
serious because it is easily overlooked in the case of objects
other than strings, for instance, graphs. For an object such as
a graph, we have shown that changing the descriptions may
not only change the values but actually produce divergent,
contradictory values.
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We constructed a ZK graph about which the following is
true when it is described by its adjacency matrix Adj(ZK):
lim,_, . H(Adj(ZK},)) = 0 for increasing graph size n. Con-
tradictorily, considering the same ZK graph degree sequence,
we found that lim,_, ., H(Seq(ZK,)) = oo for the same
growth rate n, even though both Adj(G,) and Seq(G,) are
lossless descriptions of the same graph that construct exactly
the same ZK graph, and only a ZK graph.

This means not only that one needs to choose a description
of interest in order to apply a definition of entropy, such as the
adjacency matrix of a network (or its incidence or Laplacian
matrix) or its degree sequence, but that as soon as the choice
is made, the entropy becomes a trivial counting function of
the specific feature of interest, and of that feature alone. In
the case of, for example, the adjacency matrix of a network
(or any related matrix associated with the graph, such as the
incidence or Laplacian matrix), the entropy becomes a function
of the edge density, while for the degree sequence, the entropy
becomes a function of the sequence normality. The entropy
can thus trivially be replaced by such functions without any
loss, but it cannot be used to profile the object (randomness, or
information content) in any way independent of an arbitrary
feature of interest.

These results and observations have far-reaching conse-
quences. For example, recent literature appears contradictory,
by turns suggesting that cancer cells display an increase in
entropy [39] and reporting that cancer cells display a decrease
in entropy [40], in both cases applied to a function of the
degree distribution over networks of molecular interactions.
Cells are also believed to be in a state of criticality between
evolvability and robustness [41,42], which may make them
look random though they are not. This means that the entropy
may be overestimating the randomness in the best case or
misleading in the worst case, as we have found in the instance
of disparate values for the same objects, thus suggesting that
additional safeguards are needed to achieve consistency and
soundness.

New developments [18,20] promise more robust comple-
mentary measures of (graph) complexity less dependent on
object description, measures based upon the mathematical
theory of randomness and algorithmic probability, which
are better equipped to profile the causality and algorithmic
information content and cover the statistical randomness and
thus can be considered an observer-improved generalization
of the Shannon entropy.
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