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It is essential to extract nonlinear dynamics from time-series data as an inverse problem in natural sciences. We
propose a Bayesian statistical framework for extracting nonlinear dynamics of surface heterogeneous reactions
from sparse and noisy observable data. Surface heterogeneous reactions are chemical reactions with conjugation
of multiple phases, and they have the intrinsic nonlinearity of their dynamics caused by the effect of surface-area
between different phases. We adapt a belief propagation method and an expectation-maximization (EM) algorithm
to partial observation problem, in order to simultaneously estimate the time course of hidden variables and
the kinetic parameters underlying dynamics. The proposed belief propagation method is performed by using
sequential Monte Carlo algorithm in order to estimate nonlinear dynamical system. Using our proposed method,
we show that the rate constants of dissolution and precipitation reactions, which are typical examples of surface
heterogeneous reactions, as well as the temporal changes of solid reactants and products, were successfully
estimated only from the observable temporal changes in the concentration of the dissolved intermediate product.
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I. INTRODUCTION

It is essential to extract dynamics from the observational
time-series data in natural sciences. In general, the dynamics
is nonlinear, which makes the inversion analysis difficult.
Furthermore, observable data are restricted to only a part
of changing variables, and the observed time-series data are
generally sparse and noisy. It is important to develop a versatile
method that can extract nonlinear dynamics directly from such
incomplete and nonlinear data sets.

Kinetic parameters of chemical reactions, such as reaction-
rate coefficients and diffusion coefficients, govern the nonlin-
ear dynamical behavior of chemical systems. They are usually
determined from observed time evolution of the amount of
chemical species by laboratory experiments in various natural
sciences [1,2]. In laboratory experiments, it is often the case
that only a part of concentrations of chemical species among
many species are quantitatively observable, and the observed
time-series data are generally sparse and noisy [3–5].

We develop novel methodologies for estimating kinetic
parameters from nonlinear dynamics of chemical reactions by
using a Bayesian probabilistic approach. With an increasing
demand for data-driven analysis, the Bayesian estimation has
been widely applied to various fields in the natural sciences
such as physics [6], brain science [7–11], and earth sciences
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[12–14]. We formulate probabilistic models of the nonlinear
dynamics of heterogeneous systems based on a nonlinear
state space model. The sequential Monte Carlo method [15–
19] and expectation-maximization (EM) algorithms [20–23]
are employed to simultaneously estimate the time course
of chemical systems and the kinetic parameters underlying
their nonlinear dynamics. In particular, we develop a belief
propagation method [24,25] for partially observable data in
order to obtain the marginal posterior distribution of hidden
variables from sparse and noisy data.

In this study, we focus the nonlinear dynamics of a surface
heterogeneous reaction. In general, chemical reactions can
be divided into two types: homogeneous reactions, which
occur in a single phase, and heterogeneous reactions, which
occur at the interface among two or more phases. Many
of the chemical reactions important in natural sciences are
heterogeneous reactions [2]. Heterogeneous reactions have an
intrinsic nonlinearity of their dynamics caused by the effect
of surface area; reaction rates are proportional to the reactive
surface areas of phases, which change temporally according
to the increase or decrease of the corresponding phases. This
causes the reaction rates to change nonlinearly according to
surface geometry. Moreover, by laboratory experiments, it
is very difficult to measure even static surface areas, not to
mention the temporal change of surface areas [1,2]. Therefore,
it is difficult to determine the kinetic parameters in surface
heterogeneous reactions due to their complexity, compared to
those in homogeneous reactions.

Using our proposed method, the reaction rate constants of
dissolution and precipitation as well as the temporal changes
of solid reactants and products were successfully estimated
from only the observable time-series concentration data of
the dissolved intermediate product. The proposed method is
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also applicable in actual laboratory experiments investigating
heterogeneous kinetics in various fields of natural sciences,
including geosciences.

This paper is organized as follows. In Sec. II, we formulate a
generative model of surface heterogeneous reactions by using
a nonlinear state-space model and derive an estimation method
by adapting belief propagation and EM algorithm to inverse
problem for the surface heterogeneous reactions using sparse
and noisy time-series data. In Sec. III, the validity of proposed
method is evaluated by using simulated data. We show that
hidden variables of the surface heterogeneous reaction are
successfully estimated from observable data. Furthermore,
kinetic rate constants underlying the nonlinear dynamics of the
heterogeneous reaction are shown to be estimated accurately
using our proposed method with an adapted EM algorithm.
Moreover, the robustness and effectiveness of the proposed
method for sparse and noisy data are also shown. Concluding
remarks are given in Sec. IV.

II. ESTIMATION ALGORITHM

We focus on a simple surface heterogeneous reaction,
called the dissolution-precipitation process. The dissolution
and precipitation process can be regarded as one of the
most fundamental and substantial surface heterogeneous re-
actions for solid-liquid interactions. For example, dissolution-
precipitation processes of minerals play important roles in
geoscientific and environmental phenomena in the earth’s
crust [2–5,26–28]. In laboratory experiments investigating
solid-liquid interactions, it is often the case that only concen-
trations of intermediate products dissolved in liquid phase are
quantitatively observable, and the observed time-series data
are generally sparse and noisy [3–5].

Figure 1 shows the target dissolution-precipitation process
governed by the surface heterogeneous reaction, in which the
solid reactant r changes to a solid product p via an intermediate
product i dissolved in a liquid phase:

r
kr−→ i

kp−→ p,

where kr and kp are rate constants. In this section, we propose
a statistical method for inverse estimation of the dynamics
underlying the surface heterogeneous reactions from partially
observable noisy data: the restricted number of observations
of the concentration of the intermediate product.

We first describe the kinetic equations for the dissolution-
precipitation process, and then formulate a state-space model
of the process. To reflect realistic experimental environments,
we assume in the state-space model that only the concentration
of intermediate product dissolved in liquid phase, C(i), can
be observed in noisy measurements, and that neither the
solid reactant n(r) nor the solid product n(p) can be observed
directly. Note that these notations are used to show the
difference between variables in the solid phase (n(r) and n(p):
molar amount) and the variable in the liquid phase (C(i),
concentration).

A. Formulation of kinetics for surface heterogeneous reaction

We consider a dissolution-precipitation process from a solid
reactant, r, to a solid product, p, via intermediate product, i,

Dissolution

Intermediate product
(dissolved in liquid phase) 

Reactant

Precipitation

Product

Reactant → Intermediate product → Product

Concentration C(i)
can be observed 
every time step 

interval Δ .

kr kp

C(i)n(r) n(p)

obs

FIG. 1. Target experimental system for surface heterogeneous
reactions. A solid product n(p) is generated from a solid reactant n(r) via
an intermediate product C(i). The reactions n(r) → C(i) and C(i) → n(p)

depend on the surface areas of the solid reactant Sr(n(r)) and the
solid product Sp(n(p)), respectively. In the proposed method, the
rate constants kr and kp underlying surface heterogeneous reactions
between reactant n(r) and product n(p) via intermediate product C(i)

are estimated by using only the intermediate product concentration
C(i) observed every time step interval �obs.

dissolved in liquid phase (Fig. 1). For mathematical simplicity
and general applicability, we consider simple first-order
reactions with single component and multiple phases, in which
reaction rates of solid phase per unit surface area are propor-
tional to the difference between the present concentration of
intermediate product (C(i)) and the equilibrium concentration
with the solid reactant or the solid product (Cr,eq or Cp,eq).

By reflecting that the reaction rates of surface heteroge-
neous reactions depend on the surface areas of the solids, we
assume that the kinetics of the solid reactant n(r) and product
n(p) obeys the following differential equations for first-order
reactions:

dn(r)

dt ′
= krSr(n

(r))(C(i) − Cr,eq) + ξr(t
′), (1)

dn(p)

dt ′
= kpSp(n(p))(C(i) − Cp,eq) + ξp(t ′), (2)

where t ′ denotes time. Sr(n(r)) and Sp(n(p)) are the surface areas
of the solid reactant and the solid product, respectively. kr

and kp are reaction coefficients. ξr(t ′) and ξp(t ′) are fluctuation
terms which obey, for any times t ′ and s ′, 〈ξr(t ′)〉=〈ξp(t ′)〉=0,
〈ξr(t ′)ξr(s ′)〉 = σ̃ 2

r δ(t ′ − s ′), 〈ξp(t ′)ξp(s ′)〉 = σ̃ 2
p δ(t ′ − s ′), and

〈ξr(t ′)ξp(s ′)〉 = 0, where standard deviations of the fluctuation
terms are denoted by σ̃r and σ̃p. The parameters σ̃r and σ̃p

are noise intensities that come from the randomness of the
heterogeneous system itself, and the intensities are typically
small. In general, the factors Sr(n(r)) and Sp(n(p)) should be
zero for n(r) = 0 and n(p) = 0, respectively. Note that in the
case of no fluctuating noise this system has a steady state at
(n(r),C(i)) = (0,Cp,eq) that is accessible from the initial condi-
tion and has an unphysical steady state (n(p),C(i)) = (0,Cr,eq).
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FIG. 2. Typical time course of surface heterogeneous reaction and noisy observable data. The solid product n(p) (blue dotted line) is
generated from the solid reactant n(r) (red solid line) through the intermediate product dissolved in the liquid phase, C(i) (green dashed line).
Sparse and noisy data of the intermediate product y (circles) are observed with low time-resolution.

According to conservation of mass, the intermediate
product dissolved in liquid phase, C(i), obeys the following
equation:

n(r) + vC(i) + n(p) = const., (3)

where v denotes the solution volume. Hereafter, we set v = 1
without loss of generality.

Here we assume that the rate-determining process is a
surface reaction. This assumption is reasonable in laboratory
experiments, which we consider here, and holds when diffu-
sion and advection of elements in liquid phase are so fast so that
the effect of transport can be negligible. As shown in Fig. 1,
the rate of dissolution and precipitation reactions generally
depend on surface area of solid phase, since the dissolution
and precipitation reactions occur on the surface between solid
and liquid phases [2]. Namely, krSr(n(r)) and kpSr(n(p)) are net
reaction rates depending on solid reactant and solid product,
respectively. Nonlinearity emerges in Eqs. (1) and (2) since
the surface area depends on hidden variable n(r) or n(p).

The reactive surface areas for the solid reactant and product
in Eqs. (1) and (2) are assumed to be functions of the amounts
of the corresponding substances:

Sr(n
(r)) = Ar(n

(r))αr , (4)

Sp(n(p)) = Ap(n(p))αp , (5)

where Ar and Ap are geometrical constants, and αr and αp are
the orders of the surface model that depend on the geometrical
configuration of solid substances [2,26]. For example, the order
of the surface model α ∈ {αr,αp} is 0 if total surface area is
constant regardless of the amount of the solid substance. The
order α is 1 if the total surface area is linearly proportional
to the amount of the solid, which is the case if the number of
particles of corresponding solid increases or decreases without
changing the surface area of each particle. In the case that there
is each particle grows or dissolves while keeping a similar
shape without changing the number of total particles, the order
α becomes 2/3.

Figure 2 shows a typical behavior of the kinetics of a
surface heterogeneous reaction, for which the order of the

surface model is 2/3. The stochastic differential equations
[Eqs. (1) and (2)] are numerically simulated with time step t

where time t ′ is discretized with time width �t = t ′/t = 8
throughout this study. When in the initial condition there
exists only the solid reactant (n(r) = 1 and C(i) = n(p) = 0),
the solid reactant n(r) rapidly decreases while the intermediate
product C(i) rapidly increases. Following these changes, the
solid product n(p) slowly increases and converges to a positive
value while the solid reactant n(r) converges to zero. This
transient response substantially depends on nonlinearity due
to the temporal change of the surface area.

B. Nonlinear state-space model for surface
heterogeneous reactions

In order to establish a method for estimating the nonlinear
dynamics of surface heterogeneous reactions from partially
observable noisy data, we formulate a probabilistic model of
the nonlinear dynamics of a surface heterogeneous reaction
based on a nonlinear state-space model.

Figure 3 shows a graphical model of the proposed proba-
bilistic model. The true states of the three factors in surface
heterogeneous reactions, n(r)(t ′), C(i)(t ′), and n(p)(t ′), are
assumed to be hidden variables. We consider the time series
of states at discretized time t = t ′/�t as xt = {n(r)

t ,C
(i)
t ,n

(p)
t }

(t = 1, · · · ,T ), where �t denotes the time interval for dis-
cretization.

Within these three factors, only the concentration of
intermediate substance C

(i)
t is assumed to be observed as

follows:

yt = C
(i)
t + ξ

(y)
t , (6)

where ξ
(y)
t denotes an observation noise obeying a white

Gaussian noise with 〈ξ (y)
t 〉 = 0 and 〈ξ (y)

t ξ
(y)
s 〉 = σ 2

y δ(t − s).
Here σy denotes the standard deviation of the observation
noise. Furthermore, we assume that the observed intermediate
substance yt is available at restricted times.

Here we formulate a nonlinear state-space model of surface
heterogeneous reactions. The nonlinear state-space model
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consists of two models: a system model and an observation
model.

The system model describes the relation between hidden
variables at two sequential time steps. Due to the mass
conservation relation among the three factors n

(r)
t , C(i)

t , and n
(p)
t

[Eq. (3)], the kinetics governed by Eqs. (1) and (2) has two

independent variables. Hereafter, we express hidden vari-
ables xt by a two-dimensional vector xt = {n(r)

t ,n
(p)
t }. By

discretizing the differential equations [Eqs. (1) and (2)] with
respect to time, the state transition probability p(xt+1|xt )
(t = 1, . . . ,T − 1) for the kinetics in surface heterogeneous
reactions is expressed as follows:

p(xt+1|xt ) = 1√
2πσ 2

r

exp

[
−

(
n

(r)
t+1 − n

(r)
t − �tkrSr

(
n

(r)
t

)(
C

(i)
t − Cr,eq

))2

2σ 2
r

]

× 1√
2πσ 2

p

exp

[
−

(
n

(p)
t+1 − n

(p)
t − �tkpSp

(
n

(p)
t

)(
C

(i)
t − Cp,eq

))2

2σ 2
p

]
, (7)

where �t denotes the time interval used for discretization of
the kinetics. Note that we put σr = √

�tσ̃r and σp = √
�tσ̃p.

The derivation of the probabilistic model for the system model
[Eq. (7)] is given in Appendix A.

The observation model describes the relation between
hidden variables and observable data. Based on Eq. (6), the
observation process is described by the following probabilistic
density function:

p(yt |xt ) = 1√
2πσ 2

y

exp

[
−

(
yt − C

(i)
t

)2

2σ 2
y

]
for t ∈ Tobs,

(8)

where Tobs expresses the set of all observation times.

C. Belief propagation method

According to the Bayes’ theorem, a posterior distribution
p(x1,x2, . . . ,xT |YT ) is proportional to a likelihood function
p(YT |x1,x2, . . . ,xT ) and a prior distribution p(x1,x2, . . . ,xT )

FIG. 3. Graphical model of the proposed nonlinear state-space
model for surface heterogeneous reactions. Time evolution of three
hidden variables xt ={n(r)

t ,C
(i)
t ,n

(p)
t } at time step t is described

by the system model p(xt+1|xt ), whereas the observation process
from hidden variables xt to observed data yt can be described
by the observation model p(yt |xt ). Within three hidden variables
xt ={n(r)

t ,C
(i)
t ,n

(p)
t }, only noisy data of intermediate product, yt , is

assumed to be observed.

as follows:

p(x1,x2, . . . ,xT |YT )

∝ p(YT |x1,x2, . . . ,xT )p(x1,x2, . . . ,xT ). (9)

Here Yt = {y1, . . . ,yt } is a set of observed data up to time t . The
posterior probability density function p(x1,x2, . . . ,xT |YT ) is
shown to be expressed by using the system model p(xt+1|xt )
and observation model p(yt |xt ) as follows:

p(x1,x2, . . . ,xT |YT )

= 1

ZT

⎛
⎝ ∏

t∈Tobs

p(yt |xt )

⎞
⎠(

T −1∏
t=1

p(xt+1|xt )

)
p(x1), (10)

where we used the independent property of observation in
the likelihood function p(YT |x1,x2, . . . ,xT ) and the Markov
property of prior distribution p(x1,x2, . . . ,xT ) in the nonlinear
state-space model. A detailed derivation of Eq. (10) is given
in Appendix B. In Eq. (10), the prior distribution is expressed
by the factor p(x1)

∏T
t=2 p(xt |xt−1), whereas the likelihood is

expressed by the factor
∏

t∈Tobs
p(yt |xt ). ZT is a normalization

factor called evidence in Bayesian statistical framework and is
equivalent to the partition function in statistical physics:

ZT =
∫ T∏

t=1

dxt

⎛
⎝ ∏

t∈Tobs

p(yt |xt )

⎞
⎠(

T −1∏
t=1

p(xt+1|xt )

)
p(x1).

(11)

A detailed derivation of the posterior probability density
function is given in Appendix B.

In order to estimate hidden variables xt (t = 1, . . . ,T )
from partially observable data YT , we derive marginalized
posterior distributions p(xt |Yt ) and p(xt+1|Yt ). In general,
marginalization corresponds to multidimensional (2T di-
mensional) integration of p(x1,x2, . . . ,xT |YT ). Due to the
Markov properties of the nonlinear state space model, the
belief propagation method can be employed to perform this
multidimensional integration, iteratively [24,25,29–31].

Here, the belief propagation is extended in the proposed
method in order to consider partial observation process.
We consider two cases of observations: the one for an
unobservable data point and the other for an observable data
point. Detailed derivations of belief propagation algorithm
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for the partial observation processes in these two cases are
given in Appendix C. In the first case where we do not have
any observation data point at time t , a recursive equation for
predictive distribution p(xt+1|Yt ) is derived as follows:

p(xt+1|Yt ) =
∫

dxtp(xt+1,xt |Yt )

=
∫

dxtp(xt+1|xt )p(xt |Yt−1). (12)

Note that the predictive distribution p(xt+1|Yt ) at time t + 1
on the left-hand side of Eq. (12) is recursively expressed by the
one p(xt |Yt−1) at the preceding time t on the right-hand side.
In the second case, where we have an observable data point
at time t , we consider two probability distributions: predictive
distribution and filtering distribution [15–17]. The predictive
distribution p(xt+1|Yt ) of hidden variables xt+1 at time t + 1,
given the data Yt up to preceding time t , is derived as follows:

p(xt+1|Yt ) =
∫

dxtp(xt+1|xt )p(xt |Yt ), (13)

whereas the filtering distribution p(xt |Yt ) of hidden variables
xt at time t given the data Yt up to the same time t is derived
as the following expression:

p(xt |Yt ) = p(yt |xt )p(xt |Yt−1)

p(yt |Yt−1)
. (14)

Here, p(yt |Yt−1) denotes the distribution for observation data
expressed as follows:

p(yt |Yt−1) =
∫

dxtp(yt |xt )p(xt |Yt−1). (15)

Note that the predictive distribution p(xt |Yt−1) and the filtering
distribution p(xt |Yt ) are obtained iteratively from t = 2
to t = T , while substituting the system model p(xt |xt−1)
and observation model p(yt |xt ) into these recursive update
equations.

As shown in this subsection, the belief propagation algo-
rithm derives the recursive update equations for probabilistic
models, corresponds to the transfer matrix method in statistical
physics, and realizes the integration for high-dimensional
random variables in probabilistic models without loops
[24,25,29–31]. That is, this multidimensional integration is

reduced to a multiple number of two-dimensional integrations
by means of belief propagation.

D. Estimation of hyperparameters

We employ an EM algorithm [21–23] to estimate the
parameters of the nonlinear state-space model. The EM
algorithm is a statistical method used to estimate parameters in
probabilistic model based on maximum likelihood estimation.
In the present study, we adapt the EM algorithm to inverse
problem of heterogeneous reactions obeying the nonlinear
state-space model from sparse time-series data, and we focus
on the estimation of the rate constant {kr,kp}.

The nonlinear state-space model for the surface heteroge-
neous reaction has the following several parameters:

{kr,kp,Ar,Ap,Cr,eq,Cp,eq}. (16)

The equilibrium constants Cr,eq and Cp,eq are assumed to be
known, since these constants are observable directly in the
usual experimental setting. Furthermore, we can set Ar =
Ap = 1 without loss of generality.

We propose a method to extract a set of the rate constants
� = {kr,kp} based on the EM algorithm. The EM algorithm is
an iterative method consisting of an expectation step (E-step)
and a maximization step (M-step). In the EM algorithm, we
first prepare an initial set of parameters �. In the E-step, we
consider the expectation of log-likelihood log p(XT ,YT |�)
with respect to posterior distribution:

Q(�|�′) =
∫

d XT p(XT |YT ,�′) ln p(XT ,YT |�), (17)

where X t denotes a time series of hidden variables up to time
t (X t = {x1,x2, . . . ,xt }). In the M-step, we obtain a set of
parameters �′ as the one that maximizes the Q function as
follows:

�′ = arg max
�

Q(�|�′), (18)

where �′ is obtained by setting the gradients of Q function
with respect to � to zero. We iterate Eqs. (17) and (18) until
the condition |� − �′| < ε is satisfied. Here ε is set to be a
sufficiently small positive constant.

Here we derive the EM algorithm for the nonlinear
state space model for heterogeneous reactions using sparse
observation data. The log-likelihood function in theQ function
can be obtained from the nonlinear state-space model as
follows:

ln p(XT ,YT |�) = ln p(YT |XT )p(XT ) (19)

= − 1

2σ 2
r

T −1∑
t=1

(
n

(r)
t+1 − n

(r)
t − �tkrSr

(
n

(r)
t

)(
C

(i)
t − Cr,eq

))2

− 1

2σ 2
p

T −1∑
t=1

(
n

(p)
t+1 − n

(p)
t − �tkpSp

(
n

(p)
t

)(
C

(i)
t − Cp,eq

))2 − 1

2σ 2
y

∑
t∈Tobs

(
yt − C

(i)
t

)2

− T − 1

2
ln

(
2πσ 2

r

) − T − 1

2
ln

(
2πσ 2

p

) − |Tobs|
2

ln
(
2πσ 2

y

)
. (20)
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FIG. 4. (a) Time courses of true hidden variables: solid reactant n
(r)
t (solid line), intermediate product C

(i)
t (dashed line), and solid product

n
(p)
t (dotted line). (b)–(d) Observed data yt generated by adding Gaussian noise to intermediate product C

(i)
t . The standard deviation of the

observation noise is set to be σ = 10−2.5 for (b), σ = 10−2 for (c), and σ = 10−1.5 for (d), whereas the number of observation points is set to
be Nobs = 31 for (b)–(d).

Note that we assumed that observation times are restricted
to the set, Tobs, in order to reflect sparse observation. By
differentiating Q function with respect to parameters � =
{kr,kp}, we obtain the following expressions:

kr =
∑T −1

t=1

〈(
n

(r)
t+1 − n

(r)
t

)
Sr

(
n

(r)
t

)(
C

(i)
t − Cr,eq

)〉
�t

∑T −1
t=1

〈(
Sr(n

(r)
t

))2(
C

(i)
t − Cr,eq

)2〉 , (21)

kp =
∑T −1

t=1

〈(
n

(p)
t+1 − n

(p)
t

)
Sp

(
n

(p)
t

)(
C

(i)
t − Cp,eq

)〉
�t

∑T −1
t=1

〈(
Sp(n(p)

t )
)2(

C
(i)
t − Cp,eq

)2〉 , (22)

where 〈·〉 is an expectation with respect to posterior distribution
p(X t |Yt ,�

′):

〈X 〉 =
∫

d X t p(X t |Yt ,�
′)X . (23)

Similarly, parameters for noise intensities in the nonlinear
state-space model are estimated by maximizing the Q function
as follows:

σ 2
r = 1

T − 1

T −1∑
t=1

〈(
n

(r)
t+1 − n

(r)
t − �tkrSr

(
n

(r)
t

)(
C

(i)
t − Cr,eq

))2〉
,

(24)

σ 2
p = 1

T − 1

T −1∑
t=1

〈(
n

(p)
t+1 − n

(p)
t − �tkrSp

(
n

(p)
t

)(
C

(i)
t − Cp,eq

))2〉
,

(25)

σ 2
y = 1

|Tobs|
∑
t∈Tobs

〈(
yt − C

(i)
t

)2〉
. (26)

III. RESULTS

In this section, we validate the proposed method by
using simulated data. As described in the previous section,
we assume that only the noisy intermediate product yt is
observable at every time step interval. We estimate the
time course of hidden variables and the kinetic parameters
underlying nonlinear dynamics in the dissolution-precipitation
process. We also clarify how the estimation accuracy depends
on the number of observations Nobs and the level of observation
noise σy .

The observable data with Nobs data points are fed into
the proposed method. We assume that data yt is available
at constant time-step intervals within total time steps T . The
true kinetic parameters are set to be kr = 9.66 × 10−3 and
kp = 4.83 × 10−3, and the equilibrium concentrations are set
as Cr,eq = 0.5, Cp,eq = 0.25. The orders of the surface model
are set to be αr = αp = 2/3.

A. Estimation of hidden state variables from sparse
and noisy data of intermediate product

First, we employ the proposed method to estimate the hid-
den state variables from sparse and noisy data of intermediate
product. As shown in Fig. 4, we consider a situation in which
only the noisy intermediate product yt can be observed at every
time interval. We assume that we have a time series of yt with
only 31 data points (Nobs = 31) through this subsection.

Figure 5 shows the hidden variables estimated from the
observation data with noise level σy = 10−2 shown in Fig. 4(c).
We find that the time trace of intermediate product C(i) can be
estimated with high time resolution from noisy low resolution
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FIG. 5. Estimated hidden variables (solid lines): solid reactant n(r)
t

(red line), intermediate product C
(i)
t (green line), and solid product

n
(p)
t (blue line). Dashed lines show the true time courses of the hidden

variables. Parameters are set to be Nobs = 31 and σy = 1.0 × 10−2.

data. Furthermore, the solid reactant and product are found
to be estimated successfully, even though the solid reactant
and product are assumed not to be observable directly. We
see in Fig. 5 that the proposed method can simultaneously
extract a variable observed in a noisy process and other hidden
variables in the surface heterogeneous reactions from partially
observable noisy data.

We also estimate the reaction rate constants kr and kp

underlying the nonlinear dynamics of the hidden variables
from partially observable data. The red solid line in Fig. 6

shows the reaction rate constants kr and kp estimated from
the noisy intermediate product shown in Figs. 4(b)–4(d). The
initial values of parameters kr and kp are set to be away
from the true values (initial values kr = 0.05 and kp = 0.001,
whereas true values ktrue

r ∼ 0.01 and ktrue
p ∼ 0.005). Red

lines in Fig. 6 show results of parameter estimation from
observation data for σy = 10−2. We see in Fig. 6 that estimated
kinetic constants converge to true values as the number of
iterations in the proposed algorithm increases, showing that the
proposed method estimates the true values of kinetic constants
accurately.

The data observed in actual laboratory experiments may
have noise elements due to the observation process. In order
to find out how the observation noise affects the estimation
performance in the proposed method, we investigate the
estimation accuracy for the observation data with different
observation noise levels σy = 10−2.5, 10−2, and 10−1.5 (cor-
responding to 0.63%, 2%, and 6.3% deviations relative to
the maximal concentration of intermediate product C(i)). We
see in Figs. 6(a) and 6(b) that the estimated rate constants kr

and kp converge to the true ones even for different levels of
observation noise, while the convergence becomes slow with
increasing observation noise. We also see in Fig. 6(c) that
trajectory of estimated parameters tend to take a circuitous
route in the case of strong observation noise σy = 10−1.5.
These results show that our proposed method can estimate from
partially observable noisy data not only the hidden variables
but also the rate constants underlying the behavior of the
hidden variables.

FIG. 6. Estimation of rate constants kr and kp from partially observable data. Estimated values for different levels of noise [σy = 10−2.5

(black), 10−2 (red), and 10−1.5 (blue)] are shown. (a), (b) The estimated rate constants (solid lines) converge to true rate constants as the iteration
steps proceed, even when we set the initial values are far from the true values (dashed lines). (c) Trajectory of estimated rate constants in
two-dimensional space (kr,kp). The square shows initial values and the circle shows true values.
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FIG. 7. Dependence of discrepancy between true and estimated
kinetic parameters kr and kp on the number of observation Nobs and
the observation noise σy . The noisy data of intermediate products are
set to be observable at every time step interval �obs ∼ T/Nobs within
total time steps T = 500.

B. Dependence of estimation accuracy on time
resolution and observation noise

Here we investigate how robustly the rate constants for the
surface heterogeneous reaction kr and kp can be estimated
for different numbers of observations with different levels
of observation noise. Figure 7 shows how the discrepancy
between true and estimated kinetic parameters kr and kp de-
pends on the number of observations Nobs and the observation
noise σy . The discrepancy is calculated as a squared error
ε = (k(true)

r − k(est)
r )2/(k(true)

r )2 + (k(true)
p − k(est)

p )2/(k(true)
p )2. For

each setting of Nobs and σy , estimated results in time series
data for twenty trials are evaluated.

We see in Fig. 7 that the accuracy levels of the estimation
of the rate constants (ε � 0.05) shown in Fig. 6 [for Nobs = 31
(log10 Nobs ∼ 1.5); σy = 10−2.5, 10−2, and 10−1.5] can be
held for wide ranges of the number of observations and the
observation noise intensity (blue area of the Fig. 7). Even
when the number of observations is very limited (Nobs = 10),
the rate constants are estimated with ε ∼ 0.05 for moderate
noise levels, as we see such trajectory of rate constants in the
blue lines of Fig. 6 (for log10 σy = −1.5 and log10 Nobs ∼ 1.5).
From these results, we see that our proposed method has
robustness to sparseness and noise in the observation; kinetic
parameters are found to be estimated accurately for wide
ranges of the number of observations Nobs and noise intensity
σy . Moreover, in the estimation accuracy, there is a tradeoff
relation between the observation noise and the sparseness of
the observation.

IV. CONCLUDING REMARKS

We have proposed a Bayesian estimation algorithm for
inverse problem of nonlinear dynamics in surface heteroge-
neous reactions. We first formulated a nonlinear state-space
model of the surface heterogeneous reaction and then derived
the marginalized posterior distribution of the heterogeneous

reactions in order to estimate hidden variables. In particular,
we developed a belief propagation algorithm for partially
observable data to realize estimation of nonlinear dynamics
from sparse data. We also adapted the EM algorithm to
the partial observation problem. Using the proposed method,
we have shown that hidden variables (true solid reactant
and product as well as intermediate product dissolved in
the liquid phase) are simultaneously estimated from partially
observable noisy data. Furthermore, kinetic parameters were
found to be successfully extracted as well as the hidden
variables. Our verification using simulated data showed that
the proposed method provides robust estimation for wide
ranges of observation noise levels and for data with low
temporal resolution.

Belief propagation [24,25] and EM algorithm [21–23] have
been used for estimating hidden variables and parameters
in probabilistic model, respectively. Although these existing
methods deal with estimation from observations of a part of the
variables, they do not consider switches between unobservable
and observable cases of the same variables. In order to realize
inverse estimation from temporally sparse data, we derived
posterior distributions used to estimate hyperparameters for
both unobservable and observable cases by adapting belief
propagations and an EM algorithm to the inverse problem
of surface heterogeneous reactions. To conduct the derived
belief propagation method in nonlinear dynamical systems,
we employed sequential Monte Carlo algorithm. Evaluation
using simulated data showed that our algorithm can estimate
hyperparameters including rate constants accurately even from
sparsely observable data.

In the present paper, we employed the sequential Monte
Carlo method to extract hidden variables since it can deal with
arbitrary distributions. There exist other methods (Kalman-
filter-based algorithm) for extracting nonlinear dynamics such
as unscented Kalman filters, and extended Kalman filters
[20]. Nonlinearity and non-Gaussian distribution are reflected
precisely for sufficient sampling points in the sequential Monte
Carlo method, whereas linear and Gaussian approximation is
employed in the Kalman-filter-based algorithms [20]. We leave
for future work comparison of the estimation performance
of different Kalman-filter-based algorithms with that of the
proposed method.

The present study has proposed a Bayesian framework for
estimating complex dynamical systems such as heterogeneous
reactions from noisy and sparse measurements. Previous
studies using compressive sensing (CS) proposed reconstruc-
tion methods for complex dynamical systems from sparse
measurements using noiseless CS framework [32–35] and a
noisy CS framework [36]. In the framework based on the
Bayesian inference, the parameters including noise intensities
can be automatically estimated as shown in the present study,
whereas the noisy CS framework may require some tuning
of constants related to regularization for sparsity while these
studies using the CS framework have shown some robustness
for weak noise.

In this study, we considered a simple surface heterogeneous
reaction with three variables, two of which are independent
variables. In general, many variables and reaction terms
would affect the nonlinear dynamics of surface heterogeneous
reactions [5,26,37]. Since our proposed method based on
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Bayesian statistics can estimate nonlinear dynamics in surface
heterogeneous reaction from restricted kinds of chemical
species, our framework may be applicable to complex
chemical reactions with multiple components and multiple
phases if we can observe sufficient kinds of chemical species
in solution. Evaluation of the applicability of the proposed
method to more complex chemical reactions and extension of
the proposed method are also important. We also leave them
for a future work.

Our proposed method is applicable to a wide range
of estimation problems in dynamical systems governed by
Markov processes. Estimation for a non-Markov process is
also an important problem. Although in this study we assumed
white Gaussian noise for simplicity, our proposed method is
applicable to wider ranges of noise types, such as colored
noise. We leave these problems as a future work.

ACKNOWLEDGMENTS

The authors are grateful to Masato Okada for instigat-
ing this collaborative research. This study was partially
supported by Grants-in-Aid for Scientific Research for In-
novative Areas (JSPS KAKENHI Grants No. JP25120005
and No. JP25120010) and a Fund for the Promotion of
Joint International Research (Fostering Joint International
Research, JSPS KAKENHI Grant No. JP15KK0010) from

the Ministry of Education, Culture, Sports, Science, and
Technology of Japan.

APPENDIX A: DERIVATION OF PROBABILISTIC MODEL
FOR SYSTEM MODEL

Here we derive probabilistic models of the system model
from kinetics for the surface heterogeneous reaction.

By discretizing a stochastic differential equation [Eq. (1)]
with respect to time [38], we obtain the following difference
equation:

n
(r)
t+1 − n

(r)
t

�t

= krSr
(
n

(r)
t

)(
C

(i)
t − Cr,eq

) + 1√
�t

ξ
(r)
t , (A1)

where t denotes a time step and �t is a time interval used
for time discretization. Here ξ

(r)
t shows a Gaussian noise with

〈ξ (r)
t 〉 = 0 and 〈ξ (r)

t ξ (r)
s 〉 = σ̃ 2

r δ(t,s). From this expression, we
obtain the following recursion equation for n

(r)
t :

n
(r)
t+1 = n

(r)
t + �tkrSr

(
n

(r)
t

)(
C

(i)
t − Cr,eq

) +
√

�tξ
(r)
t . (A2)

Since ξ
(r)
t is assumed to be a Gaussian noise, probabilistic

model for the reactant p(n(r)
t+1|n(r)

t ) is expressed as follows:

p
(
n

(r)
t+1

∣∣n(r)
t

) = 1√
2πσ 2

r

exp

[
−

(
n

(r)
t+1 − n

(r)
t − �tkrSr

(
n

(r)
t

)(
C

(i)
t − Cr,eq

))2

2σ 2
r

]
, (A3)

where we put σr = √
�tσ̃r. Similary, a probabilistic model for the product is derived as follows:

p
(
n

(p)
t+1

∣∣n(p)
t

) = 1√
2πσ 2

p

exp

[
−

(
n

(p)
t+1 − n

(p)
t − �tkpSp

(
n

(p)
t

)(
C

(i)
t − Cp,eq

))2

2σ 2
p

]
. (A4)

By using these probabilistic models for each hidden variable,
we obtain the following probabilistic model p(xt+1|xt ):

p(xt+1|xt ) = p
(
n

(r)
t+1,n

(p)
t+1

∣∣n(r)
t ,n

(p)
t

)
= p

(
n

(r)
t+1

∣∣n(r)
t

)
p
(
n

(p)
t+1

∣∣n(p)
t

)
, (A5)

where fluctuating noises ξ
(r)
t and ξ

(p)
t for reactant and product,

respectively, are assumed to be independent as 〈ξ (r)
t ξ

(p)
t 〉 = 0.

APPENDIX B: POSTERIOR PROBABILITY DENSITY
FUNCTION FOR NONLINEAR STATE SPACE MODEL

From Bayes’s theorem, a posterior density function
p(x1,x2, . . . ,xT |YT ) is proportional to a product of like-
lihood function p(YT |x1,x2, . . . ,xT ) and prior probability
p(x1,x2, . . . ,xT ) as follows:

p(x1,x2, . . . ,xT |YT )

∝ p(YT |x1,x2, . . . ,xT )p(x1,x2, . . . ,xT ). (B1)

By assuming that each observation of yt is independent of
other observations ys 
=t , the likelihood function is expressed as
a product of observation models p( yt |xt ) at observable time

steps as follows:

p(YT |x1,x2, . . . ,xT ) =
∏

t∈Tobs

p( yt |xt ), (B2)

where Tobs denotes a set of sparse observable time within total
time step T (|Tobs| < T ).

The prior probability is expressed as follows:

p(x1,x2, . . . ,xT )

= p(xT |x1,x2, . . . ,xT −1)p(x1,x2, . . . ,xT −1)

= p(xT |xT −1)p(x1,x2, . . . ,xT −1), (B3)

where we used the Markov property of the nonlinear state-
space model p(xT |x1,x2, . . . ,xT −1) = p(xT |xT −1). Note that
Eq. (B3) is a recursive equation for p(x1,x2, . . . ,xt ). By using
this recursive equation, the prior probability is obtained as a
product of system models p(xt+1|xt ) and initial probability
p(x1) as follows:

p(x1,x2, . . . ,xT ) =
(

T −1∏
t=1

p(xt+1|xt )

)
p(x1). (B4)
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Substituting Eqs. (B2) and (B4) into Eq. (B1), we obtain a
posterior probability density function [Eq. (9)].

APPENDIX C: BELIEF PROPAGATION FOR PARTIALLY
OBSERVABLE DATA

In this section, we derive the marginal posterior distribution
p(xt+1|Yt ) of the proposed method [Eqs. (11)–(14)]. To derive
the marginal posterior distribution for partially observable
data, we need to consider two cases; in the first case we assume
that observable data is not available at time t , and in the second
case we assume that observable data is available at time t .

1. Nonobservable case

First, we consider the case in which we do not have any
observable point yt at time t . Therefore, we cannot assume ob-
servation model p(yt |xt ) in this case. A predictive distribution
p(xt+1|Yt ) can be derived using integral representation of the
probability as follows:

p(xt+1|Yt ) =
∫

p(xt+1,xt |Yt )dxt

=
∫

p(xt+1|xt )p(xt |Yt )dxt

=
∫

p(xt+1|xt )p(xt |Yt−1)dxt , (C1)

where we used Yt = {y1, . . . ,yt } = Yt−1 since we assume that
there exists no observation for yt at time t . Note that Eq. (C1) is
a recursive equation for the predictive distribution p(xt+1|Yt ).

2. Observable case

Next, we consider the case in which we have an observable
data point at time t . A predictive distribution p(xt+1|Yt ) is
expressed by using integration with respect to xt as follows:

p(xt+1|Yt ) =
∫

p(xt+1|xt ,Yt )p(xt |Yt )dxt

=
∫

p(xt+1|xt )p(xt |Yt )dxt , (C2)

where we used a Markov property p(xt+1|xt ,Yt ) =
p(xt+1|xt ). On the other hand, a filtering distribution p(xt |Yt )
is derived as follows:

p(xt |Yt ) = p(xt | yt ,Yt−1)

= p( yt |xt ,Yt−1)p(xt |Yt−1)

p( yt |Yt−1)

= p( yt |xt )p(xt |Yt−1)

p( yt |Yt−1)
, (C3)

where we have used a Markov property p( yt |xt ,Yt−1) =
p( yt |xt ) in the final equality.

[1] P. Atkins and J. D. Paula, Physical Chemistry, 10th ed. (Oxford
University Press, Oxford, 2014).

[2] A. C. Lasaga, Kinetic Theory in the Earth Science (Princeton
University Press, Princeton, 1998).

[3] A. Okamoto, Y. Ogasawara, Y. Ogawa, and N. Tsuchiya,
Chem. Geol. 289, 245 (2011).

[4] V. A. Alekseyev, L. S. Medvedeva, and N. P. Starshinova,
Geochem. Intl. 47, 731 (2009).

[5] C. Zhu, P. Lu, Z. Zheng, and J. Ganor, Geochim. Cosmochim.
Acta 74, 3963 (2010).

[6] P. Gregory, Bayesian Logical Data Analysis for the Physical
Sciences (Cambridge University Press, Cambridge, 2010).

[7] Y. Naruse, K. Takiyama, M. Okada, and T. Murata, Phys. Rev.
E 82, 011912 (2010).

[8] T. Omori, T. Aonishi, and M. Okada, Adv. Cognit. Neurodyn.
3, 649 (2013).

[9] X. Liu and Q. Gao, Phys. Rev. E 88, 042905 (2013).
[10] T. Omori, Neural Inf. Proc. Lec. Not. Comput. Sci. 8834, 27

(2014).
[11] T. Omori and K. Hukushima, J. Phys. Conf. Ser. 699, 012011

(2016).
[12] T. Kuwatani, K. Nagata, M. Okada, and M. Toriumi, Contrib.

Mineral. Petrol. 163, 547 (2012).
[13] T. Kuwatani, K. Nagata, M. Okada, and M. Toriumi, Earth

Planets Space 66, 5 (2014).
[14] T. Kuwatani, K. Nagata, M. Okada, and M. Toriumi, Phys. Rev.

E 90, 042137 (2014).

[15] A. Doucet, S. Godsill, and C. Andrieu, Stat. Comput. 10, 197
(2000).

[16] A. Doucet, N. de Freitas, and N. Gordon, Sequential
Monte Carlo Methods in Practice (Springer-Verlag, Berlin,
2001).

[17] G. Kitagawa, J. American Stat. Assoc. 82, 1032 (1987).
[18] R. E. Johnson and S. Ranganathan, Phys. Rev. E 75, 056706

(2007).
[19] Z. Ghahramani and G. E. Hinton, University of Toronto

Technical Report CRG-TR-96-2 (1996).
[20] C. M. Bishop, Pattern Recognition and Machine Learning

(Springer-Verlag, Berlin, 2006).
[21] G. J. McLachlan and T. Krishnan, The EM Algorithm and Its

Extensions (Wiley, New York, 1997).
[22] A. P. Dempster, N. M. Laird, and D. B. Rubin, J. R. Stat. Soc.

B 39, 1 (1977).
[23] C. F. J. Wu, Annal. Stat. 11, 95 (1983).
[24] J. Pearl, Probabilistic Reasoning in Intelligent Systems (Morgan

Kaufman, New York, 1988).
[25] J. S. Yedidia, W. T. Freeman, and Y. Weiss, in Exploring

Artificial Intelligence in the New Millenium, edited by G.
Lakemeyer and B. Nebel (Morgan Kaufmann, New York, 2002),
p. 239.

[26] S. Brantley and J. Kubicki, Kinetics of Water-Rock Interaction
(Springer-Verlag, Berlin, 2007).

[27] A. Okamoto, H. Saishu, N. Hirano, and N. Tsuchiya, Geochim.
Cosmochim. Acta 74, 3692 (2010).

033305-10

http://dx.doi.org/10.1016/j.chemgeo.2011.08.007
http://dx.doi.org/10.1016/j.chemgeo.2011.08.007
http://dx.doi.org/10.1016/j.chemgeo.2011.08.007
http://dx.doi.org/10.1016/j.chemgeo.2011.08.007
http://dx.doi.org/10.1134/S0016702909070076
http://dx.doi.org/10.1134/S0016702909070076
http://dx.doi.org/10.1134/S0016702909070076
http://dx.doi.org/10.1134/S0016702909070076
http://dx.doi.org/10.1016/j.gca.2010.04.012
http://dx.doi.org/10.1016/j.gca.2010.04.012
http://dx.doi.org/10.1016/j.gca.2010.04.012
http://dx.doi.org/10.1016/j.gca.2010.04.012
http://dx.doi.org/10.1103/PhysRevE.82.011912
http://dx.doi.org/10.1103/PhysRevE.82.011912
http://dx.doi.org/10.1103/PhysRevE.82.011912
http://dx.doi.org/10.1103/PhysRevE.82.011912
http://dx.doi.org/10.1007/978-94-007-4792-0
http://dx.doi.org/10.1007/978-94-007-4792-0
http://dx.doi.org/10.1007/978-94-007-4792-0
http://dx.doi.org/10.1007/978-94-007-4792-0
http://dx.doi.org/10.1103/PhysRevE.88.042905
http://dx.doi.org/10.1103/PhysRevE.88.042905
http://dx.doi.org/10.1103/PhysRevE.88.042905
http://dx.doi.org/10.1103/PhysRevE.88.042905
http://dx.doi.org/10.1007/978-3-319-12637-1_4
http://dx.doi.org/10.1007/978-3-319-12637-1_4
http://dx.doi.org/10.1007/978-3-319-12637-1_4
http://dx.doi.org/10.1007/978-3-319-12637-1_4
http://dx.doi.org/10.1088/1742-6596/699/1/012011
http://dx.doi.org/10.1088/1742-6596/699/1/012011
http://dx.doi.org/10.1088/1742-6596/699/1/012011
http://dx.doi.org/10.1088/1742-6596/699/1/012011
http://dx.doi.org/10.1007/s00410-011-0687-3
http://dx.doi.org/10.1007/s00410-011-0687-3
http://dx.doi.org/10.1007/s00410-011-0687-3
http://dx.doi.org/10.1007/s00410-011-0687-3
http://dx.doi.org/10.1186/1880-5981-66-5
http://dx.doi.org/10.1186/1880-5981-66-5
http://dx.doi.org/10.1186/1880-5981-66-5
http://dx.doi.org/10.1186/1880-5981-66-5
http://dx.doi.org/10.1103/PhysRevE.90.042137
http://dx.doi.org/10.1103/PhysRevE.90.042137
http://dx.doi.org/10.1103/PhysRevE.90.042137
http://dx.doi.org/10.1103/PhysRevE.90.042137
http://dx.doi.org/10.1023/A:1008935410038
http://dx.doi.org/10.1023/A:1008935410038
http://dx.doi.org/10.1023/A:1008935410038
http://dx.doi.org/10.1023/A:1008935410038
http://dx.doi.org/10.1080/01621459.1987.10478534
http://dx.doi.org/10.1080/01621459.1987.10478534
http://dx.doi.org/10.1080/01621459.1987.10478534
http://dx.doi.org/10.1080/01621459.1987.10478534
http://dx.doi.org/10.1103/PhysRevE.75.056706
http://dx.doi.org/10.1103/PhysRevE.75.056706
http://dx.doi.org/10.1103/PhysRevE.75.056706
http://dx.doi.org/10.1103/PhysRevE.75.056706
http://dx.doi.org/10.1214/aos/1176346060
http://dx.doi.org/10.1214/aos/1176346060
http://dx.doi.org/10.1214/aos/1176346060
http://dx.doi.org/10.1214/aos/1176346060
http://dx.doi.org/10.1016/j.gca.2010.03.031
http://dx.doi.org/10.1016/j.gca.2010.03.031
http://dx.doi.org/10.1016/j.gca.2010.03.031
http://dx.doi.org/10.1016/j.gca.2010.03.031


BAYESIAN INVERSION ANALYSIS OF NONLINEAR . . . PHYSICAL REVIEW E 94, 033305 (2016)

[28] A. Okamoto, T. Kuwatani, T. Omori, and K. Hukushima,
Phys. Rev. E 92, 042130 (2015).

[29] K. Tanaka, J. Phys. A: Math. Gen. 35, R81 (2002).
[30] R. J. Baxter, Exactly Solved Models in Statistical Mechanics

(Academic Press, San Diego, 1982).
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