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Evolution of network architecture in a granular material under compression

Lia Papadopoulos,1 James G. Puckett,2 Karen E. Daniels,” and Danielle S. Bassett*>-"

' Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
2Department of Physics, Gettysburg College, Gettysburg, Pennsylvania 17325, USA
3Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, USA
*Departments of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA

3Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA

(Received 26 March 2016; published 23 September 2016)

As a granular material is compressed, the particles and forces within the system arrange to form complex
and heterogeneous collective structures. Force chains are a prime example of such structures, and are thought
to constrain bulk properties such as mechanical stability and acoustic transmission. However, capturing and
characterizing the evolving nature of the intrinsic inhomogeneity and mesoscale architecture of granular systems
can be challenging. A growing body of work has shown that graph theoretic approaches may provide a useful
foundation for tackling these problems. Here, we extend the current approaches by utilizing multilayer networks
as a framework for directly quantifying the progression of mesoscale architecture in a compressed granular
system. We examine a quasi-two-dimensional aggregate of photoelastic disks, subject to biaxial compressions
through a series of small, quasistatic steps. Treating particles as network nodes and interparticle forces as network
edges, we construct a multilayer network for the system by linking together the series of static force networks
that exist at each strain step. We then extract the inherent mesoscale structure from the system by using a
generalization of community detection methods to multilayer networks, and we define quantitative measures to
characterize the changes in this structure throughout the compression process. We separately consider the network
of normal and tangential forces, and find that they display a different progression throughout compression. To
test the sensitivity of the network model to particle properties, we examine whether the method can distinguish
a subsystem of low-friction particles within a bath of higher-friction particles. We find that this can be achieved
by considering the network of tangential forces, and that the community structure is better able to separate the
subsystem than a purely local measure of interparticle forces alone. The results discussed throughout this study
suggest that these network science techniques may provide a direct way to compare and classify data from

systems under different external conditions or with different physical makeup.
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I. INTRODUCTION

Granular materials [1] come in many forms, from soils,
sands, and grains, to powders and pharmaceuticals. However,
despite their prevalence, there are still open questions about
how the seemingly simple interactions of contact forces lead
to the observed emergent behavior of these systems. An
active area of research lies in understanding the mechanisms
that govern deformation in granular materials subjected
to compression and shear. Under both of these external
perturbations, the force network exhibits complex and
inhomogeneous structure in the form of strongly interacting
collections of particles known as force chains [see Fig. 1(c)]
[2-8]. This architecture is thought to constrain the mechanical
properties and stability of granular materials [6,7,9,10] and
may also be responsible for nonlinear and heterogeneous
features of acoustic signal transmission [11-17].

Two notable features of force chains are that they are
mesoscale structures, intermediately sized between the particle
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scale and the system scale, and that their physical structure
depends on the loading history [7]. These characteristics
present a challenge, as there is currently no closed modeling
framework that explicitly addresses the presence of mesoscale
architecture in particulate systems and how it reconfigures
under external influences. The development of such models
is critical, as particulate and continuum methods cannot
fully describe the observed properties exhibited by these
systems [12].

Recently, a number of studies have suggested that graph
theoretic [18-20] approaches provide a powerful and natural
paradigm in which to study granular media. Many of these
analyses have focused on the characterization of discrete
sets of static granular force networks throughout compression
[21-26], tapping [27], or tilting [28], using traditional graph
metrics such as degree, clustering coefficients, and cycles of
different lengths. Other work has probed the dynamical nature
of sheared systems by considering time-evolving networks of
broken links [29,30], and grain property networks have been
used to understand rearrangements in discrete element simu-
lations of compressed systems [31]. Methods from algebraic
topology and, in particular, persistent homology [32,33], have
also been used to quantify the evolution of force networks,
providing important insights into the nature of compressed
[34-36] and tapped [37-39] granular materials.

One reason for the promise of network-based measures
is that they can assess material architecture at a range of
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length scales, including the important mesoscale regime.
Recent work by Bassett ef al. [40] showed that a network
clustering technique known as community detection could be
used to extract the underlying mesoscale force chain structure
from static granular networks. In this study, we extend
that model, and suggest that multilayer networks may be a
particularly promising framework in which to simultaneously
examine the mesoscale architecture of granular systems,
and ultimately to probe its evolution and reconfiguration in
a straightforward manner. This approach has thus far been
unexplored.

Multilayer networks encompass several different types of
complex graph constructions, and the word can take on a
number of meanings depending on the context (see [41,42] for
comprehensive reviews). For example, a multilayer network
may capture different types of connections between nodes,
may quantify interactions between different systems, or may
be used to study dynamical processes that occur across time.
Here, we focus on a specific subset of these possibilities. In
particular, we restrict ourselves to temporal networks with
diagonal and ordinal interlayer couplings. A temporal network
consists of a sequential series of static graphs (the layers)
ordered such that time dependence is accounted for. Diagonal
couplings mean that a node in one layer is only connected to
itself in other layers. Finally, ordinal interlayer couplings only
allow connections between layers that are adjacent to each
other in time. In this study, we are interested in describing
the granular material as it undergoes biaxial compression.
In the regime studied here, the system is characterized by
dramatic changes in the number and strength of the force
chains. We thus represent discrete, quasistatic snapshots of
the system at a particular point in its evolution as spatially
embedded graphs where particles are nodes and interparticle
forces are weighted edges. Repeating this process at several
discrete strain steps yields an ordered set of static networks,
which can then be combined into a single multilayer graph
with the ordering of layers set by the order of the strain
steps.

We develop and apply this multilayer network formalism
to experimental granular data [43], and establish a set of
network and physical measures that can be used to assess the
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topological organization of the system, as well as the physical
embedding of that topology into the two-dimensional space
of the material. In particular, we use this framework to (i)
extract evolving mesoscale structure from the force network,
(i1) understand how this architecture reconfigures throughout
compressive (strain) steps, (iii) uncover physical properties
of evolving mesostructures and relate them to measures of
network rearrangement, and (iv) examine the impact of inter-
particle friction on multilayer mesostructures. To achieve this,
we represent an ensemble of granular packings as multilayer
graphs using the set of force networks (both normal and
tangential) obtained from each step above the jamming point.
We then use multilayer community detection to extract groups
of particles that evolve together throughout the compression
procedure. This method allows us to directly characterize the
progression of inherent mesoscale organization as a function
of strain step.

The outline of this paper is as follows. In Sec. II, we
describe the granular experiments. Section I1l is dedicated to an
explanation of the multilayer network model and community
detection, which lay the theoretical foundations for the rest
of the paper. A series of results describing the community
structure of the granular network as a function of pressure
are presented in Sec. IV, and in Sec. V we discuss broader
implications of our method and findings, and directions for
future work.

II. EXPERIMENTAL METHODS

We study the biaxial compression of a granular monolayer
on a nearly frictionless surface provided by an air table
(Fig. 1). The system is composed of an inner subsystem (100
particles) and an outer bath (904 particles), which differ only
in the interparticle friction coeffcient. In particular, u < 0.1
for the subsystem and o ~ 0.8 for the bath. The two systems
are both composed of a bidisperse mixure of disks (diameters
d; = 11 mm and d; = 15.4 mm) in equal concentrations.

At the beginning of each compression cycle, the system
is in a dilute (® ~ 0.6), unjammed state unable to support
stress. Two walls then biaxially compress the system in a
series of small steps (AP = 0.009, equivalently Ax = 0.3
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FIG. 1. Experimental setup. (a) A schematic of the apparatus showing two walls biaxially compressing an array of disk-shaped particles
composed of an outer subsystem (black, high p) and an inner subsystem (red, low w). (b) The first image is taken with unpolarized white light
and is used to locate particle positions. (c) The photoelastic stress pattern, visualized with a second image taken with polarized light. This
image allows for the calculation of the normal and tangential forces at each contact. A third image (inset) taken with ultraviolet light is used to

identify the subsystem particles, which are tagged with fluorescent ink.
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mm or 0.02r;). After each step, the system is held in a single
configuration while measurements are made; this allows us
to explore a series of static states prepared under increasing
amounts strain.

For each configuration, a single CCD camera located above
the apparatus records three separate images of the system:
unpolarized white light for the particle positions, polarized
light for recording the photoelastic response, and ultraviolet
light for identifying the subsystem particles, as shown in Fig. 1.
Using the photoelastic image, we measure the normal and
tangential forces at each contact on each disk in the assembly.
To calculate the forces, we use a nonlinear least squares
optimization algorithm [45,46] to minimize the error between
the observed and fitted image of the particle. Details and source
code are available for download at [44]. The third image, taken
using a black-light illumination, identifies which particles are
low friction via their fluorescent marking.

By repeating this protocol many times, we generate an
ensemble of configurations for which we record particle
positions [Fig. 1(b)], and use photoelastic measurements
[Fig. 1(c)] to calculate contact forces [44]. The presence of the
subsystem and bath allows us to characterize both the system
as a whole, and to investigate the physical differences that
exist between the high- and low-friction regions. In this paper,
we focus on the force networks rather than the particles or
their displacements. As the system is compressed via discrete,
quasistatic steps, we observe the percolation of force chains
throughout both the bath and the subsystem at a value ®;. This
is the onset of rigidity, and as the system is further compressed
beyond this point, the contact forces grow in strength and the
average number of contacts per particle increases. For each
of the 97 configurations, we locate ®; as the step at which
photoelastic signals are first present, and consider the changes
to the mesoscale structure due to the subsequent applied
strain steps. Further details of the experimental apparatus and
measurements were published previously [43].

Particle tracking

It is important to note that the construction of a multilayer
network requires knowledge about which node (particle) is
which from one layer (strain step) to the next [41,42]. Under
the protocol described above, we are assured that no particles
are removed from or added to the system, and we require that
the multilayer network also has this constraint. (In general,
multilayer graphs can indeed be constructed for growing
systems, where the number of nodes is constantly changing.)
In order to correctly identify the particles in each layer,
we use the Blair-Dufresne particle tracking algorithm [47].
This algorithm, implemented in MATLAB, requires the choice
of a “displacement” parameter, which is an estimate of the
maximum distance that a particle moves between consecutive
frames. As we do not expect large particle displacements
in the jammed packings, we initialize the tracking with a
displacement parameter value that is much less than the
minimum particle diameter d;, and increase the allowed
displacement in small increments until all particles are tracked
consistently across all compressive steps.
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III. MATHEMATICAL MODEL

A. Multilayer network representation

In general, femporal multilayer networks are mathematical
objects that describe and quantify the evolution of networked
systems as a function of time or some other variable of interest
[41,42]. The construction of such a multilayer network first
requires a set of individual networks that describe the system
at discrete time points, or steps. These static “layers” can
each be represented as an adjacency matrix A, describing the
connectivity and weight connecting the nodes in the given
layer. The set of adjacency matrices may then be combined
into a rank-3 adjacency tensor A [48] to form a multilayer
network representation of the system. The elements of A are
defined such that

a;j; ifnodei and j are connected
in layer [, (1)
0 otherwise,

Aiji =

where g;;; is the weight between nodes i and j in layer /, and
L is the total number of layers (steps).

For the present situation, we are interested in how the force
network of a granular packing reconfigures through a sequence
of compressive steps above ®y. We thus represent the system
as an ordered, multilayer network, which captures the changes
to the mesoscale structure as a function of compression. To
form this network, we let nodes be particles, weighted edges
be the forces between contacting particles, and the number of
strain steps be the third dimension across which we observe
changes in network structure. Using the force information
obtained from the photoelastic disk experiments, we construct
two multilayer force networks for a given experimental run,
one using the normal forces F" between particles and another
using the magnitude of the tangential forces | F’|. Specifically,
we denote the normal force adjacency tensor as Al'-’j ;> defined
as in Eq. (1) with a;;; = f}};, where [}, is the normal force
between particles i and j at step /. Similarly, we write the
tangential force adjacency tensor as A} ;1> defined as in Eq. (1)
with a;;; = | fi'jl|, where fl’]l is the tangential force between
particles i and j at step /. This process is repeated for all of
the experimental configurations, resulting in a large ensemble
of multilayer networks. In Fig. 2, we show an example set of
photoelastic images with the corresponding network of normal
forces overlaid.

In addition to the intralayer weights, multilayer networks
have a second set of inferlayer edges that connect nodes in
different layers of the network. In this study, we consider
only diagonal and ordinal interlayer couplings, meaning that
a given particle is connected only to itself (i.e., diagonal cou-
pling) and interlayer edges exist only between adjacent layers
(i.e., ordinal coupling). The interlayer weights are crucial to
the structure of the network; in Sec. III B 4, we discuss how
these couplings are chosen for the granular system at hand.

This graphical construction is a powerful approach.
Importantly, each layer of the adjacency tensor encodes
both the topology (connectivity) as well as the strength
of interactions between particles in the system at a given
packing fraction. We will see that the extension to a multilayer
framework not only allows one to study the static organization
of granular packings, but also promotes a direct investigation
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FIG. 2. The structure of the force network throughout compression. Photoelastic images of the system, taken at a sequence of eight steps
above ®; ~ 0.7825. The corresponding network of (normal) forces is overlaid on top of each picture. The collection of these static networks
are represented as a single multilayer network that captures the changes to the mesoscale structure throughout compression.

and characterization of the changes to the mesoscale structure
throughout the compressive steps.

B. Community detection

A compelling reason to use graphical representations of
spatially embedded systems [49] is that network theoretic
approaches provide a means to extract and characterize
organization that is present at a range of length scales. Granular
materials are a prime example of a complex system in which
multiple length scales are relevant to a full understanding of
the system and to a prediction of bulk properties. For example,
the fundamental interactions in these systems are local in the
sense that they occur between nearest neighbor particles. But,
under compression, those local interactions lead to important
heterogeneous structure at the mesoscale in the form of force
chains [2-8,50].

In this study, we aim to both extract mesoscale structures
from the force network, and then characterize the reconfig-
uration that occurs in these structures due to the applied
strain steps. In order to accomplish this, we build upon
recent approaches that utilize community detection techniques
to extract groups of strongly interacting particles from the
granular network [26,40], generalizing the methods to the
multilayer regime.

A community or module in a network is a set of nodes that
are densely interconnected amongst themselves, and relatively
weakly connected to other nodes [51]. The extraction of
community structure is of general interest in network science,
as it is thought that these mesoscale units are important to
the function of many real systems [51]. Several community
detection methods exist [51,52]; here, we apply the popular
method of modularity maximization, whereby nodes are
partitioned into communities via maximization of a quality
function known as modularity [53,54].

1. Single layer modularity maximization

In a single layer network with adjacency matrix A,
modularity is given by

1
Quing = 7 ;[A,«_,- — ¥ Pi18(ci ), 2)

where ¢; is the community of node 7, c; is the community of
node j, P;; is the expected edge weight between nodes i and j
under a specified null model, and y is the structural resolution
parameter. In the overall normalization, m = % Zi ; Ajj, which
is the weighted degree or strength of the network. The
structural resolution parameter y allows for the control of

size and number of communities: smaller y leads to larger
communities, and larger y leads to smaller communities.
Maximization of Q;n, With respect to the assignment of nodes
to communities yields a partition in which intracommunity
connections are as strong as possible relative to the null model.
It is important to note, however, that modularity maximization
is NP hard [55] and should therefore be repeated several times
for the same network and set of parameters in order to obtain
an ensemble of optimizations [56]. Throughout this work, we
use a Louvain-type locally greedy algorithm for modularity
maximization [57,58].

2. A physically informed null model

A proper choice of null model is vital to community
detection techniques, as it affects both the interpretation and
utility of the community structures obtained [56,59]. The
most commonly used null model in the literature is the
Newman-Girvan (NG) model [53,54], which in the case of
a static network is given by P;; = %, where k; = ) ; Ajj
is the strength of node i, and m is the total strength of the
network, as before. In the Newman-Girvan model (which is
also sometimes referred to as the configuration model), P;;
gives the expected edge weight between nodes i and j in
a randomized network that has the same degree distribution
as the real network. As a randomized version of the real
graph, the NG model is most appropriate to use as a null
model in situations where all connections between nodes are
at least possible. In many physical or spatially embedded
systems, however, this is not the case, and there are constraints
that prevent the existence of several edges. For example, in
the granular networks considered here, edges can only exist
between nearest neighbor particles, and it is imperative to
consider this fact when designing a null model for these types
of systems. A better choice in this instance is the physically
informed geographic null model [40,56], defined to be

Py = (f)Bij, 3)

where (f) is the average interparticle force (either normal or
tangential) in the network and B;; is the contact matrix, with
elements

1
Bij = {0

Because this null model maintains the contact structure of the
real network, it importantly takes into account the physical
constraints on the possible patterns of connectivity between
particles. Additionally, it selects for strongly connected sets of
particles carrying forces larger than y ( f) (see Eq. 2).

if particle i and j are in contact,
otherwise.

“
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FIG. 3. An example of single layer community structure. When single layer community detection is performed on the series of normal
force networks above @, the groups of particles at each step correspond to force chain structures. However, there is no notion of linking these

mesostructures from one compressive step to the next.

3. Multilayer modularity maximization

When community detection is performed on a series of
single layer granular networks, such as those obtained here
after each applied strain step, the result is a set of independent
partitions of particles into communities at each step (Fig. 3).
As demonstrated in [40], the communities at a given step
correspond to the physical force chains observed in the
photoelastic disk experiments. However, in this scheme, the
community structure is not in any way linked from one layer
to the next, barring any notion of continuation. Instead, the
communities are treated as independent from one another,
which is an inaccurate representation of the physics and further
challenges our ability to directly capture the evolution of
network structure and reconfiguration at the mesoscale.

To form a more complete picture of the changes in
network architecture, we investigate the community structure
of multilayer granular force networks by applying the recent
generalization of modularity maximization to temporal net-
works [60,61]. In this formulation, the multilayer modularity
is defined to be

1
Qi = 5= > [(Aijt = 1 Pij)dim + @jindi18(cin¢jm),

ijlm

4)
where A, is the (i, j) component of the adjacency tensor in
layer I, P;j; is the (i, j) component of the null model tensor
in layer /, and y; is the structural resolution parameter for
layer /. In addition to y, the multilayer modularity requires
another free parameter w (often referred to as an interlayer
coupling or temporal resolution parameter) which sets the the
strength of connections between layers. Namely, ;, is the
strength of the coupling that links node j in layer / to itself in
an adjacent layer m (i.e., the diagonal and ordinal coupling).
The quantities ¢;; and cj,, are the community assignments of
node i in layer / and node j in layer m, respectively. Defining
the intraslice strength of node j in layer [ as kj; =), Ajjs
and the strength of node j across layers as wj; = ), @i,
then the multilayer strength of node j in layer / is given
by «j; = kj; + wj;. Finally, in the overall normalization, u
is the total strength of the adjacency tensor A, given by
n= % ij kj;. In Fig. 4, we show a schematic of a multilayer
granular force network with evolving community structure.
Importantly, the communities can persist across all layers and
we can track their reconfiguration in terms of particle content
and strength throughout the series of strain steps.

As in the formulation of Qgiyg, the choice of null model
in Qmuyg 1S an important one, particularly when considering
systems with strict constraints on the allowed connectivity
between nodes. For granular networks, we generalize the ge-

ographic null model to the multilayer regime. For community
detection on the normal force network we use

Py = ("UBij, (6)

where (f"); is the average of the normal component of the
interparticle forces at compressive step / and B;j; is the contact
matrix at compressive step /. For the tangential network, we
take the null model to be

itjl = (|ft|>13ij1, (7

where (|f'|); is the average of the absolute value of the
tangential component of the interparticle forces at compressive
step [, and B;j; is the contact matrix at that step.

In each layer, we normalize the force network (A7}, or
|A} ;1) by the mean interparticle force in the corresponding
layer. Thus, after normalization we have ( f"); = 1 in Eq. (6)
and (| f|); = 1in Eq. (7), for all [. This normalization ensures
that the community structure is not purely driven by the final
layer, which will have the largest total edge weight due to it
being the most compressed.

Community 1

Community 2

Community 3

e 6 o o

Community 4

increasing compression

FIG. 4. A schematic of a multilayer network with layer-
dependent community structure. Each layer represents a static
granular force network in which nodes (particles) are connected to
one another via intralayer weighted edges. These weights can be
either the normal contact forces or the absolute value of the tangential
contact forces. Additionally, the same particle in consecutive layers
is linked to itself with an interlayer coupling w. For clarity, we
only show two such couplings, but these interlayer edges exist
between all particles (and across all layers). Evolving communities
are extracted from the multilayer network to study the mesoscale
organization in the system, and to understand how it changes due to the
compressive cycle. The community structure can be determined from
the network by maximizing the multilayer modularity Q. [Eq. (5)].
In this schematic, the particles belonging to different communities are
labeled by different colors. Note that the same community can persist
across all layers and reconfigure in terms of particle content and
strength throughout compression.
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4. Choosing omega: Flexibility as a measure of
network reconfiguration

The two parameters in the multilayer modularity quality
function w and y must be chosen by the investigator. Recall
that the structural resolution parameter y regulates the size
and number of detected communities; in this study, we use
yy =y =1 for all . As can be seen from Egs. (5)—(7), the
physical meaning of this value is that it selects for communities
within each layer that have stronger than average force. The
choice of w is an active area of investigation; currently, there
is no consensus in the literature on a single, broadly applicable
method to determine the interlayer coupling. In this work,
we make a physically informed choice. As described in the
previous section, w is in general a tensor that can take on
different values between each layer or for different nodes.
Since to our knowledge this is the first study on multilayer
granular networks, we begin by taking the simplest case
of a scalar interlayer coupling, choosing w to be the same
for all particles and all pairs of layers, such that wj;, = @
for all j,I,m. However, it is important to point out that the
interlayer coupling could be different for different particles.
For example, one could alternatively tune the relative value
of w for a given particle based on a particle property.
Investigation of more complicated methods for choosing the
interlayer couplings may be an interesting direction for future
work.

To proceed, it is necessary to understand the effect of w
on the community structure. There are two limiting cases
which are relatively simple to grasp: when w = 0, there are
no connections between layers of the adjacency tensor, and
we therefore recover the results of static community detection
(Fig. 3). Atthe other extreme, w can be made large enough such
that the strength of interlayer connections entirely overwhelms
the strength of intralayer connections, resulting in completely
consistent community structure across all compressive steps
(that is, no observable changes; see Fig. 18 in the Appendix for
an example partition at large w). To understand what occurs
in-between these limiting cases, we consider a simple measure
of network rearrangement called flexibility, or E, previously
defined in [62]. The flexibility of a single particle i, &;, is
given by

8i
§ =20 8)
where g; is the number of times that the particle changes its
community and L is the total number of strain steps. The
flexibility of the entire multilayer network is then given by the
mean flexibility of all particles

5= L% g
H_NlZg,, ©

where N is the number of particles.

In order to choose a physically relevant value of the
interslice coupling, we run 20 optimizations of multilayer
community detection on the normal force network A" for
each packing, for several values of @ between 0 and 1, in
steps of Aw = 0.01. Note that @ = 0.01 corresponds to a
coupling which is equal to ﬁ of the mean edge weight in
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FIG. 5. Choosing an optimal interlayer coupling. The average
network flexibility is governed by the value of the interlayer coupling
w. Each dot is the average of network flexibility over all experimental

—

packings E vs the interlayer coupling w. When w =0, E = 1 and
the results of static community detection are recovered; there is
no persistent structure across compression. When w =1, E ~ 0
and the particle contact forces within each layer are overwhelmed
by the weight of the interlayer coupling such that the community
structure exhibits complete consistency throughout the compressive
steps. At w = 0.01, Epax &~ 0.3349. The optimal interlayer coupling
w, = 0.16 is denoted by the red dot, and is chosen such that
E(wy) &~ Emax/2. This ensures a balance between intralayer and
interlayer weights. The inset shows what the distribution of w,
would be if the identical procedure were performed for each packing
individually.

a given layer, due to the normalization procedure described
in Sec. III B 3. Due to the stochastic nature of modularity
maximization [55], we avoid an interlayer coupling close to
zero, as the community structure is more likely to be influenced
by noise in the algorithm. At each w, we compute E for
all optimizations of a given packing, and then average over
optimizations to obtain a single value of flexibility for the
packing (&)op. In what follows, we will denote averages over
optimizations as (.. .)op, and averages first over optimization
and then over packings with an overbar.

As shown in Fig. 5, we observe that away from o = 0,
the average flexibility E decreases smoothly as the interlayer
coupling increases (and see Fig. 16 of the Appendix for the
plot of Quu versus w). As expected, right at @ = 0, the
network flexibility is unity, indicative of the fact that there
is no consistency in community structure across layers. That
is, at each step all particles are assigned to new communities
which are independent from the community they were assigned
to in the previous step. At w = 1, which corresponds to an
interlayer coupling of the same magnitude as the mean edge
weight in each layer, the flexibility is approximately zero,
and there are no changes in the community structure; instead,
we observe complete consistency of community structure
throughout layers.
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—

Interestingly, at the first @ value away from zero, E
sharply drops to 20.33. The presence of this steep decline is
explained by a recent mathematical result, which demonstrates
that the case w = 0 is singular in the sense that even when
w = € with 0 < € < 1, there will be at least some persistent
community structure [61]. Furthermore, the mathematics
behind this finding are independent of the particular system
or multilayer network being studied. We thus take the value
of E obtained from the first small step away from O at
w = 0.01 to be the upper bound of network flexibility, Epax;

—

from that point forward, & smoothly decreases to zero (see
Appendix B for further considerations into this point). To
further characterize the behavior of the flexibility versus o
curve, we assessed whether the trend could be described
as exponential decay, such that for each (E)qy, we have
(E)opt = Ae™®/®». We find that the data can indeed be well
approximated by an exponential. The w, for all packings fall
in the range 0.26 < w, < 0.40, and represent characteristic
interlayer couplings for the system.

At w values too far into the exponential tail, the communi-
ties will not be sensitive to the structure present within a given
layer, and at small values of w, dependence on the specific
ordering of layers becomes less important. We thus pick the
optimal value of interslice coupling w, to be the value such
that E(w,) is approximately half of the maximum flexibility
Emax- This procedure yields a value of w that balances the
tradeoff between the importance of intralayer edges (particle
contact forces) and persistent structure across network layers.
In Sec. IV C, we further validate this choice by comparing
the community structure obtained at w, to three null models,
showing that in each case, the real network is distinguishable
from the null model.

Using the method described above, we find w, = 0.16
(denoted by the red dot in Fig. 5), and we use this value
in community detection for all packings and for both the
normal and tangential force networks. The inset of Fig. 5
shows what the distribution of w, would be if we were to
optimize w for each packing individually. We acknowledge
that there are several other methods that could be used to
determine an appropriate coupling, but here we have focused

PHYSICAL REVIEW E 94, 032908 (2016)

on a straightforward method to choose a physically meaningful
w, which yields intermediate values of network flexibility.
In the Supplemental Material available online, we examine
the robustness of several of the results detailed below to
variations in the interlayer coupling around the optimal value
[63].

IV. RESULTS

A. Extraction of mesoscale structure from the multilayer
force network

To extract pressure dependent particle assemblies (commu-
nities) from the multilayer force networks of each experimental
run, we maximize multilayer modularity [Eq. (5)]. We consider
both the normal and tangential force networks separately, with
Ajji defined as in Sec. III A, and P;;; given by Eq. (6) [or (7)].
As determined in the previous section, in both cases we use
y =1 and w = w, = 0.16. For each particle configuration,
we carry out 20 maximizations of the multilayer modularity
to obtain an ensemble of partitions, each with their respective
value of Qmuli-

By the nature of modularity maximization and our choice of
null model, the resulting communities correspond to spatially
localized, mesoscale groups of particles that display collective
organization throughout the compression process. In particu-
lar, the first term of Eq. (5) selects for groups of particles carry-
ing above average force and that are geographically nearby, and
the second term allows those groups to be consistently tracked
between steps. In Fig. 6, we show an example of the community
architecture at each step above ®; detected from the normal
force network [Fig. 6(a)] and the tangential force network
[Fig. 6(b)], of a particular experimental configuration. In both
cases, communities are colored according to their multilayer
modularity value Q- Importantly, the same color at each
strain step corresponds to the same community, to provide a
visual sense of how particle assemblies are linked continuously
throughout compression. Unlike in single layer modularity
maximization, the communities here can persist across layers
and are dependent on their history. This formalism thus
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FIG. 6. Multilayer community structure of a compressed granular packing. For both the normal (a) and tangential (b) networks, particles
are shown at their actual locations in physical space, and are colored according to their community assignment. Redder colors correspond to
communities with higher multilayer modularity. The packing fraction increases from left to right, and only the steps with ® > & are shown.
These communities capture how the stress pattern changes due to the redistribution of forces as the system undergoes compression. In both the
normal and tangential networks, the communities become more compact with compression, but there are also marked differences, especially
in community size. In the main text, we quantify physical properties of these mesostructures and their reconfiguration, as well as differences

between the organization of the normal and tangential networks.
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provides a means to directly examine how the force network
evolves and reconfigures under compression.

It is important to point out that the structure uncovered
with multilayer community detection is representative of the
system as a whole across all layers, and not necessarily of the
static force chain structure of individual layers (unless w = 0).
Because of this, it is not required that a community in a given
layer consists of only physically connected particles; rather,
communities in a given layer are dependent on the structure
of the entire multilayer network as a whole. In this way,
the communities embody the changing network architecture
and are a consequence of the evolving stress pattern; we thus
observe the breakup and coalescence of communities across
the applied compressive steps. The normal and tangential
networks exhibit some similar features, but there are also
clear differences. In both cases, the communities become more
compact with pressure, but these structural patterns are most
clearly evident for the normal force network. The length scale
of communities from the tangential network is also smaller
than those extracted from the normal forces. In the following
sections, we study the reconfiguration and physical properties
of this architecture, and quantify these differences between the
normal and tangential mesostructures.

B. Characterization of mesoscale reconfiguration

We characterize the changes to the mesoscale structure of
the multilayer community structure using two diagnostics:
network flexibility E [Eq. (9)] and community stationarity
.. Recall that the network flexibility quantifies the amount of
reconfiguration in the network at the particle level, as measured
by the fraction of steps over which a particle changes its com-
munity allegiance. As a second measure of reconfiguration in
the stress pattern, we also consider the community stationarity
[56,64], which measures the consistency of particle content in
each community throughout compression.

To define stationarity, we begin by writing the autocorrela-
tion J(c;,c1+,) between a given community at layer /, ¢;, and
the same community at layer [ 4+ m, ¢;1,, as

lci O Crgml

J(cr.Crym) = (10)

|Cl @] C]+m| ’
where |c; N¢iym| is the number of particles present in
community c at strain step / that are also present in community
c at step [ +m, and |c; U 4| 1s the number of distinct
particles present in community c at strain step / or step [ + m.
Then, if [; is the layer in which community c first appears,
and [ is the layer in which it last appears, the stationarity of
community c is

i;ﬁf ] J(cr,cr41)
lr—1 '

In this way, communities that experience large changes in their
particle content over consecutive compressive steps will have
larger values of ¢, than communities with more consistent
structure. The average stationarity of a multilayer network is
obtained by taking the mean of ¢, over all n, communities:

1
‘= > e (12)

c

e = Y
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FIG. 7. Measures of multilayer community structure for the nor-
mal and tangential force networks. The structure and reconfiguration
of the community structure of the normal and tangential force
networks is characterized by (a) network flexibility E and (b) network
stationarity ¢. The boxplots are constructed by averaging statistic
values over optimization for each experimental packing. The red line
then denotes the median over packings and the edges correspond to
the 25th and 75th percentiles. For the same interlayer coupling, the
normal and tangential networks have statistically different behavior
in terms of these measures of network reorganization.

In Fig. 7, we show boxplots over the particle configurations
of E and ¢ for the normal and tangential force networks. We
have averaged these diagnostics over the 20 optimizations,
to obtain a mean value of (E)qp and (¢)op for each experi-
mental packing. For the stationarity calculation, we exclude
singleton communities, which only contain one particle in all
layers.

We test whether the observed changes to the normal
and tangential force networks can be distinguished by per-
forming nonparametric permutation tests on the flexibility
and stationarity values. For the network of normal forces,
there are 97 values of the flexibility (E")op and stationarity
(¢")opt (one for each laboratory configuration). Repeating the
same protocol for the tangential forces yields another set
of values (E')op and (¢")opi. We calculate the difference in
the means of these two distributions, and test whether that
difference is greater than expected in the null distribution
created by reassigning statistics uniformly at random to the
two groups: “normal” and “tangential.” Using this test, we
find significant differences in the means (over optimizations
and then packings) of both statistics, with both p values less
than 1 x 1073, In particular, 2" < E and " > ¢’. From this
finding, we conclude that at the same value of interlayer
coupling, the multilayer network of normal forces tends
to exhibit less reorganization during compression than the
network of tangential forces. This sensitivity to differences
in two related but distinct force networks suggests that our
method may be more broadly applicable. For example, it could
be used to test for differences and classify different types
of granular systems composed of varying particle materials,
shapes, or sizes. In the Supplemental Material, we show that
this distinguishability is robust to variations in the interlayer
coupling [63].
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C. Reconfiguration of network architecture during
compression: A null model comparison

Perhaps more important than absolute values of network
measures is whether or not the network evolution observed in
the real, physical system is significantly different than what
is expected from relevant null models, and whether or not
our model is sensitive to these differences. In this section,
we demonstrate that the multilayer community structure of
the compressed granular configuration is indeed distinct from
three null models with respect to the diagnostics defined
previously (E and ¢). Here, we additionally consider the
multilayer modularity Qpny. (Recall that Qi is a general
measure of how well the network can be partitioned into
densely interconnected groups of particles throughout the
compression process, with respect to the physically appropri-
ate geographic null model.) To ensure a fair comparison, we
test the real force networks from each of the 97 experimental
realizations against null models that are built using the force
information from the same experimental run. Furthermore,
we analyze the normal and tangential forces separately. To
determine statistical significance, we perform permutation
tests; assignments of statistic values to the two groups, “real
network” or “null network,” are permuted uniformly at random
to construct a null distribution of expected differences between
the two distributions.

In the first case, we impose the elimination of steady
perturbation on the system, comparing the real multilayer force
networks to null models built by setting all layers to be equal
[Fig. 8(a)]. In particular, we construct a null network A" Peat
by repeating the real force network at a constant layer s, L
times (recall that L is the total number of layers). Carrying
out this process for all such constant layers yields a set of L
null networks for each packing. We run community detection
20 times for each null network, and compute the network
diagnostics (Q™I1., ™!, and ¢™") for each trial. We average
quantities first over the optimization realizations, and then
over the different networks. Physically, this simple null model
serves as a control that allows us to assess the implications
and consequences of compression on the detected community
structure. Since there are no changes in topological structure
or edge weights from one layer to the next in the synthetic
networks, we expect all changes in community structure
to be due to noise. This baseline network reconfiguration
should be much less than the reconfiguration that occurs in
the real networks, which encode the compression procedure.
Indeed, for both the normal and tangential force networks, we
see that the null models have significantly lower flexibility,
grull o greal  gp4 higher stationarity, (“”H > g’real, than the
compressed system [see Figs. 8(a), 8(d), and 8(g)]. Note also
that the modularity of the null model is greater than that of the
true networks, which is also expected since the null models
will be partitioned into highly consistent community structure
across layers.

We next compare the real system to a null model A&,
constructed by permuting the layers (strain steps) of the real
networks uniformly at random [Fig. 8(b)]. In the experimental
protocol, compression is applied systematically, in small and
always increasing steps. The null model considered here
effectively eradicates this regularity in the layer ordering.

PHYSICAL REVIEW E 94, 032908 (2016)

The expectation is that the real networks will have less
restructuring than the scrambled model. For each experimental
packing, we create 20 null networks built from different
random permutations of the layers, and run 20 optimizations
of the Louvain algorithm for all permutations. As before, we
compute ™!, ¢™! and Q™! and average the results first
over optimizations and then over permutations. In Figs. 8(e)
and 8(h) we compare the real system to the null model, finding
that our method is again sensitive to differences in the changing
mesoscale organization of the real and synthetic networks. For
both the normal and tangential force networks, grull o greal
and ¢™! < ¢ implying more steady and regular progression
of community structure in the real system. In addition, we
observe a slight decrease in modularity in the layer permuted
normal force network, suggesting that the real compression
protocol yields stronger multilayer community structure. The
modularity of the tangential forces is less affected by layer
scrambling than that of the normal forces. We also find that
the real system can be distinguished from this null model with
respect to an alternative measure of network reconfiguration
known as promiscuity, V [65]. See Appendix C 2 for a
definition of this statistic and the results of the null model
analysis.

In the final null model [Fig. 8(c)], we consider the spatial
distribution of forces throughout the system. We construct a
null model A% by permuting the edge weights uniformly
at random within each layer while maintaining the original
contact topology and ordering of slices (for a related but
distinct null model, see [28]). It is known that the organization
of interparticle forces is crucial for the stability of granular
packings. This fact is manifested in force chains, branching
groups of particles that bear the majority of the load in the
system. Therefore, for the multilayer model to be useful, it
should not be agnostic to the pattern of forces present in phys-
ically realizable systems. For each of the 97 configurations, we
form an ensemble of null networks by permuting the forces
uniformly at random within each layer 20 different times,
and then optimize modularity 20 times for each permuted
network. As before, this is done separately for the normal and
tangential forces. In this case, we expect the synthetic networks
to display more reconfiguration and less modular structure
than the physical networks. We observe that the diagnostics
of multilayer community structure are highly distinguishable
between the real multilayer force networks and the null
model [Figs. 8(f) and 8(i)]. In particular, the force-permuted
networks exhibit more flexibility 2™ > & less stationarity
¢ < greal - and decreased modularity QE:‘J}& < Q;ﬁﬂlm for
both the normal and tangential components. These results
confirm that the network structure of the real system is
less variable and undergoes less reorganization, and that the
modularity is stronger, compared to the null model. In Ap-
pendix C 2, we additionally show that these results hold for the
promiscuity.

The findings presented in this section crucially demon-
strate that the multilayer network model and community
detection are sensitive to differences in the evolution of the
stress pattern of the compressed system compared to three
relevant null models, with respect to &, ¢, and omulti - Tp
particular, we can distinguish between the changing nature of
granular networks and null models with consistent topology
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FIG. 8. A comparison of the multilayer granular networks to three null networks. The community structure of the multilayer granular
system is compared to three null models (top row), using the quantities E, ¢, and Q. For each null model, the boxplots show the normalized
difference between the real and null network diagnostics for all experimental configurations, and for the normal (second row) and tangential
(third row) components. Significant differences between the real and null networks exist when the boxplots are above or below the zero line.
The p values obtained from permutation testing are shown beneath each box to quantify the significance of results. (If no p value is shown,
the difference is not significant). (a) A null model formed by repeating the same layer for all steps, A™P**, The values E, ¢, and Qnuy are
statistically different between the real and null networks for the normal (d) and tangential (g) components. (b) A null model A", constructed
by permuting the ordering of layers uniformly at random. The values &, ¢, and QO are statistically different between the real system and null
model for the normal forces (e), and E and ¢ are statistically different between the real system and null model for the tangential forces (h). (c)
The third null model 4% is built by permuting the edge weights uniformly at random, while maintaining the original contact topology and
layer ordering. The values E, ¢, and Q4 are statistically different between the real and null networks for both the normal (f) and tangential
(i) components.

and weights, scrambled layers, or scrambled edge weights
(but same topological structure). Even more importantly, the
differences in the reconfiguration agree with what is expected
from a physical standpoint, making evident the powerful utility
of this framework.

throughout compression. We then ask whether the physical
properties of mesoscale particle assemblies can be related
to the measures of force network reorganization previously
defined.

1. Progression of community-level features

D. Physical properties of multilayer mesostructures

In the previous section, we examined three measures to
quantify the community structure of the multilayer granular
network. However, the diagnostics we considered did not
directly describe changes in the physical properties of the
mesoscale organization. We turn now to a physical description
of the network architecture, and define measures to quantify
the size scale, strength, and geometry of community structure

throughout compression

We characterize the physical nature of community struc-
ture with three measures: size, strength, and sparsity, and
examine how these quantities change throughout compression.
Similarly to the previous section, we consider, compare, and
contrast both the normal and tangential force networks. The
size s; of community c at strain step / is simply the number
of particles within the community at that step. We denote the
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strength of a community at layer / as o, and define it to be
the average amount of force (normalized by the mean force in
the layer) on a particle in community ¢ from intracommunity
contacts. Mathematically,

1
of == > A, (13)
1

i,j€c

where A is either the normalized normal or tangential
force network. Finally, we consider a measure of spatial
compactness, which we term the community sparsity n°. The
sparsity of a community is closely related to the hull ratio,
which has been defined and used to quantify the geometric
arrangement of compressed particle assemblies [66]. The hull
ratio 4] of a community at strain step / can be understood as
the ratio of the area a of particles in the community to the area
of the convex hull of the group apy, such that

h[C _ Ziecl ai’ (14)

Qhull

where the area of particlei isa; = nriz, with r; equal to the par-
ticle radius. We then take the community sparsity at layer / to be

nt=1-he. (15)

With this definition, small values of 5 correspond to spatially
dense groups of particles, and high values of 1 correspond to
sparse particle configurations.

We now use each of these physical characteristics to
quantify the progression of mesoscale community structure
throughout the compression process. Given a partition of
particles into communities, we compute s/, o/, and ; at each
strain step [, for all communities except those which have
sf =1 for all [ (i.e., they are always singletons). We then
define s;, 0, and 1; to be the average over all communities
present in layer [:

5] = — D (16a)

—
Y]
N
—

O
N
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where n., is the number of communities present in layer /.
Repeating this process for all community detection optimiza-
tions and all particle configurations, we form representative
curves of each physical quantity as a function of strain step by
averaging the measures defined above first over optimizations
and then over experimental configurations. We denote the final
averaged physical quantities for size, strength, and sparsity as
§, &, and 7, respectively.

We first observe that the size of the mesoscale structure
increases smoothly as a function of the strain steps [Fig. 9(a)],
suggesting an increasing scale of mesostructure organization
with compression. However, the normal force communities are
noticeably larger in size, and undergo relatively more growth
throughout strain steps than the communities from the tangen-
tial network. These differences imply that the communities
from the network of normal forces are characterized by a larger
characteristic size scale than those of the tangential force net-
work, and that the normal force network responds differently
to increasing pressure. Some of these features are partially
recognizable by eye in comparing the community structure in
Figs. 6(a) and 6(b). We also find that the community strength
increases smoothly over the applied strain steps, for both the
normal and tangential components. This behavior signifies the
mesoscale architecture becoming more strongly connected
throughout compression, which agrees with the physical
expectation. Note that the average community strength & was
computed on the normalized networks (see Sec. III B 3),
which explains the similar scale between the normal and
tangential curves. Finally, we observe a slight decrease in
community sparsity across strain steps, especially during the
beginning stages. In addition, the tangential network displays
lower sparsity than that of the normal force network, implying
more compact tangential community structure. This feature
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FIG. 9. The progression of physical characteristics of community structure throughout compression. Community structure is characterized
by size, strength, and sparsity for the normal (blue) and tangential (orange) networks. (a) The average community size § of the normal and
tangential networks increases with strain step, but the tangential force communities tend to be smaller than the normal force communities.
(b) The community strength & measures the intracommunity forces, and also grows as a function of strain step for both the normal and tangential
networks. (c) The sparsity 7 quantifies the spatial density of community structure. The tangential force communities tend to be more dense
than the normal force communities. In all plots, error bars correspond to the standard error of the mean over packings.
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TABLE 1. Percentages of communities from the network of
normal forces that exhibit linear trends with respect to strength o or
sparsity n throughout compression. The numbers reported correspond
to averages over optimizations and packings, and errors are the
standard errors of the mean.

Trend Strength o Sparsity n
Increasing 32.8 £ 0.6 122 +£0.3
Decreasing 38+03 423 £0.8

is likely tied to the smaller size of tangential communities,
which constrains the set of possible spatial arrangements of
the particles within a community.

2. Trends in physical characteristics are diverse

In addition to quantifying the average behavior of
mesoscale architecture, it is also important to investigate the
behavior of individual communities throughout compression.
Although it is possible that all communities progress similarly
to the average behavior of the system (for example, coalescing
to create communities of increasing size and strength, but
decreasing sparsity), this does not have to be the case. We
find, in fact, that the situation is quite the opposite; at the level
of single communities, the progression of physical structure
varies greatly. We demonstrate this in a simple way. First, we
identify the number of communities that exhibit linear trends
with respect to size, strength, or sparsity as a function of strain
step. Tables I and II show the results of this analysis for the
normal and tangential networks. We observe that the majority
of mesostructures do not exhibit consistent and predictable
linear trends in terms of their physical properties throughout
the compression process. While some linear tendencies are
much more likely to occur than others (for example, increasing
strength and decreasing sparsity), the behavior of many
communities cannot be characterized by a simple linear
relationship. This result highlights the important diversity of
mesoscale structural evolution.

Next, we ask if and how the set of communities which
do have linear behavior with respect to a given physical
property, are related to each other. In Fig. 10, we plot the
slope of the linear regression fit of sparsity versus the slope
of strength, for each community in all optimizations and
experimental packings. Again, the scatter plots point to the
variation of mesostructure development, as all quadrants (with
the exception of the upper left) are significantly filled in.
These data support the notion that communities may coalesce,

TABLE II. Percentages of communities from the network of
tangential forces that exhibit linear trends with respect to strength o or
sparsity n throughout compression. The numbers reported correspond
to averages over optimizations and packings, and errors are the
standard errors of the mean.

Trend Strength o Sparsity n
Increasing 18.3+0.3 149 +£0.3
Decreasing 23+0.1 28.1£0.6
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FIG. 10. Scatter plots demonstrating the diversity of multilayer
community structure. The relationship between the slopes of commu-
nities that exhibit linear trends with respect to strength and sparsity
across compression. For both the normal (a) and tangential (b) force
networks, all but the upper left quadrant are quite populated, pointing
to the diversity in how the community structure changes throughout
the compression process.

disband, or become increasingly branchlike, and each of these
behaviors is observable as the force network reorganizes under
compression.

To quantify the codependence of the two statistics, we first
find the number of communities (i.e., the intersection) that fall
within each quadrant for each optimization and packing. For
example, if o4 are the communities with linearly increasing
strength and 4 are those with linearly increasing sparsity, then
we compute the number of communities that satisfy oy N 74
(upper right quadrant of the scatter plots). Then, to determine
how often increasing strength (o4) occurs with increasing
sparsity (14 ), for example, we normalize the intersection by the
total number of communities with o4. Conversely, if we want to
know the percentage of communities with increasing sparsity
(n4) that also have increasing strength (o4 ), then we would
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instead divide the intersection by the number of communities
in n4. Table Il in Appendix C 1 shows the percentages for each
of the possible combinations. The strongest relationship occurs
between communities with o) and 7, . In this case, we find that
if a community has linearly decreasing strength with strain
step, then it is likely to also be more compact (but note that
not many communities decrease in strength in the first place).
These results may be due to the community losing particles
and thus becoming more dense [on average for the normal
(tangential) network, 98.6% (96.6%) of communities with
linearly decreasing strength and sparsity also have linearly
decreasing size]. The nearly empty upper left quadrants are
consistent with this relationship as well; communities with
decreasing strength rarely become more spatially spread out
throughout compression. We also find that on average, more
than half of the communities with increasing sparsity also have
increasing strength, which is likely due to the community
gaining particles, thus allowing it to take on configurations
which are more spatially extended [on average for the normal
(tangential) network, 93.9% (91.7%) of communities with
linearly increasing strength and sparsity also have linearly
increasing size].

E. Linking physical properties to network reconfiguration

Thus far, we have independently characterized the mul-
tilayer community structure using notions of network reor-
ganization (flexibility and stationarity), and using physical
quantities, (size, strength, and sparsity). We now attempt
to link these two ideas together, asking whether network
reconfiguration can be related to physical aspects of the
packing structure.

1. Local reorganization

We first investigate the relationship between particle flex-
ibility £ [Eq. (8)] and the interparticle force f. Recall that
& is a measure of local reconfiguration in the force network
in that it is defined for a single particle, but it is determined
from the mesoscale community structure. For every multilayer
community partition, we compute the flexibility of each
particle as given in Eq. (8), and average these values over
partitions. This yields a single value of flexibility &; for the ith
particle in a given experimental run. We do this for the normal
and tangential force networks separately.

Our first finding is that flexibility £ is strongly correlated
with the average force on a particle throughout strain steps
(f)g, as well as the average absolute change in force on
the particle (|Af|)y between consecutive strain steps. This
result holds for both the normal and tangential components.
For the ith particle, the average change in force (|Af? [)g is
given by

| =L
17)

18 = 7= 2 M= £,
=1

where f is the total force on the ith particle in layer /,
determined from the adjacency tensor as fli => j Ajji.

In particular, we observe that particles with high flexibility
& also tend to have high values of average force (f), and
average change in force (|Af|)4. In Fig. 11, we plot & versus
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FIG. 11. Force drives local network reorganization. (a), (c)
Scatter plots of particle flexibility & versus the average force on a
particle across compression (f), for a sample packing. In both the
normal and tangential networks, there is a strong, positive Spearman
correlation between the two quantities. (b), (d) Scatter plots of
particle flexibility & versus the average absolute change in force
on a particle across compression {|Af|), for a sample packing. In
both the normal and tangential networks, there is a strong, positive
Spearman correlation between the two quantities. (See Fig. 22 for the
distribution of correlations for each packing.)

(f)¢ for each particle using the normal [Fig. 11(a)] and
tangential [Fig. 11(c)] force networks of one experimental
configuration. Figures 11(b) and 11(d) show & versus (|Af ).
We quantify these relationships for all experimental packings
using the Spearman’s rank correlation p. For the normal
forces, the average correlations over packings for £ versus
(f)e and & versus (|Af])s are py = 0.81 and par = 0.74,
respectively, with all p values satisfying p; < 1 x 107174
and par < 1 x 17127, respectively. [In Figs. 22(a) and 22(b)
of the Appendix, we show the distributions of p; and pay
for all packings.] For the tangential forces, p; = 0.80 and
Pay = 0.71, with all p values satisfying p; < 1 x 10713! and
pay < 1x 10719, [In Figs. 22(c) and 22(d) of the Appendix,
we show the distributions of py and pay.] In addition to
the flexibility, we also tested the relationship between force
and reconfiguration on a more robust measurement of local
network rearrangement called promiscuity [65], finding that
the relationship still strongly holds. See Appendix C 2 for
a description of the promiscuity statistic, an example scatter
plot, and correlation values.

To understand these results, first recall that the flexibility
of a particle is a measure of how strongly fixed the particle
is to its given community; £ is the number of times a particle
changes community normalized by the number of possible
changes, so lower values of & correspond to particles that
have more stable community allegiance across network layers.
Our finding thus implies that large forces (or large changes in
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FIG. 12. Community reorganization is driven by changes in
intracommunity force. Scatter plots show the community stationarity
¢ vs the average absolute change in community strength across
compression (|Ac.|), for an example packing. For both the normal
(a) and tangential (b) networks, there is a strong Spearman correlation
between the two quantities.

forces) are associated with particles reconfiguring and shifting
communities throughout compression.

2. Mesoscale reconfiguration

We now examine the relationship between mesoscale
reconfiguration as measured by the stationarity, and changes in
physical properties of the multilayer community structure as
measured by strength. In particular, we ask if reconfiguration
at the community level is correlated with changes in the
community strength throughout the compression process. For
a given experimental run and modularity optimization, the
stationarity (¢) for all communities is computed using Eq. (11),
and the strength (o) of all communities at each layer is
computed using Eq. (13). We then compute the Spearman
correlation between stationarity . and the average absolute
change in strength (|Ao.|)y across all layers in which the
given community exists, L.. The average absolute change in
the strength of a community ¢ across applied strain steps is
calculated according to

I=L.~1

Z |015r1 _Ulc|- (18)

=1

Aocl)y =
(180cl)s =

Communities that have s; = 1 for all layers are ignored.

We find that the stationarity is significantly anti-correlated
with changes in community strength (a measure of intracom-
munity force). Figure 12 shows scatter plots of ¢. versus
(|Ao.|)g for all communities from each of the 20 optimizations
of one experimental configuration for the normal force network
(a) and tangential force network (b). Specifically, large changes
in o, across compression give rise to lower values of . (which
corresponds to large changes in community particle content).
For the normal force network, the Spearman correlation
averaged over optimizations and then packings for ¢, versus
(|Aoc])g is Pac = —0.65 with all p values less than 0.0033,
and for the tangential network, par, = —0.69 with all p values
less than 1 x 10~'3. Figure 23 in Appendix C3 shows the
distributions of the optimization-averaged Spearman correla-
tions for each experimental packing. The findings presented
here demonstrate that changes in community strength (i.e.,
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FIG. 13. Stationarity vs absolute change in community strength
for long-lived communities. Scatter plots show the community
stationarity ¢. vs the average absolute change in community strength
across compression (| Ao,|)4 for communities that exist for the entire
compression process. For both the normal (a) and tangential (b)
networks, there is an increased correlation between the two quantities
across packings.

in intracommunity force), are associated with mesoscale
reconfiguration across compression (i.e., the stationarity). This
result complements those of Sec. IV E 1, where high values of
force and change in force across compression were associated
with high values of local reorganization; a similar relationship
holds for restructuring at the intermediate scale as well. It is
thus clear that changes to the mesoscale network architecture
are strongly tied to changes in physical properties that occur
due to the compression process.

It is important to point out that different communities might
not exist for the same number of strain steps. Therefore, as a
more robust measure of the relationship between community
strength and stationarity, we repeat the above analysis but
consider only those communities that persist throughout the
entire compression cycle. If we define the lifetime of a
community to be the number of steps in which it exists
divided by the total number of steps in the network, then we
consider the set of communities that have lifetimes equal to
1. On average over all optimizations and experimental runs,
these long-lived communities correspond to fractions of ~0.62
for the normal force network and &0.54 for the tangential
force network. For both the normal and tangential forces, we
find that the correlations between community strength and
stationarity increases compared to the correlation calculated
using communities with all lifetimes. In particular, pa, =
—0.80 with all p values less than 1 x 1078 for the normal force
network [see Fig. 13(a) for an example] and par, = —0.78 with
all p values less than 1 x 10~'2 [see Fig. 13(b) for an example]
for the tangential force network. (Note that the horizontal
“stripes” at high values of ¢ correspond mostly to communities
with only a few particles; in the case of small groups, it is
likely for different communities to achieve the same value
of stationarity, because only so many reconfigurations are
possible.) The stronger correlations observed here may be due
to the fact that they are inferred only from communities that
exist for the same number of steps (and so are more comparable
to one another), and also from the fact that these communities
have the most data over which to compute averages. Phys-
ically, these longer-lived communities are also expected to
undergo more steady reorganization with compression, thus
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offering smooth estimates of stationarity; while shorter-lived
communities may experience more extensive rearrangements,
leading to their birth or death, and thus may offer more variable
estimates of stationarity. Figure 24 in Appendix C 3 shows
histograms of the Spearman correlations for all packings. In
the Supplemental Material, we explore how the relationships
examined throughout this section change as the interlayer
coupling is varied around the optimal value [63].

F. Sensitivity to the subsystem

A useful feature of our experimental setup is the presence
of the low-friction particles in the center of the packing. As a
final demonstration of the sensitivity of the multilayer network
model to the underlying physics, we examine its ability to
detect differences in the physical properties of the subsystem
(low ) versus the bath (high w). Sensitivity to such variation
is crucial to the utility of this framework.

The first step is to consistently define the subsystem. The
majority of subsystem particles are identified using UV dye,
as described in Sec. II. We use the UV dye image to initially
identify particles as low-friction or high-friction particles at
each strain step. Then, after having tracked particles in each
frame, particles are labeled as low friction if they are identified
as low friction for more than half of the steps. This technique
ensures that low-friction particles are not mislabeled as high-
friction particles, and the reverse rarely occurs.

The second step is to define what constitutes a subsystem
community versus a nonsubsystem community. Since the
communities we consider consist of more than one particle, it
is highly unlikely for all particles within a group to either be
only inside the subsystem radius or only outside the subsystem
radius. We therefore consider a subsystem community ¢, to be
a community such that more than 75% of its particles are
contained within the low-friction area at some point during
the compression process. Any community ¢, that does not
meet this condition is considered part of the bath. To ensure a
fair comparison between these two groups, we further require
that the communities examined in the two groups must be of
similar sizes. (Due to the nature of the experimental setup, the
subsystem communities are localized within a smaller region
of space, and therefore will have a larger constraint on their
possible sizes.) Within each optimization, we compute the
average size (s.)q of all communities across all steps in which
the communities exist. We then find the largest and smallest
average sizes of the subsystem communities, (s¢ )¢ max and
(Sc,)p,min» and find all bath communities that have sizes
(8¢, )¢ such that (s¢ )¢, min < (S¢,)¢ < (S¢, )¢, max. This protocol
mitigates the likelihood that observed differences are due to
differing community sizes.

We now proceed to investigate if and how the community
strength evolves differently for the subsystem mesostructures
versus those in the bath. We follow the procedure described
in Sec. IV D 1, but here we separate the subsystem and bath
communities. In Fig. 14, we show the results of this analysis
for both the normal [Figs. 14(a) and 14(b)] and tangential
[Figs. 14(c) and 14(d)] force networks. For 5, &, we plot one
curve for the bath (shown in black) and one for the subsystem
(shown in red). Figures 14(a) and 14(c) show the evolution of
community size; here we note the scale of the y axes, which
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FIG. 14. A comparison of the physical characteristics of the
subsystem and bath communities. (a), (c) Curves showing the average
community size of the subsystem (red curve) vs bath (black curve)
communities for the normal and tangential networks. The small differ-
ences between the curves for each network ensure that we compare
communities of similar size between the two groups. (b), (d) The
progression of community strength in the network of normal forces is
not significantly different between the subsystem and bath. However,
the tangential network displays a clear separation, suggesting that the
multilayer network model and community detection are sensitive to
differences in friction. Importantly, the direction of this sensitivity
agrees with the expectation from local force information alone (the
modular structures found in the low-friction bath are characterized
by lower tangential intracommunity force), but the difference is more
pronounced.

show that we are indeed comparing ¢, and c;, of similar sizes
(the curves remain within a size difference of about one particle
throughout all steps).

Figures 14(b) and 14(d) show the average community
strengths of the low- and high-friction groups. For the normal
force networks, the two curves are very close; in other
words, there does not appear to be a large difference in the
progression of the intracommunity normal forces between the
low- and high-friction mesostructures. This is not a surprising
result, however, as we expect the difference in friction to more
significantly effect the tangential component rather than the
normal component. Indeed, when we consider the network of
tangential forces, we are clearly able to distinguish between
the architecture of the subsystem and bath. At the beginning of
the compression cycle, the average strengths of the low- and
high-friction communities still follow each other closely, but
after the third step, we observe that the two groups separate. In
addition to the community strengths being different, the way
in which they differ agrees with the physical expectation: the
intracommunity tangential force of the high-friction particle
assemblies grows significantly more than the intracommunity
force of the low-friction particle assemblies as compression
continues.
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An important point of consideration is whether or not
this analysis gives wholly the same information as would
differences between the interparticle tangential force in the
bath and the subsystem. We first note that while we indeed
use force information to separate the two groups, a crucial
distinction is that our measure utilizes an analysis of the
mesoscale network structure (in the form of community
strength), rather than purely local information (the force on
single particles from all of their neighbors). However, we
examine this by first computing the total tangential force
(absolute value) on a particle by summing the contributions
from all of the particle’s contacts. This is done for each particle
in a given experimental configuration, and for all compression
steps in the cycle. Next, we compute the mean force in the
bath and the subsystem by averaging the force over all the
particles in each category. Finally, we repeat this process for
all experimental packings and average the results over those
configurations. This results in two curves: the mean force
in the subsystem and the mean force in the bath, versus the
compression step. We show this plotin Fig. 26 of the Appendix.

The mean force curves show that there is some separation
in the behavior of the bath versus the subsystem, with the
low-friction particles characterized by slightly lower tangential
forces. While this finding does agree with the conclusion drawn
from the multilayer tangential communities, the separation
observed in these curves is not as pronounced as the difference
found when considering the mesoscale structure [Fig. 14(d)].
Therefore, we conclude that the multilayer communities
contain different and more sensitive information than the local
interparticle forces alone. Consideration of structure beyond
the local scale may be even more advantageous or necessary
in different systems.

The findings discussed here first indicate that our model
is indeed sensitive to underlying differences in the bath and
the subsystem. But, perhaps more crucial are the physical
conclusions about changes in the network structure; if only the
network of normal forces is considered, it is difficult to discern
the low- and high-friction mesostructures. In this case, both
groups display strong community organization throughout
all applied strain steps. However, when the tangential force
network is considered, the low-friction subsystem forms
noticeably weaker communities than the high-friction bath,
and the progression of the two groups can be distinguished.
This result suggests that the examination of both the normal
and tangential force networks can lead to a more complete
understanding of mesoscale structure in granular systems.
In Sec. V, we discuss broader implications of the findings
discussed in this section.

V. DISCUSSION AND METHODOLOGICAL
CONSIDERATIONS

Although it is thought that mesoscale structures underlie
many bulk properties of granular materials, there is a pressing
need to develop theoretical tools for identifying these struc-
tures and describing how they change under external pertur-
bations. Graph theoretic approaches provide a framework in
which to address these challenges, via the network of contact
forces connecting the grains. In this study, we use a common
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geometry (biaxial compression) as a case study for developing
approaches drawn from network theory.

We describe the granular system by modeling it as two,
ordinal multilayer networks (one constructed from the normal
component of the interparticle forces, and the other from the
tangential component). Then, we extract inherent mesoscale
structure from each network using multilayer community
detection techniques with a physically grounded null model.
Unlike in a static network, the particle assemblies we detect
persist across layers, allowing for a direct analysis of the
progression of and changes to the mesoscale organization. The
particle assemblies are quantified with measures of network
reconfiguration, which provide insight into how the stress
distribution changes with compression, as well as with physical
descriptors, including size, strength, and a measure of spatial
compactness. We find that both the normal and tangential
components display community structure, though the network
of normal forces shows collective organization on a larger scale
(bigger communities), and exhibits less restructuring during
the sequence of applied strain steps. We also demonstrate that
the community architecture of the real system is significantly
distinguishable from three null models.

We additionally show that network reconfiguration can
be tied to physical measures such as interparticle force
and community strength. This is a crucial finding, as it
bridges the gap between seemingly abstract measures of
network reorganization and physical properties of network
components. One result in particular that merits discussion
is that particle flexibility is positively correlated with the
average force on a particle across layers. Although the notion
that force drives local reorganization is intuitive from a
physical standpoint, it is interesting to consider this result in
the context of a different type of network where flexibility
has also been studied. Since we consider particles to be
nodes and forces to be weighted edges, there is a direct
analogy between the total force on particle i in a given static
network, and the weighted degree of node i, k; =) jAij in
a general undirected network with adjacency matrix A. In
a study on the dynamic community structure of functional
human brain networks during learning, a seemingly opposite
relationship between flexibility and node strength exists [67].
It was found that nodes from densely connected brain regions
exhibited little change in community allegiance throughout
learning, whereas weakly connected nodes had higher values
of flexibility. This points to an interesting contrast that exists
between the progression of the granular network and the much
less physically constrained functional brain network. It is
reasonable to think that the source of the opposing relationship
between node strength and flexibility is due to the physical
nature of the granular system, and the interpretation of node
strength as force, which drives reconfiguration. But, perhaps
more importantly, this finding motivates the general need to
develop more physically informed network measures to study
these mechanical systems. While other metrics do exist for
multilayer networks, such as measures of clustering, paths and
walks, and centrality [41,42], their utility in describing the
evolution of the stress pattern in granular media is unclear.
The use of the geographic null model (versus the traditional
Newman-Girvan model) is an important step in moving
towards utilizable network models of physical systems.
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In the final section, we consider the presence of the
low-friction subsystem, asking if our model is sensitive to the
subsystem, and more importantly, how. We find that from
the normal force network alone, it is difficult to distinguish
the two groups. However, consideration of the tangential
network shows a clear difference in the progression of the
intracommunity forces of the subsystem versus the bath, with
the low-friction modules characterized by noticeably smaller
tangential strength. These conclusions illustrate that low-
friction systems can have different community organization,
and that the both the normal and tangential networks contain
useful information. This analysis validates the utility of
multilayer community detection as a useful tool to use in future
investigations where the conditions and/or desired prediction
require a mesoscale (rather than purely local) analysis of the
material structure. An interesting direction for future work
would be to examine the evolution of sheared systems using
the multilayer network approach, where we might expect to see
heightened sensitivity to differences in friction, and perhaps
altered reconfiguration patterns.

It is our hope that the method and results presented in
this work will inform future studies on granular materials.
For example, an interesting question is whether or not
measures of network reconfiguration can be related to other
notions of failure and deformation, like soft spots [68], force
chain buckling [69,70], displacement correlations [71], or
angular displacements. Although we did not measure particle
rearrangements in these experiments, it would be interesting
to study the influence of displacements on the community
organization. This would provide further insight into how
changes in local structure affect the material architecture on
intermediate scales. Better yet, can we predict rearrange-
ment events from structural features of the network before
deformation? Investigation of the latter will likely require
the formulation of additional physically informed statistics
of network dynamics, and may moreover be complemented by
machine learning techniques.

The fact that the multilayer network framework is sensi-
tive to differences in the reconfiguration of null models as
well as to differences in friction further suggests that the
framework may find applicability beyond this study. One can
imagine using this formulation to not only characterize the
evolution of a single system, but also to distinguish, quantify,
and classify dissimilarities between several systems that are
slightly different. For example, compressed systems versus
sheared systems, or experiments versus simulations. Another
interesting consideration might be to see how the magnitude
of the sharp decrease in flexibility versus interlayer coupling
is altered for different granular systems, especially those in
which the dynamics is not quasistatic. For example, in the
case of the latter, we may expect a smaller magnitude of
the dropoff, and thus the dropoff value could be a way to
characterize or distinguish different dynamics. One could
also use this framework to examine how varying particle
shapes and sizes effect the evolution and structure of the
force network at the intermediate scale, or to inform the
design of materials that exhibit tailored physical properties
under external perturbations. Finally, the ability to identify
and quantify mesoscale architecture is important in other
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physical systems more broadly. The brain [56,62,72—-74] and
biomaterials [75-79] are a few examples of systems where
intermediate structure is crucial to function.

In order to solidify the utility of the model presented here,
it will be necessary to carry out a deeper exploration of
the methods. The investigation of different null models for
community detection is one place to start, especially in regard
to the tangential network. In this study, we took the absolute
value of the tangential forces in order to use the geographic
null model and directly compare to the normal forces, but in
different situations (sheared systems, for example) the sign of
the force is important and should not be discarded. However,
to keep this information will require a null model that can
correctly deal with signed adjacency matrices without losing
physical meaning. A more thorough sampling of the phase
space formed by the two resolution parameters w and y
would also be useful. Additionally, it may be more physically
reasonable to move away from a scalar interlayer coupling and
examine more complex (but perhaps more informative) ways
of linking layers together. For example, particle properties
or similarity measures between the individual static networks
could be used to determine the magnitude of coupling strengths
in the multilayer formulation. Finally, it will be important to
continue developing relevant measures of multilayer network
reconfiguration that are informed by the physical questions we
are attempting to answer.

In this study, we have utilized multilayer networks to
model and characterize changes in the intermediate-scale
structure of a quasistatically compressed granular material.
The framework introduced here is sensitive to the important
inhomogeneities present in granular media, and allows for
the direct extraction of pressure-dependent, intermediate scale
structure that has not previously been probed or examined. We
conclude by noting that, in addition to particulate systems,
the methods developed and exercised in this work can be
applied more broadly across physical, biological, technolog-
ical, and social systems to understand how evolving inter-
actions between system components organize into collective
structure, which in turn constrains bulk properties and system
performance.
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FIG. 15. Stationarity as a function of the interlayer coupling.
Network stationarity quantifies the consistency of multilayer com-
munities, and changes with the interlayer coupling w. Each dot
corresponds to the average network stationarity over all optimizations
and experimental packings ¢ at the given interlayer coupling . When
w = 0, the results of static community detection are recovered; there
is no persistent structure across compression, and ¢ = 0. As o is
increased away from zero, ¢ increases smoothly. This corresponds
to increasing stability in the particle content of communities across
layers.

APPENDIX A: EFFECT OF THE INTERLAYER COUPLING
ON STATIONARITY AND MODULARITY

In the main text, we examined how the average network
flexibility E behaved as a function of the interlayer coupling
w. Below we also consider how the stationarity ¢ and
multilayer modularity Qi vary with w. InFig. 15, each point
corresponds to the average stationarity ¢ over optimizations
and packings. Recall that the stationarity is a measure of
the consistency and stability of community structure. The
stationarity satisfies ¢ € [0,1], with higher values of ¢ corre-
sponding to more consistent communities. At the @ = 0 limit,
we recover static community detection and thus all particles
are assigned to new communities at each layer. In this case,
the stationarity achieves its minimum value: {(w = 0) = 0. As
explained in the main text, introducing even a small interlayer
coupling induces a nontrivial amount of persistence in the
communities, and the stationarity jumps to just above 0.6.
This abrupt increase in ¢ is the same phenomenon that causes
the drop in flexibility. However, beyond the singular point of
w = 0, the stationarity proceeds to increase smoothly towards
its limiting value as the interlayer coupling increases.

In Fig. 16, each point corresponds to the average mod-
ularity Qi over optimizations and packings. As with the
stationarity, modularity is also an increasing function of w
and exhibits a similar jump in going from w = 0 to a nonzero
value. Increasing w gives more importance to the temporal
consistency of communities; as can be seen from Eq. (5),
each time a particle remains in the same community between
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FIG. 16. Multilayer modularity as a function of the interlayer
coupling. Maximizing modularity [Eq. (5)] at different values of
the interlayer coupling partitions the multilayer force networks into
communities with varying degrees of persistence across layers.
Here, each dot represents the average network modularity over all
optimizations and experimental packings Qi at a given interlayer
coupling w. At w = 0, the limit of static community detection is
recovered where modularity maximization is carried out for each
compression step independently. For the networks at hand, modularity
is an increasing function of the interlayer coupling.

consecutive layers, the second term contributes positively to
Omuii- The observed increase in modularity as a function of @
over a large range implies that in these networks, the increase
in modularity due to increased persistence of communities
across layers outweighs the contribution from the first term of
Eq. (5), which tends to uncover the geographically localized
static structure.

We also provide additional examples of community struc-
ture at different @ values. Figure 17 shows the results of
community detection on the tangential force networks when
the interlayer coupling is zero; in this case, we recover the

4 >

1
\:{“ - ta ﬂz::z;"'} “
0}3‘ "\‘? |
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a o~ 1
i~ n v
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Modularity
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é&@" ”’“?@

P i :
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-
|

FIG. 17. An example of static community structure from the
tangential force network. At w =0 we recover the results of
single layer community detection; there is no notion of linking
mesostructures from one compressive step to the next.
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FIG. 18. An example of the multilayer community structure of
the normal force network at high interlayer coupling (w = 1). At
large enough values of w, the community structure becomes con-
sistent (unchanging across network layers), and the model becomes
insensitive to changes in network architecture.

results of single layer community detection. As was the case
with the normal force communities at w = 0 (Fig. 3), the
communities at each step are completely independent of one
another. This fact motivates the generalization of the network
framework to the multilayer regime, which allows for direct
observation of how mesostructures change throughout the
compression cycle. Figure 18 shows an example of community
structure detected at a high interlayer coupling (w = 1), for the
network of normal forces. In this case, the particle assemblies
are almost completely consistent across layers, and we thus do
not probe network reorganization.

APPENDIX B: EFFECT OF SMALL » ON NETWORK
FLEXIBILITY

In Sec. IIl B 4 of the main text, we began the sweep
over interlayer couplings at @ = 0.01, which corresponds to
a weight equivalent to Wlo of the mean edge weight in each
layer. Although this value is a relatively small step away from
w = 0 (where the average network flexibility is E = 1), we
find that even at such a small coupling, the flexibility drops
significantly, to 8 A~ 0.3349. Here, we consider the sensitivity
of the drop in flexibility at arbitrarily small omega.

To test the nature of the community structure at small
coupling, we carry out 20 optimizations of modularity max-
imization for each packing at w, & 0 (using the network of
normal forces), where € is bounded by numerical precision.
The flexibility of each optimization is then calculated accord-
ing to Eq. (9), and a single value for each configuration is
obtained by averaging the values over the 20 realizations
of community detection. Finally, we compute the average
flexibility values over packings to obtain E. Interestingly,
we find that in the case of these granular networks, the
mean flexibility over experimental configurations still remains
much less than one, with E(w.) = 0.37. Figure 19 shows
the distribution of the optimization-averaged flexibility values
(B)opt for each packing. This finding suggests that even
arbitrarily small values of the interlayer coupling do not
significantly increase the amount of reconfiguration observed
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FIG. 19. Histogram of flexibility values over experimental pack-
ings for w. ~ 0. Even at a very small interlayer coupling, the
flexibility values of the granular networks do not increase by a
significant amount compared to the values obtained at w = 0.01.

in the resulting community structure, and solidifies the validity
of our choice of initial w at 0.01.

APPENDIX C: PHYSICAL PROPERTIES OF MULTILAYER
COMMUNITIES

1. Communities with linear trends in physical characteristics

In Sec. IV D 2 of the main text, we examined communities
that exhibit linear trends with respect to strength o and
sparsity n with compression, finding that communities with
decreasing strength very often also have decreasing sparsity,
and about half of communities with increasing sparsity also
have increasing strength. There are many other possible
combinations one could consider; here, we report percentages
that quantify the likelihood that any two such combinations of
linear trends occur together in a given community (Table III).

TABLEIIL. The percentage of communities that progress together
in terms of their linear trends with respect to strength o and sparsity 7.
The first column denotes the relationship that we consider. The second
and third columns are the average percentages over optimizations
and packings for the given relationship, for the normal and tangential
networks, respectively. Errors are the standard errors of the mean over
packings.

Trend Normal Tangential
oy Ny /oy 23.5+0.6 412+1.0
oy Ny /oy 46.2+0.7 21.8+£0.5
o, Nny/o, 1.9+04 23+0.6
o,Nn /oy, 833422 76.3+2.1
ny N oy /ny 63.8+£1.2 50.4+£09
nmNaoy/ng 0.6+0.1 0.3+0.1
n,Noy/ny 36.3+0.7 143+0.3
nyNaoy/n, 64+£05 55+0.3
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FIG. 20. Network promiscuity values differ between the gran-
ular system and null models. Significant differences between the
reconfiguration of the granular network and the null models exist
when the boxplots do not cross the zero line. (a) Boxplots showing
that Wy < Wy for the normal and tangential networks, where
the null model A" is constructed by scrambling network layers.
(b) Boxplots showing that W, < W, for the normal and tangential
networks, where the null model A% is constructed by scrambling
the edge weights within each layer while preserving contact structure
and layer ordering. In all cases, statistical significance is determined
by permutation testing.
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FIG. 21. Interparticle forces predict a more robust measure
of local reconfiguration. The relationship between local network
reconfiguration and the average force on a particle across network
layers holds for a more robust measure of reorganization known as
promiscuity. (a), (c) Scatter plots of particle promiscuity ¢ vs the
average force on a particle across all compressive steps (f), for a
sample packing. For both the normal and tangential networks, there
is a strong Spearman correlation between the two quantities. (b),
(d) Scatter plots of particle promiscuity v vs the average absolute
change in force on a particle across compression (| A f|) 4, for a sample
packing. For both the normal and tangential networks, there is a strong
Spearman correlation between the two quantities.
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spearman correlations for particle flexibility vs.
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FIG. 22. Distribution of Spearman correlations for £ vs ( f), and
(IAf])¢ for all experimental packings. (a), (b) Correlations for the
normal force network. (c), (d) Correlations for the tangential force
network.

To understand the following table, first recall that the quantity
o4 N1y, for example, is the number of communities with
increasing strength and increasing sparsity. Then, the quantity
(o4 N'ny)/oy gives the fraction of all communities with
linearly increasing strength that also have linearly increasing
sparsity.

2. Promiscuity as a more robust measure of changes
in local network stucture

Throughout this work, we use the notion of flexibility
(Sec. III B 4) as a measure of local reconfiguration that is
determined from the underlying mesoscale community struc-
ture in the system. As a more robust measure of local network
reorganization, we also consider the particle promiscuity. The
promiscuity v; of particle i is defined as the fraction of all
communities in which the particle participates at least once,
across all network layers. In the context of this study, the
promiscuity clarifies whether a particle is simply bouncing
back and forth between the same two communities (which

(@)  Normal Force Network (b)
25 20

Tangential Force Network

count
count
=

0 0
-0.8 -0.75 -0.7 -0.65 -0.6 -0.55 -0.5 -0.45 -08 -075 -07 -0.65 -0.6 -0.55

spearman correlations for stationarity vs.
average absolute change in community strength

spearman correlations for stationarity vs.
average absolute change in community strength

FIG. 23. Distribution of Spearman correlations for ¢. vs (|Ac.|)y
when we include communities with all lifetimes. The Spearman
coefficients for the normal force network (a) and tangential force
network (b) have been averaged over optimization for each packing.
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would yield high & but low ), or truly participating in many
different communities throughout compression (a situation
that leads to both high & and high ). As with the flexibility,
we define the network promiscuity W to be the average over

all particles
1

We first test whether the promiscuity differs between the
multilayer force networks of the real system and the layer
(A®°s) and force-scrambled (A°9€°%) null models. In both
cases, we follow the analysis described in Sec. IV C, and
obtain results in line with those found using the flexibility.
In particular, for both the normal and tangential force net-
works, the promiscuity values of the real system are lower
than the promiscuities of both null models. In Fig. 20,
we show boxplots over the experimental configurations of
(Wreal — Whun)/ Wrea. (For each configuration, the value we
consider is the average over community detection optimiza-
tions.) The promiscuity values of the real and null networks are
significantly different when the boxplots do not cross the zero
line.

We also investigated whether or not the strong positive
correlation between interparticle force and flexibility also
holds for interparticle force and promiscuity. Carrying out the
same analysis as described in Sec. IV E 1, we find that the
result is robust: high values of the average force or absolute
change in force across compression are positively correlated
with high values of . In particular, we find oy = 0.81 and
Pay = 0.74, with all p values satisfying py < 1 x 107173
and pay < 1 x 10~'28 for the network of normal forces, and
oar =0.79 and pay = 0.70, with all p values satisfying
pr<1x107" and pas < 1 x 107177 for the network of
tangential forces. We show an example scatter plot of these
relationships for the particles in a single experimental packing
in Fig. 21, and show the distribution of Spearman correlations
for each packing in Fig. 25.

(ChH

3. Spearman correlation distributions

Throughout this work, we quantify relationships between
network reconfiguration and physical properties of network
structure using Spearman correlations and example scatter

(@)  Normal Force Network (b)

Community lifetimes = 1

Tangential Force Network

Community lifetimes = 1

count
count

4

0
-0.9 -0.85 -0.8 -0.75  -0.7 -0.65

0
-0.88 -0.84 -0.8 -0.76 -0.72 -0.68

spearman correlations for stationarity vs.
average absolute change in community strength

spearman correlations for stationarity vs.
average absolute change in community strength

FIG. 24. Distribution of Spearman correlations for . vs {|Aoc|)4
when we only include communities with lifetimes = 1. The Spearman
coefficients for the normal force network (a) and tangential force
network (b) have been averaged over optimization for each packing.
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FIG. 25. Distribution of Spearman correlations for ¥ vs ( f)4 and
(IAf])¢ for all experimental packings. (a), (b) Correlations for the
normal force network. (c), (d) Correlations for the tangential force
network.

plots. Here, we show histograms of the Spearman correlation
values for flexibility versus average force and average absolute
change in force (Fig. 22), stationarity versus community
strength for all lifetimes (Fig. 23) and for communities with
lifetime = 1 (Fig. 24), and promiscuity versus force and aver-
age absolute change in force (Fig. 25). In all cases, we show the
correlation values for both the normal and tangential networks.

0.12 T T T T T T T x

—e— Subsystem
0.1+ —e— bath

0.08}

0.06

on particles

0.04

0.02}

average tangential force

strain step, /

FIG. 26. The average tangential forces on the bath (black curve)
and subsystem (red curve) particles. After about the third compression
step, the curves begin to separate with the low-friction subsystem
characterized on average by lower tangential force than the bath.
This agrees with the result found using the multilayer tangential
communities; however, the separation observed via this local measure
is less pronounced than the separation determined from the mesoscale
community structure.

032908-21



PAPADOPOULOS, PUCKETT, DANIELS, AND BASSETT
APPENDIX D: TANGENTIAL FORCE IN THE BATH
AND SUBSYSTEM

Figure 26 shows the mean tangential force on particles in
the subsystem and the bath. Consistent with expectation, the

PHYSICAL REVIEW E 94, 032908 (2016)

tangential force in the subsystem is lower than in the bath.
However, the separation in the curves obtained from this local
measure is not as strong as that obtained from the community
structure (Fig. 14).
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