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In our paper we studied self-averaging and ergodicity for anomalous diffusion in quenched random media. We concluded that
diffusion is both self-averaging and ergodic in d � 2 and non-self-averaging and nonergodic in d < 2. Although our main results
regarding self-averaging remain unchanged, we revise here the statement on ergodicity, correct the calculation that led to it, and
develop the correct results. The mean square displacement exhibits in fact weak ergodicity breaking, which is consistent with
Refs. [1–4], whereas in our paper, we assumed that the results on the self-averaging of m(t) are equally valid for the ergodicity
of m(t) based on the following line of arguments.

(i) The noise variance of m�(t) in a single disorder realization is 0. (ii) This implies that m�(t) can be represented by its noise
average 〈m�(t)〉. (iii) Thus, the variance of m�(t) with respect to its disorder average can be measured by the disorder variance
of 〈m�(t)〉.

Since the relative variance of 〈m�(t)〉 with respect to the disorder average is equal to the relative disorder variance of m(t),
see Eq. (6) in our paper, we concluded that the results for the self-averaging of m(t) are equally valid for the ergodicity of m�(t)
with respect to its disorder average. This line of arguments, however, breaks down at point (i): The noise variance of m�(t) is
actually nonzero. In order to see this, we start from Eq. (11) in the Supplemental Material that gives m�(t) in a single disorder
realization for �/t � 1. We can write this expression in a weak sense as

m�(t) = 2κ d�

t

∫ t

0
dt ′θ [x(t ′)]−1 ≡ 2κ d�

t
s(t), (1)

where we set w�(t)2 = 〈w�(t)2〉 = d� and disregard contributions of order higher than linear in �. Note that w�(t) is defined
by Eq. (10) and the noise mean of m�(t) is given by Eq. (12) in the Supplemental Material. The noise mean square of m�(t),
given by Eq. (13) in the Supplemental Material, is not correct. The correct expression reads as

〈m�(t)2〉 = 4κ2d2�2

t2

〈∫ t

0
dt ′θ [x(t ′)]−1

∫ t

0
dt ′′θ [x(t ′′)]−1

〉
= 4κ2d2�2

t2
〈s(t)2〉, (2)

where we disregard contributions of order higher than �2. The noise variance of m�(t) defined by σ 2
�(t) = 〈m�(t)2〉 − 〈m�(t)〉2 �=

0 is nonzero for strong disorder unlike stated in our paper. In the following, we derive the correct results for the variance σ 2
�(t).

First, we note that σ 2
�(t) itself fluctuates between disorder realizations. However, we have shown in our paper that the

ensemble average is asymptotically a good estimator for the noise average, at least, for the mean square displacement m(t) in
d � 2 dimensions because m(t) is self-averaging. Thus, it follows from Eq. (12) in the Supplemental Material that also 〈m�(t)〉
is self-averaging. Based on this, we use the ensemble average σ 2

�(t) as an estimator for σ 2
�(t) and the ensemble average 〈m�(t)〉

as an estimator for 〈m�(t)〉 in d � 2. Using (1) and (2), we obtain

σ 2
�(t) = �2d2�4

t2

[〈
n2

t

〉 − 〈nt 〉2
]
, (3)

where we set 〈s(t)〉 = �2/(2κ)〈nt 〉 and 〈s(t)2〉 = �4/(4κ2)〈nt (nt − 1)〉 ≈ �4/(4κ2)〈n2
t 〉 [5]. We rewrite (3) in the form

σ 2
�(t) = �2d2�4

t2

[〈
n2

t

〉 − 〈nt 〉2] − �2

t2
[m(t)2 − m(t)

2
], (4)

where we note that m(t) = d�2〈nt 〉, see Eq. (4) in the Supplemental Material. Notice that the first expression in square brackets
denotes the disorder variance σ 2

n (t) of the number of steps nt to reach time t because 〈nk
t 〉 = nk

t (k = 1,2) is independent of the
noise. The second term in square brackets denotes the disorder variance σ 2

m(t) of the noise average mean square displacement
m(t), which we analyzed in the paper. Thus, we can restate (4) as

σ 2
�(t) = �2

t2

[
d2�4σ 2

n (t) − σ 2
m(t)

]
. (5)

This relation implies that at finite times σ 2
n (t) � σ 2

m(t)/(d2�4) > 0. Thus, in order to quantify σ 2
�(t) for d � 2, we now focus on

the variance σ 2
n (t) of nt .

We follow the methodology developed in our paper in order to determine explicit results for σ 2
n (t). The disorder ensemble

expectation nt is encoded in m(t), see Eq. (31) in the Supplemental Material of our paper. The disorder ensemble expectation of

2470-0045/2016/94(1)/019902(2) 019902-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.94.019902


ERRATA PHYSICAL REVIEW E 94, 019902(E) (2016)

n2
t is given by

n2
t =

∞∑
n=0

n2δn,nt
=

∞∑
n=0

n2I(tn � t < tn+1). (6)

We evaluate the scaling of this sum by using expression (29) developed in the Supplemental Material of our paper for the average
of the indicator function. For d = 2, we find that n2

t ∝ t2β ln(t)2−2β ∝ nt
2. This implies that σ 2

n (t) ∝ t2β ln(t)2−2β because at finite

times σ 2
n (t) > 0. For d > 2, we obtain n2

t ∝ t2β ∝ nt
2, which implies that σ 2

n (t) ∝ t2β . Thus, for d � 2, σ 2
n (t) > σ 2

m(t)/(d2�4),
compare to Eqs. (21) and (22) in our paper. This implies that

σ 2
�(t) = �2

t2
d2�4σ 2

n (t) + · · · . (7)

This gives for the ergodicity breaking parameter of Ref. [2],

EB = lim
t→∞

σ 2
�(t)

〈m�(t)〉2 = lim
t→∞

σ 2
n (t)

nt
2 �= 0, (8)

where we used 〈m�(t)〉 = (�/t)d�2nt ; EB is equal to a nonzero constant. This means that the mean square displacement exhibits
weak ergodicity breaking in d � 2, which is consistent with Refs. [1–3]. Note that for d < 2, we find that σ 2

n (t) ∝ t4β/(2β−dβ+d) ∝
m(t)2, which indicates that m(t) also shows weak ergodicity breaking in d < 2 in agreement with Refs. [3,4]. However, in this
case we refrain from making a statement on ergodicity based on the disorder averages σ 2

�(t) and 〈m�(t)〉 because m(t) and thus
〈m�(t)〉 are not self-averaging. In conclusion, unlike stated in our paper, the mean square displacement exhibits weak ergodicity
breaking for d � 2.
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