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For current fluctuations in nonequilibrium steady states of Markovian processes, we derive four different
universal bounds valid beyond the Gaussian regime. Different variants of these bounds apply to either the entropy
change or any individual current, e.g., the rate of substrate consumption in a chemical reaction or the electron
current in an electronic device. The bounds vary with respect to their degree of universality and tightness. A
universal parabolic bound on the generating function of an arbitrary current depends solely on the average entropy
production. A second, stronger bound requires knowledge both of the thermodynamic forces that drive the system
and of the topology of the network of states. These two bounds are conjectures based on extensive numerics. An
exponential bound that depends only on the average entropy production and the average number of transitions
per time is rigorously proved. This bound has no obvious relation to the parabolic bound but it is typically tighter
further away from equilibrium. An asymptotic bound that depends on the specific transition rates and becomes
tight for large fluctuations is also derived. This bound allows for the prediction of the asymptotic growth of the
generating function. Even though our results are restricted to networks with a finite number of states, we show
that the parabolic bound is also valid for three paradigmatic examples of driven diffusive systems for which
the generating function can be calculated using the additivity principle. Our bounds provide a general class of
constraints for nonequilibrium systems.
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I. INTRODUCTION

Equilibrium statistical physics is governed by a universal
principle stating that in an isolated system each microstate is
equally likely. For a system in contact with a heat bath, thus,
the famous Gibbs-Boltzmann distribution arises that involves
only the Hamiltonian of the system and the temperature of
the bath. In nonequilibrium, a similarly universal principle is
not known and may not even exist. One characteristic feature
of nonequilibrium systems is that they necessarily come with
dissipation, i.e., entropy production. Nonequilibrium steady
states, generated by time-independent driving, have a constant
average entropy production. Observed for a finite time,
the entropy change exhibits fluctuations that are universally
constrained by the fluctuation theorem [1–6], which is arguably
the most universal principle discovered for nonequilibrium
systems so far.

The fluctuation theorem relates the probability to observe
a negative entropy change to the one for observing the
corresponding positive value. In this sense, it constrains “half”
of the distribution. Experiments have illustrated and tested this
symmetry, inter alia, for colloidal particles [7–9], energy ex-
change between two conductors [10], small electronic systems
at low temperature [11], molecular motors [12], and shaken
granular matter [13–15]. In a refined version, the fluctuation
theorem holds not only for entropy change but also for the
joint probability of all currents contributing to the entropy
change [5,16], which involves the corresponding affinities
like nonconservative forces for colloids, chemical potential
differences for biomolecular reactions, or voltage drops for
electronic circuits. Generally, these individual currents in
a multicyclic network, however, are not restricted by the
fluctuation theorem or any other universal result.

In this paper, we introduce a complementary class of
constraints, not only on the distribution of entropy change,

but of any individual current in a network. These constraints
universally bound the fluctuations over the full range of posi-
tive and negative values, in particular the extreme fluctuations.
The crucial parameters characterizing these bounds are the
average entropy production, the affinities, topological features
like the number of states in a cycle and the activity, i.e., the
average number of transitions per unit time. If one knows
such parameters, current fluctuations can be bounded inde-
pendently of the specific transition rates. Correspondingly, a
measurement of such current fluctuations will make it possible
to infer constraints on these parameters which in an experiment
may not be known or not be directly accessible. This study
substantially extends and generalizes work in which we have
recently explored universal relations between dissipation and
dispersion of currents leading to a general thermodynamic
uncertainty relation [17] and allowing the inference of topo-
logical properties of enzymatic networks [18,19].

We employ the formalism of large deviations [20,21] in
which for large times the exponential decay of the tails of the
distribution function is characterized by a rate function. This
rate function can be obtained from the Legendre transforma-
tion of the scaled cumulant generating function. For the latter,
we derive a series of lower bounds that can be divided into
four classes: a parabolic bound, a hyperbolic cosine bound,
an exponential bound, and an asymptotic bound relevant for
large values of z, where z is the real variable in the scaled
cumulant generating function. The last two bounds can be
proved exactly while the first two are conjectures based on
extensive numerics. These universal bounds are valid for any
nonequilibrium system described by a Markov process with a
finite number of states.

The hydrodynamic fluctuation theory for driven diffusive
systems in contact with two reservoirs by Bertini et al. [22–24]
has been another major development in nonequilibrium statis-
tical physics. This theory leads to a (typically hard) variational

2470-0045/2016/93(5)/052145(16) 052145-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.93.052145


PATRICK PIETZONKA, ANDRE C. BARATO, AND UDO SEIFERT PHYSICAL REVIEW E 93, 052145 (2016)

problem that, if solved, leads to the exact rate function
of the current of particles or heat between reservoirs. The
additivity principle derived in [25] is a more direct method that
allows for the calculation of the scaled cumulant generating
function related to the current in driven diffusive systems. For
example, this method has been used to calculate this function
for the symmetric simple exclusion process (SSEP) [25,26],
the Kipnis-Marchioro-Pressuti (KMP) model [27,28], and the
weakly asymmetric simple exclusion process (WASEP) [29].
These results are valid in the limit of large system size, for
which the number of states diverges. Even though our bounds
are restricted to the case of a finite number of states, we show
that the scaled cumulant generating functions obtained from
the additivity principle for these three models lies inside our
parabolic bound.

The paper is divided as follows. In Sec. II we define the
entropy, the currents, and their generating functions. Our main
results are summarized in Sec. III. Sections IV–VII contain
the parabolic, hyperbolic cosine, exponential, and asymptotic
bounds, respectively. In Sec. VIII, the parabolic bound is
compared with exact results for the SSEP, the KMP model,
and the WASEP. We conclude in Sec. IX. The Appendices
contain various proofs and details on the numerics.

II. LARGE DEVIATIONS IN MARKOVIAN NETWORKS

We consider a Markovian network consisting of N discrete
states {i} and allow for transitions with rates kij � 0 from state
i to j . All transitions are taken to be reversible, i.e., kij > 0
implies kji > 0. The time dependent probability distribution
pi(t) of state i at time t evolves according to the master
equation

∂tpi(t) =
∑

j

Lijpj (t) ≡
∑

j

[kji − riδij ]pj (t), (1)

where the exit rate from state i is defined as

ri ≡
∑

�

ki�. (2)

For large times t,pi(t) tends to the stationary distribution ps
i ,

which satisfies
∑

j Lijp
s
i = 0.

Following Schnakenberg, we identify a complete set of
fundamental cycles {β} within the network [30]. Each cycle is
associated with an affinity Aβ , a fluctuating current Xβ(t) that
counts cycle completions after time t (the so-called integrated
current), and an average current

Jβ ≡ 〈Xβ (t)〉/t, (3)

where the brackets indicate an average over stochastic trajec-
tories. The average is independent of t for initial conditions
drawn from the steady state distribution.

Upon a transition i → j, Xβ increases by the generalized
distance d

β

ij = −d
β

ji . These increments are constrained to add
up to one for every closed loop that completes the cycle once
in forward direction. For example, Xβ could be the scaled
displacement of a molecular motor. The affinityAβ would then
be given by the external force times the length of a full motor
step, while d

β

ij denotes the relative length of a substep related
to the conformational change i → j . The ratio of forward

and backward transition rates fulfills the local detailed balance
relation

ln(kij /kji) =
∑

β

d
β

ijAβ + Ei − Ej , (4)

where Ei denotes the equilibrium free energy associated
with state i, and, in general, the sum over β is a sum over
all fundamental cycles in the network of states [30] (see
also [16,31] for a precise definition of a fundamental cycle).
For notational convenience we have set Boltzmann’s constant
kB and the temperature T to unity, thus energies and affinities
are given in units of the thermal energy kBT . The (fluctuating)
entropy change in the surrounding medium sm(t) is given by the
increments ds

ij = ln(kij /kji). The average entropy production
reads

σ ≡ 〈sm(t)〉/t =
∑

β

AβJβ. (5)

Adopting a vector notation X for the set of all cycle currents
Xβ the scaled cumulant generating function is defined as

λ(z) ≡ lim
t→∞

1

t
ln 〈exp[z · X(t)]〉, (6)

where z is a real vector. As an abbreviation we will refer to
λ(z) simply as the “generating function.” It can be shown that
λ(z) is the largest eigenvalue of the modified Markov generator
Lij (z), which is defined as [5,32]

Lij (z) ≡ Lij exp(z · dji), (7)

where dji is a vector with components d
β

ji . The variable Xβ/t ,
or more conveniently the scaled variable

ξβ ≡ Xβ/(tJβ), (8)

satisfies a large deviation principle [21,33] of the form

Prob(X,t) ∼ exp[−th(ξ )] (9)

with a rate function h(ξ ) that is given by the Legendre-Fenchel
transform

h(ξ ) = max
z

⎡
⎣∑

β

zβJβξβ − λ(z)

⎤
⎦. (10)

The fluctuation theorem is a symmetry, known as
Gallavotti-Cohen symmetry, on the generating function of the
form [5,16]

λ(z) = λ(−A − z). (11)

In terms of the rate function this symmetry reads

−h(ξ ) + h(−ξ ) =
∑

β

ξβJβAβ. (12)

The generating function related to a single fluctuating current
Xα is

λα(z) ≡ λ(zeα) = lim
t→∞

1

t
ln 〈exp[zXα(t)]〉, (13)

where eα is the unit vector associated with the current in cycle
α. Generally, this function does not exhibit a symmetry of the
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form (11) as extensively discussed in [31] (see also [34,35]).
In contrast, the evaluation of λ(z) along the vector A yields

λs(z) ≡ λ(zA) = lim
t→∞

1

t
ln 〈exp[zsm(t)]〉 (14)

as the generating function of the entropy change. It is
symmetric with respect to z = −1/2, which expresses the
fluctuation theorem that holds for this observable. The rate
functions associated with the probability distributions of these
variables read

hα(ξα) = max
z

[zJαξα − λα(z)] (15)

and, introducing the scaled entropy change s ≡ sm(t)/(σ t) in
analogy to Eq. (8),

hs(s) = max
z

[zσs − λs(z)], (16)

respectively.
An important distinction in this paper is the one between

unicyclic and multicyclic networks of states, illustrated in
Fig. 1. For unicyclic networks, where there is only a single
affinity A ≡ Aα and a single fluctuating current X ≡ Xα , we
no longer have to distinguish between the different types of
generating functions and can simply write

λ(z) ≡ λα(z) = λs(z/A). (17)

In the following, we will be interested in functions b(z) that
bound the generating function λ(z) from below, i.e.,

b(z) � λ(z) (18)

for all z. As special cases, the relation (18) can be used to
extract bounds for individual fluctuating currents, λα(z) �
bα(z) ≡ b(zeα), and the entropy change, λs(z) � bs(z) ≡

(a)

(b) (c)

FIG. 1. (a) Unicyclic network with affinity A and five states.
(b) Multicyclic network with two fundamental cycles, one with three
states and affinity A1 and the other with four states and affinity A2.
The red dashed lines indicate a cycle with affinity A1 + A2 and five
states. (c) Multicyclic network with three fundamental cycles with
three states each. The affinities of these cycles are A1, A2, and A3.
The red dashed lines indicate a cycle with affinity A1 + A2 and four
states.

b(zA). Such bounds immediately imply upper bounds on the
rate functions

hα(ξα) � max
z

[zJαξα − bα(z)] (19)

and

hs(s) � max
z

[zσs − bs(z)]. (20)

For any generating function the coefficients of the Taylor
expansion around z = 0 correspond to the cumulants. The
Fano factor that quantifies the dispersion of the distribution is
defined as

F ≡ lim
t→∞

〈X(t)2〉 − 〈X(t)〉2

〈X(t)〉 = λ′′(0)

λ′(0)
, (21)

where X is a random variable. We denote the Fano factor
associated with an individual current by Fα and the one
associated with the entropy change in the medium by Fs . Since
global lower bounds b(z) with b(0) = 0 must share a tangent
with λ(z) at z = 0 while having a stronger curvature, every
such bound implies with

F � b′′(0)

b′(0)
(22)

a bound on the Fano factor.
Since λ(0) = 0 holds trivially for all networks, we usually

require that our bounds are saturated for z = 0. This require-
ment will only be lifted for a bound that captures the asymptotic
behavior for large |z| in Sec. VII. Hence, if λ(z) is analytic,
b(z) must have the same gradient as λ(z).

III. SUMMARY OF MAIN RESULTS

The two main bounds on the generating function obtained in
this paper are illustrated in Fig. 2. First, the generating function
λ(z) for any network is bounded by a parabola according to

λ(z) � z · J (1 + z · J/σ ). (23)

This parabolic bound depends only on the average entropy
production. Second, λ(z) is also bounded from below by an
exponential function of the form

λ(z) � R[e(|σ/2+z·J |−σ/2)/R − 1]. (24)

This second bound depends on the average entropy production
and on the activity R ≡ ∑

i p
s
i ri , which is the average number

of transitions per time in the whole network.
Choosing a specific direction for the vector z, both bounds

are valid both for any individual fluctuating current and for the
entropy change. It is quite remarkable that the fluctuations of
any current in an arbitrary multicyclic network can be bounded
by a function involving only the average entropy production
in the case of the parabolic bound and the average entropy
production and activity in the case of the exponential bound.
Even though there is no obvious relation between the parabolic
bound and the exponential bound, typically, the exponential
bound becomes tighter than the parabolic bound both for far
from equilibrium conditions and for large |z|.

We derive two further relevant lower bounds on λ(z) in this
paper. (1) A hyperbolic cosine bound, which is an extension
of the parabolic bound that is tighter and requires further
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FIG. 2. Illustration of our two main results for the generating
function of an individual cycle current (thick black curve). The
parabolic bound that depends on the entropy production is shown
as a green dotted line and the exponential bound that depends
on the entropy production and the activity is shown as a blue
dashed line. The generating function refers to the cycle α = 1 of
the “house-shaped” network shown in Fig. 1(b). The affinities are
A1 = 8 and A2 = 6, all transition rates were set to 1 except for
k15 = exp(A1/2), k51 = exp(−A1/2), k41 = exp(A2/2), and k14 =
exp(−A2/2). The quantities relevant for the bounds are the average
current Jα 	 0.36, the entropy production σ 	 3.6, and the activity
R 	 2.13.

knowledge of the affinities and the topology of the network.
(2) An asymptotic bound that becomes tight for large values
of |z| and requires knowledge of all transition rates.

These bounds are complementary to the fluctuation the-
orem. Whereas they establish the minimal value that λ(z)
can take, the fluctuation theorem constrains λ(z) to have the
symmetry (11).

IV. PARABOLIC BOUND

A. Linear response regime

In the limit of small affinities Aβ , the average current Jα

depends linearly on the affinities,

Jα =
∑

β

LαβAβ, (25)

with the symmetric and positive definite Onsager matrix
Lαβ ≡ ∂Jα/∂Aβ |A=0. In the region z � O(A), the generating
function λ(z) can be expanded as a quadratic form around
its center of symmetry, which is, due to Eq. (11), located at
z = −A/2. The requirement λ(0) = 0 and ∇λ(0) = J fixes
this expansion to

λ(z) =
∑
β,γ

(zβ + Aβ/2) Lβγ (zγ + Aγ /2) − σ/4, (26)

where the entropy production σ is given in Eq. (5). Evaluating
this function for z = zeα yields the generating function related
to the individual current,

λα(z) = zJα + z2Lαα. (27)

The positive definiteness of the matrix Gβγ ≡ (LααLβγ −
LαβLαγ ) [36] (with α fixed) yields∑

β,γ

GβγAβAγ = Lαασ − J 2
α � 0. (28)

Hence λα(z) is bounded from below by

λα(z) � zJα(1 + zJα/σ ). (29)

Using the Legendre transform (19), this bound can be
transformed into a bound for the rate function

hα(ξα) = Lαα

4J 2
α

(ξα − 1)2 � σ

4
(ξα − 1)2. (30)

Since the direction eα can be chosen arbitrarily, the bound (29)
can be stated in a multidimensional formulation as

λ(z) � z · J (1 + z · J/σ ). (31)

Equality holds along the line z ∝ A, which corresponds to
the generating function λs(z) = λ(Az) associated with entropy
change. Within linear response, the rate function for the scaled
entropy change s is thus given by

hs(s) = σ

4
(s − 1)2. (32)

Equation (30) shows that the knowledge of the average
entropy production is sufficient to bound the whole range of
fluctuations of any individual current in the linear response
regime. Surprisingly, as we show next, this parabolic bound is
also valid beyond the linear response regime.

The parabolic bound has also an important consequence
for fluctuations in systems at equilibrium. To study this case
it is more convenient to scale the fluctuating currents as xβ ≡
Xβ/t = Jβξβ . For the corresponding rate function h̃α(xα) =
hα(xαJα), the bound (30) then reads

h̃α(xα) � 1

4

∑
γ δ Lγ δAγAδ(∑

β LαβAβ

)2 x2
α + O(A), (33)

for small Aβ with fixed xα . Here, we have represented the
average currents using Eq. (25). This bound is supported by
our numerics presented in Appendix B as, where we have
checked (29) also for z � O(A). For multicyclic networks
at equilibrium, the prefactor in (33) depends on the direction
in which the limit A → 0 is taken. In particular, choosing
A ∝ eα yields

h̃α(xα) � x2
α/(4Dα). (34)

Thus, the equilibrium fluctuations of any current Xα can be
bounded by the parabola that is defined as the continuation
of the quadratic expansion of the rate function around xα =
0. In other words, the Gaussian approximation for typical
fluctuations always underestimates the probability of extreme
fluctuations in equilibrium systems. Since this bound is exact
for small xα , performing the limit A → 0 in a direction
different from eα cannot yield a stronger bound.

B. Beyond linear response: Unicyclic case

The parabolic shape of the generating function for z �
O(A) and of the rate function for ξ � O(1) can be regarded
as a signature of linear response. It arises only for nearly
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FIG. 3. The generating function λ(z) and the rate function h(ξ )
of the asymmetric random walk for selected affinities A (2,5,10,50)
and N = 1. Black arrows indicate the direction of increasing A. The
parabolic bound for the generating function (40) and for the rate
function (41) are shown as black dashed curves.

vanishing affinities or for freely diffusing particles, where
the linearity between affinity and current persists even for
high affinities. Beyond this regime, one universally observes
two characteristic changes in the rate function [37–39]. First,
the tails for large values of |ξα| grow no longer quadratically
but with a scaling somewhere between linear and quadratic.
Second, there is a formation of a “kink” around the value
ξα = 0. For finite numbers of states, the rate function is
still analytic in this region, but it exhibits a significantly
enhanced curvature. In the Legendre transformed picture of
the generating function λα(z), these two effects show up as
a faster than quadratic growth for large z and a pronounced
plateau around the minimum of λα(z).

This behavior of the generating function is best illustrated
with an asymmetric random walk (ARW), as shown in Fig. 3.
Consider a network consisting of a single cycle with N vertices
and affinity A, as shown in Fig. 1(a). The hopping rates in
forward and backward directions k+ and k− are uniform with

ln
k+

k− = A/N. (35)

The average current in this model is J = (k+ − k−)/N and
the entropy production is σ = JA. It can be shown that the
generating function is given by [5]

λ(z) = k+[ez/N + e−(z+A)/N − 1 − e−A/N ]

= JλARW(z,A,N ), (36)

where

λARW(z,A,N ) ≡ cosh[(z + A/2)/N] − cosh[A/(2N )]

(1/N) sinh[A/(2N )]
.

(37)
Similarly, the rate function corresponding to the generating
function (36) is given by [5]

h(ξ ) = J hARW(ξ,A,N ), (38)

where

hARW(ξ,A,N ) ≡ N

sinh[A/(2N )]

[
aξ arsinh(aξ ) − aξ

A
2N

−
√

1 + (aξ )2 +
√

1 + a2

]
(39)

and a ≡ sinh[A/(2N )]. As shown in Fig. 3, the generating
function (36) is bounded from below by the parabola

λARW(z,A,N ) � z J (1 + z/A), (40)

and the rate function is bounded from above by the parabola

hARW(z,A,N ) � A(ξ − 1)2/4. (41)

In Sec. V, we will show in the context of an even stronger,
affinity-dependent bound, that the bound (40) holds also for
arbitrary unicyclic networks with nonuniform transition rates.

C. Beyond linear response: Multicyclic case

Based on numerical evidence we conjecture that

λ(z) � z · J (1 + z · J/σ ) (42)

holds globally for all vectors z and for all types of Markovian
networks. In terms of the individual current in a cycle α, this
conjecture can be formulated as

λα(z) � zJα(1 + zJα/σ ) (43)

whereas for the entropy change

λs(z) � zσ (1 + z). (44)

The bound (42) becomes the same as (31) in the linear response
regime. However, (42) is also valid beyond this regime where
the currents J are the actual average currents in the steady
state, as determined from ∇λ(0), which are different from the
linear response currents (25).

The numerical evidence for this bound is illustrated in
Fig. 4. We generated a large set of networks of states with
random transition rates, drawn according to the procedure
described in Appendix B. As the affinity increases, generating
functions globally deviate in a positive direction from the
parabolic shape. Only at the trivial points z = 0 and z = −A
does the generating function in Eq. (42) acquire with zero
the same value for all networks. For larger networks (N = 6)
the left-hand side of the plot becomes less populated, since
the probability of the vectors eα and A being nearly parallel
becomes smaller in higher dimensions. The full numerical
evidence for this parabolic bound is explained in Appendix B.

The local evaluation (22) of the parabolic bound (43) for
an individual current yields the relation

Fασ/Jα � 2 (45)
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FIG. 4. Generating functions λα(z) for an individual current in
fully connected networks with random transition rates. The black
curves in the upper and lower panels correspond to networks with
N = 4 and N = 6 vertices, respectively. The parabolic bound (43) is
shown as a dashed curve.

for the Fano factor associated with the current Xα . This
“thermodynamic uncertainty relation,” which imposes a min-
imal energetic cost that must be paid for small uncertainty
in the output of an enzymatic reaction, has been derived
in [17]. Hence, the parabolic bound is a generalization of this
relation. From relation (45), measurements of the dispersion
and average of an individual current can provide a lower
bound on the average entropy production σ � 2Jα/Fα . This
bound makes it possible to estimate the entropy production by
measuring a single individual current [40,41]. Applied to the
entropy production in the medium, the parabolic bound (44)
leads to

Fs � 2. (46)

V. HYPERBOLIC COSINE BOUND

A. Unicyclic networks

For a unicyclic network, the parabolic bound is saturated
in the linear response regime. As shown in Fig. 3 for the
asymmetric random walk, the generating function deviates
more from the parabolic bound as the affinity A increases. We
now discuss an affinity dependent bound that is stronger than
the parabolic bound. This affinity dependent bound is also less
universal as it requires the knowledge of A. For example, in a
biochemical network a fixed affinity means that the chemical
potential difference driving a chemical reaction is known.
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FIG. 5. Generating function λ(z) scaled by the steady state current
J in unicyclic networks with N = 10 states and fixed affinity A =
100. The gray-scale (color-scale) encodes the standard deviation (SD)
used for sampling the transition rates (see Appendix B). Dark gray
(blue) corresponds to a nearly uniform distribution of transition rates
and light gray (yellow) to a broad distribution of transition rates. The
lower and upper bounds (50) and (51), respectively, are shown as
(red) dashed lines.

The transition rates for an arbitrary unicyclic model with
N states and periodic boundary conditions are denoted by

ki,i+1 = k+
i and ki,i−1 = k−

i , (47)

where i = 1,2, . . . ,N . A fixed affinityA implies the constraint∏N
i=1 k+

i∏N
i=1 k−

i

= eA (48)

on the transition rates. Different choices of the transition rates
that fulfill this restriction can lead to different generating
functions, as shown in Fig. 5. In particular, if the transition
rates are uniform, i.e., k+

i = k+ and k−
i = k− the generating

function divided by the average current λ(z)/J becomes
λARW(z,A,N ), which is given in Eq. (37). The opposite
extreme choice for the transition rates is the case where
the network behaves effectively like there was only one link
between states (N = 1) and all the affinity is concentrated in
this single link. In this case λ(z)/J becomes λARW(z,A,1),
which fulfills λARW(z,A,1) � λARW(z,A,N ).

From these considerations we conjecture that for unicyclic
networks

λARW(z,A,1) � λ(z)/J � λARW(z,A,N ). (49)

Hence, using the definition (37), Eq. (49) implies the lower
bound

λ(z) � J
cosh[(z + A/2)/N] − cosh[A/(2N )]

(1/N ) sinh[A/(2N )]
, (50)

which we call the hyperbolic cosine bound for a unicyclic
network. This conjectured bound is supported by the numerical
evidence shown in Fig. 5. Equation (49) also leads to an upper
bound

λ(z) � J
cosh(z + A/2) − cosh(A/2)

sinh(A/2)
. (51)
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FIG. 6. Generating function λ(z) scaled by the steady state current
J in unicyclic networks with N = 10 for three families of distinct
affinities A. For each family, transition rates were sampled according
to the procedure described in Appendix B. The black curves refer to
the lower and upper bound from Eqs. (50) and (51).

A rigorous proof for this upper bound is provided in
Appendix C.

In Fig. 6, we show the bounds (50) and (51) for different
values of the affinity. For smaller A the bounds are closer to
each other. In the linear response regime, up to quadratic order
in z, they become the same and equal to the parabolic bound
in Eq. (40).

The bounds in Eqs. (50) and (51) lead to the bounds

coth

(A
2

)
� F � 1

N
coth

( A
2N

)
(52)

on the Fano factor defined in Eq. (22). The lower bound is
an affinity dependent bound on the Fano factor that has been
obtained in [17]. In the formal limit A → ∞ it becomes F �
1/N . This bound for formally divergent affinity is a key result
in statistical kinetics [42] as it allows for an estimate on the
number of states N from measurements of the Fano factor. The
upper bound on F in Eq. (52) is a generalization of the known
result F � 1, which is also valid in the limit A → ∞ [42].

For systems at equilibrium, the bounds (49) become

2D[cosh(z) − 1] � λ(z) � 2DN2[cosh(z/N ) − 1], (53)

which is obtained using the linear response current J = DA
with the Einstein relation for the diffusion constant D and
letting A → 0. Thus, the bound (34) for the rate function of
the variable x = X/t can be refined to

h̃(x) � N
[
x arsinh

( x

2DN

)
+ 2DN −

√
x2 + (2DN )2

]
(54)

for unicyclic networks.

B. Multicyclic networks

A formulation of an affinity dependent bound for multi-
cyclic networks is more involved. In this case, the affinities
of the fundamental cycles are fixed, which means that the
transition rates are constrained by relations of the form (48)
for each fundamental cycle. The hyperbolic cosine bound for

the generating function of the entropy change reads

λs(z) � σ
cosh[(z + 1/2)A∗/n∗] − cosh[A∗/(2n∗)]

(A∗/n∗) sinh [A∗/(2n∗)]
, (55)

where the affinity A∗ and the number of states n∗ correspond
to the smallest ratio A/n among all the cycles in in the
network. We note that a local evaluation of the form (22)
of the bound (55) leads to [18]

Fs � A∗

n∗ coth

( A∗

2n∗

)
. (56)

This bound can be used to estimate the number of intermediate
states in enzymatic schemes from measurements of the Fano
factor in single molecule experiments, as discussed in [18].

In order to explain how to identify A∗/n∗ we consider
the network of states in Fig. 1(c). We arbitrarily choose the
cycles (1,4,2,1) with affinity A1,(2,4,3,2) with affinity A2,
and (1,3,4,1) with affinity A3 as the three fundamental cycles.
Any other cycle in the network is just a composition of these
fundamental cycles; for example, the cycle (1,4,3,2,1), which
is marked with a red dotted line in Fig. 1(c), with affinity
A1 + A2 is the sum of the first and second fundamental cycles.
If the affinities are A = (1,2,3) then the cycle with the smallest
affinity per number of states is the fundamental cycle (1,4,2,1).
Therefore, in this case A∗ = 1 and n∗ = 3. If the affinities
are A = (−11,12,13), where a negative affinity means that
the direction of the current in the cycle with affinity A1 in
Fig. 1(c) changes from anticlockwise to clockwise, the cycle
with minimal affinity per number of states is (1,4,3,2,1). In
this case A∗ = 1 and n∗ = 4.

The basic idea behind the bound in Eq. (55) is as follows.
Given a network of states with fixed affinities, the transition
rates that lead to the smallest possible λs(z)/J are those for
which the cycle with smallest A/n dominates the network.
This cycle dominates the network if the transition rates within
the cycle are large, transition rates to leave the cycle are
small, and transition rates to return to the cycle are large. With
this choice for the transition rates the multicyclic network is
effectively a unicyclic network with affinity A∗ and number
of states n∗, for which the bound (50) holds. Any other choice
of rates will just add cycles with a smaller affinity per number
of states, which cannot decrease fluctuations.

Our numerical evidence presented in Fig. 7(d) shows that
this hyperbolic cosine bound is also valid for any individual
current Xα in the form

λα(z) � σ
cosh[(zJα/σ + 1/2)A∗/n∗] − cosh[A∗/(2n∗)]

(A∗/n∗) sinh [A∗/(2n∗)]
.

(57)
Hence, the hyperbolic cosine bound can be written in the more
general form

λ(z) � σ
cosh[(z · J/σ + 1/2)A∗/n∗] − cosh[A∗/(2n∗)]

(A∗/n∗) sinh [A∗/(2n∗)]
.

(58)
The full numerical evidence for this conjecture is discussed in
Appendix B. If the cycle relevant for the bound (57) has a rather
small affinity per number of states, which is often the case in
a large network of states, the bound is only slightly stronger
than the parabolic bound (43), as visible in Figs. 7(a) and 7(c).
An often tighter bound for this situation is derived in the
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FIG. 7. Generating functions for entropy change (a)–(c) and
randomly selected individual currents Xα (d) for the network of
Fig. 1(c). The affinities are A = (1,2,3) in (a), A = (11,12,13) in
(b) and (d), andA = (−11,12,13) in (c). The black curves correspond
to the parabolic bound and the red dashed curves correspond to the
hyperbolic cosine bound. The generating functions were generated
as explained in Appendix B. In panel (a) A∗/n∗ = 1/3, in panels
(b) and (d) A∗/n∗ = 11/3, and in panel (c) A∗/n∗ = 1/4. For small
values of A∗/n∗, as in panels (a) and (c), the parabolic and hyperbolic
cosine bound are closer to each other.

next section. Our numerics indicates that an affinity dependent
upper bound on the generating function in the multicyclic case
does not exist. For fixed affinities, the generating function
can become arbitrarily close to the trivial bound λs(z) < 0 for
−1 < z < 0, visible in Figs. 7(a)–7(c). A generalization of the
equilibrium bound (54) to multicyclic networks is not directly
possible, since the identification of a cycle with minimal A/n

becomes ambiguous in the limit A → 0.

VI. EXPONENTIAL BOUND

A rigorous lower bound on the largest eigenvalue λ(z) of the
matrix L(z) can be obtained from the algebraic properties of
positive matrices. Specifically, a remarkable theorem about the
largest eigenvalue μ of an arbitrary matrix with non-negative
entries Bij from Ellis [20, Theorem IX.4.4] is

ln μ = sup
τij

∑
i,j

τij ln
Bij νi

τij

, (59)

where νi ≡ ∑
� τi� and 0 ln 0 ≡ 0. The admissible matrices τij

must satisfy certain normalization and symmetry properties
given in Appendix A. For any specific matrix τij , Eq. (59)
provides a lower bound on μ.

In order to apply Eq. (59) to the modified Markov generator
Lij (z), we construct a positive matrix

Bij (z) ≡ δij + ηLij (z) (60)

with a sufficiently small parameter η > 0. Its largest eigen-
value is given by 1 + ηλ(z). Making use of the known
eigenvector of Lij (0), which is the stationary distribution ps

i ,
we can choose τij such that the supremum (59) is saturated for
z = 0. As we show in Appendix A, fixing this choice for all
values of z, Eq. (59) yields the bound

λ(z) � (eηz·J − 1)/η (61)

on the generating function.
The largest possible η in Eq. (60) provides the strongest

bound. The maximal value that still complies with the
requirement for a non-negative entries Bij is the inverse of
the maximal exit rate η = 1/ maxi(ri). Extending the proof of
Eq. (59) in Appendix A, we can show that Eq. (61) is valid for
larger values of η up to

η = 1/R, (62)

where

R ≡
∑

i

ps
i ri � max

i
ri (63)

is the steady state activity of the network, i.e., the average
number of transitions per time interval in the steady state. We
note that a term related to activity also appears in a fluctuation
dissipation relation for nonequilibrium steady states [43].

Due to the Gallavotti-Cohen symmetry (11) the exponential
bound can also be written as

λ(z) � R(e(−A−z)·J/R − 1), (64)

where we set η = R−1. This bound is sharper than (61) for
z · J < −A · J/2 = σ/2. Combining Eqs. (61) and (64) we
obtain the exponential bound

λ(z) � R[e(|σ/2+z·J |−σ/2)/R − 1]. (65)

For an individual current Xα , the exponential bound reads

λα(z) � R[e(|σ/2+zJα |−σ/2)R − 1]. (66)

The choice z = zA in Eq. (65) leads to

λs(z) � R[e(|σ/2+zσ |−σ/2)/R − 1] (67)

for the entropy change.
An illustration of the exponential bound (65) is provided in

Fig. 8. This bound is typically tighter than the parabolic bound
for far from equilibrium conditions, i.e., for large affinity. For
example, for a random walk on a unicyclic network with
N sites, a uniform forward stepping rate k and a vanishing
backward stepping rate, which implies divergent affinity, the
bound in Eq. (65) is saturated. Specifically, in this case the
generating function is

λ(z) = k(ez/N − 1), (68)

the activity is R = k and the cycle current J = k/N . For van-
ishing current at equilibrium, the exponential bound reduces
to the trivial statement λ(z) � 0.

Our numerics indicates that the hyperbolic cosine bound
is always tighter than the exponential bound in unicyclic
networks. For multicyclic networks the exponential bound
can be tighter. Furthermore, contrary to the hyperbolic cosine
bound, the exponential bound does not require knowledge of
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FIG. 8. Generating function (left) and rate function (right) for
a five-state unicyclic network with rates ln k+

i = (3,3,2,3,2) and
ln k−

i = (−1,0, − 1,0,0), affinity A = 15, current J 	 2.25, and
activity R 	 12.9. The functions are shown as solid lines and the
exponential bound (65) as dashed lines. Analytic continuations of the
piecewise defined functions are shown as dotted curves.

the topology of the network of states, only the average entropy
production and the average activity are required.

In terms of the rate function of an individual current
Xα , corresponding to the generating function Eq. (66), the
exponential bound reads

hα(ξ ) �

⎧⎪⎨
⎪⎩

1
η
[1 + ξ − ξ ln |ξ |] − σξ, ξ � −e−ησ/2,

1
η
[1 − ξ + ξ ln |ξ |], ξ � e−ησ/2,

1
η
[1 − e−ησ/2] − σξ/2, otherwise.

(69)

This bound on the rate function is illustrated in Fig. 8 for a
unicyclic network.

Using (22) in the exponential bound (65) for an individual
current leads to

Fα � Jα/R. (70)

This relation provides a lower bound on the dispersion of an
individual current, characterized by the Fano factor Fα , in
terms of its average Jα and the activity R.

VII. ASYMPTOTIC BOUNDS

A. Unicyclic networks

The asymptotic bounds discussed in the following are exact
results that become tighter than all previous bounds for large
values of |z|. First we consider a unicyclic network with N

states and affinity A. In this case, we can prove the following
bound on the generating function:

λ(z) � JλARW(z,A,N ) + rARW − 1

N

N∑
i=1

ri, (71)

where λARW(z,A,N ) is defined in Eq. (37), rARW ≡ k+ + k−,
and

k± ≡
(

N∏
i=1

k±
i

)1/N

. (72)

This bound is proved in Appendix D by comparing the weight
of a trajectory in the ensemble with transition rates k±

i with the
weight of a trajectory in the ensemble with transition rates k±.
Our numerics indicate that with increasing |z| the difference

between this bound and the actual generating function tends
to zero. This fact is quite remarkable given the exponential
growth of both functions. Unlike all other bounds presented so
far, the bound (47) is not saturated at z = 0. Only for the case
of uniform rates, i.e., k±

i = k±, the generating function (36)
saturates the bound (71) globally.

B. Multicyclic networks

In order to obtain an asymptotic bound also valid for
multicyclic networks we define an arbitrary closed path C,
which is a sequence of jumps that finishes at the state it started,
as

C ≡ [i(1) → i(2) → · · · → i(nC) → i(1)], (73)

where nC is the length of the closed path. With this path we
associate a geometric mean of the transition rates

γC ≡ (ki(1),i(2)ki(2),i(3) . . . ki(nC ),i(1))
1/nC (74)

and integer winding numbers m
β

C that count how often the
elementary cycle β is completed within the path C. Applying a
theorem valid for arbitrary non-negative matrices [44, Lemma
3.5.3] to the matrix Lij (z) + δij max� r� we obtain

λ(z) + max
�

r� � f (z,C) ≡ γC exp

⎛
⎝ 1

nC

∑
β

m
β

Czβ

⎞
⎠ (75)

for any closed path C. The best bound on λ(z) in Eq. (75) is
obtained by choosing an optimal path Ĉ(z), which in principle
depends on z, that maximizes the right-hand side (rhs) of
Eq. (75) in the large z regime.

First we consider this optimal path for the unicyclic
network. In this case, the optimal path is a single cycle in
the forward direction with mC = 1 if z > 0. If we consider
a path C with two cycles, i.e., mC = 2, the bound remains
the same as the number of states nC also doubles. If the
closed path is not a direct cycle but contains, for example,
one backward jump, then γC can become larger. However,
such a backward jump also makes nC larger and hence the
exponent in Eq. (75) smaller. Since we are interested in the
large z regime, this second effect should be dominant. Hence,
for z > 0 the bound (75) leads to

λ(z) � k+ exp(z/N ) − max
�

r�. (76)

Even though this bound is different from (71), they both predict
the same exponential growth, with the same prefactor, for large
z > 0. The same reasoning is valid for z < 0, with the optimal
path being a single cycle in the negative direction.

For multicyclic networks we consider the house-shaped
network with five states shown in Fig. 1(b). This network
consists of a cycle with three states and affinity A1 and a cycle
with four states and affinity A2. We choose these cycles to be
the fundamental cycles. This network also has a third cycle,
which is the cycle with five states and affinityA1 + A2. Given a
vector = (z1,z2), the optimal path is the cycle that maximizes
the rhs of Eq. (75). For large enough |z|, this optimal path
depends only on the direction of the vector. Clearly a path that
includes other cycles will lead to a weaker bound.
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FIG. 9. Asymptotic bound for the house-shaped network with two
fundamental cycles shown in Fig. 1(b). The color code represents the
ratio (77) between the generating function and the bound. Black
dashed lines indicate the borders between sectors with constant
relevant cycles Ĉ(z). For each sector, the relevant cycle Ĉ(z) is shown
in white. The affinity of the three-cycle is A1 = 8 and the affinity of
the four-cycle is A2 = 6.

A contour plot of the ratio f (z,Ĉ(z))/[λ(z) + max�] for this
house-shaped network is shown in Fig. 9. Remarkably, the rhs
of (75) captures the leading order of the asymptotics for large
|z|, i.e., for large |z|

f (z,Ĉ(z))

λ(z) + max� r�

→ 1. (77)

Only in the lines separating regions dominated by different
cycles in Fig. 9 does this ratio tend to slightly lower values.
Along this line the dominant cycle is degenerate. As shown in
Appendix E, relation (77) is valid for any multicyclic network.
Hence, we conclude that our asymptotic bound predicts the
exponential growth of the generating function, apart from
exceptional regions in z where the optimal cycle is degenerate.

VIII. PARABOLIC BOUND IN DRIVEN DIFFUSIVE ONE
DIMENSIONAL SYSTEMS

We now consider one dimensional driven diffusive systems,
which unlike the cases considered so far have a divergent
number of states L in the thermodynamic limit. Calculating
the generating function for these systems is a major challenge
that can be overcome in some cases with the additivity
principle [25]. In this section we compare the parabolic
bound to the cumulant generating function obtained from
this additivity principle for three examples of driven diffusive
systems, for which the validity of the additivity principle has
been verified numerically [28,29].

First we consider the WASEP and the SSEP, which is a
particular case of the WASEP. These models are illustrated in
Fig. 10 and their precise definition can be found in [26]. In
the WASEP particles flow from the left reservoir with constant
density �L to the right reservoir with density �R < �L. The
current of particles in the system is proportional to the entropy
production, and the affinity that drives the process out of

(a)

(b)

FIG. 10. Schematic illustrations of the WASEP (a) and the KMP
(b) models. For the WASEP, in the bulk the particles jump with rates
p ≡ 1/2 + ν/(2L) to the right and q ≡ 1/2 − ν/(2L) to the left,
where the SSEP corresponds to ν = 0. At the boundaries particles
are exchanged with the reservoirs. The model also has the exclusion
principle, i.e., the maximum number of particles in a site is one. For
the KMP model energy flows from a hot reservoir at temperature TL

to a cold reservoir at temperature TR . In the bulk a randomly chosen
pair of sites exchange energy, which is a continuous variable, in such
a way that the total energy is conserved. At the boundaries energy is
exchanged with the reservoirs. The precise rules of these models can
be found in [29] for the WASEP and [28] for the KMP model.

equilibrium is given by [26,29]

AWASEP = − ln
1 − �L

�L
+ ln

1 − �R

�R
+ (L − 1) ln

1 − ν/L

1 + ν/L
.

(78)

The weak asymmetry of the bulk rates, which scales with 1/L,
guarantees that in the thermodynamic limit L → ∞ the affinity
is finite. In Fig. 11, we have calculated the generating function
using the additivity principle for the SSEP, as explained in [26],
and for the WASEP, as explained in [29]. In both cases the
generating functions are inside the parabolic bound.

The KMP model is a driven diffusive system for the trans-
port of energy from a reservoir at temperature TL to a reservoir
at temperature TR < TL, as illustrated in Fig. 10. A key feature

0

0.5
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λ
s
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)/
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z/

parabolic bound
SSEP

WASEP
KMP

FIG. 11. Comparison of the parabolic bound (42) with generating
functions for driven diffusive systems. For the SSEP the densities of
the left and right reservoirs were chosen as �L = 0.99 and �R = 0.01.
For the WASEP the parameters are ν = 10, �L = 4/7, and �R =
5/18, as in Ref. [29]. For the KMP model the parameters are TL = 2
and TR = 1, as in Ref. [28].
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of the KMP model is that there is no dissipation in the bulk.
The precise definition of the model can be found in [28]. The
heat transfer from the left to the right reservoir is proportional
to the entropy production with the affinity given by [28]

AKMP = (
T −1

R − T −1
L

)
. (79)

The generating function for this model, which is obtained
from the additivity principle as explained in [28], also satisfies
the parabolic bound in Fig. 11 within the finite support
−T −1

R < z < T −1
L of λ(z). As a consequence, the rate function

satisfies the corresponding parabolic bound globally.
These results demonstrate that our parabolic bound is even

more universal: it seems to be valid for these driven diffusive
systems in the thermodynamic limit, for which the number
of states diverges. We expect that the parabolic bound is the
only relevant one in the limit L → ∞. The hyperbolic cosine
bound (57) approaches the parabolic bound for vanishing affin-
ity per number of states in a cycle. The exponential bound (61)
degenerates with increasing activity to a linear function, which
reflects simply the convexity of the generating function.

Another interesting issue will be to explore whether the
bound is still valid in the L → ∞ limit if the system undergoes
a dynamical phase transition as the KMP model in a ringlike
geometry [45].

IX. CONCLUSIONS

We have obtained four global bounds on current fluctuations
for Markov processes in steady states summarized in Table I.
The parabolic bound from Sec. IV is the most universal result
of this paper. The simple knowledge of the average entropy
production is enough to bound the whole range of fluctuations
of any individual current. In other words, for nonequilibrium
steady states, the generating function associated with any
fluctuating current must lie inside the parabola shown in
Fig. 12. The universality of the parabolic bound was further
confirmed by the fact that it also applies to the three driven
diffusive systems we analyzed in Sec. VIII, for which the
number of states diverges.

This parabolic bound can be saturated only close to equi-
librium. A bound that is generally tighter than the parabolic
bound, particularly if the system is far from equilibrium, is
the hyperbolic cosine bound from Sec. V. This necessarily
less universal bound also requires knowledge of the thermo-
dynamic forces, i.e., the affinities, that drive the process out of
equilibrium and of the topology of the network of states.

The exponential bound depends on the average entropy
production and on the average number of transitions per time.
In contrast to the parabolic and hyperbolic cosine bounds
that are conjectures based on extensive numerical evidence,
we have proven the exponential bound. It is typically tighter

TABLE I. Summary of lower bounds on the generating function.

Parabolic z · J (1 + z · J/σ ) (31)

Hyperbolic cosine σ
cosh

[(
z·J
σ + 1

2

)
A∗
n∗

]
−cosh [A∗/(2n∗)]

(A∗/n∗) sinh [A∗/(2n∗)] (58)

Exponential R[e(|σ/2+z·J |−σ/2)/R − 1] (65)
Asymptotic − max� r� + γC exp

(
1
nC

∑
β m

β

Czβ

)
(75)
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FIG. 12. Summary of the four bounds for a unicyclic network
with four states. Transition rates are ln k+

i = (3,4,5,4) and ln k+
i =

(0, − 1,1,1), leading to the affinity A = 15 and the current J 	
10.307.

than the parabolic bound for far from equilibrium situations.
While for a unicyclic network we observed that the hyperbolic
cosine bound is always tighter than the exponential bound, for
multicyclic networks the exponential bound can be tighter.

The fourth bound is an exact asymptotic bound that predicts
the growth of the generating function for large z, as illustrated
in Fig. 12. This bound requires knowledge of the particular
transitions rates. Therefore, its importance arises in a situation
where a Markov process with all its transition rates is given
but calculating the full generating function is not possible.

Summarizing, typical and large fluctuations for any individ-
ual current in stationary Markov processes, which are used to
describe a large amount of nonequilibrium systems ranging
from enzymatic reactions to nanoscale electronic systems,
have been shown to be bounded by the average entropy produc-
tion or the average entropy production and the average activity.
Rigorous proofs of the parabolic bound and of the hyperbolic
cosine bound remain as main open technical challenges.

Note added. A proof of the parabolic bound has recently
appeared [46].

APPENDIX A: PROOF OF THE EXPONENTIAL BOUND

The theorem by Ellis [20, Theorem IX.4.4] can be stated
as follows: For any non-negative matrix Bij , the associated
maximum eigenvalue can be calculated as

ln μ = sup
τij

∑
i,j

τij ln
Bijνi

τij

, (A1)

where νi ≡ ∑
k τik and 0 ln 0 ≡ 0. The admissible matrices τij

must satisfy the following properties:
(1) Normalization,∑

i,j

τij =
∑

i

νi = 1. (A2)

(2) Equal row- and column-sums,

νi ≡
∑

�

τi� =
∑

�

τ�i . (A3)
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(3) Non-negative with the same (or less complex) structure
as Bij , i.e.,

τij > 0 ⇒ Bij > 0. (A4)

In order to apply Eq. (A1) to the modified Markov generator
Lij (z), we consider the matrix

Bij (z) ≡ δij + ηLij (z), (A5)

with a sufficiently small parameter η > 0. Its largest eigen-
value is 1 + ηλ(z). Lower bounds on the generating function
λ(z) can be obtained from (A1) by choosing an appropriate
matrix τij . The choice

τij = Bij (0)ps
j (A6)

saturates the bound for z = 0. The bound for the eigen-
value (A1) then reads (with νi = ps

i )

ln[1 + ηλ(z)] �
∑
i,j

[δij + ηLij (0)]ps
j ln

[δij + ηLij (z)]ps
i

[δij + ηLij (0)]ps
j

.

(A7)

Since Lii(z) = Lii(0) the logarithm vanishes for i = j and the
rhs simplifies to

ln[1 + ηλ(z)] �
∑
i �=j

ηLij (0)ps
j ln

Lij (z)ps
i

Lij (0)ps
j

(A8)

= η
∑
i �=j

ps
j kji

(
z · dji + ln

ps
i

ps
j

)
. (A9)

The term proportional to ln(ps
i /p

s
j ) vanishes because ps

i is
the stationary distribution. Identifying the stationary current
J = ∑

i �=j ps
i kij dij we obtain the bound

λ(z) � 1

η
(eηz·J − 1), (A10)

which is Eq. (61) in the main text.
The bound improves for larger η. The maximal value that

still complies with the requirement for positive entries Bij is
the inverse of the maximal escape rate η = 1/ maxi(ri). In this
case, the proof of (A1) in Ref. [20] uses the equation∑

i,j

τij ln
Bijνi

τij

=
∑
i,j

τij ln
Bijν

0
i

τ 0
ij

−
∑
i,j

τij ln
τij ν0

i

νi τ 0
ij

, (A11)

where ν0
i = ∑

j τ 0
ij . The matrix τ 0 is given by

τ 0
ij = q̃iBij qj /μ, (A12)

where q̃ and q are left and right eigenvectors of B, respectively,
with the normalization

∑
i qi = 1 and

∑
i q̃iqi = 1. From

relations (A2), (A3), and (A12) it follows that the first sum
in Eq. (A11) is simply ln μ. The second sum with a minus sign
can be shown to fulfill the inequality∑

i,j

yij xij ln xij �
∑
i,j

yij (xij − 1) =
∑
i,j

(τij − yij ) = 0,

(A13)
where

yij ≡ νiτ
0
ij

ν0
i

, xij ≡ τij ν0
i

νi τ
0
ij

. (A14)

Equality in Eq. (A13) is achieved for τij = τ 0
ij , which with

Eq. (A13) provides a proof of (A1).
Actually, we can show that the bound (A10) is valid even

for larger values of η up to η = R−1, where R is the average
activity in Eq. (63). In this case, the diagonal elements Bii can
be negative. This property can affect Eq. (A13), which requires
that xij � 0 and yij � 0. For Bij (z) = δij + ηLα

ij (z), if

1 + ηλα(z) > 0 (A15)

then all xij and yij in Eq. (A14) for i �= j are non-negative. The
inequality (A13) is then valid for i �= j with condition (A15).
For the diagonal terms we can write∑

i

yiixii ln xii =
∑

i

ps
i (1 − ηri) ln[1 + ηλα(z)]

�
∑

i

ps
i (1 − ηri)

ηλα(z)

1 + ηλα(z)
, (A16)

where the inequality is valid for η � R−1 and if condi-
tion (A15) is fulfilled. Therefore, if condition (A15) holds
then the inequality (A14) is valid for η � 1/R.

Since this condition (A15) is valid for z = 0, it must also be
valid for some finite range in z. Using a simple self-consistency
check, we can even prove that this “finite range” must in
fact always be infinite. Assume the function 1 + λα(z)/R
crosses zero at some value z = z∗. Then the condition (A15)
is violated for z = z∗ − δz. On the other side, for z = z∗ + δz,
the condition is still satisfied and we find

1 + λα(z∗ + δz)/R � e(z∗+δz)Jα/R > 0, (A17)

which contradicts the continuity of λα(z).

APPENDIX B: NUMERICAL VERIFICATION

The numerical verification of the conjectured bounds was
performed on large sets of networks with different transition
rates. The corresponding generating functions are given by the
largest eigenvalues of the matrices L(z). We calculated these
eigenvalues using standard numerical algorithms. The station-
ary distributions ps

i , which are computed as the eigenvector
for z = 0, are used to evaluate the steady state currents that
appear in the bounds. The precise procedures are described
below.

1. Unicyclic networks

For unicyclic networks with N states it is convenient to
parametrize the transition rates (47) as

k±
i = exp(φi ± θiA/2). (B1)

The global time scale can be fixed by requiring
∑

i φi = 0.
Thus we avoid numerical instabilities due to extremely large
or small matrix entries. Moreover, in order to sample cycles
with predefined affinity A, we require

∑
i θi = 1. We generate

vectors φ′
i and θ ′

i of N independent and identically distributed
random numbers. The above constraints are satisfied by setting
φi = φ′

i − φ′ and θi = θ ′
i /θ

′, where the overbar denotes the
average of the vectors elements within the realization. Samples
where at least one of the |θi | is above a certain value were
discarded in order to avoid numerical instabilities. The cutoff

052145-12



UNIVERSAL BOUNDS ON CURRENT FLUCTUATIONS PHYSICAL REVIEW E 93, 052145 (2016)

value 1 turns out to be suitable for this purpose. Since the
transition rates associated with the discarded samples are
extremely nonuniform, the corresponding generating function
lies close to the (proven) upper bound anyway.

For the plots shown in Fig. 6, φ′
i and θ ′

i were drawn from
uniform distributions with 0 < φ′

i < 4 and −0.5 < θ ′
i < 0.5,

respectively. The generating functions were calculated for a
total of 10 000 samples for each affinity, of which only the first
100 are shown in the figure. For cycles with many states and
high affinity, it is virtually impossible to cover the whole area
between the upper and the lower bound using a single, simple
distribution for φ′

i and θ ′
i . In Fig. 5, we show several families

of sample generating functions where the rates are drawn from
different statistical ensembles. Specifically, φ′

i and θ ′
i are both

Gaussian random variables with mean 1 (which is irrelevant
for φi) and standard deviations (SD) reaching from 0.01 to 2.

In principle the lengths substeps di,i+i can be distributed
arbitrarily among the edges of the network. In most cases, the
choice di,i+i ∝ ln(k+

i /k−
i ) avoids numerical instabilities. In

order to preassess the range of z we can make use of the proven
asymptotic bound (71): the validity of the hyperbolic cosine
bound has to be checked only in the finite range where it is
weaker than the asymptotic bound. In all cases the hyperbolic
cosine bound (50) is satisfied. Since the hyperbolic cosine
bound implies the parabolic bound, this numerical evidence
also allows us to conjecture the parabolic bound for unicyclic
networks.

2. Multicyclic networks

The bounds relevant for a numerical test for multicyclic
networks are the parabolic bound and the hyperbolic cosine
bound. They exist in the formulation for entropy change
[Eqs. (44) and (55)] and for arbitrary individual currents
[Eqs. (43) and (57)]. The former type can be checked by setting
the matrix of increments in Eq. (7) to ds

ij = ln(kij /kji), for the
latter we use antisymmetrized Gaussian random matrices for
dα

ij .
We have performed two types of tests. The first type relies

on random rate matrices kij of dimension N × N , each of them
corresponding to a fully connected network with N states. The
rates were generated according to

kij = exp[a(φij + φji)/2 + bθij ], (B2)

where φij and θij are independent Gaussian random numbers
with zero mean and variance 1. The parameters a and b

can be used to tune the properties of the network. While
small values of a simulate fully connected networks, larger
values of a typically suppress some of the transitions, so
that the generated matrices effectively correspond to partially
connected networks with random topology. The parameter
b introduces an asymmetry in the transitions, that drives
the system out of equilibrium. For smaller values of b the
generating functions lie closer to the parabolic bound. For
Fig. 4 we have calculated 300 generating functions for each
N = 4 and N = 6 with a = 5 and b = 2. In a more extensive
computation, we have checked the parabolic bound for a total
of 107 generating functions with a ranging from 0 to 5, b

ranging from 0.01 to 5, and N ranging from 4 to 50. The
hyperbolic cosine bound could be checked only up to N = 8,

for larger networks the determination of the relevant cycle
in (57) becomes numerically expensive.

The second type of test applies to small networks with given
topology, where the fundamental cycles can be identified by
hand. The affinities of these cycles can be fixed, so that the
bounds (55) and (57) depend only on the steady state currents.
For example, for the network shown in Fig. 1(c), random rates
were assigned to most of the transition. The random numbers
were generated such that ln kij were Gaussian random numbers
with standard deviations ranging from 0.01 to 3 and, at first,
with zero mean. Only the three forward transition rates in
the cycle (1,2,3,1) were determined algebraically from the
other transition rates and the constraints from the fixed cycle
affinities A1, A2, and A3. Typically, the generating functions
obtained via this procedure are quite far from the hyperbolic
cosine bound. In order to test also more critical cases, we
have added a bias ±A∗/(2n∗) to the logarithms of the forward
(+) and backward (−) transition rates constituting the relevant
cycle for the hyperbolic cosine bound. Moreover, the rates for
transitions exiting the relevant cycle were gradually lowered
by several orders of magnitude. For the plots in Fig. 7, we
have used attenuations of these rates between e0 and e−25.
Similar tests were performed for a large varieties of networks
(as the networks shown in Fig. 2 of the Supplemental Material
of Ref. [17]).

APPENDIX C: PROOF OF THE UPPER BOUND ON THE
GENERATING FUNCTION FOR UNICYCLIC NETWORKS

For unicyclic networks with N states the tilted Markov
generator has the tridiagonal shape

L(z) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−r1 k̃21 0 0 . . . k̃N1

k̃12 −r2 k̃32 0 . . . 0

0 k̃23 −r3 k̃43
. . . 0

0 0 k̃34 −r4
. . .

...
...

...
. . .

. . .
. . . k̃N,N−1

k̃1N 0 0 . . . k̃N−1,N −rN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(C1)

with k̃ij ≡ kij e
zdij . The displacements dij must satisfy dij =

−dji . If the observable of interest is the number of turnovers,
the displacements must add up to the cycle affinity d12 + d23 +
· · · + dN1 = 1. It should be kept in mind that any statistical
quantity in the long time limit (in particular the generating
function and the rate function) do not depend on the specific
choice of the individual dij .

The characteristic polynomial associated with the ma-
trix (C1) reads

χ (z,x) ≡ det(L(z) − x1N )

=
∑
π

(−1)π
N∏

i=1

[Liπ(i)(z) − xδiπ(i)], (C2)

where the sum runs over all permutations π of the indices
i = 1, . . . ,N and 1N is the N × N identity matrix. We identify
0 ≡ N and N + 1 ≡ 1 for the indices of matrix entries. There
are two types of terms in (C2) that contain a specific rate
k̃i+1,i : the contribution from the next row i + 1 can either be
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k̃i,i+1 or k̃i+2,i+1. For the former type the z dependence cancels
out due to di+1,i = −di,i+1 and we end up with the constant
factor k̃i+1,i k̃i,i+1 = ki+1,iki,i+1. Terms of the latter type must
also contain k̃i,i−1 as the only possible contribution from the
previous column i − 1. Iteratively, we see that there can be
only one term of this type, namely the one that contains all
forward transitions

k̃12k̃23 . . . k̃N1 = k12k23 . . . kN1e
z ≡ Γ +ez. (C3)

An analogous argument can be set up for the lower off-diagonal
of the matrix with the z-dependent term

k̃21k̃32 . . . k̃1N = k21k32 . . . k1Ne−z

≡ Γ −e−z = Γ +e−(z+A). (C4)

All other terms in the determinant (C2) do not depend on z

and we can write

χ (z,x) = (−1)N+1[Γ +ez + Γ −e−z − (Γ + + Γ −) − P (x)]
(C5)

with some polynomial P (x) that is independent of z and the
specific choice of the dij . The alternating prefactor is due to
the fact that the permutations associated with the terms (C3)
and (C4) are either odd or even, depending on the number of
states N . The generating function is thus given by

λ(z) = P −1(Γ +ez + Γ −e−z − Γ + − Γ −)

= P −1(2
√

Γ +Γ −[cosh(z + A/2) − cosh(A/2)]),
(C6)

where the function P −1(y) returns the root of the polynomial
P (x) − y that has the largest real part. Due to the Perron-
Frobenius theorem, this root must be real for all argu-
ments occurring in (C6), i.e., for all y � y1 ≡ 2

√
Γ +Γ −[1 −

cosh(A/2)]. The root associated with the minimal argument
y1 is x1 ≡ P −1(y1) = minz λ(z) = λ(−A/2). Obviously, the
polynomial P (x) (see Fig. 13) has the properties P (0) =
χ (0,0) = 0 and

lim
x→∞ P (x) = (−1)N lim

x→∞ χ (z,x)

= lim
x→∞(−1)N det(−x1N ) = +∞. (C7)

x

P(x)

y1

x1

FIG. 13. The polynomial P (x) for a generic unicyclic network
with N = 6 states. The tangent at x = 0 and the values y = y1 and
x = x1 are shown as dashed lines.

Since the matrix L(−A/2) can be brought to a symmetric
form by choosing dij = ln(kij /kji)/A, the corresponding
characteristic polynomial P (x) − y1 has only real roots xi with
x1 denoting the largest one. The second derivative of P (x) is

P ′′(x) = d2

dx2

[
y1 +

N∏
i=1

(x − xi)

]
=

N∑
i=1

N∑
j = 1
j �= i

N∏
� = 1

i �= � �= j

(x − x�).

(C8)

For x > x1 this expression is positive so that P (x) is convex.
As a consequence, the inverted function P −1(y) is concave for
the relevant arguments y > y1. Hence it satisfies

P −1(y) � (P −1)′(0) y (C9)

with equality for y = 0. This relation leads to the upper bound

λ(z) � 2
√

Γ +Γ −(P −1)′(0)[cosh(z + A/2) − cosh(A/2)]

(C10)

holding with equality for z = 0. The prefactor in this bound
is equal to the one in Eq. (51), as can be seen by calculating
steady state current from Eq. (C6),

J = λ′(z) = 2
√

Γ +Γ −(P −1)′(0) sinh(A/2). (C11)

APPENDIX D: PROOF OF THE ASYMPTOTIC BOUND
FOR UNICYCLIC NETWORKS

First we restrict to a unicyclic network with N states, affinity
A and transition rates

kij ≡ δi,i+1k
+
i + δi+1,ik

−
i+1. (D1)

A stochastic path n(τ ) is defined by the sequence of jumps
n� → n�+1 between adjacent states that occur at times τ�. The
weight of this path is given by

P[n(τ )] =
∏

�

kn�n�+1 exp[−rn�
(τ�+1 − τ�)], (D2)

where the sum runs over all jumps. The weight of a path with
modified transition rates k̃ij reads

P̃[n(τ )] =
∏

�

k̃n�n�+1 exp[−r̃n�
(τ�+1 − τ�)]. (D3)

For these modified transition rates we choose an asymmetric
random walk, i.e.,

k̃ij ≡ δi,i+1k
+ + δi+1,ik

− (D4)

with

k± ≡
(

N∏
i=1

k±
i

)1/N

, (D5)

which leads to r̃ ≡ k+ + k−. Ensemble averages using the
path weight P̃[n(τ )] are denoted as 〈. . . 〉ARW. The generating
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function can be rewritten as

λ(z) = 1

t
ln〈ezX[n(τ )]〉 = 1

t
ln

∫
Dn(τ )e

zX[n(τ )] P[n(τ )]

P̃[n(τ )]
p̃[n(τ )]

= 1

t
ln

〈
ezX[n(τ )]

N∏
i=1

(
k+
i

γ +

)m+
i
(

k−
i

γ −

)m−
i

e−(ri−r̃i )Ti

〉
ARW

,

(D6)

where the integration in the first line is over all stochastic
trajectories. The path dependent variables m±

i count the jumps
out of state i in forward or backward direction and Ti is the
total sojourn time in state i. These variables are identically
distributed in the ARW-ensemble.

The probability P̃ (X) is the probability that the fluctuating
current is X in the ARW-ensemble. It is the sum of the weight
of all trajectories for which the current is X. Using this P̃ (X)
Eq. (D6) can be written as

λ(z) = 1

t
ln

∑
X

p̃(X)ezX

〈
exp

[
N∑

i=1

m+
i ln(k+

i /γ +)

+
N∑

i=1

m−
i ln(k−

i /γ −) −
N∑

i=1

(ri − r̃)Ti

]∣∣∣∣X
〉

ARW

� 1

t
ln

∑
X

p̃(X)ezX exp

[
N∑

i=1

〈m+
i |X〉ARW ln(k+

i /γ +)

+
N∑

i=1

〈
m−

i |X〉
ARW ln(k−

i /γ −) −
N∑

i=1

(ri − r̃)t/N

]
,

(D7)

where the conditioned average in the first line represents a
functional integration over all trajectories with fluctuating
current equal to X and we used Jensen’s inequality from
the first to the second line. Due to (D5) the terms with the
logarithms vanish, leading to the final result in Eq. (71).

APPENDIX E: PROOF OF THE ASYMPTOTIC LIMIT (77)
FOR MULTICYCLIC NETWORKS

For general Markov generators L(z), as defined in Eq. (7),
the determinant (C2) can be written as

0 = χ (z,λ(z)) =
N∏

i=1

[−ri − λ(z)]

+
∑
C

(−1)Cγ nC
C emC ·z

∏
j /∈C

[−rj − λ(z)], (E1)

where the sum runs over all combinations of disjoint cycles
in the underlying network and (−1)C denotes the sign of the
corresponding permutations in the determinant. For each C,
the quantities nC, γC , and mC are defined as for the individual
cycles in Sec. VII of the main text. Dividing Eq. (E1) by λ(z)N

leads to

0 =
N∏

i=1

[−ri/λ(z) − 1]

+
∑
C

(−1)Cf (z,C)nCλ(z)−nC
∏
j /∈C

[−rj /λ(z) − 1], (E2)

where f (z,C) is defined in Eq. (75). We now analyze the limit
|z| → ∞ with the direction z/|z| kept fixed. Making use of
the (already proven) lower bound (75) with the optimal path
Ĉ ≡ Ĉ(z), we see that ri/λ(z) and the terms with (mC · z)/nC <

mĈ · z/nĈ vanish in this limit. Provided that the optimal cycle
is unique, we are left with

0 = (−1)N + lim
|z|→∞

(−1)1+nĈf (z,Ĉ)nĈλ(z)−nĈ (−1)N−nĈ ,

(E3)

which leads to

lim
|z|→∞

f (z,Ĉ)

λ(z)
= 1. (E4)

In Eq. (77), the constant max� r� is added to the denominator
without harm, in order to make the ratio positive everywhere.
The essential ingredient in this proof is the uniqueness of the
optimal cycle Ĉ. Only in peculiar regions the vector z leads
to more than one cycle with the same value of mC · z/nC . For
example, these regions show up in Fig. 9 as the lines along
which the ratio (77) differs from 1.
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