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Numerical and experimental study of an invisibility carpet in a water channel
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We propose a numerical and an experimental study of an invisibility carpet for linear water waves. In the first
part, we introduce the concept of an invisibility carpet in the case of linear water waves and apply this concept for
a bounded problem: a wavetank. In the second part, we study a simpler case where we attempt to render invisible
a vertical dihedral at the end of a wavetank. This is done by placing a structure consisting of 18 vertical poles
with trapezoidal cross-sections in front of the dihedral. For these two configurations, with and without the carpet,
we focus on the far-field reflected wave consisting of an inline mode and the first sloshing (plus progressive)
mode. We show that our design achieves invisibility.
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I. INTRODUCTION

In 2006, after some theoretical proposal on electromagnetic
transparency with a plasmonic coating [1], the physicists
Pendry, Schurig, and Smith published an original work
theorizing that a finite-size object surrounded by a spherical
coating consisting of a metamaterial defined by geometric
transform might become invisible for electromagnetic waves
[2]. At the same time, Leonhardt proposed an analogous
route to invisibility using conformal mappings [3]. These
three proposals have fuelled a new field of investigations in
the area of metamaterials: “cloaking.” The underlying idea
behind cloaking using transformation optics is to map a point
in optical space onto a spherical (invisibility) region, but it
appears to be a severe limitation in the design of invisibility
cloaks via transformation optics due to the singular behavior
of the material parameters at the cloaks inner boundary. An
alternative route is to use a one-to-one mapping to design
an invisibility carpet, which is the bottom line of the bold
proposal by Li and Pendry to conceal an object placed under
a curved reflecting surface by imitating the reflection of a
flat surface [4]. Since the introduction of these concepts,
we have seen some research work completing and extending
the first ideas [5–8], with experimental validations [9–13].
From electromagnetics, the topic has been extended to other
fields such as acoustics [14,15], structural mechanics [16–19],
plasmonics [20–25], and hydrodynamics [26–30].

In the first part of the paper, we develop concepts behind
invisibility carpet with some numerical illustrations. In the
second part of the paper we present a study, where a vertical
dihedral, at the end of a wavetank, is made nearly invisible, in
the framework of linearized potential flow theory. This study
is rooted in the preliminary work presented in Ref. [31].

II. FUNDAMENTALS ON INVISIBILITY CARPET

A. Basics

We first note it is possible to construct two linear operators
defined on two different domains, yet sharing the same
spectrum using a geometric transform. However, one of these
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two operators will necessarily have spatially varying, matrix
valued coefficients. This mathematical property can be used in
the design of metamaterials, whereby two different domains
with Neumann boundary conditions behave in the same
electromagnetic, acoustic, or hydrodynamic way (mimetism).
To illustrate this property, we give an example of two distinct
polygonal cavities sharing the same spectrum, and we further
design an invisibility carpet for linear surface liquid waves in
a curved channel. This structured metamaterial bends surface
waves over a finite interval of Hertz frequencies.

We consider the following spectral problem:

A1(φ) = −�φ = λφ, in �1 ∈ R2. (1)

In the case of Neumann boundary conditions, the resolvent
of operator A1 is compact and its spectrum consists only
of a countable set of discrete eigenvalues with a single
accumulation point (0 or infinity depending upon whether we
look at the operator or its inverse) [32]. The question is: can we
construct another operator A2, acting on functions in a domain
�2 (�1 and �2 are different domains), where the spectrum
σ (A2) is identical to σ (A1). And the answer is positive, we
can construct A2 if we use a change of variables mapping the
domain �1 on the domain �2, cf. Fig. 1. The eigenvalues β

and associated eigenfunctions ψ are

A2(ψ) = −T −1
33 ∇ · T−1

T ∇ψ = βψ, (2)

where the eigenvalues β are real and positive (T is symmetric)
and can be related (one by one) with the eigenvalues λ and
eigenfunctions φ of Eq. (1). We numerically illustrate this fact
with finite-element computations in Fig. 2, where two types
of polygonal cavities mapped onto one another share the same
spectrum.

B. Setup of the physical problem

Let � denote the free surface of a channel occupied by a
fluid, i.e., the interface between air and fluid; see Fig. 3. If
we assume that the fluid is incompressible and irrotational,
we know that the velocity field derives from a potential, which
under the hypothesis of small perturbations of the free interface
separating the fluid with ambient atmosphere leads to the
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FIG. 1. (Color online) If �1 and �2 are two bounded domains
that can be mapped onto one another, via a change of coordinates
described by the Jacobian matrix J, two self-adjoint bounded
operators A1 = −� and A2 = −T −1

33 ∇ · T−1
T ∇, respectively, defined

on L2(�1) and L2(�2) have identical spectra σ (A1) = σ (A2), where
T−1

T is the upper left block of the inverse of the symmetric matrix T =
JT J/det(J). Our proposal of cloaking is to asymptotically approach
the spectrum σ (A2) with a sequence of spectra σ (Aη) associated with
structured media of typical heterogeneity size η, when η goes to zero.

Helmholtz equation [32]:

∇2φ − k2φ = 0, (3)

with k the spectral parameter related to the angular wave
frequency ω (measured in radians per unit second) via the

FIG. 2. (Color online) First five (nonconstant) eigenmodes of
operators A1 and A2 given by Eqs. (1) and (2), which are
associated with two polygonal cavities �1 (upper panel) and
�2 (lower panel) subjected to Neumann boundary condition.
These cavities have been mapped onto one another, as de-
scribed in the legend of Fig. 1. Finite element computa-
tions (using COMSOL Multiphysics with a mesh consisting of
27 921 points and 54 784 Lagrange quadratic elements) show that
their spectra are nearly identical: numerically, we find σ (A1) =
{0, 3.3866, 4.2426, 10.9259, 15.4174, 15.5811...} and σ (A2) =
{0, 3.3861, 4.2420, 10.9289, 15.4196, 15.5793...}. The slight dis-
crepancy in the numerical computation of eigenvalues of A1 and A2

can be attributed to the fact that �2 is filled with a heterogeneous
anisotropic medium. One should note that the eigenfields (a)–(e) and
(f)–(j) associated with nonzero eigenvalues (arranged by increasing
values), share the same features (such as mirror symmetry with
respect to the y axis), up to a stretch along the y axis. Here, �1 is a
triangle with vertices (−1,0), (1,0), and (2,0), and �2 is a polygone
with vertices (−1,0), (0,1), (1,0), and (2,0). We map �1 onto �2

using Eq. (5) with y1(x) = a1x + b1 and y2(x) = a2x + b2, where
a1 = ±1, b1 = 1, a2 = ±2, b2 = 2. From Eq. (6), we deduce the coef-
ficients of the transformation matrix T: T11 = T33 = α−1, T12 = T21 =
−[a1y2(y ′ − y2) − a2y1(y ′ − y1)]/(y2 − y1)2, T22 = {1 + [a1y2(y ′ −
y2) − a2y1(y ′ − y1)]2/(y2 − y1)4}α, with α = (y2 − y1)/y2. Impor-
tantly, T is a symmetric positive definite matrix; see Eq. (7).

FIG. 3. (Color online) Schematic diagram of the waterwave ex-
periment: A plane incident wave propagates from left to right at the
free surface between fluid and air. It is reflected by an array of rigid
pillars immersed in the fluid (the invisibility carpet).

dispersion relation:

ω =
√

gk tanh(hk)

(
1 + k2σ

gρ

)
. (4)

Here, h is the depth of water in the channel, σ the surface
tension at the free surface, ρ the fluid’s density, and g the
gravity.

Importantly, Eq. (3) also models the propagation of pressure
waves in a compressible fluid, in which case k = ω

√
ρ/λ,

where ω is the angular pressure wave frequency, ρ is the
unperturbed fluid mass density (a mass in kilogrammes per unit
volume in metres cubed), and λ is the fluid bulk modulus (i.e.,
it measures the substances resistance to uniform compression
and is defined as the pressure increase needed to cause a given
relative decrease in volume, with physical units in pascals).

The linearized problem, Eqs. (3) and (4), allows for
straightforward analogies between transverse electromagnetic
and acoustic waves propagating in structured cylindrical
domains, see Ref. [26] for the design of an invisibility cloak for
surface liquid waves, theoretically and experimentally shown
to work between 10 and 15 Hz for a structured cloak of
radius 10 cm immersed in a fluid of depth 0.9 cm, with
small surface tension and large density (σ = 13.6 N/cm and
ρ = 1.529 kg/L, i.e., methoxynonafluorobutane), so that ω ∼
k
√

gh. Here, we consider a channel of side lengths 1500 and
100 cm filled with a depth of water of 10 cm (σ ∼ 70 N/cm,
ρ ∼ 1 kg/L), hence working frequencies should be scaled
down roughly by a factor 10 with respect to Ref. [26], keeping
in mind the dispersion relation Eq. (4) should play a more
prominent role.

C. Design of a heterogeneous anisotropic fluid

Let us first introduce a simple geometric transform mapping
the first region onto the second one. The bottom line is the bold
proposal by Li and Pendry to conceal an object that is placed
under a curved reflecting surface by imitating the reflection of
a flat surface [4] in the context of electromagnetic waves in
open space. In the present hydrodynamic case, the domain
is bounded (water channel), its walls are rigid (Neumann
conditions), and the geometric transform reads as follows:

⎧⎨
⎩

x ′ = x

y ′ = αy + y1

z′ = z

; Jxx ′ =

⎛
⎜⎝

1 0 0
∂y

∂x ′
1
α

0

0 0 1

⎞
⎟⎠ , (5)

where Jxx ′ is the associated Jacobian Matrix, and α = (y2 −
y1)/y1. The effect of the transform is a stretch along the y axis,
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FIG. 4. (Color online) Numerical simulations for a surface water
wave at frequency ν = ω/2π = 1.99 Hz, which is linked to the
eigenvalue k of the Laplace operator in Eq. (3) via Eq. (4); (a) Field
inside a straight channel filled with a homogeneous isotropic fluid
corresponding to the Laplace operator A1 in Eq. (1); (b) Field inside
a curved channel filled with a homogeneous isotropic fluid for the
same operator A1 (note however the domain is different); (c) Field
inside a curved channel filled with a heterogeneous anisotropic fluid
described by Eq. (6) corresponding to the perturbed Laplace operator
A2 in Eq. (2). The color scale is in arbitrary units. The strong similarity
between fields in (a) and (c) is noted.

which is parallel to the direction of wave propagation in the
channel, i.e., the horizontal direction in Figs. 3 and 4.

The metric tensor associated with the transformed coordi-
nates takes the following form (and its effect on the Cartesian
metric is shown in Fig. 5, left panel, where the y axis is parallel
to the vertical direction):

T−1 = J−1
xx ′J−T

xx ′ det(Jxx ′ )

=

⎛
⎜⎝

1
α

− ∂y

∂x ′ 0

− ∂y

∂x ′
(
1 + (

∂y

∂x ′
)2)

α 0

0 0 1
α

⎞
⎟⎠ .

(6)

It has been shown in Ref. [26] that the Block diagonal part of
T−1 can be interpreted in terms of an effective shear viscosity
associated with an anisotropic fluid. Indeed, the Helmholtz
equation, Eq. (3), governing the propagation of linear surface
water waves at the free interface, should be recast as Eq.
(2) after the geometric transform. However, the dispersion
relation, Eq. (4), remains valid. We adopt the same viewpoint
in the present note. It is interesting to look at the expression of
the eigenvalues of T−1 as these are the relevant quantities to

FIG. 5. Metrics associated with the Cartesian coordinate system
(original domain, leftmost panel) and the transformed coordinate
system (invisibility carpet, right panel) mapped onto one another
via the transformation matrix T (note that the right angles are not
preserved, i.e., the transformation is not conformal).

design a structured channel:

λ1 = 1

α
,

λi = 1

2α

{
1 + α2 +

(
∂y

∂x ′

)2

α2

+ (−1)i−1

√
−4α2 +

[
1 + α2 +

(
∂y

∂x ′

)2

α2

]2}
. (7)

We note that λ1 and λi , i = 2,3, are strictly
positive functions as obviously 1 + α2 + ( ∂y

∂x ′ )2α2 >√
−4α2 + (1 + α2 + ( ∂y

∂x ′ )2α2)2 and also α > 0.
This establishes that T−1 is not a singular matrix for

a two-dimensional carpet, which is a big advantage over
two-dimensional cloaks obtained by blowing up a point onto
a disk [4]: The transformation matrix is indeed singular at
an invisibility cloak’s inner boundary (one eigenvalue goes to
infinity, while the other two go to zero [33]). The physical
interpretation for the lack of singularity in invisibility carpets’
parameters is rather intuitive: in order to flatten the wavefront
of a wave incident upon a bump, one has to decelerate the
wave inside the carpet, and this can be easily achieved with
conventional materials. On the contrary, in order to flatten
the wavefront of a wave incident upon an invisibility cloak,
one has to accelerate the wave inside the cloak, in such a
way that there is no phase shift observed in the foreward
scattering. In electromagnetism, this means that one requires
the cloak to be superluminal, which leads to a time paradox
(causality problem). This is in essence what the singularity
in invisibility cloaks’ parameters leads to. From a numerical
point of view, it is also important to end up with a nonsingular
T matrix in the case of invisibility carpets: The variational
form associated with Eq. (2) has the classical properties for
existence and uniqueness of the solution (symmetry, coercivity,
and boundedness of the bilinear form), hence the finite-
element formulation can be straightforwardly implemented.
In this article, we used the commercial package COMSOL
MULTIPHYSICS.

D. Structured fluid

Let us now mimic the heterogeneous anisotropic fluid
described by the matrix T−1 (shear viscosity) in Eq. (6) using
an effective medium approach whereby an assembly of rigid
cylinders judiciously located is now fixed to the bottom of the
channel, as shown in Fig. 3. Such a design approximates the
transformed metric shown in Fig. 5 and it creates both the
required anisotropy (driven by the aspect ratio of inclusions)
and heterogeneity (all inclusions are not the same, the
structured medium is quasiperiodic). It is clear that such a
design will only work to certain extent and moreover will
be constrained by the working eigenfrequency (the larger the
eigenvalue of the operator, the larger the discrepancy between
the ideal and approximated cases, as the cross-sectional size of
rigid cylinders should be small compared to the wavelength in
the homogenization setting). In Figs. 6 and 7, we show some
representative fields corresponding to given eigenfrequencies
in the range 1.72 Hz < ν < 2.33 Hz for a curved channel with
a carpet (Fig. 6) and without a carpet (Fig. 7). We emphasize
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FIG. 6. (Color online) Eigenfields for 1.72 Hz < ν < 2.23 Hz in
a curved channel with the structured carpet. The flat wavefronts of all
eigenfields is noted.

that the wavefront of the fields is nearly flat in Fig. 6: Cloaking
is therefore evidenced. These numerical results clearly show
the positive effect of the structured carpet.

III. EXPERIMENTAL SETUP

For the experimental part of the study, we use the wave
flume at Ecole Centrale Marseille, which is L = 17 m long and
b = 65 cm wide. Note that from now on we use coordinates
(x,y) with x directed along the water channel, i.e., we rotate
the coordinate axes of the preceding part through an angle
π/2. The water depth is set at h = 40 cm. The configuration,
which is the basis of the study, consists of a rigid vertical plate
installed at the end of the tank, from wall to wall, at an angle
of 60 degrees, thereby achieving a dihedral [Fig. 8(a)].

The second configuration is an invisibility carpet, consisting
of 18 vertical poles, with trapezoidal cross-sections, placed in

FIG. 7. (Color online) Eigenfields for 1.72 Hz < ν < 2.23 Hz in
the same curved channel as in Fig. 6 but without the structured carpet.
The disturbed wavefronts for the eigenfields is noted (except for the
first two leftmost eigenfields).

FIG. 8. (Color online) Schematic representation of the two stud-
ied configurations where the waves propagate from the left to the right.
(a) Dihedral configuration. (b) Carpet configuration. (c) Photography
of our experimental carpet.

front of the dihedral [Fig. 8(b)]. For these two configurations,
we run series of regular waves with wavenumber k in the
range (0.7 π )/b to (2.3 π )/b according to the capabilities of
the wavemaker. The reflected wave system, in the far-field,
is the superposition of two modes: The inline mode and the
first sloshing (plus progressive) mode. To access and separate
these two modes, we use an array of 5 wave gauges over the
width of the tank, set at different inline positions [Fig. 8(a)],
meaning that the same experimental case is run as many times
as different positions are used.

A. Numerical study of the dihedral

In the case of the dihedral taken on its own, we use a
semianalytical method, described below, to validate a finite-
element model formulated within the framework of linearized
potential flow theory, and solved numerically with the COM-
SOL Multiphysics software. In our wall-sided geometry, the
linearized velocity potential writes

�(x,y,z,t) = Re

{
−i

aig

ω

cosh(k(z + h))

cosh(kh)
ϕ(x,y)e−iωt

}
, (8)

where ai is the amplitude of the incident waves, h the
water depth, g the gravitational acceleration, and the angular
frequency ω is linked to the wavenumber k by the dispersion
relation:

ω2 = gk tanh(kh). (9)

The reduced potential ϕ(x,y) satisfies the Helmholtz equation

�ϕ(x,y) + k2ϕ(x,y) = 0 (10)

in the fluid domain, no-flow conditions at the solid walls
and appropriate ingoing and outgoing conditions at x → −∞
(Fig. 8).

The geometry at the end of the tank consists of two
overlapping subdomains. The first domain is the angular sector
0 � R � 2d and 2π/3 � θ � π with d = b

√
3/3 (inside the

dashed blue contour in Fig. 9) where the reduced potential ϕ

takes the form

ϕ1(R,θ ) =
∞∑

m=0

Am

J3m(kR)

J3m(2kd)
cos(3mθ ), (11)
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FIG. 9. (Color online) Geometry at the end of the tank. Subdo-
mains 1 (highlighted by dashed blue lines) and 2 (highlighted by solid
red lines) and control points (green dots).

with J3m the Bessel function of the first kind. The second
domain is the semiinfinite strip −∞ < x � d and 0 � y � b

(inside the solid red contour on Fig. 9), where the reduced
potential can be written as

ϕ2(x,y) = eikx +
∞∑

n=0

Bn cos(λny)eαn(x−d), (12)

with λn = nπ/b,

αn = −i

√
k2 − λ2

n (n � N2)

αn =
√

λ2
n − k2 (n > N2), (13)

and N2 the largest integer n such that λn < k. Enforcing that the
two expressions of the reduced potentials ϕ1 and ϕ2 coincide
in the common region (green dots), we can determine the
unknown coefficients Am and Bn. To solve this problem, the
series are truncated at orders M , N , with a number of control
points Npt(Npt 	 M + N + 2) distributed over the common
region (green points in Fig. 9) and the following quantity,

E =
Npt∑
i=1

|ϕ1(xi,yi) − ϕ2(xi,yi)|2 , (14)

is minimized.
We represent in Fig. 10 the results for the coefficients |B0|

and |B1| (solid line). We can see that for kb/π � 1 only the
inline mode exists and for kb/π > 1 a first sloshing mode
exists: kb/π = 1 corresponds to the cut-off frequency. We
note that a new sloshing (plus propagative) mode appears for
all integer values of kb/π .

The results of finite-element computations appear in dotted
values in Fig. 10 and perfectly match the semianalytical values
(solid curves). Thanks to this benchmark, we now dispose of
a finite-element model to perform numerical investigations in
the case of interactions of linear water waves with a vertical
rigid wall in wave flume. We use this model below to perform
our study of an invisibility carpet.

FIG. 10. (Color online) Coefficients |B0| and |B1| vs. kb/π from
semianalytic: black line for |B0| and yellow (light gray) line for |B1|;
finite-element computations: green circles for |B0| and violet squares
for |B1|.

B. Invisibility carpet

The invisibility carpet is defined introducing a geometric
transform in the same way as in Ref. [4] for electromagnetic
waves, and constructed using an effective medium approach,
whereby an assembly of rigid vertical poles, with trapezoidal
cross-sections, is now fixed (with the water channel) in front
of the dihedral. The carpet extends 1.5 m from the end point
of the tank and the void fraction is close to 50%. In a first step,
we want to determine the number of the vertical poles, keeping
constant the extension and the void fraction of the carpet. The
number of inclusions in the inline and transverse direction
is varied in the finite-element computations, and the validity
of the carpet is tested. To this end, an efficiency function is
defined from the quantity

F =
∑

n

∫ b

0
|ϕ(xn,y) − ϕ(xn,y)|2dy, (15)

where a number of reference abscissas xn are taken, from the
edge of the carpet toward the wavemaker. F takes the value F0

in the case with no carpet (dihedral alone) and the efficiency
is defined as F/F0. An efficiency less than one means that
the wave field tends to be unidirectional, and an efficiency
equal to zero means that the dihedral has been made invisible.
The results of this optimization are presented in Fig. 11. We
first note that the 18 inclusions configuration (yellow curve
with square symbols in Fig. 11) appears to be the best, but
it does not fully agree with effective medium theory, which
predicts that the larger the number of poles and the smaller
their cross-section, the lower E. The wall-sided geometry
needs to be considered and could explain why a configuration
with a low number of inclusions (18 inclusions) appears to
work better than configurations with more inclusions (blue
and red curves in Fig. 11). We choose the 18 inclusions’
configuration for our invisibility carpet, and we numerically
test this device before starting our experimental campaign. We
report in Fig. 12 the comparison of the coefficients |B0| and
|B1| of Eq. (12), from COMSOL computations, between the
dihedral alone and the carpet placed in front of the dihedral.
We note that the coefficient |B0| is close to 1 for the carpet
[dashed red (dark gray) curve in Fig. 12], meaning that the
inline mode dominates in the reflected wave system. However,
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FIG. 11. (Color online) Efficiency function F/F0 for 3 numbers
of inclusion and 4 different configurations. Best results are achieved
for the carpet with 18 inclusions.

the sloshing mode exists but is strongly decreased as compared
to the dihedral alone [dashed blue (light gray) curve in
Fig. 12].
To illustrate the behavior of the reflected wave system, we
present in Fig. 13 the calculated patterns of the free surface
elevation for three nomalized wavenumber kb values with and
without invisibility carpet. The first value (kb/π = 0.635)
is below the cutoff frequency, hence the wave pattern is
unidirectional in both cases. And, as shown in Fig. 12, for
the other two values of kb/π above the cutoff frequency, the
wave pattern is nearly unidirectional, but we can see a weak
contribution of the sloshing mode.

Based on the numerical study, we build the invisibility
carpet with 18 inclusions, and we place it at the end of the
wavetank, in front of the dihedral. We run a series of regular
waves (generated with a wavemaker) in the range (0.7 π )/b to
(2.3 π )/b, with and without the carpet.
Figure 14 shows the experimental |B0| and |B1| coefficients, as
derived from the wave gauges measurements. The agreement
with the results in Fig. 10 is excellent in the dihedral-alone
case. One notes the slight oscillation for the B1 coefficient
in the dihedral and carpet cases, which can be attributed
to genuine experimental inaccuracies. Importantly, when one

FIG. 12. (Color online) Results from COMSOL computations:
Coefficients |B0| (red or dark gray) and |B1| (blue or light gray)
of Eq. (12) for configurations without (solid lines) and with (dashed
lines) the carpet.

FIG. 13. (Color online) Calculated wave patterns in the end part
of the tank for 3 normalized wavenumber kb values, with (left panels)
and without (right panels) the carpet.

adds the carpet, the B0 coefficient always takes higher values
than for the dihedral-alone case, which is consistent with the
fact that the B1 coefficient is always lower: This demonstrates
that the phase of the reflected wave is restored when we add
the carpet.

IV. CONCLUSION

In this article, we have conclusively shown using numerical
simulations and experiments that one can control the surface
wave reflection with a 1-meter scale structured carpet. In a
first step, we validated a finite-element subroutine making use
of the COMSOL MULTIPHYSICS package (by comparison
with semianalytical calculus presented in the paper) in order
to perform a numerical study for interactions between linear
water waves and an invisibility carpet. In a second step,
we carried out an experimental campaign to demonstrate
the successful functionality of our carpet. We noticed the
dissipative behavior of such a device. A further work consists
in identifying and quantifying damping sources and in this way,
a particle image velocimetry study in a parallel plane close to

FIG. 14. (Color online) Results from experiments: Coefficients
|B0| (green and brown curves or dark gray curves) and |B1| (blue
and yellow curves or light gray curves) of Eq. (12) for configurations
without (solid lines) and with (dashed lines) the carpet.
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the free surface (in the fluid domain) has been conclusively
performed. This large-scale acoustic metamaterial might pave
the way for nonovertopping dykes.
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