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Unraveling the cause-effect relation between time series
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Given two time series, can one faithfully tell, in a rigorous and quantitative way, the cause and effect between
them? Based on a recently rigorized physical notion, namely, information flow, we solve an inverse problem
and give this important and challenging question, which is of interest in a wide variety of disciplines, a positive
answer. Here causality is measured by the time rate of information flowing from one series to the other. The
resulting formula is tight in form, involving only commonly used statistics, namely, sample covariances; an
immediate corollary is that causation implies correlation, but correlation does not imply causation. It has been
validated with touchstone linear and nonlinear series, purportedly generated with one-way causality that evades
the traditional approaches. It has also been applied successfully to the investigation of real-world problems; an
example presented here is the cause-and-effect relation between the two climate modes, El Niño and the Indian
Ocean Dipole (IOD), which have been linked to hazards in far-flung regions of the globe. In general, the two
modes are mutually causal, but the causality is asymmetric: El Niño tends to stabilize IOD, while IOD functions
to make El Niño more uncertain. To El Niño, the information flowing from IOD manifests itself as a propagation
of uncertainty from the Indian Ocean.
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I. INTRODUCTION

In a philosophical discussion, Dempster says, “Causal
analyses are guides to higher understanding” [1]. Indeed, iden-
tification of the causality between dynamical events is a subject
of enormous interest in a wide variety of disciplines. Examples
are seen everywhere in neuroscience [2], biology [3], network
dynamics [4], financial economics [5], earth sciences [6], and
physics [7], to name a few. Toward the end of this study, we
will see a climate science example that has been linked to the
severe weather and natural disasters on a global scale.

Given that, more often than not, what is known about
the two events in question is in the form of time series,
causality analysis between time series is therefore of particular
importance. This is, however, a very difficult problem; in
fact, it is said to be “one of the biggest challenges” in data
science (Ref. [8], p. 274). Presently a common practice,
particularly a practice in climate science, is computing time-
lagged correlation. However, it is well known that correlation
does not carry the needed directedness or asymmetry and hence
does not necessarily imply causality. As stated by Barnard
(Ref. [9], p. 387): “That correlation is not causation is perhaps
the first thing that must be said.” Besides, one may argue that,
for recurrent processes, there is actually no way to distinguish a
lag from an advance, unless one has enough a priori knowledge
of the processes of concern. This is particularly a problem
when the processes are nonsequential, with circular cause and
consequence that easily lead one to the chicken-egg dilemma.

Another practice is performing a Granger causality test,
which is a statistical test of the usefulness of one time series
in forecasting another. This kind of test, as the name implies,
provides only a yes-or-no judgment, lacking the quantitative
information that may be required in many circumstances. In
attempt to remedy the deficiency, recently people have begun to
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turn their eyes to an empirical information-theoretic measure,
namely, transfer entropy [10]. Unfortunately, this kind of
measure is notoriously difficult to evaluate, requiring long time
series and imposing challenges to computation [11]; moreover,
recent studies have shown that it is biased as its value depends
on the autodependency coefficient in a dynamical system [12].
Perhaps this is the reason why in many applied sciences,
climate science in particular, time-delayed correlation analysis
is still the major tool.

In this study, we will show that causality analysis can be
rigorously formulated and quantitatively realized, and that the
resulting formula turns out to be remarkably concise and very
easy to compute. Considering the large body of related research
in climate science, among other sciences, this study is expected
to provide timely help.

We use information flow, or information transfer as it
may be referred to in the literature, to measure the causation
between dynamical events. It has long been recognized as an
appropriate causality measure, as the amount of information
exchange between two events tells not only the magnitude but
also the direction of the cause-effect relation (cf. Refs. [2–6]).
Due to its importance, the past decades have seen a surge
of interest in formulating this notion. Formalisms have been
established empirically or half-empirically, among which is the
aforementioned transfer entropy. Realizing that information
flow is a real physical notion, and that a real physical notion
should be rigorously, rather than empirically, built on a solid
foundation so as to be universally applicable for problems in
different disciplines, Liang and Kleeman [13] take the initiative
to establish, followed by a series of research afterwards, a
rigorous formalism for the information flow within given
dynamical systems, both deterministic and stochastic (see
Ref. [14] for a review). The problem is that it relies on a given
dynamical system and hence all the information in the sample
space (one can produce arbitrarily many realizations from the
given system) or somewhat partially prescribed causality (but
dynamics or laws alone do not have causal efficacy; see, e.g.,
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Ref. [15]). What we have here, however, are just two time
series, i.e., one single realization for a two-dimensional (2D)
system. If we refer to it as a “forward problem,” then what we
need for the present study is an “inverse problem,” i.e., whether
and how the same notion can be realized with no dynamics but
two time series previously given; that way, the quantitative
causal relation between the series will be obtained. This could
be challenging since only one realization is available, while
the resulting formula must verify, to an acceptable extent,
the touchstone properties established based on the knowledge
of essentially infinite many realizations. This study shows
that such a formula, which is expected to have far-reaching
implications, indeed can be obtained.

In the following we first briefly introduce the “forward
problem.” The major derivation is presented in Sec. III, where
a concise formula for causality analysis is obtained. This
formula is validated with touchstone time series purportedly
generated with only one-way causality (Sec. IV); it is then
applied to the study of the causal relation between El Niño
and the Indian Ocean Dipole (IOD), the two major modes
of climate variation, with important results which have been
evidenced for years but missed in previous observational data
analyses with existing tools (Sec. V). This study is discussed
in Sec. VI and summarized in Sec. VII.

II. THE “FORWARD PROBLEM”

Before getting into the “inverse problem,” let us give a brief
review of the “forward problem,” i.e., the recently established
formalism of information flow with dynamics given [16].
Consider a d-dimensional stochastic system

dX = F(X; θ )dt + B(X; θ )dW, (1)

where F is the vector of drift coefficients, θ a vector of
parameters, B = (bij ) a matrix of diffusion coefficients (or
volatility in finance), and W a vector of standard Wiener
process (Ẇ is the so-called white noise). As usual, the vector
field F is assumed to be differentiable. The rate of information
flowing from a component, say, X2, to another, say, X1, is
the change rate of the marginal entropy of X1, minus the
same change rate but with the effect from X2 instantaneously
excluded from the system. These rates of information flow or
transfer have been derived analytically in a closed form for any
given dynamical systems. The derivation is lengthy and rather
technically involved, requiring, for example, the evaluation of
some Frobenius-Perron operator [17] and the establishment
of a kind of Fokker-Planck equation for the X2-excluded
system [16]. But the results appear to be tractable. Particularly,
for a system of dimensionality 2 (2D), which we will be
considering in this study, we have the following theorem.

Theorem II.1: For the system (1), if d = 2, then the rate of
flow from X2 to X1 is

T2→1 = −E

[
1

ρ1

∂(F1ρ1)

∂x1

]
+ 1

2
E

[
1

ρ1

∂2
(
b2

11 + b2
12

)
ρ1

∂x2
1

]
,

(2)

where ρ1 is the marginal probability density of X1, and E the
mathematical expectation.

The proof is referred to Ref. [16], and the same for the
theorems in this section. T2→1 may be either zero or nonzero.

A nonzero T2→1 means that X2 is causal to X1: a positive value
means that X2 makes X1 more uncertain, and vice versa. This
measure of information flow possesses an important property,
namely, the property of causality or property of flow or transfer
asymmetry: a one-way information flow implies nothing about
the flow in the opposite direction. In particular, we have the
following proved fact:

Theorem II.2. For the system (1), if the evolution of X1

does not depend on X2, then the information flow from X2

to X1 vanishes, i.e., T2→1 = 0. Specifically, if the vector field
component F1 is independent of x2,

E

[
1

ρ1

∂(F1ρ1)

∂x1

]
= 0;

if b2
11 + b2

12 is independent of x2, then

E

[
1

ρ1

∂2
(
b2

11 + b2
12

)
ρ1

∂x2
1

]
= 0.

This property, which one may expect on physical grounds,
is very important and will form the touchstone for causality
studies.

III. CAUSALITY ANALYSIS

The above result on information flow is rigorous. It is,
however, not about causality analysis, as the causal relation is
somewhat partially prescribed in the given dynamical system,
though dynamical rules alone do not mean causality [15]. Since
from a dynamical system one can generate as many realizations
as one likes, this formalism is essentially based on infinitely
many realizations. In this study, however, the only knowns are
two time series, i.e., one realization, with which we need to
find the corresponding information flow. Generally it could be
very challenging, considering the above touchstone property
of one-way causality, among others, to be verified.

Since the dynamics is unknown, we first need to choose
a model. As always, a linear model is the natural choice, at
least at the initial stage of development. In this case, (2) can be
greatly simplified. In Eq. (1), assume F = f + AX, with f =
(f1,f2)T ,A = (aij ), and B = [b1 0

0 b2
] being constant vectors

and matrices.
In the equation, if initially (X1,X2) has a bivariate Gaussian

distribution, as the system is linear, the density is always Gaus-
sian. Denote the mean by μ = (μ1,μ2)T , and the covariance
matrix by � = (σij ), where σii = σ 2

i . They evolve following
the differential equations

dμ

dt
= f + Aμ, (3a)

d�

dt
= A� + �AT + BBT . (3b)

The information flows between X1 and X2 are now easy to
evaluate. We only need to consider T2→1. Denote the two
terms on the r.h.s. of (2) as (I) and (II), respectively, and write
b2

11 + b2
12 as β for short. Substitution of

F1 = f1 + a11X1 + a12X2,

ρ1 = 1√
2πσ1

exp

[
− (x1 − μ1)2

2σ 2
1

]
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into (2) for F1 and ρ1 yields

(I) = −E

[
F1

∂ log ρ1

∂x1
+ ∂F1

∂x1

]

= −E

[
− (X1 − μ1)

σ 2
1

(f1 + a11X1 + a12X2) + a11

]

= a12
σ12

σ 2
1

,

where σij is obtained by solving (3), and

(II) = β

2
E

[
1

ρ1

∂2ρ1

∂x2
1

]
= β

2
E

[
(X1 − μ1)2

σ 4
1

− 1

σ 2
1

]
= 0.

The former is the theorem in Ref. [13] restated in the
linear limit. The vanishing (II) is actually a particular case
of the property of causality proved in Ref. [16]: when β

is independent of x2, (II) = 0. Causality is reflected in the
asymmetry of the flow. In (I), it goes with a12/σ11. To
understand how asymmetry arises in (II), let us assume that β is
a linear function of x2: β = β0 + κx2. As shown above, β0 does
not contribute to T2→1; we need only look at the contribution
from κx2. Usually this cannot be found explicitly; one has to
solve a density evolution equation and then evaluate (2). For
the sake of interpretation, let us assume that the density is also
a Gaussian (this is generally not true, of course). With this,

(II) = 1

2
E

[
β

ρ1

∂2ρ1

∂x2
1

]

= 1

2
E

{
(β0 + κX2)

[
(X1 − μ1)2

σ 4
1

− 1

σ 2
1

]}
(4)

= κ

2σ 4
1

E(X2 − μ2)(X1 − μ1)2, (5)

which is clearly asymmetric between X1 and X2.
Our strategy to approach the causality problem is first to

estimate the linear model, i.e., to estimate the parameters
(f,A,B), and then compute the information flow. Without loss
of much generality, assume the time series are equal-distanced.

We use maximum likelihood estimation (MLE) to fulfill
the purpose. As the population covariances σij (i,j = 1,2) can
be fairly accurately estimated by the corresponding sample
covariances, we focus on the estimation of a12. Consider an
interval [n�t,(n + 1)�t], �t being the time stepsize. If the
transition probability density function ρ(Xn+1|Xn; θ ) can be
obtained, since {Xn} is a Markov process, the likelihood

LN (θ ) = ρ(X1)ρ(X2|X1; θ) · · · ρ(XN |XN−1; θ )

is then given (N the sample size), or, alternatively, the log
likelihood

	N (θ) =
N∑

n=1

log ρ(Xn+1|Xn; θ ) + log ρ(X1)

is obtained. When N is large, ρ(X1) can be dropped without
causing much error. In this linear case, analytical solution of ρ

can be found; the result, however, is complicated. For the sake
of practical applicability, we turn to the discretized version of
the SDE. Using the Euler-Bernstein scheme,

Xn+1 = Xn + F(Xn; θ )�t + B(Xn; θ )�W,

where F = f + Ax. Suppose �t is small, we know that �W
is a normal N (0,�tI) and hence Xn+1|Xn = xn is a normal
N (xn + F�t, BBT �t). So

ρ(Xn+1 = xn+1|Xn = xn)

= 1

[(2π )2 det(BBT �t)]1/2

× e− 1
2 (xn+1−xn−F�t)T (BBT �t)−1(xn+1−xn−F�t)

and

	N (θ) =
N∑

n=1

log ρ(Xn+1|Xn; θ )

= const − 1

2

N∑
n=1

log[det(BBT )]

− 1

2�t

N∑
n=1

(xn+1 − xn − F�t)T (BBT )−1

× (xn+1 − xn − F�t). (6)

Note here we have assumed that N is large enough such that
ρ(X1) can be dropped without causing much error. The MLE
of θ , θ̂ , is therefore the θ that maximizes 	N (θ).

For convenience, denote, for i = 1,2,

Ẋi,n := Xi,n+1 − Xi,n

�t
, (7)

Ri,n := Ẋi,n − (fi + ai1X1,n + ai2X2,n). (8)

Also notice that BBT = [b
2
1 0

0 b2
2
]. Substituting into Eq. (6), the

log likelihood 	N (θ) = 	N (f,A,B) is

	N (f,A,B) = const − N

2
log b2

1b
2
2

− �t

2

[
1

b2
1

N∑
n=1

R2
1,n + 1

b2
2

N∑
n=1

R2
2,n

]
.

The estimators of f, A, and B can be found by maximizing
	N . It is interesting to note that the equations governing
the estimators (f̂1,â11,â12), (f̂2,â21,â22), and (b̂1,b̂2) are
actually decoupled. This makes the estimation much easier.
Additionally, notice that maximizing 	N over (fi,ai1,ai2) is
equivalent to minimizing

∑
n R2

i,n := QN,i over the same
group of parameters, for i = 1,2. So (f̂1,â11,â12) are precisely
the least square estimators, which satisfies

⎡
⎣N

∑
X1,n

∑
X2,n∑

X1,n

∑
X2

1,n

∑
X1,nX2,n∑

X2,n

∑
X2,nX1,n

∑
X2

2,n

⎤
⎦

⎡
⎣f̂1

â11

â12

⎤
⎦

=
⎡
⎣

∑
Ẋ1,n∑
X1,nẊ1,n∑
X2,nẊ1,n

⎤
⎦ .
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The above equation set can be written in a more familiar
and succinct form:⎡

⎢⎣
1 X1 X2

X1 X2
1 X1X2

X2 X1X2 X2
2

⎤
⎥⎦

⎡
⎣f̂1

â11

â12

⎤
⎦ =

⎡
⎢⎢⎣

Ẋ1

X1Ẋ1

X2Ẋ1

⎤
⎥⎥⎦ ,

where, as usual, the overline signifies sample mean. Let

Cij := (Xi − X̄i)(Xj − X̄j ),

Ci,dj := (Xi − X̄i)(Ẋj − ¯̇Xj ),

C = (Cij ) being the sample covariance matrix. It is easy to
show that ⎡

⎣1 X1 X2

0 C11 C12

0 C12 C22

⎤
⎦

⎡
⎣f̂1

â11

â12

⎤
⎦ =

⎡
⎢⎣Ẋ1

C1,d1

C2,d1

⎤
⎥⎦ ,

which yields

â11 = C22C1,d1 − C12C2,d1

det C
,

â12 = −C12C1,d1 + C11C2,d1

det C
,

f̂1 = ¯̇X1 − â11X̄1 − â12X̄2.

To find the remaining parameter, let ∂	N

∂b1
= 0. This gives

b̂1 =
√

QN,1�t

N
, (9)

where

QN,1 =
N∑

n=1

R2
1,n =

N∑
n=1

[Ẋ1,n − (f̂1 + â11X1,n + â12X2,n)]2.

On the other hand, as the population covariance matrix can
be estimated by the sample covariance matrix, we estimate
σ12/σ11 to be C12/C11.

Substituting these results to the linear version of (2),
T2→1 = a12σ12/σ11, we finally obtain the rate of information
flowing from X2 to X1:

T2→1 = C11C12C2,d1 − C2
12C1,d1

C2
11C22 − C11C

2
12

, (10)

where Cij is the sample covariance between Xi and Xj , and
Ci,dj the covariance between Xi and Ẋj . Strictly speaking,
here T2→1 should bear a caret since it is an estimator of the
true information flow. But we will abuse the notation a little
bit for the sake of terseness. The flow in the opposite direction,
T1→2, can be directly written out by switching the indices 1
and 2. The units are in nats per unit time.

Given a significance level, we may estimate the confidence
interval for (4). This actually can always be achieved with
bootstrap. But here things can be simplified. When N is large,
T2→1 is approximately normally distributed around its true
value with a variance (C12

C11
)2σ̂ 2

a12
, thanks to the MLE property.

Here σ̂ 2
a12

is determined as follows (e.g., Ref. [18]).

Denote θ = (f1,a11,a12,b1). Compute

NIij = −
N∑

n=1

∂2 log ρ(Xn+1|Xn; θ̂ )

∂θi∂θj

to form a matrix NI, I being the Fisher information matrix.
The inverse (NI)−1 is the covariance matrix of θ̂ , within which
is σ̂ 2

a12
. Given a significance level, the confidence interval can

be found accordingly.
As there has been a great deal of debate over correlation

versus causation, it might be of interest to write (10) in
terms of correlation and/or correlation-like quantities. Let r =
C12/

√
C11C22 be the sample correlation coefficient and r ′

i,dj =
Ci,dj /

√
CiiCjj (i,j = 1,2) be the “correlation” between Xi

and Ẋj but normalized with the variances of Xi and Xj . We
then have

T2→1 = r

1 − r2
(r ′

2,d1 − rr ′
1,d1). (11)

Obviously, two uncorrelated events (r = 0) must be noncausal
(T2→1 = 0); in other words, causation implies correlation. The
converse, however, does not hold; i.e., correlation does not
imply causation.

IV. VALIDATION

A. A linear problem

To validate (10), consider a 2D stochastic differential
equation (SDE) set

dX1 = (−X1 + 0.5X2) dt + 0.1 dW1, (12a)

dX2 = −X2 dt + 0.1 dW2. (12b)

Clearly, X2 drives X1, but not vice versa. This kind of problem
is very typical in causality analysis: One component causes
another, but the latter has no feedback to the former. We now
generate a sample path (X1,n,X2,n) and expect to recover this
touchstone one-way causality using Eq. (10) from the only re-
alization. Using a time step �t = 0.001, we generate 100 000
steps, corresponding to a time span t = 0 − 100. For later use,
we purportedly initialize the series far from the equilibrium to
allow for a period of spin-down, as shown in Fig. 1. The series
reach a stationary state after approximately t = 4.

As here the dynamics is given, the true information flow
between X1 and X2 can be evaluated by solving (3). The
computed T2→1 and T1→2 are plotted in Fig. 1 (dashed lines).
As expected, T1→2 ≡ 0, since the evolution of X2 does not
depend on X1. That is to say, to X2, X1 is not causal. On
the other hand, X2 drives X1 and hence is causal to X1;
correspondingly T2→1 �= 0. In this example, T2→1 approaches
a constant 0.1111 no matter how the covariances are initialized,
although the result may be different during the spin-up period
(t < 4).

Now let us see whether the concise formula (10) can help
to recover the one-way causality. The data we have are just
one realization, i.e., the above sample path. Our objective
is, of course, not to estimate the whole evolution course of
T2→1 and T1→2 as shown in Fig. 1; what we expect is to see
whether the stationary values (T2→1 = 0.1111, T1→2 = 0) can
be estimated with acceptable confidence. For this purpose,
we form different series from the sample path with different
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FIG. 1. (Color online) (a) A sample path (X1 and X2) of the linear SDE (12) generated using the Euler-Bernstein scheme with �t = 0.001
and initialized with (1,2). (b) The true information flow rates T2→1 and T1→2 (in nats per unit time) within the system through solving (3)
initialized with σ11 = σ22 = 0.1, σ12 = 0 and computing (2).

resolutions and different time intervals and lengths, and then
test the performance of estimation. The testing results are listed
in Table I.

Clearly, so long as the time span of the series is long
enough, the estimation can be made rather accurate. With
stationary data (t = 5−100), even when one samples the path
every 100 time steps (corresponding to a time resolution of
0.1), which yields a time series of only 1000 data points,
the result is still acceptable to some extent. To see how the
formula may perform if the time span is short, we make the
series spanning only 10 time units: t = 10−20. The result,
T2→1 = 0.60, T1→2 = 0.17, unfortunately, is not as good as
one would like to expect, even though the data points amount
to 10 000. Nonetheless, if we estimate the standard error at a
95% significance level, which gives a value of 0.54 and 0.47,
respectively, the result still sounds informative. It tells that
T2→1 is significantly (at a 95% level) greater than zero, while
T1→2 is not significantly different from zero, consistent with
the accurate result.

We have also tested the formula (10) or (11) for systems
with different drift and diffusion coefficients, particularly for
systems where noises dominate. Again, so long as the series
have a span long enough, the causal relation can be faithfully
recovered. As an example, for the system

dX1 = −0.5X1 + X2 + 20 dW1,

dX2 = −0.7X2 + 10 dW2,

TABLE I. The information flow computed with different series
formed by sampling from the path shown in Fig. 1. �n is the number
of sampling steps (i.e., sampling every �n time steps from the original
series). The accurate result is T2→1 = 0.1111, T1→2 = 0 (in nats per
unit time).

Time span �n T2→1 T1→2

t = 5–100 1 0.11 −0.002
20 0.10 −0.004

100 0.09 −0.01

t = 10–20 1 0.60 0.17
10 0.57 0.20

if the series span 1000 time units or longer, the estimation of
T2→1 and T1→2 can be made fairly accurate [(T2→1,T1→2) =
(0.116,−0.0169) versus the true result (0.115,0)].

It would be of interest to check how the popular approaches
may work with the present series. Since the time-delayed
correlation analysis is widely used (especially in climate
science), though it has long been recognized inappropriate
for causality inference (e.g., Refs. [8,9,19]), we compute the
time delayed correlation r with the above time series X1 and
X2 (the stationary segment t = 5–100) and plot it as a function
of the time lag �t (positive if X1 lags X2). We know X2 causes
X1, while X1 does not cause X2. So, by the logic of correlation
advocators, maximal correlation should take place between X1

and some past X2; i.e., X2 should lead X1. For this specific
example, unfortunately, this is not true at all. In Fig. 2 the
computed r(�t) as a function of �t is very small for �t > 0)
and takes much larger (still small) values at negative �t . That
is to say, a correlation advocator would have concluded that
X1 causes X2, not the opposite!

B. A nonlinear problem

We now look at how the formula (10), which stems from
a linear assumption, may work for nonlinear systems. The
system we will be considering is a one-way coupled map from
Ref. [20]:

X1,n+1 = f (X1,n), (13a)

X2,n+1 = (1 − ξ )f (X2,n) + ξgα(X1,n), (13b)

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.05

0.1

0.15

0.2

Δt

r

FIG. 2. Time delayed correlation coefficient r as a function of
time delay �t (in unit time; positive if X1 lags X2). The time series
is from the sample path in Fig. 1 (the stationary segment t = 5–100).
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FIG. 3. Information flow within the system (13) with gα(x) =
αf (x). The series are generated with initial condition X1,1 = 0.4,
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ted) for ξ = 0.3 and α = 1.0. Lower: Absolute rates of information
flow (in nats per unit time) versus anticipation α.

where x

f (x) = 4x(1 − x) (14)

is the chaotic logistic map, and gα a functional of f . In
Ref. [20], Hahs and Pethel examine the “anticipatory system”
with gα(x) = (1 − α)f (x) + αf 2(x), where f 2 means that the
logistic map f applies twice. This is a very special and chaotic
case, which needs a careful discussion; we defer it to Sec. VI.
Here we consider

gα(x) = αf (x), (15)

a normal case where f applies only once. Obviously, when
ξ �= 0 and α �= 0, X1 is the drive and X2 the response; in other
words, X1 causes X2 but not vice versa.

Pick the typical case ξ = 0.3. An example series pair is
shown in the upper panel of Fig. 3 for α = 1.0 [initialized with
X1(1) = 0.4, X2(1) = 0.1]. We then use Eq. (10) to compute
T2→1 and T1→2 and draw them as functions of α (see the lower
panel of the figure). Note what we plot are |T2→1| and |T1→2|, as
it is the absolute values that tell the causality. Besides, the flow
rates need not be continuous functions of α, and interpolation
between a positive point and a negative point may lead to a
spurious zero information flow, i.e., nil causality. (Here it is
not a problem, though: all the values are negative.) The figure
shows that, compared with T1→1, T2→1 is generally negligible
when α � 0.3. When α is small, the two may be comparable,
but still T1→2 is much larger. Besides, T1→2 increases with α,
consistent with the observation that in the equation of X2,n+1,
α controls the effect from X1. Particularly, when α = 0, both
T1→2 and T2→1 vanish, just as one would expect based on the
independence between X1 and X2. It is, therefore, safe to say
that the one-way causality within the unidirectionally coupled
map, albeit highly nonlinear, has been fairly well recovered
with (10).

V. A REAL-WORLD APPLICATION

Finally let us look at an application to a real-world problem:
the causal relation between the two famous climate modes,
El Niño and the Indian Ocean Dipole (IOD). El Niño is the
strongest interannual climate variation in the tropical Pacific
air-sea coupled system, occurring at irregular intervals of two
to seven years and lasting nine months to two years [21]; it is
well known through its linkage to natural disasters in far-flung
regions of the globe, such as floods in Ecuador, droughts in
Southeast Asia and southern Africa, and an increased number
of storms over the Pacific Ocean. There are several indices
measuring the strength of El Niño, the popular ones being
Niño3 and Niño4 [22]. IOD is another air-sea coupled climate
mode, characterized by an aperiodic oscillation of sea surface
temperature (SST) in the Indian Ocean [23]. It has been related
to, among others, the floods in East Africa and droughts in
Indonesia and parts of Australia. IOD is measured by an index
called the Dipole Mode Index (DMI).

As the dominant modes in, respectively, the Pacific and
Indian Oceans, the relationship between El Niño and IOD is
of enormous interest; see Ref. [24] for a review. It has long
been recognized that the tropical Indian and Pacific Oceans
are interrelated on their SST anomalies [25]. But the relation
between the two modes is still to be clarified. In general, it is
believed that El Niño may induce IOD, which usually peaks
in the fall; see Ref. [26]. The causality of El Niño is easily
understood, considering the alteration of the Walker circulation
during the El Niño years, which causes the subsidence over
the Indian Ocean (e.g., Refs. [27,28]).

On the other hand, the impact from IOD has been
recognized just recently; in fact, in early efforts, the Indian
Ocean used to be treated as a slab of mixed layer responding
passively to El Niño [29]. The recognition is mainly through
climate predictions, such as the El Niño predictions (e.g.,
Refs. [30,31]) and the coupled atmosphere-ocean general
circulation model experiments (e.g., Ref. [32]). Due to the
correlation between the two modes, it has been suggested that
an Indo-Pacific perspective should be adopted in research on
the El Niño and IOD problems (e.g., Ref. [33])

The linkage between IOD and El Niño, though evidenced
from different aspects, is still an issue in debate. This is partly
due to the failure to recover the IOD pattern in the Indian Ocean
in many correlation or time-lagged correlation analyses with
the indices and the SST observations, albeit the correlation
could be significant. Such an example is shown in Fig. 4 of
Ref. [24]. This has led people to conclude with caution that
IOD might be partially independent of El Niño, though El
Niño tends to induce IOD.

This problem, which is obviously a problem on cause and
effect, could be due to the inadequacy of using correlation
analysis for causality purposes. Now that we have arrived at
the formula (10), let us see how things will come out if it is
applied to the IOD-El Niño causality analysis.

First, look at the causal relation between the indices of the
two modes. The DMI used is the monthly series in terms of
SST gradient by the Japan Agency for Marine-Earth Science
and Technology (JAMSTEC); the El Niño indices are from
the NOAA ESRL Physical Sciences Division [34]. Since this
DMI series spans from January 1958 to September 2010, the
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FIG. 4. (Color online) Information flow between the IOD index (symbolized by subscript 1) and the tropical Pacific SST (symbolized by
subscript 2): (a) T1→2; (b) T2→1 (in nats/month). Negative values are in dashed lines.

El Niño indices, which have a much longer time span (1870
to present), are also tailored to the same period. These series
then have a total of 633 time points. Application of (10) to the
DMI and Niño4 yields a flow of information from El Niño to
IOD: TE→I = −6, and a flow from IOD to El Niño : TI→E =
13 (units: 10−3 nats/month). Using Niño3 one arrives at a
similar result: TE→I = −6 and TI→E = 16. That is to say,
El Niño and IOD are mutually causal, and the causality is
asymmetric, with the one from the latter to the former larger
than its counterpart. Moreover, the different signs indicate that
El Niño tends to stabilize IOD, while IOD tends to make El
Niño more uncertain.

By our previous experience, series length is crucial. To
see whether the length here is adequate, we have tried
shortened series: 1963–2010 and 1968–2010. The former
yields essentially the same result as the one in its full length
(1958–2010); the result of the latter is also similar. In fact,
even series with a span as short as 1970–2010 can give a
qualitatively similar result. So the series may be long enough
to form an ensemble with sufficient statistics. The resulting
information flow rates hence may be acceptable.

With this assertion we proceed to extract the causality
patterns out of the SST in the Pacific and Indian Oceans.
The SST data are from the above NOAA site. As before, we
use only the data for the period 1958–2010. First, compute
the causality between DMI and the tropical Pacific SST. The
results are shown in Fig. 4. Clearly DMI and the Pacific SST are
mutually causal, and the information flow in either direction
has a El Niño-like pattern. The signs of the flows are the same
as computed above with two index series.

If the above El Niño-like pattern in the Pacific is common,
the following pattern in the Indian Ocean is unique to our
causality analysis. We compute the information flow between
Niño4 and the Indian Ocean SST and plot the result in Fig. 5.
Figure 5(a) shows the flow from El Niño to the SST. In the
tropical region, there are indeed two poles, though the eastern
one covers a rather limited region over Indonesia. On the map
of the feedback from the Indian Ocean SST [Fig. 5(b)], this
structure is much clearer, with a pattern in between the IOD
and Indian Ocean Basin Mode (IOBM). This is remarkable,
as in previous correlation analyses or time-lagged correlation
analyses, the IOD pattern is not seen. Note in Fig. 5(b) that both
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FIG. 5. (Color online) Information flow between Niño4 (symbolized by subscript 1) and the Indian Ocean SST (symbolized by subscript
2): (a) T1→2; (b) T2→1 (in nats/month). Negative values are in dashed lines.
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centers are positive, indicating that the Indian Ocean influences
the El Niño through IOD, which functions to amplify the El
Niño oscillations. In contrast, the impact of El Niño on the
Indian Ocean SST divides over the two centers, which have
opposite signs of information flow. The causality analysis with
Niño3 shows similar patterns, though the features may not be
as pronounced as that with Niño4.

The relation between El Niño and IOD is an extensively
investigated subject; further discussion, however, is beyond
the scope of this study. Our purpose here is to use it as one
real-world example to demonstrate the utility of the newly
derived formula (10). The result is encouraging: the IOD-like
pattern, which is anticipated as evidence builds up, but missed
in previous data analyses, shows up in the index-SST causality
patterns. Moreover, it is found that, on the whole, the El
Niño influences IOD by making the latter more certain, while
the causality from IOD to El Niño is generally the opposite.
This is perhaps the reason why it has long been observed
in a definite way that El Niño may induce IOD, while the
influence from IOD to El Niño, albeit stronger, has been
just recognized recently through predictability studies. The
latter, which carries a positive information of flow, means
that, to El Niño, the Indian Ocean is a source of uncertainty,
and the causality from IOD to El Niño is manifested as
a propagation of uncertainty from the former to the latter.
Clearly an efficient way to observe and forecast an event is
to put extensive observation at its uncertainty source: a way
in which adaptive observing systems are designed. This is
why knowledge of the Indian Ocean facilitates the El Niño
forecast (e.g., Refs. [30,31]), i.e., increases the predictability
of El Niño.

VI. DISCUSSION

While for linear systems Eq. (10) is satisfactory, and it also
succeeds with nonlinear problems such as that in Sec. IV B,
caution should be exercised in applying it to highly chaotic
cases. Look again at the one-way causal map system (13),
with g now defined as

gα(x) = (1 − α)f (x) + αf 2(x), (16)

where f 2 means that the logistic map f applies twice. This is
the anticipatory system introduced by Hahs and Pethel [20],
with α being the anticipation parameter. It is very unusual in
causality, as reflected in the computed transfer entropy rates,
written as T S

2→1 and T S
1→2 here, versus α. Transfer entropy

depends on the choices of delay length m, and the sample
space resolution when coarse graining, which is presented with
d, namely, the number of partitions in each dimension of the
sample space [10]. Let m = 2, d = 2; Hahs and Pethel find that
T S

1→2 decreases with α ∈ [0,1], while T S
2→1 increases with α.

The two intersect around α = 0.5, and T2→1 finally dominates
the computed information flow (see Fig. 1 of Ref. [20]).
This is, of course, not what one would expect, as ideally the
information flow from X2 to X1 should be around zero due to
the one-way causality in Eq. (13).

The above anticipatory system seems to be a nightmare for
causality analysis tools; our formula (10) together with (7) also
encounters the similar difficulty. Of course, it could be argued
that the formula is developed for linear systems, while this
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FIG. 6. (Color online) Estimates of dX/dt using different Euler
forward schemes. The series is generated from the anticipatory
system (13). Shown here is {X2,n} for α = 1. Thin line: (X2,n+1 −
X2,n); light thick line: (X2,n+2 − X2,n)/2.

current system is highly nonlinear. However, as linearization is
a common practice in nonlinear research, one expects that (10)
should give qualitatively correct result. A possible reason
why there is a difficulty here could be the inadequacy of
the differencing scheme for highly chaotic series. It is well
known that, for a field, its derivative is usually much more
wildly distributed; a good example is velocity versus vorticity
in turbulence (e.g., Ref. [35]). In fact, for a system with weak
solutions, the shocklike structure may yield infinite derivatives
which, when represented using differencing schemes, are very
sensitive in time, resulting in spuriously large local differences,
and hence disguise the differential field on larger scales. That is
to say, the spuriously large local differences may overwhelm
the whole series and make the resulting differences unable
to characterize the large-scale (and hence global) trend of the
differential field. The above highly chaotic anticipatory system
is similar to this. In Fig. 6 a plot of (X2,n+1 − X2,n) (thin
line) and (X2,n+2 − X2,n)/2 (light thick line) versus n is drawn
(α = 1, initialized with X1,1 = 0.4, X2,1 = 0.1). Clearly, the
former is much wilder and larger in amplitude. In this case,
the latter represents better the general characteristics of the
derivative series, although it is only accurate up to O(2�t).

Based on the above observation and argument, we mod-
ify (7) to

Ẋi,n = Xi,n+2 − Xi,n

2�t
(17)

to compute the C1,d1 and C2,d1 in Eq. (10) for the anticipatory
system problem. The resulting rates of information flow
are plotted in Fig. 7(a). For clarity and for the sake of
comparison, in Fig. 7(b) we replot their absolute values |T2→1|
and |T1→2|, which measure the strength of the underlying
causality. The figure shows that, compared with T1→2, T2→1

is negligible; even at α = 0.5 where the two stay closest,
|T1→2| > 5 × |T2→1|. The one-way causality within the an-
ticipatory system has been fairly faithfully recovered with
only modest computational effect, although this is a highly
nonlinear system! We have also tried the differencing scheme
Ẋi,n = Xi,n+3−Xi,n

3 , and the resulting structure of information
flow is similar, except for a left translation of the extrema
(minimum and maximum) by about �α = 0.1.

In general, time series are formed from measurements. The
sampling cannot be as dense as all time steps are resolved.
Actually, more often than not, it is coarse. We may then ask
whether a resampled pair of the anticipatory series can give the
right result, with Ẋi,n = (Xi,n+1 − Xi,n)/�t as defined before
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FIG. 7. (Color online) Information flow within the anticipatory system (13) and (16). The series is formed on MATLAB with initial condition
X1,1 = 0.4, X2,1 = 0.1. (a) T1→2 and T2→1 (in nats per unit time) vs anticipation α estimated with Ẋi,n = Xi,n+2−Xi,n

2 . (b) Same as (a), but for
absolute values. Note that |T1→2| � |T2→1|; even at the point α = 0,5, where they seem to stay close in this figure, the former is actually five
times larger (3.26e-4 vs 6.28e-5 nats/unit time).

in Eq. (7). Sample the original series every two time steps and
redo the computation. Indeed, the computed T1→2 and T2→1

are almost the same as that in Fig. 7; the tiny difference lies
at α = 0.9 and 1, where T1→2 takes the same value, but in
Fig. 7 α = 0.9 is a local maximum. The success of this “series
coarsening” implies that, for realistic problems such as that in
Sec. V, Ẋi,n = Xi,n+2−Xi,n

�t
can be used in Eq. (10) safely, for

measurements essentially cannot be taken at extremely fine
resolution.

A closer look at Fig. 7 shows, besides the fact that T2→1

is negligible compared with T1→2, that T1→2 actually changes
sign as α varies on [0,1]. The change of causal structure makes
the anticipatory system of Ref. [20] particularly interesting.
Physically, this means that, when α is small, X1 functions to
reduce the marginal entropy, and hence the uncertainty, of X2;
in other words, X1 tends to stabilize X2. As α exceeds 0.5,
however, the function is reversed; X1 now makes X2 more
uncertain or more unpredictable. It is still unclear whether this
fundamental change in causal structure is related to the result
of Hahs and Pethel, but the change itself may deserve further
study.

In a word, with highly chaotic and densely sampled time
series as that generated with the anticipatory system, the
formula (10) still works fairly well, provided that Ẋi is
differenced every two or more time steps to avoid spuriously
large differences that prevent from characterizing the large
scale trend of the derivative field. We remark that, in real-world
applications, this should not be a problem, as measurements
generally cannot be taken at extremely fine resolution.

VII. CONCLUDING REMARKS

We have obtained, in a rigorous and quantitative way, a
concise formula for causal analysis between time series. The
causality is measured by information flow, a physical notion
rigorized just recently. For series X1 and X2, the rate of
information flowing (units: nats per unit time) from the latter
to the former is

T2→1 = C11C12C2,d1 − C2
12C1,d1

C2
11C22 − C11C

2
12

,

where Cij is the sample covariance between Xi and Xj , Ci,dj

the covariance between Xi and Ẋj , and Ẋj the difference
approximation of dXj

dt
using the Euler forward scheme:

Ẋj,n = Xj,n+k − Xj,n

k�t
,

with k � 1 but should not be large to ensure precision. For
general time series including those from realistic problems,
k = 1 should be fine; for highly chaotic and densely sampled
series, one may pick k = 2. Practically, one may first make a
comparison between the results with k = 1 and k = 2. If they
are qualitatively different, then k = 1 should be discarded.

The rate of information flow computed from the above
formula, T2→1, could be zero or nonzero. If T2→1 = 0, X2

does not cause X1; if not, it is causal. In the presence of
causality, two cases can be distinguished according to the sign
of the flow: a positive T2→1 means that X2 functions to make
X1 more uncertain, while a negative value indicates that X2

tends to stabilize X1. This formula is tight in form, involving
only common statistics, namely, the sample covariances, and
is hence very easy to compute. In addition, it clearly shows
that causation implies correlation, but correlation does not
necessarily lead to causation, resolving the continuing debate
over causation versus correlation. We have validated it with a
couple of touchstone series. In the linear case, the stationary
preset one-way causality can be rather accurately recovered,
provided that the series is long enough (time span, not
number of data points) to contain sufficient statistics; this same
causality cannot be inferred with the traditional time-delayed
correlation analysis. When the series length is guaranteed, the
formula works even with series with rather coarse resolution.
In the nonlinear case, it also shows remarkable success with
a chaotic logistic map, and an unusually chaotic anticipatory
system with a very special causal structure.

The above formula has been applied to investigating the
relation between El Niño and IOD, the two climate modes
which have been linked to many natural hazards on earth.
In general, the two modes are mutually causal, though the
causality is asymmetric. Particularly, El Niño tends to stabilize
IOD, while IOD functions to make El Niño more uncertain.
In other words, to El Niño El Niño, the Indian Ocean is
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a source of uncertainty, and the causality from IOD to El
Niño is manifested as a propagation of uncertainty from the
former to the latter. This assertion is also substantiated by the
causality analyses between the El Niño index and the Indian
Ocean sea surface temperature. The resulting information
flow rates, both TElNiño → Indian and TIndian → ElNiño, clearly show
a structure reminiscent of the IOD and IOBM, which has
been missing in previous observational data analyses with
traditional approaches.

It would be of interest to compare (10) to Schreiber’s
transfer entropy. This is, however, a task far beyond the scope
of the present study. Previously in Ref. [36], a brief comparison
has been made, which demonstrates that our formalism qualita-
tively agrees with transfer entropy, though quantitatively they
are different. Recently Runge et al. [12] found that transfer
entropy is biased since, within the framework of a dynamical
system, it depends on the autodependency coefficient; as a
remedy, they propose their own measure, namely, momentary
information transfer based on graphical models. Of course,
our formalism does not have this kind of bias, as implied by
Theorem II.2. Nonetheless, the computational results with the
linear problem in Sec. IV A seem to be similar, if the transfer
entropy is computed using the analytical result such as that
in Ref. [37]. (Note, if one does the computation through bin
counting, the one-way causality is not seen in the resulting
transfer entropy.) A careful and detailed comparison is yet to
be made.

It should be pointed out that the derivation of the for-
mula (10) is based on a formalism with respect to Shannon
entropy, or absolute entropy, while it has been argued [38], in
predictability research, relative entropy is a more advantageous
choice due to its nice properties such as invariance under
nonlinear transformation. Fortunately, as we have proved in
Ref. [17], for 2D systems, the information flow thus obtained
is the same with both absolute and relative entropies. But,

of course, the sign has to be changed, as the former is for
uncertainty, while the latter is for predictability.

It should also be pointed out that originally our formalism is
developed purportedly for physical systems from nature, such
as the climate modes examined in Sec. V. The vector field
of concern is differentiable. That is to say, in the governing
equation (1), F should be a differentiable function of X.
The resulting general formula (2) further asserts this, or the
derivative cannot be taken. While in practice the formula (10)
may actually go beyond the assumption and work with some
nondifferentiable F, the problems with systems such as those
formed with the logical exclusive or operation should be
excluded.

Some issues remain. First, in arriving at (10), a linear model
has been adopted, while in reality, nonlinearity is ubiquitous.
Although a linear model could be a good approximation in
many cases, and, indeed, it appears to be remarkably successful
for the benchmark nonlinear systems examined, we would
just take it as an approximation, and do expect some more
sophisticated model in order to to arrive at a universally
applicable formula. Second, what we have worked with is a
2D system. For general multidimensional systems, in principle
this should be straightforward, though a formula like (2) is yet
to be obtained for stochastic systems. These issues, among
others, will be considered in the forthcoming studies.
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