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Algebraic approach to small-world network models
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We introduce an analytic model for directed Watts-Strogatz small-world graphs and deduce an algebraic
expression of its defining adjacency matrix. The latter is then used to calculate the small-world digraph’s
asymmetry index and clustering coefficient in an analytically exact fashion, valid nonasymptotically for all graph
sizes. The proposed approach is general and can be applied to all algebraically well-defined graph-theoretical
measures, thus allowing for an analytical investigation of finite-size small-world graphs.
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In recent years, small-world graphs have gained consider-
able interest as models of real-world systems [1], which often
display features residing between regularity and randomness.
The most notable of these models is the Watts-Strogatz graph
[2], though alternative models have been proposed [3]. The
unifying characteristics of these models are that any two nodes
are joined with a small number of links between them (i.e.,
short path length), while at the same time connected node
pairs exhibit an abundance of triangular relations resulting in
a high degree of local redundancy (i.e., high clustering).

Theoretical investigations of small-world graph models
have generally applied asymptotic evaluations in the limit of
large system size [4] or the continuum approximation [5,6]
to the algorithmic definition of the graph, in the absence
of an analytic representation. In this work, we introduce a
generative model of small worlds that can be viewed as a
directed version of a canonical Watts-Strogatz graph and
provide an algebraic expression for the adjacency matrix
defining the graph. We employ this formulation to calculate
various properties of this graph in a nonasymptotic fashion.
The resulting expressions are exact for all graph parameters
and are valid at all system sizes.

This paper is organized as follows. We start by introducing
the directed small-world model, which is then formulated
algebraically. We apply this formulation in the calculation of
various graph-theoretic measures, specifically, the asymmetry
index and graph clustering coefficient. The paper ends with a
discussion of the limitations and possible generalizations of
the proposed approach.

I. MODELS OF SMALL-WORLD DIGRAPHS

We start by describing the algorithmic construction of a
non-self-looped directed small-world graph. Let GRG denote
a classical undirected ring graph with NN nodes, degree k, and
adjacency matrix aRG

ij , in which each node is symmetrically
connected to 2k of its neighbors. A new graph GSW is
constructed by uniform random rewiring N rew

E of the total
Nmax RG

E = 2kNN edges of GRG across Nmax
E = NN (NN − 1)

possible edges of the full graph. Let q = N rew
E /Nmax RG

E
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denote the rewiring probability. Then this rewiring will, on
average, add N rew

E NN (NN − 2k − 1)/Nmax
E edges between

nodes not connected within the initial ring graph and remove
N rew

E (1 − Nmax RG
E /Nmax

E ) edges from GRG, thus ensuring that
statistically the total number of edges in the constructed graph
is conserved and independent of q. Moreover, whereas for
q = 0 the original symmetric ring graph remains unchanged,
for q = 1 only 4k2NN/(NN − 1) edges remain of GRG,
whereas 2kNN (NN − 2k − 1)/(NN − 1) edges are randomly
distributed outside GRG, yielding a classical Erdős-Rényi
digraph GER with expected uniform connectedness C =
2k/(NN − 1), where the connectedness of a graph is defined as

C = NE

Nmax
E

,

with NE denoting the total number of edges.
The total adjacency A and asymmetry index A of a directed

non-self-looped (aii = 0 ∀i ∈ [1,NN ]) graph are defined as
[7–9] (see also [10])

A =
NN∑

i,j=1

aij (1)

and

A = NA

A − NS

, (2)

respectively. The asymmetry index is bound 0 � A � 1 and
quantifies the ratio between the number of nonsymmetrical
edges NA, defined as the number of node pairs ({i,j},j � i)
for which aij �= aji , and symmetrical edges NS , the number of
node pairs ({i,j},j � i) for which aij = aji = 1. It can easily
be shown that for GSW we have in the statistical limit

A = 2kNN ∀q,

C = 2k

NN − 1
∀q, (3)

A =
{

0 for q = 0
NN −2k−1
NN−k−1 for q = 1.

Moreover, GSW gives rise to classical small-world charac-
teristics, i.e., a narrow regime for intermediate values of the
rewiring probability q with coexisting small average geodesic
graph distance 〈d〉 and large total global clustering coefficient
Cd (Fig. 1, black dots). Here

〈d〉 = 1

NC

NN∑
i,j=1

dij , (4)
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FIG. 1. Small-world digraph models. The dependence (mean ±
SD) of the average geodesic graph distance 〈d〉 [Eq. (4)] and total
global clustering coefficient Cd [Eq. (5)] on the rewiring probability
q are shown for the generic model of small worlds GSW (black
dots) and the canonical Watts-Strogatz small-world digraph model
(gray dots). Here 〈d〉0 and Cd

0 denote the distance and clustering
for the original ring graph, respectively. The gray region marks the
small-world regime in which a small average geodesic distance and
large clustering coefficient coexist. The analysis was performed on
representative graph models with NN = 200 and k = 5, with 1000
random realizations for each parameter set.

where dij denotes the number of edges in the shortest path
connecting nodes i and j and NC is the total number of
connected node pairs, and

Cd = 1

N

NN∑
i,j,h=1

(aij + aji)(aih + ahi)(ajh + ahj ), (5)

where

N = 2
NN∑
i=1

[
atot

i

(
atot

i − 1
)− 2ab

i

]
,

atot
i =

NN∑
j=1

(aji + aij ),

ab
i =

NN∑
j=1

aij aji .

The algorithm introduced above yields a graph GSW that
can be shown to correspond to a canonical model for Watts-
Strogatz small-world [2] digraphs. The latter are constructed
from an undirected non-self-looped ring graph GRG with
NN nodes, degree k, and subsequent rewiring of all edges
with probability q. To that end, for each edge aij , a new
target node j ′ with aij ′ = 0 is chosen and with probability
q the original edge is removed (aij = 1 → aij = 0) and a
new edge added (aij ′ = 0 → aij ′ = 1), thus leading to a strict
conservation of the graph’s total adjacency. This algorithmic

approach is equivalent to constructing a “reduced” ring
graph with 2kNN − q2kNN (NN − 2k − 1)/(NN − 1) edges
uniformly distributed randomly across the 2kNN edges of GRG

and distributing the remaining q2kNN (NN − 2k − 1)/(NN −
1) edges outside GRG. We note, however, that GSW preserves
the total adjacency only in the statistical average, i.e., over
many realizations.

Figure 1 (gray dots) shows the numerical results for 〈d〉
and Cd as a function of the rewiring probability q for a
representative Watts-Strogatz small-world digraph. The results
match sufficiently well that for the corresponding GSW (Fig. 1;
compare black and gray dots), thus justifying the introduction
of GSW as a generic model for small worlds. Whereas a
nonasymptotic analytical treatment of the canonical Watts-
Strogatz small-world digraph model remains elusive, we will
present an analytically exact consideration of GSW in the
remainder of this study.

II. ALGEBRAIC APPROACH

To analytically explore the small-world graph model GSW

introduced above, we now construct explicitly its adjacency
matrix aSW

ij . To that end, we define two disjunct sets of indices

A = ({i,j}; i,j ∈ [1,NN ] : [(i − k � j � i + k) ∧ (i �= j )]

∨(i + NN − k � j ) ∨ (j + NN − k � i)),

B = ({i,j}; i,j ∈ [1,NN ] : [(i + k < j < i + NN − k)

∨(j + k < i < j + NN − k)]). (6)

With these, we further define the following matrices, which
will later serve as building blocks for aSW

ij :

δAij =
{

1 if {i,j} ∈ A
0 otherwise

=
k∑

l=1

(δi+l,j + δj+l,i + δi+NN−l,j + δj+NN −l,i)

= circ

⎡
⎣( k∑

l=1

(δ1+l,j + δ1+NN −l,j )

)
j

⎤
⎦

= circ
({

0,

k︷ ︸︸ ︷
1, . . . ,1 ,0, . . . ,0,

k︷ ︸︸ ︷
1, . . . ,1

})
, (7)

δBij =
{

1 if {i,j} ∈ B
0 otherwise

=
NN−2k−1∑

l=1

(δi+k+l,j + δj+k+l,i)

= circ

⎡
⎣(NN −2k−1∑

l=1

(δ1+k+l,j )

)
j

⎤
⎦

= circ
({ k+1︷ ︸︸ ︷

0, . . . ,0 ,1, . . . ,1,

k︷ ︸︸ ︷
0, . . . ,0

})
, (8)

where circ(cj ) denotes the circulant matrix constructed from
vector cj and δij the Kronecker delta. Note that both δAij and
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δBij are symmetric matrices, i.e., δAij = δAji and δBij = δBji . The
elementwise (Hadamard) product obeys

(δA ◦ δA)ij ≡ δAij δ
A
ij = δAij ,

(δB ◦ δB)ij ≡ δBij δ
B
ij = δBij , (9)

(δA ◦ δB)ij ≡ δAij δ
B
ij = 0

∀i,j ∈ [1,NN ] and we define

NmaxA
E =

NN∑
i,j=1

δAij = 2kNN,

(10)

NmaxB
E =

NN∑
i,j=1

δBij = NN (NN − 2k − 1)

as the number of nonzero elements in δA and δB, respectively.
Furthermore, we have

NN∑
j=1

δAij = 2k,

(11)
NN∑
j=1

δBij = NN − 2k − 1

∀i ∈ [1,NN ]. Finally, due to construction, δAij corresponds to
the adjacency matrix aRG

ij of a ring graph of degree k.
As the construction of small-world graphs requires the

random rewiring and assignment of edges, we next introduce
formally a binomial random operator r̂p(x) that returns its
argument x with probability p and zero otherwise, i.e.,

r̂p(x) =
{
x with probability p

0 with probability 1 − p.
(12)

Due to its definition, r̂p(x) can be viewed as a random
annihilation operator and must be considered statistically.
Specifically, the sum over n applications of this operator on x

returns npx, i.e.,
n∑

r̂p(x) = npx. (13)

It can easily be demonstrated that the set of these operators
forms a linear algebra that is commutative and associative
under multiplication, as well as distributive. For instance,
both r̂p[r̂q(x)] = r̂p ◦ r̂q(x) and r̂q ◦ r̂p(x) return x with
probability qp, thus

r̂p ◦ r̂q(x) = r̂q ◦ r̂p(x) (14)

(commutative). In a similar fashion, one can show

r̂p(x) = xr̂p(1),

r̂p ◦ [r̂q ◦ r̂ s(x)] = (r̂p ◦ r̂q) ◦ r̂ s(x),

r̂p ◦ r̂q(x) = r̂pq(x),
(15)

(r̂p)n(x) =
n times︷ ︸︸ ︷

r̂p ◦ · · · ◦ r̂p(x) = r̂pn

(x),

r̂p(x + y) = r̂p(x) + r̂p(y),

(r̂p + r̂q)(x) = r̂p(x) + r̂q(x).

We note that all properties (14) and (15) have to be un-
derstood statistically. For instance, the last equation of (15)
yields

n∑
(r̂p + r̂q)(x) =

n∑
r̂p(x) +

n∑
r̂q(x) = n(p + q)x.

With Eq. (12), we can now proceed with formalizing
the generation of GSW . First we consider the elements
of the adjacency matrix defined by A, that is, the initial
ring graph aRG

ij = δAij . According to the definition (12), the
Hadamard product r̂

pA
ij δAij , where r̂

p

ij denotes a matrix of
random annihilation operators r̂p , will remove with probability
1 − pA entries of δAij , leaving a matrix with, on average,
pANmaxA

E nonzero elements confined to region A. Similarly,
r̂

pB
ij δBij will remove 1 − pB elements from δBij , yielding a

matrix with, on average, pBNmaxB
E nonzero elements confined

to region B. As δAij and δBij are disjunct and span a whole
square matrix of dimension NN (excluding the diagonal), the
matrix

rij = r̂
pA
ij δAij + r̂

pB
ij δBij (16)

acts as a randomization when elementwise multiplied with a
given adjacency matrix.

In order to construct the desired small-world graph GSW ,
let us define a function f (rij ,a

RG
ij ). According to the algo-

rithmic model presented in the preceding section, edges are
removed from the initial ring graph. This is achieved by
requiring f (rij ,a

RG
ij ) = 0 if and only if rij = 1 ∧ aRG

ij = 1 and
f (rij ,a

RG
ij ) = 1 if and only if rij = 0 ∧ aRG

ij = 1, which in ef-
fect will delete with probability pA edges from aRG

ij . Similarly,
requiring f (rij ,a

RG
ij ) = 1 if and only if rij = 1 ∧ aRG

ij = 0 and
f (rij ,a

RG
ij ) = 0 if and only if rij = 0 ∧ aRG

ij = 0 will add with
probability pB edges between nodes not connected within the
original ring graph. These requirements are summarized in
Table I and correspond to the logic XOR operation. It can easily
be shown that the function

f
(
rij ,a

RG
ij

) = aRG
ij + rij − 2aRG

ij rij (17)

yields the desired algebraic formulation.
With this, we can now construct the adjacency matrix aSW

ij

of a small-world graph GSW ,

aSW
ij = aRG

ij + rij − 2aRG
ij rij

= (
1 − r̂

pA
ij

)
δAij + r̂

pB
ij δBij . (18)

TABLE I. Requirements imposed on f (rij ,a
RG
ij ) for constructing

a small-world graph GSW from a given ring graph aRG
ij . These

requirements correspond to the logic XOR and are analytically
described by aRG

ij + rij − 2aRG
ij rij .

rij aRG
ij f (rij ,a

RG
ij ) rij ⊕ aRG

ij aRG
ij + rij − 2aRG

ij rij

1 1 0 0 0
0 1 1 1 1
1 0 1 1 1
0 0 0 0 0
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Here we used the fact that aRG
ij = δAij and applied Eqs. (9).

What remains is to calculate the probabilities pA and pB. As
q2kNN (NN − 2k − 1)/(NN − 1) edges will be deleted from
A, which has a total of NmaxA

E edges,

pA = q
NN − 2k − 1

NN − 1
. (19)

Equivalently, q2kNN (NN − 2k − 1)/(NN − 1) edges will be
added to B, which is distributed among NmaxB

E possible edges,
thus

pB = q
2k

NN − 1
. (20)

In the remainder of this section, we will list a number of
identities that will be employed in the application of Eq. (18)
to various graph-theoretic measures. We have

NN∑
i,j=1

r̂
rA
ij δAij =

NN∑
i,j=1

r̂
pA
ji δAij = pANmaxA

E ,

NN∑
i,j=1

r̂
rB
ij δBij =

NN∑
i,j=1

r̂
pB
ji δBij = pBNmaxB

E ,

(21)
NN∑

i,j=1

r̂
rB
ij δAij =

NN∑
i,j=1

r̂
pB
ji δAij = pBNmaxA

E ,

NN∑
i,j=1

r̂
rA
ij δBij =

NN∑
i,j=1

r̂
pA
ji δBij = pANmaxB

E .

Moreover,

NN∑
j=1

r̂
rA
ij δAij =

NN∑
j=1

r̂
pA
ji δAij = 2kpA,

(22)
NN∑
j=1

r̂
rB
ij δBij =

NN∑
j=1

r̂
pB
ji δBij = (NN − 2k − 1)pB

∀i ∈ [1,NN ].

III. APPLICATION

With Eq. (18), we have an algebraic formulation of
small-world graphs GSW that, together with Eqs. (9)–(11),
(21), and (22), can be used to calculate analytically exact
various graph-theoretic measures. In this section, we will
demonstrate the application of this formalism by considering
the total adjacency A, asymmetry index A , and total global
graph clustering coefficient Cd , defined in (1), (2), and (5),
respectively.

A. Total adjacency

We start with the simplest graph-theoretic measure, the
total adjacency A. Inserting aSW

ij [Eq. (18)] into definition (1)

yields

ASW = (1 − pA)NmaxA
E + pBNmaxB

E ,

where identities (10) and (21) were applied. Using further the
expressions for NmaxA

E and NmaxB
E in Eq. (10) and for pA and

pB in Eqs. (19) and (20), respectively, we finally arrive at

ASW = 2kNN (23)

for the total adjacency of a small-world graph with NN nodes
and degree k. As expected, ASW is independent of the rewiring
probability q and identical to the result expected from the
algorithmic construction of GSW [Eq. (3)].

B. Asymmetry index

Next we calculate the asymmetry index A [Eq. (2)], which
involves the second Hadamard power of the adjacency matrix
aSW

ij . The number of symmetrical edges NSW
S is given by

NSW
S = 1

2

NN∑
i,j=1

aSW
ij aSW

ji . (24)

Inserting (18) yields

NSW
S = 1

2

NN∑
i,j=1

[(
1 − r̂

pA
ij

)
δAij + r̂

pB
ij δBij

][(
1 − r̂

pA
ji

)
δAji + r̂

pB
ji δBji

]

= 1

2

NN∑
i,j=1

[
δAij − 2r̂

pA
ij δAij + (r̂pA

ij

)2
δAij + (r̂pB

ij

)2
δBij
]

= 1

2

(
1 − p2

A
)
NmaxA

E + 1
2p2

BNmaxB
E , (25)

where in the last two steps identities (9), (10), and (21) were
used. Similarly, the number of nonsymmetrical edges NSW

A is
given by

NSW
A = 1

2

NN∑
i,j=1

(
aSW

ij + aSW
ji

)−
NN∑

i,j=1

aSW
ij aSW

ji (26)

and yields

NSW
A =

NN∑
i,j=1

(
δAij − r̂

pA
ij δAij + r̂

pB
ij δBij

)− 2NSW
S

= pA(1 − pA)NmaxA
E + pB(1 − pB)NmaxB

E . (27)

Inserting Eqs. (25) and (27) into (2) and using (23) for ASW ,
as well as (10) for NmaxA

E and NmaxB
E and (19) and (20) for

pA and pB, respectively, we finally obtain for the asymmetry
index of a small-world graph GSW

A SW = 2q(2 − q)(NN − 2k − 1)

NN − 1 + q(2 − q)(NN − 2k − 1)
. (28)

We emphasize that (28) is an exact result and holds in the
nonasymptotic limit, i.e., for arbitrary NN and q. Figure 2
compares the analytic solution with the corresponding
numerical result for a representative graph of small size.

For q = 0, the original symmetric ring graph with A SW =
0 is retained. For q = 1, GSW is equivalent to a classical
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FIG. 2. Graph asymmetry. Compared are the numerical result
(gray) and analytic solution (28) (black) for the asymmetry index
A SW of a representative small-world graph GSW with NN = 200
and k = 5 as function of the rewiring probability q. In the limit
q = 1 (classical Erdős-Rényi digraph), A SW takes the value 0.9742
in the shown example [see Eq. (29)], whereas for q = 0 (ring graph),
A SW = 0. For the numerical model, 1000 random realizations were
used for each parameter set.

Erdős-Rényi digraph. In this case, Eq. (28) yields

A SW |q=1 = NN − 2k − 1

NN − k − 1
. (29)

This limit corresponds to the expectation for small-world
graphs [Eq. (3)]. Finally, in the asymptotic limit for NN → ∞,
k finite, we have

A SW |NN→∞ = 2q(q − 2)

q2 − 2q − 1
, (30)

which yields a completely asymmetric Erdős-Rényi digraph
for q = 1.

C. Graph clustering coefficient

As a last example, we deduce the analytic form of the
total graph clustering coefficient Cd , defined in Eq. (5), which
involves the third matrix power of the adjacency matrix aSW

ij .
To that end, we first calculate the normalization term

N SW = 2
NN∑
i=1

[
atotSW

i

(
atotSW

i − 1
)− 2abSW

i

]
. (31)

With (24), we have

NN∑
i=1

abSW
i =

NN∑
i,j=1

aSW
ij aSW

ji = 2NSW
S . (32)

Similarly, with (26) one obtains

NN∑
i=1

atotSW
i =

NN∑
i,j=1

(
aSW

ji + aSW
ij

) = 2NSW
A + 4NSW

S . (33)

Finally,

NN∑
i=1

(
atotSW

i

)2 =
NN∑
i=1

⎛
⎝ NN∑

j=1

(
aSW

ji + aSW
ij

)⎞⎠2

= 4
NN∑
i=1

⎛
⎝ NN∑

j=1

aSW
ij

⎞
⎠2

= 4NN [(1 − pA)2k + pB(NN − 2k − 1)]2,

(34)

where we used in the last step Eq. (22) to obtain ∀i ∈ [1,NN ]

NN∑
j=1

aSW
ij = (1 − pA)2k + pB(NN − 2k − 1) .

Inserting Eqs. (32)–(34) into (31) yields for the normalization
term

N SW = 4
{
2NN [(NN − 1)pB − 2k(pA + pB − 1)]2

− 2NmaxA
E (1 − pA)2 − NmaxA

E (1 − pA)pA

− 2NmaxB
E p2

B − NmaxB
E (1 − pB)pB

}
= 8kNN

NN − 1
[2k(q2 − 2q + 2NN − 2)

− (NN − 1)(q2 − 2q + 2)]. (35)

In order to arrive at an explicit expression for the numerator
in Eq. (5), we require the third matrix power of the adjacency
matrix (18). To that end, we first calculate matrix products of
δAij and δBij defined in Eqs. (7) and (8), respectively. As both
δA and δB are circulant matrices, we can utilize the circulant
diagonalization theorem. The latter states that all circulants
cij = circ(cj ) constructed from an arbitrary N -dimensional
vector cj are diagonalized by the same unitary matrix U with
components

urs = 1√
N

exp

[
−2πi

NN

(r − 1)(s − 1)

]
, (36)

r,s ∈ [1,N ]. Moreover, the N eigenvalues are explicitly given
by

Er (C) =
N∑

j=1

cj exp

[
−2πi

N
(r − 1)(j − 1)

]
(37)

such that

cij =
N∑

r,s=1

uirersu
∗
sj (38)

with ers = diag[Er (C)] ≡ δrsEr (C) and u∗
rs denoting the

complex conjugate of urs .
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Using (7), the eigenvalues of δA are

Er (δA) =
NN∑
j=1

k∑
l=1

(δ1+l,j + δ1+NN −l,j ) exp

[
−2πi

NN

(r − 1)(j − 1)

]

=
1+k∑
l=2

exp

[
−2πi

NN

(r − 1)(l − 1)

]
+

NN∑
l=NN −k+1

exp

[
−2πi

NN

(r − 1)(l − 1)

]

= 2
sin
[

k(r−1)
NN

π
]

cos
[ (1+k)(r−1)

NN
π
]

sin
[ (r−1)

NN
π
] . (39)

As the nth power of a diagonal matrix is the diagonal matrix spanned by the nth power of its eigenvalues, we arrive, using (36),
at

(δA)nrs = (2k)n

NN

+ 2n

NN

NN−1∑
m=1

{(
sin
[

km
NN

π
]

cos
[ (1+k)m

NN
π
]

sin
[

m
NN

π
]

)n

exp

[
−2πi

NN

m(r − s)

]}
. (40)

In a similar fashion, the nth power of δB can be calculated, yielding

(δB)nrs = (NN − 2k − 1)n

NN

+ (−1)n

NN

NN−1∑
m=1

{(
sin
[ (1+2k)m

NN
π
]

sin
[

m
NN

π
]
)n

exp

[
−2πi

NN

m(r − s)

]}
. (41)

Finally, (δA)n(δB)n
′
is given by

[(δA)n(δB)n
′
]rs = (2k)n(NN − 2k − 1)n

′

NN

+ (−1)n
′
2n

NN

NN −1∑
m=1

⎧⎨
⎩
(

sin
[

km
NN

π
]

cos
[ (1+k)m

NN
π
]

sin
[

m
NN

π
]

)n (
sin
[ (1+2k)m

NN
π
]

sin
[

m
NN

π
]
)n′

exp

[
−2πi

NN

m(r − s)

]⎫⎬
⎭ . (42)

With (40)–(42), one can now proceed to calculate

NN∑
i,j,h=1

(
aSW

ij + aSW
ji

)(
aSW

ih + aSW
hi

)(
aSW

jh + aSW
hj

)

= 8
NN∑

i,j,h=1

aSW
ij aSW

jh aSW
hi

= 8(1 − pA)3Tr(δA)3
ij + 24(1 − pA)2pBTr[(δA)2(δB)]ij + 24(1 − pA)p2

BTr[(δA)(δB)2]ij + 8p3
BTr(δB)3

ij

= 64(1 − pA)3

(
k3 +

NN−1∑
m=1

a3
m(NN,k)

)
+ 96(1 − pA)2pB

(
k2(NN − 2k − 1) −

NN−1∑
m=1

a2
m(NN,k)bm(NN,k)

)

+ 48(1 − pA)p2
B

(
k(NN − 2k − 1)2 +

NN−1∑
m=1

am(NN,k)b2
m(NN,k)

)
+ 8p3

B

(
(NN − 2k − 1)3 −

NN −1∑
m=1

b3
m(NN,k)

)
,

where

am(N,k) = sin
[

km
N

π
]

cos
[ (1+k)m

N
π
]

sin
[

m
N

π
] , bm(N,k) = sin

[ (1+2k)m
N

π
]

sin
[

m
N

π
] . (43)

This finally yields for the total global clustering coefficient CdSW of a small-world graph GSW

CdSW = 64

N SW (NN − 1)3

{
[NN − 1 − q(NN − 2k − 1)]3

(
k3 +

NN−1∑
m=1

a3
m(NN,k)

)

+ 3kq[NN − 1 − q(NN − 2k − 1)]2

(
k2(NN − 2k − 1) −

NN−1∑
m=1

a2
m(NN,k)bm(NN,k)

)
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+ 3k2q2[NN − 1 − q(NN − 2k − 1)]

(
k(NN − 2k − 1)2 +

NN−1∑
m=1

am(NN,k)b2
m(NN,k)

)

+ q3k3

(
(NN − 2k − 1)3 −

NN−1∑
m=1

b3
m(NN,k)

)}
, (44)

with N SW given in Eq. (35).
The analytical result for the clustering coefficient [Eq. (44)] is again an exact result and holds in the nonasymptotic limit,

i.e., for arbitrary NN and q. Figure 3 compares the analytic solution with the corresponding numerical result for a representative
graph of small size.

For q = 0, i.e., in the case of the initial symmetric ring graph, we obtain

CdSW |q=0 = 4

k(2k − 1)NN

(
k3 +

NN−1∑
m=1

a3
m(NN,k)

)
. (45)

By careful inspection, it can be shown that

NN −1∑
m=1

a3
m(NN,k)

∣∣
NN →∞ = γ1k(k − 1)NN (46)

with γ1 = 3/8, which yields for (45) in the asymptotic limit NN → ∞ and finite k

CdSW
∣∣

q = 0
NN → ∞

= 3(k − 1)

2(2k − 1)
. (47)

This asymptotic limit corresponds to the result obtained previously [4].
Similarly, q = 1 (classical Erdős-Rényi digraph) yields

CdSW |q=1 = 8k2

NN (NN − 1)2[1 − NN + k(4NN − 6)]

(
(NN − 1)3 + 8

NN −1∑
m=1

a3
m(NN,k)

− 12
NN −1∑
m=1

a2
m(NN,k)bm(NN,k) + 6

NN −1∑
m=1

am(NN,k)b2
m(NN,k) −

NN −1∑
m=1

b3
m(NN,k)

)
. (48)

In order to obtain the asymptotic limit NN → ∞ in this case,
we observe that all sums over am, bm, and their products
are linearly divergent in NN . As the denominator in (48)
is of fourth order in NN (the numerator, however, is only a
polynomial of third order), we have

CdSW | q = 1
NN → ∞

= 0, (49)

which matches the asymptotic limit obtained in [4].
Finally, we consider the limit NN → ∞ and k finite for

arbitrary q. As the sums over am, bm, and their products
are linearly divergent in NN , all terms in the curly brackets
in Eq. (44), with the exception of the first, will contribute
polynomials of at most third order in NN and thus vanish in
the asymptotic limit. This leaves the first term proportional to∑NN −1

m=1 a3
m(NN,k), which yields

CdSW |NN→∞ = 3(k − 1)

2(2k − 1) + q(2 − q)
(q − 1)3 (50)

for the clustering coefficient of a small-world graph GSW in
the asymptotic limit NN → ∞ for finite k. Interestingly, this
solution differs by the occurrence of an additional term q(2 −
q) in the denominator from the asymptotic solution proposed
in [4], obtained by interpolating between the clustering values

of a ring graph and infinite-size random graph. However, it can
easily be shown that for k > 1 this term becomes negligible as
q is strictly bound.

IV. DISCUSSION

In this study, we have introduced a generative model of
directed small-world graphs GSW , a canonical model of Watts-
Strogatz digraphs, and have proposed an approach that yields
the graph’s defining adjacency matrix in algebraic terms, with
the goal to provide mathematically rigorous access to the study
of finite-size small-world graphs. The proposed approach
makes use of random annihilation operators whose algebraic
properties can be utilized to assess algebraically-well-defined
graph-theoretic measures in an analytically exact framework,
valid nonasymptotically for all graph sizes. We demonstrated
the application of our approach by calculating the asymmetry
index A and total clustering coefficient Cd of small worlds.

Since its introduction [2,11], the idea of small worlds
has dominated the literature as many real-world systems
appear to display properties captured by the small-world
model. Given their importance, in recent years, a number of
theoretical studies have focused on providing mathematically
more rigorous access in order to allow for an analytical

012812-7
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FIG. 3. Graph clustering coefficient. Compared are the numerical
result (gray) and analytic solution (44) (black) for the total global
graph clustering coefficient CdSW of a representative small-world
graph GSW with NN = 200 and k = 5 as a function of the rewiring
probability q. In the example shown, CdSW = 0.6667 in the limit
q = 0 (ring graph) and CdSW = 0.0527 for q = 1 [classical Erdős-
Rényi digraph; see Eqs. (45) and (48), respectively]. For the numerical
model, 1000 random realizations were used for each parameter set.

study of the small-world phenomenon. Among these, heuristic
expressions have been proposed for the clustering of a small-
world graph, based on an interpolation between the known
clustering coefficient of a ring graph and that expected for an
infinite-size random graph [4]. Although this model provides
an excellent fit to the true clustering coefficient even for
medium-size graphs, it remains a heuristic approximation
whose error scales only inversely proportionally to the graph
size. A second approach followed in the recent literature is
based on considering a small-world graph in the continuum
limit, allowing for a formulation in the mean-field framework
[6]. Although mathematically more sound, this approach is
only valid in the large-N limit and does not capture the
clustering coefficient expected for an infinite-size Erdős-Rényi
digraph in the case in which all edges of the small-world graph
are randomly rewired.

Our proposed approach differs from the aforementioned
mathematical models by explicit construction of the adjacency
matrix of a small-world graph within an operational algebraic
framework. By considering the properties of the underlying

algebra, the so-constructed adjacency matrix can be utilized
to directly calculate all graph-theoretic measures algebraically
defined in terms of the adjacency matrix. As the constructed
adjacency matrix is valid at all system sizes, the obtained
results provide an analytically exact description of small-world
properties valid nonasymptotically for all system sizes.

Although the introduced approach allows for an analytically
exact treatment of various graph-theoretic measures, it requires
that the latter are well defined algebraically. Unfortunately, this
excludes geodesic distance measures, which are crucial in the
characterization of the small-world phenomenon. Specifically,
the mth power of the adjacency matrix will generally yield
the number of path (walks) of length m in a given graph and
can be calculated exactly within our framework. However,
the number of walks of length m that are also geodesics
connecting two nodes constitutes an optimization problem that
cannot currently be captured within the approach introduced
here, as it involves a minimization of the entries of the mth
power of the adjacency matrix. Possible solutions are to
replace the concept of the geodesic distance as a defining
graph-theoretic measure with an algebraically well-defined
quantity not involving optimization or to extend our approach
by including analytical tools that allow for algorithmically
defined measures such as the geodesic graph distance 〈d〉.

A further extension to this framework could allow, in
general, for the calculation of higher-order moments, such
as the variance, of algebraically-well-defined graph-theoretic
measures. Preliminary work along these lines shows, however,
that calculating the variance of a higher-order graph-theoretic
measure requires either the exchange of a sum and product in
order to apply the rules (9) and (15) or an extension of the
algebra considered here.

Finally, we emphasize that the operator framework utilized
here can be viewed as a step towards an alternative conception
of graphs as dynamical mathematical objects. Here we demon-
strated the potential power of this operator graph-theoretic
framework by calculating an analytically exact clustering
coefficient of an important class of small-world graphs.
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