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Energetics of discrete selectivity bands and mutation-induced transitions in the calcium-sodium
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We use Brownian dynamics (BD) simulations to study the ionic conduction and valence selectivity of a generic
electrostatic model of a biological ion channel as functions of the fixed charge Qf at its selectivity filter. We
are thus able to reconcile the discrete calcium conduction bands recently revealed in our BD simulations, M0
(Qf = 1e), M1 (3e), M2 (5e), with a set of sodium conduction bands L0 (0.5e), L1 (1.5e), thereby obtaining
a completed pattern of conduction and selectivity bands vs Qf for the sodium-calcium channels family. An
increase of Qf leads to an increase of calcium selectivity: L0 (sodium-selective, nonblocking channel) →
M0 (nonselective channel) → L1 (sodium-selective channel with divalent block) → M1 (calcium-selective
channel exhibiting the anomalous mole fraction effect). We create a consistent identification scheme where the
L0 band is putatively identified with the eukaryotic sodium channel The scheme created is able to account
for the experimentally observed mutation-induced transformations between nonselective channels, sodium-
selective channels, and calcium-selective channels, which we interpret as transitions between different rows
of the identification table. By considering the potential energy changes during permeation, we show explicitly
that the multi-ion conduction bands of calcium and sodium channels arise as the result of resonant barrierless
conduction. The pattern of periodic conduction bands is explained on the basis of sequential neutralization taking
account of self-energy, as Qf (z,i) = ze(1/2 + i), where i is the order of the band and z is the valence of the ion.
Our results confirm the crucial influence of electrostatic interactions on conduction and on the Ca2+/Na+ valence
selectivity of calcium and sodium ion channels. The model and results could be also applicable to biomimetic
nanopores with charged walls.
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I. INTRODUCTION

At the molecular level, an understanding of living systems
requires the application of physics and this is particularly
true in the case of biological ion channels. Here, we study
the physics of a simple electrostatic model to investigate
the operation of voltage-gated calcium and sodium ion
channels. Their importance stems from their essential roles
in controlling muscle contraction, neurotransmitter secretion,
gene regulation, and the transmission of action potentials. The
effective function of calcium channels is based on their high
selectivity for divalent calcium ions Ca2+ over monovalent
sodium ions Na+. They exhibit the anomalous mole fraction
effect (AMFE), an effective blockade of Na+ permeation
by small concentrations of Ca2+, combined with measurable
Ca2+ currents in the pA range [1,2]. Sodium channels have
very similar structure but demonstrate the opposite kind of
selectivity, favoring Na+ over Ca2+.

The selectivity of calcium and sodium channels is defined
by a narrow selectivity filter with a strong binding site.
The latter is formed of protein residues with a net negative
fixed charge Qf whose magnitude depends on the particular
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residues [75] that are present. The L-type calcium channel
has a highly conserved EEEE locus with four glutamates [3],
whereas the RyR channel has a DDDD locus [4]. The DDDD
locus was also found in the TRPV6 transient receptor potential
channel, which is highly calcium selective but generally very
different from the RyR channel [5].

Although sodium and calcium channels have similar struc-
tures, they have different selectivity filter loci (and therefore
different Qf ), and have different lengths and radii [6–8]. The
eukaryotic sodium channel has two charged rings at or near the
selectivity filter: an inner DEKA ring with a nominal Qf = 1e

and an outer EEDD ring with nominal Qf = 4e [6,8,9] where
e = −1.6 × 10−19 C is the electronic charge. Bacterial sodium
channels can have rather different selectivity filter loci and
represent L-type-like EEEE locus in the NaChBac and recently
studied NavAb channel [7,10].

Experimental studies of mutations in the protein side
chains [11–19], and model simulations [8,20,21], show that the
value of Qf is a crucial factor in determining the divalent (Ca2+
or Ba2+) vs monovalent (Na+) ionic selectivity of calcium and
sodium channels. Usually, mutations that influence Qf also
destroy the calcium channel’s selectivity, and hence physi-
ological functionality, leading to “channelopathies” [15,22].
However, an appropriate point mutation of the DEKA sodium
channel (Qf ≈ 1e) converts it into a calcium-selective channel
with a DEEA locus and Qf ≈ 3e [11]. The essentially non-
selective bacterial OmpF porin (Qf ≈ 1e) can be converted
into a Ca2+-selective channel by the introduction of two
additional glutamates in the constriction zone; the resultant
mutant contains a DEEE locus (Qf ≈ 4e) and exhibits a
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Na+ current with a strongly increased sensitivity to 1 mM
Ca2+ [18]. Simulations [8] have indicated growth of Ca2+ vs
Na+ selectivity as Qf increases from 1e to 4e.

The mechanisms of Ca2+/Na+ selectivity underlying these
transformations have remained unclear, as has also the
unambiguous identification of the “charge-selectivity type”
relationship.

Multi-ion knock-on barrierless conductivity [76] is
assumed to be one of the main mechanisms of permeation
and selectivity for the potassium [23,24] and calcium [25,26]
channels, and is inferred to be a general mechanism of
selectivity [27]. Barrierless knock-on conductivity can
also be described as a limiting case of long-range ion-ion
correlations [28,29].

Generic electrostatic models describe an ion channel as a
cylindrical water-filled hole in a charged protein in the cell
membrane [30–32]. They usually assume single-file motion
of the permeating ions and can reproduce significant features
related to the conductivity and selectivity [33–37]. Thus a
single model with almost unchanging parameters can account
for the valence selectivity features of both sodium and calcium
channels (reviewed in Refs. [38,39]). An analytic treatment of
such a model [35,40,41] showed that transport of Ca2+ ions
through a negatively doped channel exhibited several ion-
exchange phase transitions as functions of bulk concentration
and Qf , with a near-zero transport barrier at the transition
points [41]. Brownian dynamics (BD) simulations of an L-type
calcium channel revealed a narrow peak in Ca2+ conductance
near Qf = 3.2e [42]. Discrete multi-ion conduction peaks
were predicted in Ref. [36]. The possibility that channel
conduction might be a discontinuous function of channel
parameters with pass bands and stop bands had been discussed
at length in the speculations of one of us, long ago [43].

We have recently used parametric Brownian dynamics (BD)
simulations of ionic currents for different Qf in a generic
model of calcium channels to show that the Ca2+ conduction
and Ca2+/Na+ valence selectivity form a regular pattern of
narrow conduction and selectivity bands as a function of
Qf , separated by regions of nonconduction. These discrete
bands relate to saturated, self-sustained Ca2+ conductivity
with different numbers of ions involved in the conduction;
they correspond to the phase transitions obtained analytically
in Ref. [41] and are consistent with earlier results [36,42].
We have associated the underlying mechanism with multi-ion
barrierless conductivity, identified the calcium selective bands
seen in the simulations with known calcium channels, and
inferred that the band structure could explain the results of
mutant studies [44,45].

We also investigate the energetics of the generic elec-
trostatic model and consider potential energy profiles along
optimal multi-ion stochastic trajectories [36,46] to show that
the calcium and sodium conduction and selectivity bands are
based on the barrierless conduction mechanism [47].

In this paper we complete the ordered sequence of
Ca2+/Na+ conductivity and selectivity bands vs surface charge
Qf for the sodium-calcium channels family, initiated in
Ref. [44]. We add an analysis of sodium bands and construct
an identification table to explain and classify numerous
mutation-induced transformations of Ca2+/Na+ selectivity in
the calcium-sodium channels family.

We start by summarizing in Sec. II the main features of the
generic model. In Sec. III A we describe the ordered sequence
of selectivity types for the sodium-calcium family of channels
based on BD simulations of the model [44]. We relate these
data to real ion channels in Sec. III B and to mutation-induced
transformations between them in Sec. III C. In Secs. III D
and III E we work out the energetics of permeation and show
how the observed bands correspond to optimal conditions
(minimal energy barrier) for one-ion and two-ion processes
respectively. In Sec. IV we discuss the patterns of bands
for different ions that result from a neutralization approach.
Finally, in Sec. V we summarize and draw conclusions.

II. GENERIC ELECTROSTATIC MODEL
OF CALCIUM CHANNELS

A. Geometry and general features of the model

Figure 1 shows the generic, self-consistent, electrostatic
model of a calcium or sodium channel. We focus exclusively on
its selectivity filter, which we consider as a negatively charged,
axisymmetric, water-filled, cylindrical pore of radius R = 3 Å
and length L = 12 − 16 Å through the protein hub in the
cellular membrane The x axis is coincident with the channel
axis and x = 0 in the center of channel. There is a centrally
placed, uniformly charged, rigid ring of negative charge
Qf = 0 − 6.5e embedded in the wall at RQ = R. The left-
hand bath, modeling the extracellular space, contains nonzero
concentrations of Ca2+ and/or Na+ ions. In the simulation,

       Na+
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       Qf

Membrane protein 

L

Left bath, 
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Right bath, 
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RX
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FIG. 1. (Color online) Computational domain for a generic model
of the calcium ion channel (reworked from Ref. [44]). Its selectivity
filter is treated as an axisymmetric, water-filled, cylindrical hole
of radius R = 3 Å and length L = 12 − 16 Å through the protein
hub in the cellular membrane. The x axis is coincident with the
channel axis and x = 0 in the middle of the channel. There is a
centrally placed, uniformly charged, rigid ring of negative charge
Qf = 0 − 6.5e embedded in the wall at RQ = R. The left-hand bath,
modeling the extracellular space, contains nonzero concentrations of
Ca2+ or Na+ ions. These are injected on the axis at the Smoluchowski
diffusion rate at a distance Ra = R outside the left-hand entrance. The
domain length Ld = 100 Å, the domain radius Rd = 100 Å, the grid
size h = 0.5 Å, and a potential difference of 0–75 mV is applied
between the left and right domain boundaries.
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these are injected on the axis at the Smoluchowski diffusion
rate at a distance Ra from the channel entrance. The domain
length Ld = 100 Å, the domain radius Rd = 100 Å, the grid
size h = 0.5 Å, and a potential difference in the range 0–75 mV
is applied between the left and right domain boundaries.

This generic model of a calcium ion channel is similar
to that used previously [42,48,49]. Details of the model
have already been presented and its validity and limitations
discussed [44], but for completeness we now summarize and
give some additional details and discussion.

The minimum possible radius R of the selectivity filter
of an L-type calcium channel has been determined as being
R = 2.8 Å. We use the value of R = 3.0 Å. The mobile sodium
and calcium ions are described as charged spheres of radius
Ri ≈ 1 Å (matching both ions), with diffusion coefficients
of DNa = 1.17 × 10−9 m2/s and DCa = 0.79 × 10−9 m2/s,
respectively. In what follows we assume an asymmetrical ionic
concentration: CL > 0 on the left, and CR = 0 on the right,
corresponding to the physiological conditions in calcium and
sodium channels.

We take both the water and the protein to be homogeneous
continua with dielectric constants εw = 80 and εp = 2, respec-
tively, together with an implicit model of ion hydration (the
validity of which is discussed elsewhere). We approximate
εw and D as equal to their bulk values throughout the whole
computational domain, including the selectivity filter, a choice
that avoids the use of arbitrary fitting parameters.

The importance of self-consistent calculations cannot be
overstated. If calculations are not self-consistent, then the
potential does not take proper account of all the charges that
are present. Thus, some of the potential then has a mysterious
nonphysical origin. In the real world, and in experiments,
conditions and concentrations change. Consistent calculations
determine and follow the potential that results from these
changes [39].

Our simulation scheme could be described as a self-
consistent numerical solution of Poisson’s electrostatic equa-
tion coupled with the Langevin stochastic equation for the
moving ions.

B. Self-consistent electrostatics for generic ion
channel geometry

The electrostatic potential U for an ion and the potential
gradients were derived by numerical solution of Poisson’s
equation within the computational domain shown in Fig. 1:

− ∇(ε0ε∇U ) = ρ0 +
∑

i

ezini, (1)

where ε0 is the dielectric permittivity of vacuum, ε is the
dielectric permittivity of the medium (water or protein), ρ0 is
the density of fixed charge, zi is the charge number (valence),
and ni is the number density of moving ions. We used an
axisymmetric finite-volume Poisson solver with a staggered
grid, specially designed to accommodate the large permittivity
mismatch [50,51] at the water-protein interface.

We utilized field linearity and the superposition rule to
speed up the run-time calculations. The potential U and
electrostatic field E were precalculated for all axial ion

positions on the grid and saved in lookup tables that were
using during run time for quick recovery of the relevant U and
E values [52]. In doing so, full account was taken of the static
charge, interactions, and self-energy contributions.

Self-consistent electrostatics within the narrow, water-
filled channel in the protein differs significantly from bulk
electrostatics, even when the dielectric constant of the water
inside the channel is taken to be the same as in the bulk. The
huge gradient between εw = 80 and εp = 2, and the specific
channel geometry, lead to a number of effects that are crucial
for ion permeation through the channel [32,53], as illustrated
in Fig. 2.

Figure 2(a) shows that the boundary conditions at the water-
protein interface almost eliminate the radial component Er of
the electrostatic field in comparison with the axial component
Ex . Thus Er � Ex . It is this condition that results in a quasi-
1D axial behavior of the electrostatic field (constant Ex due
to a linear variation in U between the charges), and hence in
preferentially axial motion of ions inside the channel [32,35],
which behave like a one-dimensional Coulomb gas [40].

Figure 2(b) demonstrates electrostatic amplification of
the electric field inside the narrow channel due to partial
descreening of the electrostatic field and the appearance of
polarization charges at the water-protein boundary, which is
what results in the quasi-1D field behavior [31,35,54].

Figure 2(c) illustrates a remarkable feature of the chan-
nel geometry that strongly influences permeation: the high
axial self-energy barrier Us corresponding to the dielectric
boundary force. It amounts to an electrostatic contribution
to the free energy barrier and thus adds to the dehydration
barrier [32,55]. This barrier prevents any ion from entering
an empty uncharged channel: an ion in bulk is repelled from
the boundary with the protein. The electrostatic component of
the barrier is independent of the ionic radius [33] and, as we
will see below, it can help to account for valence selectivity.
Incorporating of more advanced hydration models [56] could
provide alike selectivity as well.

Figure 2(d) shows the radial self-energy potential profile
Ur , representing a potential well centered on the channel axis.
Hence an ion inside the channel experiences a radial force
towards the axis. The existence of this force helps to justify
the conventional approximation of strictly axial single-file
movement of ions inside the narrow channel [32,35].

The electrostatics of an empty ion channel prohibits the
entry of any negatively charged (e.g., chloride) ion due to
combined influences of the dielectric boundary force and the
repulsion of the fixed negative charge [33,53]. For this reason
we take no account of counterions in the electrostatics and
BD simulations. When the channel is occupied by cations,
however, it becomes easier for anions to enter.

Consequently, we use a 1D dynamical model to simulate
the axial single-file movement of cations (only) inside the
selectivity filter and in its close vicinity. Some additional
discussion of these approximations is provided in Sec. II D.

C. Brownian dynamics simulation of ionic current

The BD simulations were based on numerical solution of
the 1D overdamped time-discretized Langevin equation for the
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x(Å)

eU
/
k

B
T

x(Å)

r(
Å
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FIG. 2. (Color online) Polarization effects in the generic model of ion channel. (a) Electrostatic potential map U (x,r) for zero membrane
potential and centered monovalent cation inside the selectivity filter, whose spatial limits are indicated y the white lines. Color bar is in units of
kBT /e, contour step is 1 in the same units. The equipotential lines are almost equally spaced and almost perpendicular to the x axis, illustrating
the quasi-1D behavior of the electrostatic field. (b) Electrostatic amplification of the electrostatic field inside the channel: the potential U of
a monovalent ion within the channel (blue, full curve) significantly exceeds the corresponding potential in bulk water (red, dashed) U0 due
to induced polarization charge that appears at the water-protein interface. (c) The axial self-energy potential Us accounts for the dielectric
contribution to the hydration barrier. (d) the radial self-energy Ur provides a stable point in the center of the channel cross section, at r = 0.

ith ion:

dx

dt
= −Dz

(
∂U

∂x

)
+

√
2Dξ (t), (2)

where D is the ionic diffusion coefficient, ξ (t) is normalized
white noise, z is the valence of the ion, and the potential
U (x) is given in (kBT /e) units where T is the temperature
and kB is Boltzmann’s constant. Numerical solution of (2)
was implemented with the Euler forward scheme. Poisson’s
equation (1) is solved self-consistently at each simulation step
as described above.

We use an ion injection scheme that allows us to avoid
wasteful and heavy-duty simulation of ionic movements
in the bulk liquid. The model includes a hemisphere of
radius Ra = R at each entrance representing the boundaries
between the channel vicinity and the baths. The arrival rate
jarr is connected to the bulk concentration C through the
Smoluchowski diffusion rate: jarr = 2πDRaC [33,54,57].

We model the ions as “transparent” in the sense that they
can, in principle, pass each other. However, this is unlikely
to happen. This simplification is based on the momentum
conservation law for alike ions and also because quasi-1D
electrostatic repulsion amplified by the narrow channel is
strong enough to effectively prevent ions (whether alike or
different) from coming close. Thus the assumption of single-
file behavior is a good approximation (see details in the next
section).

The motion of each injected ion is simulated in accordance
with (1) until it reaches a domain boundary, where it is
assumed to be absorbed. The simulation continues until a
chosen simulation time has been reached. The ionic current J

is calculated as the averaged difference between the numbers
of similar ions passing the central cross section of the channel
per second in the forward and reverse directions [27].

Quantities measured during the simulations include the
sodium JNa and calcium JCa ion currents, the partial ionic
occupancy profiles ρ(x) along x for different concentrations,
and the partial PNa and PCa occupancies, in each case as
functions of the respective concentrations of calcium [Ca] or
sodium [Na].

The BD simulations of ion current J and occupancy P

were performed separately for CaCl2 and NaCl solutions, and
also for a mixed-salt configuration, with concentrations [Na] =
30 mM and 20 μM � [Ca] � 80 mM. The value of Qf was
varied within the range 0–6.5e in order to cover the known
variants of sodium and calcium channels [8].

D. Validity and limitations of generic model

Our reduced model obviously represents a considerable
simplification of the actual electrostatics and dynamics of
moving ions and water molecules within the narrow selectivity
filter [58,59]. We now discuss briefly the main simplifications
limiting its validity: the use of continuum electrostatics; the use
of BD; and the assumption of 1D (i.e., single-file) movement
of ions inside the selectivity filter.

The validity of both the electrostatics and the dynamics
depends on the degree of dehydration of the ion inside the
channel, so it can be defined roughly by the relationship
between the channel radius R and the radius of the ions first
hydration shell Rh. Continuum electrostatics and dynamics
generally fail when Rh > R, but still can be applied for Rh ≈ R

provided that one uses effective values of εw and the diffusion
coefficients DNa , DCa that are all dependent on R [31].

We estimate Rh ≈ 3.5 Å for Na+ and Ca2+ ions, so that
the calcium channel of R ≈ 3 Å [2] does provide some
room for Na+ and Ca2+ ions to carry water molecules. Both
ions are still partially hydrated, therefore, and the continuum
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approximation with effective values can be used inside the
selectivity filter. It is shown in Ref. [31] that the effective
value of εw saturates to its bulk value εw = 80 for R ≈ 3.5 Å
(roughly corresponding to Rh) and is still close to it (εw ≈ 70)
for R = 3 Å. This allows us to use the bulk value for εw. The
effective values of the ionic diffusion coefficients also decrease
significantly with decreasing R compared to their bulk values,
and are estimated as D ≈ 0.25Dbulk for R = 3 Å [58]. As a
result we can assume that in our channel model both ions
move along the axis with almost unbroken first hydration
shells.

We therefore use the standard bulk values of εw = 80,
εp = 2, and D as effective values throughout the whole
computational domain, including the selectivity filter, a choice
that avoids the use of additional fitting parameters.

The single-file condition can become a significant re-
striction if multiple ions are occupying the channel. In our
model, however, single-file movement appears not as an
a priori assumption but as the outcome of the Langevin
dynamics of movement under electrostatic forces in a confined
environment. Thus single filing of ions within the selectivity
filter of the calcium channel is provided, not by direct
geometrical restrictions, but by the combined effect of the
above-mentioned self-repulsion from the channel wall together
with strong mutual electrostatic repulsion between the moving
ions. The minimum spatial separation between their centers
needed for Ca2+ or Na+ ions to pass each other is dmin = 2 Å,
with a maximum possible passing distance of dmax = 4 Å
within the 6 Å diameter channel. Even for monovalent ions
dmax is shorter than the Bjerrum length lB defined as the
average distance for the thermal separation of charged ions
[U (lB) = kBT ]: for water lB ≈ 7 Å is almost 2dmax and thus
the probability of ions passing each other is low, especially
taking into account the additional force due to self-repulsion
from the wall. In the most significant Ca2+-Na+ “blockade”
we can estimate the total energy barrier impeding leakage as
being ≈ 6kBT , which is high enough to justify our assumption
of single-file movement.

As noted above in Sec. II B, a shortcoming of the
model is that, although it treats sodium and calcium ions
explicitly, it fails to include their counterions (chloride), either
explicitly or implicitly, in the Poisson continuum treatment
and BD simulations. We justify this simplification through
consideration of the combined effects of the self-potential
barrier and repulsion by the fixed charge, both of which tend to
prevent counterions from entering the empty selectivity filter.
The situation is different for an occupied channel, however,
and in certain cases chloride ions will then be able to enter
to neutralize the channel [41]. Nonetheless, experiments and
simulations show that the concentration of chloride ions inside
the channel is in practice reasonably small [60].

An important criterion for the applicability of a channel
model is its ability to reproduce AMFE and, in particular,
low-offset calcium blockade of the sodium current for the
L-type (EEEE) calcium channel. In real experiments, blockade
can be seen for [Ca]50 < 1 μM [2], and the same offset has
been obtained in Monte Carlo simulations [21] and (indirectly)
in BD simulations [42]. Our BD simulations yield a blockade
offset of about [Ca]50 = 40 μM, which may be regarded as
reasonable given the simplifications of the model.

The DEKA sodium channels, and mutants, might seem
to stretch the generic model in that the ring of fixed charge
is in reality fragmented around the pore (rather than being
continuous), and is asymmetrical. However, it is known that
the axial field of a fragmented ring is exactly the same as for
a continuous ring due to the high symmetry of the protein
segments [2]. Asymmetry of the DEKA ring is found to
be significant for selectivity between alike ions [61]; here,
however, we study valence selectivity, which depends mainly
on the total charge at the selectivity filter [18,21].

Generally, simulations based on simplified models
[21,42,44] reproduce reasonably well the signatures of calcium
channels, such as their AMFE [2]. Despite their simplified
nature, models of this sort can account quantitatively for the
detailed properties of the RyR channel and have enabled the
prediction of complex current-voltage relationships in advance
of the corresponding experiments, with errors of less than
10% [4].

To summarize, the model is generic in the sense that it is
just based on electrostatics and on the fundamental physical
properties of channels of simplified geometrical shape. It takes
no account of the detailed structure of the proteins or residues,
and it treats water and protein as continuum dielectrics with
their bulk dielectric constants. It could equally well be applied
to, e.g., TPRV channels [5] and, because there is nothing
inherently “biological” about it, the model should also be
applicable to biomimetic nanotubes [62,63] and other artificial
pores.

III. RESULTS AND DISCUSSION

A. Pattern of calcium and sodium conduction
and selectivity bands

Figures 3 and 4 present results derived from Brownian
dynamics simulations of permeation of the generic channel
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FIG. 3. (Color online) BD simulations showing calcium conduc-
tion and occupancy bands of the generic ion channel model (partly
reworked from Ref. [44]). (a) Plots of the calcium ionic current J

as a function of the fixed charge Qf at the selectivity filter for pure
calcium bath of different concentration [Ca] (20, 40 and 80 mM as
indicated) show distinct, clearly resolved, conduction bands M0, M1,
and M2 for which there are respectively zero, one, or two calcium ions
trapped saturately at the selectivity filter. (b) The peaks in conduction
correspond to transitions of occupancy P between these saturated
levels.
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FIG. 4. (Color online) BD simulations showing sodium conduc-
tion and occupancy bands of the generic ion channel model. (a) Plots
of the sodium ionic current J as a function of the fixed charge Qf at
the selectivity filter for a pure sodium bath of different concentration
[Na] (20, 40 and 80 mM as indicated) show broadened conduction
bands L0, L1, and L2 for which there are respectively zero, one, or
two calcium ions trapped saturately at the selectivity filter. (b) The
broad conduction peaks still correspond to transitions of occupancy
P between these saturated levels.

model by calcium and sodium ions in pure baths of different
concentration.

Figure 3(a) shows the pronounced regular structure in the
Ca2+ ion current JCa as a function of Qf for different Ca2+
concentrations [Ca]. The structure consists of narrow regions
of high conductance (conduction bands) M0 ≈ 1e, M1 ≈ 3e,
and M2 ≈ 3e separated by almost zero-conductance stop-
bands. The peak separation �Q ≈ 2e corresponds to the
charge on one Ca2+ ion. As shown in Fig. 3(b), the peaks
in J correspond to transition regions in the channel occupancy
P , where P jumps from one saturated integer value to the next
one, while zero-conductance bands correspond to regions of
constant integer P . The calcium conduction bands correspond
to the ion-exchange low-barrier phase transitions obtained
analytically in Ref. [41].

Comparison of the J and P plots shows that conduction
occurs at odd integer values of Qf /(ze), corresponding to non-
zero instantaneous total charge of the selectivity filter , whereas
the nonconducting regions of constant P correspond to even
integer values of Qf /(ze), i.e., to the neutralized state. The
neutralization approach will be further discussed in Sec. IV.

Figure 4 plots the equivalent results for [Fig. 4(a)] the
sodium current and [Fig. 4(b)] the occupancy as functions
of Qf in a pure NaCl bath with different concentrations. The
current JNa exhibits weak local maxima that would appear to
be analogous to the calcium conduction bands in Fig. 3(a).
We label them as L0, L1, L2, corresponding to the integer
sodium occupancy PNa = 0,1,2 of the selectivity filter; these
broad bands overlap and never fall to zero, making the sodium
conductance relatively independent of Qf . The separations of
the L-band maxima are half the size of those in the calcium
M-bands, reflecting the charge difference between Na+ and
Ca2+ ions.

Values of maximal sodium and calcium currents are
about 5–10 ×107s−1(10–20 pA), corresponding roughly to
the currents observed experimentally in sodium and calcium
channels under physiological conditions [2,9].
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FIG. 5. (Color online) BD simulations showing conduction and
selectivity of the generic ion channel model in mixed and pure baths
(partly reworked from Ref. [44]). Note the logarithmic ordinate scale.
(a) The calcium current JCa as a function of the fixed charge Qf at the
selectivity filter in the mixed bath (blue point down triangles) shows
significant attenuation for bands M1 and M2 as compared with the
pure bath (red point-up triangles). (b) The sodium current JNa as a
function of Qf in the mixed bath (blue point-down triangles) exhibits
progressive blockage by calcium as compared to the pure bath (red
point-up triangles). (c) A plot of the selectivity ratio S = JCa/JNa

for the mixed bath shows growth of selectivity for Qf above L0 and
strong peaks corresponding to the M1 and M2 calcium bands.

The appearance of the distinct conduction bands are at-
tributable to ion-ion and ion-fixed charge electrostatic interac-
tion and the discreteness of the multi-ion occupancy P [27,36].
They are particularly well defined for Ca2+ in the calcium
channel on account of the double-valence of Ca2+, which
enhances the electrostatic effects of valence selectivity [34]. It
will be shown explicitly below (see Secs. III D and III E) that
both the calcium and sodium conduction bands correspond to
resonancelike barrierless conduction.

The different positions of the conduction and forbidden
bands for ions of different valence (in pure baths) provide a
basis for valence selectivity in a mixed bath. Figure 5 shows
the transformations in the conduction bands that occur in a
mixed bath ([Ca] = 40 mM, [Na] = 30 mM). It is evident
in Fig. 5(a) that the calcium conduction and stop bands bands
persist, although bands M1 and M2 are significantly attenuated
in the mixed salt as compared to the pure one.

Figure 5(b) makes clear that the sodium current exhibits
a persistent block for Qf > M0 that intensifies progressively
until the beginning of M1. This strong progressive blockade
of the sodium current can be accounted for by the increase
in the depth of the potential well (which is linear in Qf ) and
the consequent exponential decrease of the escape rate of the
blocking Ca2+ ions.

Figure 5(c) plots the selectivity ratio S = JCa/JNa showing
how the channel is selective in favor of calcium in a mixed salt
bath. The ratio starts from S ≈ 0.01 for L0 (sodium-selective
channel), increases to S ≈ 1 (nonselective channel) for M0,
drops again near L1 (sodium-selective channel) and then rises
fast to the high selectivity peak of S ≈ 100 for the calcium-
selective M1, corresponding to the L-type calcium channel.
Note that the calcium selectivity peaks M1 and M2 are shifted
to lower Qf relative to the corresponding peaks in J [cf.
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Fig. 5(a)]. They correspond to the thresholds of the transitions
in P .

B. Identification of selectivity bands in the calcium or sodium
channels family

We now try to relate the observed charge-ordered sequence
of conduction and selectivity bands shown in Fig. 5 to the
behavior exhibited by real channels in experiments. Calcium
and sodium conduction and stop bands divide the Qf axis
into a number of distinct regions differentiated by the type of
Ca2+/Na+ selectivity, i.e., by combination of four features:
the Na+ conductivity for a pure bath; the Ca2+ conductivity
for a pure bath; the existence and power of the divalent
block; and the AMFE (i.e., calcium-selective current), for the
mixed salt bath. Combining these features we can find several
clearly differentiated Qf regions with distinct selectivity types
related to particular channels including wild-type, mutants,
and artificial.

Figure 6(a) shows that the band L0 (Qf ≈ 0.5e) demon-
strates moderate sodium conductivity and near-zero calcium
conductivity in a mixed bath (as in the pure baths), and
that there is no divalent block or AMFE [plots (a), (b)].
The near-zero PCa shown in Fig. 6(b) is because calcium
ions cannot overcome the self-potential barrier in order to
enter the channel, as illustrated by the occupancy plot in
Fig. 6(c). The results are almost independent of [Ca]. Thus L0
represents a nonblocking sodium-selective channel. We infer
that this band is associated with the bacterial sodium NaChBac
channel [17], which exhibits a similar type of selectivity; the
same connection was also proposed recently by Corry [61].
We can connect the L0 band with the DEKA inner ring of the
mammalian Nav sodium channel [6,9].

Figure 7 shows that the M0 channel (Qf ≈ 1e) exhibits
nonselective conduction and occupancy for both sodium
and calcium [plots (a), (b)], and nonselective time-sharing
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FIG. 6. (Color online) Band L0. BD simulations showing conduc-
tion and occupancy in a mixed salt bath with Na+ (blue, point-down,
triangles) and Ca2+ (red, point-up, triangles); the lines are guides to
the eye. (a) Sodium and calcium currents J and (b) occupancies P vs
the Ca2+ concentration [Ca] for [Na] = 30 mM. L0 shows moderate
sodium conductivity without the divalent block corresponding to
AMFE. (c) Mutual occupancy profiles for Na+ (blue peaked curve)
and Ca2+ ions (red monotonic curve) show that the Ca2+ ion cannot
enter the channel.
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FIG. 7. (Color online) The nonselective band M0. BD simulations
showing conduction and occupancy in a mixed salt bath with Na+

(blue, point-down, triangles) and Ca2+(red, point-up, triangles); the
lines are guides to the eye. (a) Sodium and calcium currents J and (b)
occupancies P vs Ca2+ concentration [Ca] for [Na] = 30 mM. M0
shows nonselective currents both in pure and mixed baths. (c) Mutual
occupancy profiles for Na+ and Ca2+ ions show an absence of any
blockade of Na+ ions by the Ca2+ ions, and a time-shared occupancy
mode.

mutual occupancy profiles [Fig. 7(c)] and thus represents a
nonselective cation channel. It may be identified with the
nonselective cation channel described in Ref. [64] or the OmpF
channel [18]. The high calcium J corresponds to barrierless
conductivity for Ca2+ (see Sec. III E).

Results for the double-occupied sodium band L1 (Qf ≈
1.5 − 2.0e) are plotted in Fig. 8. As shown in Figs. 8(a)
and 8(b), this band exhibits high conductivity for pure sodium,
zero conductivity for pure calcium, and blockade of the
sodium current by calcium. Onset of the blockade occurs at
[Ca]50 ≈ 1 mM after the first Ca2+ ion has occupied the
selectivity filter: PCa → 1. The mutual occupancy profiles
for Na+ and Ca2+ shown in Fig. 8(c) demonstrate full
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x(Å)

(1
0−

1
/Å
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FIG. 8. (Color online) The sodium-selective band L1. BD simu-
lations showing conduction and occupancy in a mixed salt bath with
Na+ (blue, point-down, triangles) and Ca2+ (red, point-up, triangles);
the lines are guides to the eye. (a) Sodium and calcium currents J and
(b) occupancies P vs Ca2+ concentration [Ca] for [Na] = 30 mM. L1
shows strong blockade without AMFE at PCa = 1 with a threshold
of [Ca]50 ≈ 1 mM. (c) Mutual occupancy profiles for Na+ and Ca2+

ions show substitution and blockade of Na+ ions by the first Ca2+

ion, which by itself completely occupies the channel.
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FIG. 9. (Color online) BD simulations showing AMFE in a mixed
salt bath for the M1 calcium channel (reworked from [44]) with Na+

(blue, point-down, triangles) and Ca2+ (red, point-up, triangles); the
lines are guides to the eye. (a) Sodium and calcium currents J and
(b) occupancies P vs the Ca2+ concentration [Ca] for [Na] = 30 mM.
M1 shows strong blockade and AMFE at PCa = 1, with a threshold
of [Ca]50 ≈ 30 μM. (c) Mutual occupancy profiles for Na+ and Ca2+

show blockade of Na+ ions by one Ca2+ ion.

substitution of Na+ ions by the first Ca2+ ion. It is thus a
sodium-selective channel that is subject to divalent block. This
kind of selectivity corresponds to the wild-type mammalian
sodium channel [1,12] and it relates to an outer EEDD ring of
residues [6,9], similar to the four-glutamate ring discovered in
the bacterial NavAb channel.

The narrow calcium selectivity peaks M1 (Qf ≈ 3e)
and M2 (Qf ≈ 5e) [Fig. 5(c)] exhibit highly nonselective
conductivity in a pure bath, and strong divalent blockage
of sodium, followed by AMFE. This kind of selectivity is
a trade-mark of calcium channels [2] identified with the
wild-type L-type and RyR calcium channels, respectively [44].

Figure 9 presents the dependences of J and P on [Ca] for the
M1 band in a mixed salt configuration. As shown in Figs. 9(a)
and 9(b), M1 shows a strong blockade of the current JNa

of Na+ ions with its onset at [Ca]50 ≈ 30 μM. The blockade
occurs after the first Ca2+ ion has occupied the selectivity filter:
PCa → 1 as shown in Fig. 9(b). The mutual occupancy profiles
for Na+ and Ca2+ shown in Fig. 9(c) also indicate blockade
of Na+ ions by the first Ca2+ ion. This is a calcium-selective
channel with single-ion calcium block. Strong blockade with
a relatively low onset agrees qualitatively with the observed
properties of the L-type channel [2]. The value of Qf , and
the conduction mechanism for M1, also correspond to the
model [42] of the L-type channel (EEEE locus).

Figure 10 provides similar information for the M2 band,
again in a mixed salt configuration. As shown in Figs. 10(a)
and 10(b), there is a strong blockade of the current JNa

of Na+ ions with its onset at [Ca]50 ≈ 150 μM after two
Ca2+ ions have occupied the selectivity filter: PCa → 2.
This is a calcium-selective channel with double-ion calcium
block. The divalent blockade with a relatively high onset and
strong calcium current agrees qualitatively with the observed
properties of the RyR calcium channel [4] and with the TPRV6
channel [5].

We thus arrive at the full identification scheme presented in
Table I; it represents a completed version of the partial table
in Ref. [44].
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FIG. 10. (Color online) AMFE in a mixed salt bath for the M2
channel (reworked from Ref. [44]) with Na+ (blue, point-down,
triangles) and Ca2+ (red, point-up, triangles); the lines are guides
to the eye. (a) Sodium and calcium currents J and (b) occupancies
P vs the Ca2+ concentration [Ca]50 for [Na] = 30 mM. M2 shows
strong blockade and AMFE at PCa = 1 with a threshold of [Ca]50 ≈
150 μM. (c) Mutual occupancy profiles for Na+ and Ca2+ ions show
blockade of Na+ ions by a pair of Ca2+ ions.

Within the framework of our scheme, an increase of fixed
negative charge at the selectivity filter leads to an increase
of calcium selectivity with the strict sequence: L0 (sodium
selective, nonblocking channel) → M0 (nonselective cation
channel) → L1 (sodium-selective channel with divalent block)
→ M1 (calcium-selective channel with divalent, blockade,
AMFE). And vice versa, a decrease in the negative charge
should change the selectivity from an L-type calcium channel
to sodium, and from sodium to nonselective. The sodium
L1 blocking channel holds an intermediate position in the
Qf spectrum between the nonselective M0 channel and the
calcium-selective M1 channel. A similar increase of selectivity
with increasing Qf was obtained in Refs. [8,18] but without
the sharp selectivity peak at M1.

Comparison between the L1 and M1 conductivity-
selectivity behavior shows a close similarity of their blockade
mechanisms, but a significant difference between their calcium
conductivities. Unlike the calcium-selective band M1, which
exhibits narrow selectivity peaks, the sodium-selective band
shows conduction or selectivity properties over a relatively
wide range of Qf around L1. This difference can be explained
as being the result of barrierless Ca2+ conductivity appearing
in the narrow M1 band (see Sec. III D). In some sense, a sodium
channel can be described as a suboptimal calcium channel: the
Ca2+ ion blocks the Na+ current, but the Ca2+-Ca2+ knock-on
mechanism does not work.

C. Mutation-induced transitions between selectivity bands

The identification of the selectivity bands in the model
with real channels (wild-type and mutants) allows us to
establish a model “charge scale” for different channels and
different mutations (Table II), and to compare it with the more
conventional charge scale based on the nominal charges of
amino acid side chains at normal electrolyte pH values within
a channel. Such a scale allows us to describe (predict) the
known (possible) results of mutations leading to substitutions
of residues at the selectivity filter with residues of different
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TABLE I. Identification of conduction and selectivity bands of the model with known ion channels.

Conduction Pure salt bath Mixed salt bath

bands ≈ Fixed charge (e) Na+ current Ca2+ current Blockade AMFE Channels Locus and nominal charge

L0 0.5 Moderate Low No No Nav sodium [1] DEKA(1e)
M0 1 Moderate Moderate No No Nonselective OmpF [18] RRRDE(2e)
L1 1.5–2.0 Low High Yes No NaChBac [17], NavAB [7] EEEE(4e)
M1 3 High High Yes Yes L-type calcium [2] EEEE(4e)
M2 5 High High Yes Yes RyR calcium [4] DDDD(ED)(6e)

charge, or to the elimination of particular residues. The scale
based on our model is generally similar to that suggested in
Refs. [8,18], albeit with different charges for some residues
and channels.

Typically, the effective charge Qf in our model appears
to be less than sum of the nominal charges of the residues
assigned to the locus in question. Our simulations give M1 =
3e for conservative EEEE locus of L-type calcium channel
(nominal charge 4e), and L0 = 0.5e for the DEKA locus of
the Nav sodium channel (nominal charge 1e), in agreement
with earlier BD simulation results for calcium and sodium
channel [6,42].

These differences could be partially (and speculatively)
related to possible difference in ionisation states of residues
[65,66]. Multiple amino acids with carboxylate groups have to
be placed in close proximity to establish the rings of high
negative charge in the selectivity filters considered in the
model; protonation at neutral pH would either reduce the effec-
tive charge on the residues [65,66] or leave them unchanged.
Mutant studies with residues eliminated confirm that there is
significant protonation of the ring of glutamates [2].

Our computation of the effective fixed charge might also
be misleading in some cases, because the model includes only
the fixed charge of the filter locus (the ring). For instance, the
assignation of effective charges to the RyR DDDD locus takes
no account of the fact that the pore of the RyR channel is lined
by a total of 20 negatively charged residues, not only by the
D4899 charges of the four α subunits [4].

Thus the most obvious reason for differences between
the conventional or accepted charges of residues and the
band-derived values of Qf is the simplicity (and generality)
of our model, and possible differences between the model
parameters and the real channel structure parameters (which
are sometimes unknown). Parametric studies of the model have
shown reasonable robustness in the positions of the conduction
bands to variations of R and L in the selectivity filter, to the

width H of the charge ring and to the membrane potential
V [44]. However the model’s effective scale of Qf could be
affected by, e.g., the assumed hydration model and the assumed
radius of the charged ring. The bands shift upwards in Qf

with hydration barrier growth and downwards with increasing
radius of the charged ring. In this work, we do not use fitting
procedures, and nor do we assume modified values for the
charges on the residues. We just take the Qf band values that
emerge as effective values related but not equal to the real
charges.

Figure 11 compares the BD simulation results for divalent
(calcium or barium) to monovalent (sodium) selectivity SCa =
JCa/JNa with experimental data SBa = JBa/JNa . Our generic
model predicts fast growth of S from 0.01 for L0, to 100 for
M1 (blue circles). The green open triangles are from mutation
studies of the Cav channel and its less-charged mutants (EEEE
(4e) → EEEA (3e) → EEEK (2e) → EEKA (1e)). They
demonstrate a clear dependence of SBa = JBa/JNa on Qf [13]
in agreement with the predictions of our model. Consequently
we identified these channels with bands from M1 down to L0
(Table II).

Table II lists the above-mentioned selectivity transitions,
together with some other known mutation transformations,
and their attributions within the framework of our model.

The recently investigated NALCN channel is a member
of the family of ion channels with four homologous repeat
domains that include voltage-gated calcium and sodium
channels. NALCN appears in two variants with selectivity
filter residues that resemble either calcium channels (EEEE)
or sodium channels (EKEE or EEKE), controlled by a single
gene [19]. We can tentatively identify the EEKE channel
with the L1 band and EEEE with the M1 band. Reversible
transformations between these states can be identified as L1
↔ M1 transitions.

An appropriate point mutation of the DEKA sodium
channel (Qf ≈ 1e) converts it into a calcium-selective channel

TABLE II. Mutation-induced selectivity transitions in calcium and sodium ion channels.

Channel transformation Locus changes and nominal charges Band transition and charges

Nav sodium → calcium-selective [11] DEKA (1e) → DEEA(3e) L0(0.5e) → M1(3e)
Cav calcium → sodium-selective mutant [3] EEEE (4e) → DEDA (3e) M1 (3e)→ L1 (1.5e)
Cav calcium → nonselective mutants → sodium- EEEE (4e)→ EEEA(3e) → EEEK (2e) → EEKA (1e) M1 → L1 → M0 → L0
selective mutant [13]
Nav sodium → numerous mutants with different loci [12] DEKA → DEKE → DEEA → EEEE → DEEE L0→ L1→ M1→ M1
Nonselective OmpF porin → calcium-selective mutant [18] RRRDE (2e)→ DEEE (4e)→ (L)AEA (7e) M0(1e)→ M1(3e)→ M2(5e)
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FIG. 11. (Color online) The mutation-induced increase of di-
valent (calcium or barium) over monovalent (sodium) selectivity
SCa = JCa/JNa , SBa = JBa/JNa : the BD simulations are compared
with experiment. The generic model predicts fast growth of SCa from
0.01 for L0 to 100 for M1 (blue circles). The simulation results are
in reasonable agreement with the experimental results for SBa in Cav

to sodium-selective mutants (green triangles, where Qf is scaled by
M1) [13].

with a DEEA locus [11]. Our scheme identified this result with
the L0 (Qf = 0.5e) → M1 (Qf = 3e) transition.

The essentially nonselective bacterial OmpF porin with
its RRRDE locus can be converted into a Ca2+-selective
channel by the introduction of two additional glutamates in
the constriction zone; the resultant mutant contains a DEEE
locus and exhibits an Na+ current with a strongly increased
sensitivity to 1 mM Ca2+. Another OmpF mutant with formal
net charge Qf = 7e demonstrating weaker AMFE and smaller
selectivity to Ca2+ was identified as an analog of the RyR
channel [18]. We can identify this transformations with the M0
(Qf = 1.0e) → M1 (Qf = 3e) → M2 (Qf = 5e) transitions.

Thus our identification scheme provides straightforward
explanations for the outcomes of several mutant studies. Some
results still seem to lie outside the scope of our model, e.g., the
change of the ions’ permeation or selectivity properties by a
simple permutation of the residues at the selectivity filter [12].

The calcium-selective M1 band exhibits a narrow reso-
nancelike selectivity peak. We can conclude that any single
mutation of the calcium channel that influences Qf should
destroy its specific calcium selectivity. It corresponds well
with the facts that the EEEE signature for the L-type channel
is highly conserved [2] and that mutations in the genes
responsible for this selectivity filter motif lead to numerous
diseases [15].

The resonancelike nature of calcium selectivity is partic-
ularly interesting in connection with the recently discovered
NavAb sodium channel, which possesses the same EEEE locus
as the calcium L-type channel but exhibits sodium-selective
permeation behavior [7,10]. In the context of our model,
this paradox could be explained in terms of a geometry
difference (relatively small length of selectivity filter, or large
radius), here we should bear in mind that the bands disappear
when L decreases to 8 Å or R reaches to 4.5 Å [44], so
that calcium selectivity could drastically decrease. Another
plausible explanation relates to possible variations in the
protonation of residues for different channels and therefore
to slightly different effective charge for nominally the same
loci [66–68]. Due to the narrowness of the calcium-selective
M1 band even small changes of total charge could convert it to
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FIG. 12. (Color online) The appearance of a barrierless path for
the channel M0. (a) The electrostatic potential energy profile along
the channel’s x axis is plotted vs the fixed charge Qf . The energy
differences across the profile are minimal at a particular value of
Qf = Qopt. (b) This optimal profile for permeation (red) appears as
the result of a balance between repulsion by the dielectric boundary
force (blue) and attraction to the fixed charge (green, dashed).

sodium channel. Clarification of these questions will require
further experimental research and more detailed simulations.

D. Energetics of single-ion conduction and selectivity
bands L0 and M0

We now investigate the energetics of calcium and sodium
conductivity in our model, and show explicitly that a barri-
erless permeation mechanism underlies the appearance of the
conduction and selectivity bands.

Figure 12 shows that barrierless conductivity for cations
of particular valence (the calcium M0 band is drawn) appears
as the result of a balance between the self-repulsion of the
dielectric boundary force and the electrostatically amplified
attraction to the negative fixed charge. The self-repulsion is
proportional to Q2

i , whereas the attraction is proportional to
Qi × Qf . Thus a variation of Qf can significantly change
the resultant profile. This kind of barrierless selectivity was
suggested earlier for the Gramicidin channel [24,30,33].

Figure 12(a) illustrates the fact that, for small Qf < M0,
self-repulsion dominates and the channel is not permeable
by any ion; and that, for large Qf (Qf > M0), attraction
dominates and the ionic dynamics is then controlled by
Kramers escape from a deep potential well, with an exponential
dependence on its depth, �E. Between these two extremes an
optimal point Qopt (Qopt = 0.9e for Ca2+ ions) exists where
�E = |Emax − Emin| is minimized with the appearance of an
almost barrierless (�E ∼ kBT ) profile for the moving ion.
Sodium ions exhibit a similar pattern but with Qopt = 0.45e

providing for valence selectivity between monovalent Na+ and
divalent Ca2+ ions (see also below, Fig. 13).
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FIG. 13. (Color online) Energetics and Brownian dynamics of the
single-ion permeation in the sodium L0 and calcium M0 bands. (a)
The L0 band potential energy vs the fixed charge Qf . The energy
difference along the profile shows a clear minimum at Qopt = 0.45e.
(b) The peak in the sodium current J vs Qf calculated from
electrostatics (blue curve) lies relatively close to the BD-simulated
L0 peak (green point-up triangles, detrended). (c) The M0 potential
energy vs the fixed charge Qf . The energy difference along the profile
show a sharp minimum at Qopt = 0.87e. (d) The peak in the calcium
current J vs Qf calculated from electrostatics (blue curve) lies close
to the BD-simulated M0 peak. (green point-up triangles).

Figure 12(b) shows that for Qf = M0 the self-potential
barrier of the dielectric boundary force is balanced by
electrostatic attraction to the fixed charge Qf , resulting in
a low barrier with �E ∼ kBT .

To compare the results of electrostatic calculations and
BD simulations, we introduce a simplified kinetic model that
allows us to connect the energy difference along the energy
profile with the current J and occupancy P .

For a singly occupied channel, and assuming that there is
no back flow, we get a linear dependence of J on P in the
Kramers rate approximation : J = k0 × P where k0 stands for
the escape rate. Coulomb interactions between the ion inside
the channel, and ions in the bath and at the mouth, cause k0 to be
dependent on concentration [29,69] and so lead to deviations
of J from a linear dependence on P .

We assume the generalized Kramers equation for k0 in the
vicinity of M0 or L0: k0 ≈ D/L2 exp(−�E/kBT ) and get the
resultant expression for the current J :

J = k0P ≈ D/L2 exp(−�E/kBT ) × P (3)

or, assuming that P = const,

J = J0 × exp(−�E/kBT ) (4)

where J0 is a reference current. We will use (4) to compare
the J (Qf ) dependences obtained from electrostatics with the
results of BD simulations.

Figure 13 compares the energetics and BD results for
the singly occupied sodium L0 and calcium M0 bands. The
electrostatically calculated dependences of �E on Qf reveal
sharp minima [Fig. 13(a)] at Qopt = 0.45e for the L0 and
[Fig. 13(c)] at Qopt = 0.9e for the M0. The calcium band M0

exhibits a sharper Qf dependence because of the twice-larger
charge on Ca2+.

Figures 13(b) and 13(d) compare the shapes and posi-
tions of the electrostatically calculated conductivity peaks
[J ∼ J0 exp(�E/kBT )] with those obtained from the BD
simulations. Their positions are in reasonable agreement,
although the BD simulated peaks are shifted towards higher
Qf , probably due to kinetic effects related to (3) and to
the changing values of P and k0. These results support our
inference that the resonancelike L0 and M0 bands maxima
are attributable to barrierless conduction. The conduction
maximum for L0 shown in (b) is broadened towards higher
Qf due partly to its overlap with L1 and partly to the slower
exponent in J for sodium. It leads to nonselective conduction
for M0, as discussed above.

E. Barrierless double-ion trajectories for conduction bands
L1 and M1

The double-ion sodium selectivity band L1 is identified
with the outer ring of the Nav sodium channel and with the
NLCN sodium channel. The double-ion calcium band M1 is
identified with the L-type calcium channel [42,44].

Multi-ion conductance appears when the selectivity filter
potential well becomes too deep (about 60kBT for Ca2+
in the vicinity of M1) making the channel impermeable
when occupied by just one ion. Instead, conduction events
occur via a double-ion knock-on conduction mechanism. This
mechanism is caused by the electrostatic interaction between
simultaneously captured ions, a process that is particularly
effective for divalent Ca2+ ions [25,42].

The interacting calcium or sodium ions move simultane-
ously, in a coordinated manner, enabling escape to occur over
a potential barriers of minimal height on the 2D potential
energy surface (PES) [70,71]. The PES approach allows one
to describe double-ion conduction as the potential motion of
a quasiparticle along an optimal stochastic trajectory on the
PES [36,46,72], thereby reducing the problem of double-
ion conduction to the case already discussed, i.e., the 1D
movement of a particle (in this case a “superion”) in an
electrostatic field.

We exploit this approach to show explicitly that the
resonancelike conduction and selectivity of the M1 calcium
channel and the L1 sodium channel occur through a barrierless,
multi-ion, conduction mechanism. To study valence selectivity
we construct both homogeneous Ca2+-Ca, Na+-Na, and
heterogeneous Na+-Ca2+ double-ion PESs, find the optimal
(minimal energy change) stochastic paths, and calculate the
energy profiles along these paths (see below).

Figure 14(a) shows the calculated dependence of �E on
Qf for the L1 band (DEKA sodium channel), revealing a
smooth minimum at Qopt = 1.5e. These data are obtained
from an analysis of optimal trajectories for the electrostatic
PES. A comparison of the current calculated from the Kramers
approximation with that obtained from the BD simulations
is shown in Fig. 14(b). The BD simulated maximum in the
sodium current at Qopt = 2e is very weak and shifted up
relative to the point of barrierless conductance as shown in
Fig. 14(b). The discrepancy can be attributed to kinetics effects
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FIG. 14. (Color online) Energetics and Brownian dynamics for
double-ion permeation of the sodium L1 and calcium M1 bands.
(a) The L1 band potential energy vs the fixed charge Qf . The
energy difference along the profile shows a wide minimum at
Qopt = 1.5e. (b) The peak in the sodium current J vs Qf calculated
from electrostatics is shifted down compared to the very weak
BD-simulated conductance peak L1 (green point-down triangles).
(c) The M1 calcium band potential energy vs fixed charge Qf .
The energy difference along the profile show a deep minimum at
Qopt = 3e. (d) The peak in the calcium current J vs Qf calculated
from electrostatics (blue curve) lies close to the BD-simulated M1
peak in selectivity (green point-down triangles).

and to the obviously strong overlap between the different
sodium bands (see Fig. 5).

Figure 14(c) shows similar comparisons for the M1 band
(L-type calcium channel): the calculated dependence of �E

on Qf undergoes a sharp minimum at Qopt = 3e. The current
calculated from the Kramers approximation is compared with
that obtained from the BD simulations in Fig. 14(d). The good
agreement between the peaks confirms that the maximum of
selectivity in the double-occupied M1 band corresponds to the
point of barrierless conductivity.

Figure 15 presents Na+-Na+ and Ca2+-Na+ PES maps,
optimal trajectories, and corresponding energy profiles, for
Qf = L1, at the point of barrierless conductivity. Figures 15(a)
and 15(b) show the Na+-Na+ PES map and energy optimal
trajectory S corresponding to a knock-on event, navigating
two orthogonal valleys from south to east on the PES. The
energy profile along S is almost flat (the energy difference
along the optimal path does not exceed 1kBT ) corresponding
to fast, barrierless, permeation.

In contrast, the optimal path on the heterogeneous Ca2+-
Na+ PES for L1 [Figs. 16(c) and 16(d)] passes via a saddle
(where it is not well defined) where it has to overcome a
relatively high potential barrier by thermal activation. The
latter is �E ≈ 8kBT for a sodium ion trying to knock on
a calcium ion and �E ≈ 6kBT for the opposite combination.
This is the PES-language explanation for calcium blockade in
the outer ring of the Nav sodium channel.

The pattern for Ca2+-Ca2+ permeation is rather similar but
all effects are much more pronounced. Figure 16 presents
Ca2+-Ca2+ and Ca2+-Na+ PES maps, optimal trajectories and
the corresponding energy profiles for Qf = M1, at the point of
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FIG. 15. (Color online) (a) Double-ion Na+-Na+ potential energy
surface (PES) for the model channel with Qf = L1 (1.5e), shown as
a contour plot. The contour separation is 1kBT , and the color bar
labels are in units of kBT . The diagonal ridge in the upper-left corner
represents the electrostatic barrier along the main diagonal of the map
x1 = x2. The map area related to the selectivity filter is limited by
the white lines. The optimal trajectory S (red dashed line) traverses
two orthogonal valleys in the direction shown by the arrows and
represents a knock-on event. The first ion initially captured at the
center of the selectivity filter is pushed and substituted for by the
second ion arriving at the channel mouth. (b) The potential energy
E profile along S represents almost barrierless permeation. (c), (d)
show the same quantities for the heterogeneous Ca2+-Na+ double
ion: the binding site is initially occupied by a Ca2+ ion that should
be pushed by a Na+ ion. The optimal trajectory S navigates via two
valleys separated by a saddle, which creates an intermediate potential
barrier (�E ≈ 8kBT ), corresponding to divalent blockade of Na+.

maximum Ca2+ or Na+ selectivity. Figures 16 (a), 16(b) show
the Ca2+-Ca2+ PES map and the energy-optimal trajectory S,
navigating two deep orthogonal valleys. The energy profile
along S is again almost flat: the energy difference along the
optimal path does not exceed 1-2 kBT , corresponding to fast
barrierless permeation.

In contrast, the heterogeneous Ca2+-Na+ PES for M1
[Figs. 16(c) and 16(d)] encounters an impermeable high
potential barrier �E ≈ 20kBT for a sodium ion trying to
knock on a calcium ion., which would need to be overcome by
thermal activation. This is the PES-language explanation for
calcium blockade and AMFE in the EEEE calcium channel; the
barrier for the opposite combination is considerably smaller,
�E ≈ 3kBT , and it can be overcome by thermal activation,
i.e., a calcium ion can knock on a sodium one.

It was shown rigorously in Ref. [47] that calcium and
sodium conduction and selectivity band correspond to barrier-
less, double-ion conduction for Ca2+ ions and a deep blockade
of Na+ ions, thereby resolving the selectivity vs conductivity
paradox.

In terms of our simple model, there is of course no essential
difference between a biological ion channel and an artificial
nanopore of similar geometry (radius R and length L) and
surface charge Qf . Such nanopores may be expected to
demonstrate similar conductivity and selectivity features and
a number of practical applications can be envisaged.
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FIG. 16. (Color online) (a) Double-ion Ca2+-Ca2+ potential
energy surface (PES) for the model channel with Qf = M1 (3.0e),
shown as a contour plot. The contour separation is 2kBT , and the
color bar labels are in units of kBT . The diagonal ridge in the upper
left corner represents the electrostatic barrier along the main diagonal
of the map x1 = x2. The map area related to the selectivity filter is
limited by the white lines. The optimal trajectory S (red dashed line)
traverses two deep (≈ 60kBT ) orthogonal valleys in the direction
shown by the arrows, and represents a knock-on event. The first
ion initially captured at the center of the selectivity filter is pushed
out and substituted for by the second ion arriving at the channel
mouth. (b) The potential energy E profile along S demonstrates
almost barrierless permeation (�E < 2kBT ). (c), (d) show the same
quantities for the heterogeneous Ca2+-Na+ double-ion: the binding
site is initially occupied by a Ca2+ ion that should be pushed by a Na+

ion. The optimal trajectory S navigates via a deep valley ended by
high potential barrier (�E ≈ 20kBT ), corresponding to deep divalent
blockade of the Na+ current.

IV. CHARGE NEUTRALIZATION AND VALENCE
SELECTIVITY

The pattern of conduction and occupancy bands revealed
by BD simulations and confirmed by electrostatics appears
as a set of equidistant (periodic) J peaks coinciding with
steps in P with a period related to the ionic charge ze and
shifted from zero by a half-period Qf = ze/2. We now offer a
simplified (and nonrigorous) explanation of this phenomenon
based on the idea of sequential neutralization of the fixed
negative charge Qf by the capture of positive ions.

The zeroth-order bands (L0, M0) appear when the self-
energy barrier Eself is balanced by the site attraction energy
Eattr (Sec. III D). The self-energy barrier Eself can be estimated
by application of Gauss’s theorem to the channel volume
taking account of the near-zero radial field as [35]:

Eself = 1

4πε0

(ze)2L

2εwR2
. (5)

A similar approach gives us for the attraction energy

Eattr = 1

4πε0

(ze)Qf L

εwR2
. (6)

From condition Eself = Eattr we take the result:

Qf (0,z) = zQf (0,1) = (ze)

2
. (7)

0

10

20

J
N

a
(1

07
/
s)

 

 

0

5

10

J
C

a
(1

07
/
s)

 

 

0 1 2 3 4 5 6
0

5

10

Qf/e

J
L
a
(1

07
/
s)

 

 

(a)

(b)

(c)

M1M0 M2

L0 L1 L2

T0 T1

FIG. 17. (Color online) BD simulations showing the pattern of
conduction bands and valence selectivity for Na+, Ca2+, and La3+

ions. (a) The conduction bands for Na+ are overlapped and smooth
[replotted for easier comparison from Fig. 4(a)]. (b) Ca2+ conduction
exhibits clearly resolved peaks M0, M1, M2 (c) La3+ conduction
exhibits the clearly resolved peaks T0 and T1.

We can define the effective image charge for an ion of
charge ze as being Qeff = (ze)/2 and thus interpret (7) as
the neutralization condition Qf = Qeff . The multiplier (1/2)
appears from the textbook formula for the electrostatic self-
energy Eself = (1/2)eUrf , where Urf stands for the potential
of the reaction field [32,35].

Thus, we may expect that next resonances will appear
periodically at intervals of ze (i.e., 1e for Na+, 2e for Ca2+)
when additional Qf is neutralized by the charge of an integer
number of sequentially captured ions (L1,M1, . . .). For an ion
of valence z one can write:

Qf (i,z) = Qf (0,z) + zei = ze
(

1
2 + i

)
, (8)

where the order of the band i = 0,1,2, . . . is equal to the
number of ions captured by the site, i.e., the saturated site
occupancy (i = 0 for L0 and M0, etc.).

Equation (8) provides for a separation in Qf space of the
bands of ions for different valence z and hence gives rise to
valence selectivity in the generic model ion channel. That is,
for our rigid, fixed-charge model, we will have the following
sequences of conduction bands for ions of different valence
(cf. Fig. 17).

(i) Monovalent Na+ ions

Qf (i,1) = 0.5e(L0) → 1.5e(L1) → 2.5e(L2) . . . (9)

The band positions (9) are also in good agreement with the
energetically defined pattern from electrostatics. However, the
BD-simulated bands shown in Fig. 17(a) appear at somewhat
higher values of Qf (see also Sec. III A), a discrepancy that
requires further investigation.

(ii) Divalent Ca2+ ions

Qf (i,2) = 1e(M0) → 3e(M1) → 5e(M2) . . . (10)

These predictions (10) are in a good agreement with the
patterns of Ca2+ conduction bands seen in both the BD
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simulations [Fig. 17(b)] and the electrostatic calculations
(Sec. III D).

(iii) Trivalent La3+ ions

Qf (i,3) = 1.5e(T0) → 4.5e(T1) . . . (11)

The predictions (11) agree well with the pattern of La3+
conduction bands seen in the BD simulations [Fig. 17(c)].
The pattern of predicted or simulated bands also agrees with
the experimentally observed blockage of the Ca2+ current by
trivalent ions [73].

It follows from (8) that the channel does not conduct when
its fixed charge Qf is completely neutralized by the sum of the
charges of captured cations so that the channel (or its selectivity
filter) is electrically neutral. Such a neutralized state can appear
only for integer values of Qf /(ze) due to the discreteness of
the charge. Neutralized states with integer Qf /(ze) are charge
saturated and stable, whereas nonneutralized (or requiring
chloride counterions for neutralization) states with half-integer
Qf /(ze) exhibit high conductivity and selectivity.

This neutralization approach is close to the space-charge
competition model of the calcium channel [20] and to the
one-dimensional Coulomb gas theory of ionic motion inside
an ion channel developed in Refs. [35,40]. The pattern of bands
is similar to the energy level structure of a quantum harmonic
oscillator and is also reminiscent of that seen in the quantum
Hall effect [74].

V. CONCLUSIONS

In summary, we have carried out Brownian dynamics
simulations of ionic conduction in a generic model of a
channel in the calcium-sodium channel family, for different
values of the negative charge at the selectivity filter Qf =
0 − 6.5e. They reveal a strictly ordered sequence of selectivity
bands of increased calcium selectivity: L0 = 0.5e (sodium-
selective, nonblocking channel) → M0 = 1e (nonselective
cation channel) → L1 = 1.5e (sodium-selective, blocking
channel) → M1 = 3e (calcium-selective, blocking channel
with AMFE, single-ion block) → M2 = 5e (calcium-selective,
blocking channel with AMFE, double-ion block). Conduction
bands correspond to ion-exchange phase transitions obtained
analytically in Ref. [41]

Our preliminary identification of bands [44] has been
confirmed, and completed as follows: L0 corresponds the
eukariotic DEKA sodium channel (inner ring), M0 to the
nonselective cation channel or to OmpF porin, L1 to the LNCN
sodium channel and to the outer EEEE ring of eukaryotic
sodium channel and to main EEEE locus of bacterial sodium
channels, M1 to the L-type EEEE calcium channel, and M2 to
the RyR DDDD calcium channel.

The completed identification scheme accounts for the
experimentally observed mutation transformations of con-
ductivity or selectivity between the nonselective channel,
sodium channels, and calcium channels. It is suggested
that mutation-induced transformations appear as transitions
between different rows in the identification table. The scheme
provides a unified and straightforward explanation for the
results of several mutation studies in the Ca2+/Na+ family
of ion channels and in OmpF porin.

By consideration of optimal trajectories on potential energy
surfaces, our investigations of the energetics of conduction and
valence selectivity have shown explicitly that the multi-ion
conduction bands of the calcium/sodium channels arise as the
result of single- and multi-ion barrierless conduction. These
resonancelike effects are more pronounced for the divalent
calcium bands M0 and M1 than they are for the sodium L0
and L1 bands.

Our results confirm the crucial influence of electrostatic in-
teractions on the conduction and Ca2+/Na+ valence selectivity
of calcium and sodium ion channels, thereby resolving the
celebrated selectivity vs conductivity paradox. They have also
demonstrated the surprisingly broad applicability of generic
ion channel models. We speculate that they may readily be
extended to describe the permeation and selectivity properties
of artificial nanopores.
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[75] The protein residues are amino acids, of which aspartate (D) and
glutamate (E) have negatively charged side chains. Others that
we mention here are lysine (K), which has a positively charged
side chain, as well as alanine (A), leucine (L), tryptophan (W),
and serine (S).

[76] Note that, strictly, it is low-barrier conduction: the po-
tential barriers are still present albeit greatly reduced in
size, as discussed in Sec. III. For convenience, however,
we will follow the convention of referring to “barrierless
conduction”.
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