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Statistical description of turbulent dispersion
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We derive a comprehensive statistical model for dispersion of passive or almost passive admixture particles
such as fine particulate matter, aerosols, smoke, and fumes in turbulent flow. The model rests on the Markov limit
for particle velocity. It is in accordance with the asymptotic structure of turbulence at large Reynolds number as
described by Kolmogorov. The model consists of Langevin and diffusion equations in which the damping and
diffusivity are expressed by expansions in powers of the reciprocal Kolmogorov constant C0. We derive solutions
of O(C0

0) and O(C0
−1). We truncate at O(C0

−2) which is shown to result in an error of a few percentages in
predicted dispersion statistics for representative cases of turbulent flow. We reveal analogies and remarkable
differences between the solutions of classical statistical mechanics and those of statistical turbulence.

DOI: 10.1103/PhysRevE.86.066309 PACS number(s): 47.27.tb

I. INTRODUCTION

The statistical description of turbulent flow is known as
one of the unsolved problems of physics. Only partial results
exist, notably the theory of small viscous isotropic scales
of turbulence of Kolmogorov [1,2]. A general theory of the
statistical process of turbulence has yet to be developed [1].

One of the unsolved issues in statistical turbulence has
been the description of dispersion. The conventionally adopted
approach is to describe turbulent dispersion by a diffusion
model [1]. But the model rests on empiricism and lacks
a thorough mathematical basis [1,3,4]. Rigorous derivation
of the diffusion equation is possible only for the case of
homogeneous stationary turbulence [1,3,4]. Real turbulence
is not of that kind. Applying the diffusion model in practical
circumstances resorts to postulating diffusion coefficients
on the basis of dimensional reasoning and fitting unknown
constants to experimental results.

A more fundamental approach is that which starts from a
Langevin equation for the velocity of a marked fluid particle
or passive fluid admixture. The approach complies with the
asymptotic structure of large-Reynolds-number turbulence
according to Kolmogorov [1]. Many aspects of this theory
have, in the meantime, been confirmed by experiment [1,5],
theory [2], and direct numerical simulations (DNS) of the
Navier-Stokes equations [6]. This includes the Lagrangian
version of Kolmogorov theory, which is relevant for dispersion
modeling. Studies published in the past decade confirm
the universal statistical properties of Lagrangian small-scale
turbulence [7–9]. One of the features is that for large Reynolds
number Re = u∗Lν−1, where u∗ is the typical magnitude
of the fluctuating fluid velocity, L is the length scale of
the configuration of the fluid flow, and ν is the kinematic
viscosity, accelerations of particles become more and more
δ correlated compared to those of velocity [1]. It forms the
basis for describing the statistics of fluid particle velocity by
a Markov process. Required values of the Reynolds number
Re for Kolmogorov theory to be applicable are about 103

and larger. This covers most practical applications of flows in
nature and technical devices. An approach which starts from
a Langevin model is, thus, from a physical and practical point
of view, a most promising one.

Implementing the Lagrangian version of Kolmogorov’s
inertial subrange limit leads to a Langevin equation in
which the white-noise term is of specified isotropic form.
Specification of the Langevin equation can then be completed
on determining the damping function. This has been suc-
cessfully accomplished for homogeneous isotropic decaying
turbulence [6,10–13], the type of turbulence which occurs
behind a grid of bars through which fluid with constant speed
flows. But specification of the damping function for general
inhomogeneous turbulent flow has been an issue which has
yet to be resolved. Several of the proposals which have been
made resort to empirical extensions to the exact descriptions
for homogeneous isotropic turbulence [6].

An important step forward in the determination of the
damping function was made by the introduction of the well-
mixed principle [4]. The Fokker-Planck equation associated
with the Langevin equation allows a Eulerian interpretation.
The distribution of fixed-point fluid velocity should satisfy this
equation. The Eulerian velocity distribution can be assumed
to be known and the requirement that it should satisfy the
Eulerian version of the Fokker-Planck equation constraints
the form of the damping function. The requirement was first
introduced in generalized form by Thomson [4]. It has since
then been applied by various scientists in attempts to define the
damping function for various sorts of turbulence [4,11,13–15].
The general outcome of these efforts was that application of
the well-mixed principle leads to complete specification of
the damping function for homogeneous isotropic decaying
turbulence only. Although the principle severely constraints
the damping function for general anisotropic inhomogeneous
turbulence, a general solution could not be derived. It is known
as the nonuniqueness problem [11,13–15].

A way out of the nonuniqueness problem was recently
described in two subsequent papers: one focused on wall-
induced turbulence [16] and the other on Gaussian anisotropic
inhomogeneous turbulence [17]. The idea put forward was
to exploit the largeness of the universal Kolmogorov con-
stant C0 present in the white-noise term of the Langevin
equation. For values of the Reynolds number large enough
for Kolmogorov theory to be applicable, the value of C0 is
about 6 [6,9,14,16,18]. For large values of C0, correlations
of fluid particle velocity decrease in a short time. During
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this short time, the change of energy because of dissipation
will have hardly changed. The underlying mechanics of fluid
particle motion will be close to that of a Hamilton process.
Analogous to the methods applied in statistical mechanics of
molecular motion [19–21], one can impose Onsager symmetry.
It leads to complete specification of the first term of an
expansion in powers of C0

−1 of the damping function. Terms
next to leading order can be specified as well. Moreover,
expansion in powers of C0

−1 also allows a derivation of the
diffusion equation with Eulerian-based specification of the
diffusion coefficient for Gaussian inhomogeneous anisotropic
turbulence. The expressions are valid up to truncation of terms
of O(C0

−2).
Objective of the present analysis is to deepen and generalize

the mathematical and physical basis of the derived Langevin
and diffusion equations. To do so, we start from a general
Langevin model for fluid particle velocity which complies
with the outcome of Kolmogorov’s theory for large-Reynolds-
number turbulence. From here onward we develop solutions
solely by expanding in powers of C0

−1. We do not adopt
any other a priori assumptions such as Gaussianity of the
Eulerian flow field as done previously [16,17]. We determine
the leading-order terms by employing the results of classical
Hamiltonian-based statistical mechanics. We present next-
to-leading-order descriptions which exhibit the features of
non-Hamiltonian behavior related to change of energy on the
time scale of velocity correlation. We assess the accuracy of
the descriptions by comparison with results from experiments,
theory, and DNS of decaying grid turbulence, pipe flow,
and channel flow. General applicability of the presented
descriptions is analyzed and discussed.

II. FORMULATION AND METHOD OF SOLUTION

The correlation time of the acceleration of a fluid particle
can be represented by the Kolmogorov time scale. Compared
to the correlation time of fluid particle velocity it decreases
as Re−1/2 with increasing Reynolds number [1], a feature
confirmed by experiment [5]. It gives rise to the idea to describe
the statistical process of fluid particle velocity variation by
a Langevin equation with the white-noise term described
according to the inertial subrange of Lagrangian Kolmogorov
theory [4,11,15]:

dv′
i

dt
= a′

i(v
′,x) + {C0ε(x)}1/2wi(t), i = 1,2,3, (1)

where t is the time and v′
i = v′

i(t) is the statistical represen-
tation of fluctuating fluid particle velocity relative to Eulerian
mean velocity u0

i (x) evaluated at particle position x = x(t).
Velocity is related to position by

dxi

dt
= u0

i (x) + v′
i . (2)

In Eq. (1), a′
i = a′

i(v
′,x) is the unknown damping function,

C0 ≈ 6 the universal Kolmogorov constant, ε = ε(x) the
energy dissipation rate averaged at fixed position, and wi(t)
the Gaussian white noise of unit intensity.

Considered is stationary turbulence of an incompressible
fluid. Fixed-point statistical averages of Eulerian flow variables
such as mean flow u0(x) and energy dissipation rate ε(x) are

constant with respect to time and are assumed to be known.
Statistical averages connected to marked fluid particles or
passive admixture moving through the fluid are to be deter-
mined by solution of Eqs. (1) and (2). A consequence of the
Markov model is that the intermittent behavior typical for small
scales [8] has been disregarded. Such behavior is most apparent
in the statistical averages of time and spatial derivatives of
velocity but less pronounced in velocities itself and even small
in displacements. Fractal models capturing intermittency in
accordance with refined Kolmogorov hypothesis reveal small
effects of such intermittency in the statistical distributions of
particle dispersion [22]. Equation (1) therefore constitutes a
solid basis for the statistical description of turbulent dispersion.
At issue is the description of the damping function a′(v′,x) as
a function of particle velocity and position. It is this function
which largely determines the statistics of dispersion. The
aim and challenge are to determine the damping function
and with it the Langevin equation for general turbulent flow.
The subsequent aim is to derive the diffusion equation and
its diffusion tensor Dij (x) from the Fokker-Planck equation
associated with the Langevin equation.

To determine the Langevin and diffusion equations, we
introduce a solution procedure in which we exploit the
smallness of C0

−1. We introduce a perturbation scheme in
which variables are described by expansions in powers of
C0

−1. Equating terms of equal powers of C0
−1 and solving

leads to the desired descriptions for successive terms of a′
i

and Dij (x). All this is rather standard from the viewpoint of
regular perturbation techniques [23]. What differs is that, in the
present case, the small parameter C0

−1 is not a dimensionless
number in the usual sense, viz. a dimensionless combination
of physical quantities which can be varied in magnitude such
that it can be made as small as one likes. Unfortunately,
such a dimensionless combination cannot be identified in the
present problem of the Langevin and Fokker-Planck equation
for general inhomogeneous anisotropic turbulence: All terms
in the Langevin and Fokker-Planck equation scale by the
same combination of quantities representing velocity and
length [17]. A way out is to exploit the presence of C0

−1

to identify and order the magnitude of terms. Although C0 is a
constant, it can be treated as an autonomous scaling parameter
because it appears as a separate entity in the statistical model.
The Kolmogorov constant enters into the statistical model via
the Lagrangian representation of the inertial subrange limit
of small-scale turbulence. The statistics of the small scales
are known to decouple from those of the large energetic
scales in turbulent flow at large Reynolds number. Statistical
quantities which appear as parameters in the Langevin and
Fokker-Planck equations and which are governed by the large
scales are independent from C0. It enables us to specify
the dependency on C0 of all terms in the Langevin and
Fokker-Planck equations and we can use this information to
set up a consistent and well-defined perturbation scheme based
on expansion in powers of C0

−1.
From a mathematical point of view any value of C0

−1 is
allowed. We can make C0

−1 as small as we like to arrive at
a situation where the first term of the expansion dominates
the solution. But in turbulence C0

−1 is limited to a value of
about 1

6 . The question is whether such a value is small enough
to make the expansion work. Do subsequent terms decrease
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sufficiently in magnitude and does the behavior revealed by the
solutions comply with that observed in real turbulent flow? To
deal with these issues we derive descriptions not only for terms
of leading order in C0

−1 (Sec. III) but also for terms of next to
leading order in C0

−1 (Secs. IV and V). We shall analyze the
derived expressions in detail and compare them with results
from theory, experiment, and DNS for representative cases
of turbulent flow (Sec. VI and accompanying appendices).
General conclusions regarding accuracy and applicability are
made.

III. LEADING-ORDER DESCRIPTION

Attention is focused on passively marked fluid particles
which are at time t = t0 at position x = x0. The Kolmogorov
constant is considered to be a scaling parameter whose inverse
value is small. A meaningful description for the statistical
velocity of the particles follows from Eq. (1) only if all terms
are retained when collecting terms of leading order in C0

−1.
That is, all three terms in the Langevin equation (1) should
scale in the same manner with respect to C0. White noise of
unit intensity scales as t−1/2. Equating the orders of magnitude
of the left-hand side of Eq. (1) and the white-noise term on
the right-hand side then yields for time the scale C−1

0 u2
∗ε

−1,
where u∗ is the typical magnitude of fluctuating velocity, i.e.,
standard deviation. The combination C−1

0 u2
∗ε

−1 is known as
the Lagrangian time scale [24]. The damping term in Eq. (1)
equals in order of magnitude the two other terms if we scale a′

i

by C0εu
−1
∗ . In accordance with the above identified scalings

with respect to C0 we introduce, for t and a′
i ,

t = t0 + C0
−1t∗, (3)

a′
i = C0a

∗
i . (4)

Langevin equation (1) then becomes

dv′
i

dt∗
= a∗

i + ε1/2wi(t
∗). (5)

For the position of the particle we can write

xi = xi0 + C0
−1x∗

i , (6)

where x∗
i is given by

(d/dt∗)x∗
i = u0

i + v′
i . (7)

By introducing the starred variables [cf. Eqs. (3), (4), and (6)],
we have arrived at a Langevin equation for statistical velocity
[cf. Eq. (5)] and an equation for statistical displacement
[cf. Eq. (7)] which do not depend on C0. Solutions of these
equations will not depend on C0 either. We can conclude that
the process of statistical velocity takes place on a time scale
of t∗ which does not depend on C0. In terms of the original
time t this corresponds to a process that takes place on a time
that is proportional to C−1

0 . Times by which particle velocities
decorrelate scale in the same manner.

When following with time a fluid particle according to the
descriptions of Eqs. (5) and (7), the coefficients a∗

i and ε

will change in magnitude because of inhomogenity. But when
C0 � 1 the displacement of a particle during the time that there
exists a correlation between particle velocities will be small
to the extent that a∗

i and ε will have hardly changed in value

compared to their value at x = xo. We can assume a∗
i and ε

to be constant with respect to x∗ as long as we limit ourselves
to the leading-order representation with respect to C0. This
approximation also holds in the direction of the mean flow.
The mean flow is generally large in turbulent flow, leading to
large displacements per unit time. But changes in values of
Eulerian-based statistical averages remain small. In a frame
which moves with the mean flow, changes in the statistical
averages generally take place over the external length scale
L; L is equivalent to u3

∗ε
−1 [1]. Displacement because of

fluctuating velocities, however, is typically C−1
0 L during the

time that there is correlation between velocities. It is small
compared to the scale of inhomogenity when C0 � 1. For
more explicit analytical presentations of this approximation
scheme, we refer to the cases of decaying grid turbulence [17]
and Appendix A and the log-layer of wall-induced turbulence
[16].

Now given that ε and a∗
i are constant with respect to

x and equal to their values at x = x0, i.e., ε = ε0 and
a∗

i = a∗
i0, the next question is how does a∗

i0 depend on the
statistical velocity v′

i . For that purpose, we resort to the results
of classical Hamiltonian-based statistical mechanics. Fluid
flow is dissipative non-Hamiltonian. Energy is continuously
pumped into the flow, which is dissipated through viscosity,

(d/dt)H ≈ ε0. (8)

From this relation it follows that the time scale of change
of energy is u2

∗ε
−1
0 while velocity decorrelation takes place

on the time scale C−1
0 u2

∗ε
−1
0 . The time scale over which the

energy change takes place is, thus, a factor C0 longer than
the typical time of velocity fluctuations or the time over which
particle velocities decorrelate. During the short time of velocity
correlation, the mechanics of the velocity of the fluid particle
are those of an almost Hamiltonian process,

H ∼ const. (9)

Several accounts exist on Hamiltonian treatments of inviscid
flow [25]. But we do not have to resort to these: The knowledge
that the flow can be assumed Hamiltonian is sufficient to
arrive at statistical descriptions of the velocity process in the
leading-order representation with respect to C0

−1. We thus
can circumvent the complexities of the connections between
descriptions at the micro and macro levels [26].

To establish the connection with classical statistical me-
chanics, we have chosen to consider the random motion of a
fluid particle which can be thought of being in a box of linear
dimensions l1 ∼ LC

−γ

0 , where L is external length scale of
the flow, e.g., the radius of a pipe in which turbulent flow
takes place, height of a channel, thickness of the atmospheric
boundary layer, and so on. The box moves with the mean flow
and its size is small to the extent that inside the box ε and
a∗

i can be taken constant with respect to x and equal to their
values at x = x0. As C0 � 1 this is achieved by taking γ > 0.
At the same time, the box is taken large enough such that
the fluctuating velocity has established a complete statistical
process before the randomly moving particle has left the box,
i.e., one can construct a complete power-density spectrum from
the time record established inside the box and the velocity has
become uncorrelated from its initial value when leaving the
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box. The time that the particle is in the box is l1/u∗. The
characteristic time of the velocity process scales as C0

−1L/u∗
so decorrelation takes place inside the box as long as γ < 1.
The physical laws which govern the motion of a particle in the
box can be treated as Hamiltonian. In actual cases of turbulence
there will be homogeneous directions in space and/or time,
along which the statistical averages equal those at x = x0. An
infinite number of boxes or realizations of the same statistical
process thus can be identified in the configurations of turbulent
fluid flow.

In statistical mechanics the distribution of velocity is
usually taken Gaussian. Also in turbulent fluid flow this is an
obvious choice. In many cases of turbulent fluid flow the fluc-
tuating velocity is a small perturbation on a large mean flow.
Under these circumstances one can adopt Einstein fluctuation
theory [21] to show that the distribution of fluctuation velocity
should approach that of a Gaussian distribution. In situations
where the mean flow is not large, a Gaussian distribution will
prevail when the Hamiltonian is quadratic in velocity [20,21].
The implication is that, in the leading-order formulation with
respect to C0, the velocity distribution can be expected to be
Gaussian. This conclusion is supported by a lot of experimental
evidence [5,27–31] and recent results of DNS [32]. They all
point to Gaussian velocity distributions to a degree where
skewness and kurtosis (kurtosis is flatness minus 3) are limited
to values of about 0.3 and less. This would well comply with a
perturbation expansion of the probability distribution in which
the leading term is Gaussian and the next-to-leading-order
term of O(C0

−1) describes non-Gaussian behavior.
Solutions of Eq. (5) will be Gaussian only if a∗

i0 is linear
in v′,

a∗
i0 = αij v

′
j , (10)

where repeated indices imply summation. The
fluctuation-dissipation theorem yields a connection between
the damping term and the fluctuation term in Eq. (5) such that

αij v′
j (t)v′

k(t) + 1
2ε0δik = 0, (11)

where the overbar denotes Lagrangian averaging, viz. the
average value of many realizations at some fixed moment in
time assuming that the particles are passively marked, i.e., the
velocities of the particles have randomly chosen values at t =
t0 and x = x0 in accordance with the statistical distribution of
Eulerian-based velocities at the fixed point x0. As already men-
tioned, for t − t0 = O(C0

−1) we have a quasihomogeneous
situation where fixed-point Eulerian-based statistical averages
do not vary with space. Under homogeneous circumstances
Eulerian and Lagrangian velocity distributions are the
same [33]. That is, as long as t − t0 = O(C0

−1) one can take
the statistical distribution for particle velocity equal to that of
the fixed point Eulerian velocity at x = x0. Both are Gaussian.
Equality of Eulerian and Lagrangian velocity statistics implies

v′
i(t)v

′
j (t) = σij0 (12)

as long as t − t0 = O(C0
−1); σij0 is the value of Eulerian

covariance or Reynolds stress at x = x0. Hamiltonian
dynamics are invariant to time reversal so Onsager symmetry
holds [20,21],

αij v′
j (t)v′

k(t) = αkj v′
j (t)v′

i(t). (13)

The fluctuation-dissipation relationship, the Euler-Lagrangian
connection, and Onsager symmetry make that

αij = − 1
2λij0ε0, (14)

where λij0 = σ−1
ij0 , so the damping function in the Langevin

equation becomes

a′
i = − 1

2C0λij εv
′
j , (15)

where we dropped the subscript 0 as the equation can be
applied at any position, i.e., the values of λij = λij (x) and
ε = ε(x) are adapted to their local values when moving
through the inhomogeneous field while following a marked
particle. The instantaneous adaptation is allowed as long as
the damping is large, i.e., when C0 � 1, so decorrelation of
velocities occurs in locally homogeneous areas.

Apart from analogies, there are some striking differences
of the above results with the statistical description of a particle
in a bath of molecules as known from statistical mechanics. In
statistical mechanics the damping function generally follows
from a connection to macroscopic damping, such as Einstein’s
application of the Stokes’ formula valid for damping of a large
particle in a continuum of fluid [21]. The unknown coefficient
of the white-noise term is subsequently determined using the
fluctuation-dissipation theorem [34]. For a fluid particle in
turbulent flow the opposite route is followed. The white-noise
term is fully determined by the connection to the inertial
subrange representation of Kolmogorov’s universal similarity
theory. The damping function is subsequently determined
by applying the fluctuation-dissipation theorem supplemented
with Onsager symmetry. [Note that the fluctuation-dissipation
theorem in itself is not sufficient to specify αij ; Onsager
symmetry is also necessary to arrive at solutions (14) and (15).]
The resulting expression for damping also allows a fluid
mechanical interpretation. Therefore, it is noted that ε scales as
u3

∗/L. One can then show that the damping term corresponds
to the inviscid fluid force which acts on a “lump of fluid”
or “agglomeration of fluid particles” of linear dimensions
∼LC0

−1. As C0 � 1, this is small compared to the previously
discussed box of dimensions LC

−γ

0 , 0 < γ < 1. Explicit and
general expressions for the damping force as solutions from
the conservation laws of inviscid fluid flow have not been
derived so far. What comes closest are the expressions for
velocity-dependent lift force on a body in rotational inviscid
flow [35].

Equations (1), (2), and (15) enable the simulation of particle
tracks and the determination of their statistics. Analysis of
particle dispersion is also possible from the diffusion equation,
which is the mathematical approximation of Eqs. (1), (2),
and (15) valid for long times after marking. The diffusion
equation is most conveniently derived from the Fokker-Planck
equation for joint probability p of velocity and position of
fluid particle associated with Eqs. (1), (2), and (15),

∂p

∂t ′
+ ∂

∂xi

(v′
i p) = 1

2
ε C0

{
∂

∂v′
i

(λij v
′
jp) + ∂2p

∂v′
i∂v′

i

}
, (16)

where t ′ is time in a coordinate system which moves with the
mean velocity,

∂/∂t ′ = ∂/∂t + u0
i (∂/∂xi). (17)
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Solutions from Eq. (16) can be constructed through expansion
in powers C0

−1; see Refs. [16,17]. The method is analogous to
the solution of Kramer’s equation [34] and can be summarized
as follows. Describe p by

p = p0 + C0
−1p1 + C0

−2p2 + · · · . (18)

Substituting the above expansion in Eq. (16) and equating
terms of equal power in C0

−1 yields for p0 and p1 the equations

∂

∂v′
i

(λij v
′
jp0) + ∂2p0

∂v′
i∂v′

i

= 0, (19)

∂p0

∂t ′
+ ∂

∂xi

(v′
ip0) = 1

2
ε

[
∂

∂v′
i

(
λij v

′
jp1

) + ∂2p1

∂v′
i∂v′

i

]
. (20)

Equation (19) has the solution

p0 = G0(x,t ′)pG(v′), (21)

where pG(v′) is the Gaussian distribution

pG(v′) = (2π )3/2λ1/2 exp
(− 1

2λij v
′
iv

′
j

)
, (22)

where λ is the determinant of λij and where G0 = G0(x,t ′) =∫ ∞
−∞ pdv is probability density of particle position or admix-

ture concentration. To determine G0 we need to consider the
descriptions of higher-order terms. Integrate Eq. (20) with
respect to v′ over the entire v′ domain. The right-hand side must
be zero because probabilities are assumed to go exponentially
fast to zero as |v′| → ∞. Substituting in the left-hand side
solution (21) and noting that pG is zero mean, we find that
(∂/∂t ′)G0 = 0. In other words, G0 must be constant on the
time scale of t ′. Characteristic for the diffusion limit is that
probability distributions of particle position vary over a much
longer time scale. To model this we introduce

t ′′ = C0
−1t ′. (23)

The equation for p2 then follows from Eq. (16) as

∂p1

∂t ′
+ ∂p0

∂t ′′
+ ∂

∂xi

(v′
ip1) = 1

2
ε

[
∂

∂v′
i

(λij v
′
jp2) + ∂2p2

∂v′
i∂v′

i

]
.

(24)

The equation which determines G0 = G0(x,t ′′) viz. the diffu-
sion equation can now be derived from Eqs. (20) and (24) as
follows. Integrate Eq. (24) with respect to v′ over the entire v′
domain. The right-hand side must be zero because probabilities
go exponentially fast to zero as |v′| → ∞, while the first term
on the left does not contribute because

∫ +∞
−∞ p1dv′ varies over

the slow time t ′′. Hence,

∂G0

∂t ′′
= − ∂

∂xi

(∫ +∞

−∞
v′

ip1dv

)
. (25)

An expression for the right-hand side can be derived from
Eq. (20). Multiply Eq. (20) with v′

k and integrate with respect
to v′ over its entire domain. Applying partial integration to the
term on the right-hand side, we obtain

∂

∂xi

(∫ +∞

−∞
v′

kv
′
ip0dv′

)
= −1

2
ελkj

∫ +∞

−∞
v′

jp1dv′. (26)

Multiplying with σnk , which is the Eulerian covariance or
Reynolds stress [cf. Eq. (12) σnk = λ−1

nk ], and substituting

solution (21) yields

−1

2
ε

∫ +∞

−∞
v′

np1dv′ = σnk

∂

∂xi

(σkiG0). (27)

Substituting this result into Eq. (25), one obtains

∂G0

∂t ′′
= 2

∂

∂xi

[
ε−1σin

∂

∂xk

(σnkG0)

]
. (28)

Returning to the time of the original nonmoving coordinate
system [cf. Eqs. (17) and (23)], this becomes

∂G0

∂t
+ u0

i

∂G0

∂xi

= 2C0
−1 ∂

∂xi

[
ε−1σin

∂

∂xk

(σnkG0)

]
. (29)

Equation (29) is the diffusion equation in the leading-order
representation with respect to C0

−1. When σnk is constant
with respect to x we can combine the coefficients in the
diffusion term to a single diffusion constant: 2C0

−1ε−1σinσnk .
For nonconstant σnk a single diffusion constant occurs on
adding the drift term (∂/∂xk)σik to damping function (15) and
repeating the above solution procedure. The analysis of Sec. V
will include the next-to-leading-order terms in the damping
function and will yield a single diffusion coefficient.

IV. HIGHER-ORDER FORMULATION
OF THE LANGEVIN EQUATION

So far attention has been focused on the leading-order
term in the expansion with respect to C0

−1. The resulting
descriptions for dispersion, i.e., Eqs. (1), (2), (15), and (29),
will involve a truncation error of O(C0

−1). Such an error
will become smaller the larger C0 is. But in turbulence
the value of C0 is limited to about 6. This corresponds to
C0

−1 = 0.17 and implies that the truncation error can become
quite large. Deriving expressions for higher-order terms is,
thus, wanted. For that purpose use is made of the well-mixed
principle of Thomson [4]. The principle follows from the
Eulerian interpretation of the Fokker-Planck equation for joint
probability p of particle velocity v′

i and position xi associated
with Eqs. (1) and (2),

∂p

∂t
+ u0

i

∂p

∂xi

= 1

2
εC0

∂2p

∂v′
i∂v′

i

− ∂

∂v′
i

(a′
ip) − v′

i

∂p

∂xi

. (30)

Given some initial distribution, particles will, in the course of
time, mix up with the fluid and attain the distribution of fluid
velocity. This equilibrium distribution satisfies the Eulerian
interpretation of Eq. (30), which is given by

u0
i

∂pE

∂xi

= 1

2
εC0

∂2pE

∂u′
i∂u′

i

− ∂

∂u′
i

(a′
ipE) − u′

i

∂pE

∂xi

, (31)

where a′
i = a′

i(u
′,x) and pE = pE(u′) is the distribution of

the fluctuating component of the fixed-point Eulerian fluid
velocity u′. There is no time derivative in Eq. (31) as we
consider stationary turbulence: Statistical averages at fixed
points do not vary with time. Note further that x is no longer a
statistical variable but a fixed position. Derivatives of pE with
respect to x attain values whenever the statistical parameters
of pE (covariances, etc.) vary in space (inhomogeneous
turbulence). The Eulerian distribution pE is equivalent to the
equilibrium distribution in statistical mechanics. Equation (31)
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represents the general form of the fluctuation-dissipation
theorem appropriate for turbulence. Given pE(u′

i), Eq. (31)
can be used to derive expressions for the damping function a′

i .
Noting the leading-order formulation with respect to C0, cf.
Eq. (15), we write

a′
i = − 1

2C0λij εu′
j + a′′

i , (32)

where a′′
i = a′′

i (u′,x) is to be determined. The Eulerian
velocity distribution can be taken Gaussian to leading order,

pE = pG + C0
−1fcpG, (33)

where pG = pG(u′) is zero-mean Gaussian while fc = fc(u′)
is the correction on Gaussian behavior. Values of zero, first-,
and second-order moments are fully captured by the Gaussian
part of the description,∫ +∞

−∞
fc(u′)pG(u′)du′ =

∫ +∞

−∞
u′

ifc(u′)pG(u′)du′

=
∫ +∞

−∞
u′

mu′
nfc(u′)pG(u′)du′ = 0,

(34)

values of cumulants higher than second order are determined
by fc(u′). Substituting the description for pE and Eq. (32) into
Eq. (31), one obtains for a′′

i the equation

∂a′′
i

∂u′
i

− λiju
′
j a

′′
i

= −1

2

[
λ−1 (

u0
i + u′

i

) ∂λ

∂xi

− (
u0

i + u′
i

) ∂λmn

∂xi

u′
mu′

n

]

+ 1

2
ε

(
∂2fc

∂u′
i∂u′

i

− λiju
′
j

∂fc

∂u′
i

)
, (35)

where we dropped terms of relative magnitude O(C0
−1) in the

contributions due to non-Gaussianity, i.e., the second term on
the right-hand side of Eq. (35). Equation (35) is exact, i.e., it
does not involve any approximation or truncation with regard
to C0, in case of Gaussian Eulerian velocities (fc = 0). The
solution of Eq. (35) is [17]

a′′
i = 1

2
λjmu0

k

∂σmi

∂xk

u′
j + 1

2
λjn

∂σij

∂xm

(u′
mu′

n + σmn) + gi,

(36)

where gi = gi(u′,x),

gi = 1

2
ε
∂fc

∂u′
i

+ a′′H
i , (37)

where a′′H
i = a′′H

i (u′,x) is the solution of the homogeneous
problem

(∂/∂u′
i)
(
a′′H

i pG

) = 0 or (∂/∂u′
i)a

′′H
i = λiju

′
j a

′′H
i . (38)

A variety of solutions exists for a′′H
i , linear and nonlinear

in u′, but each of them contains a degree of indeterminacy
apparent in unspecified constants [17]. When confining the
damping function to linear representations in u′

i , the solution
of Eq. (38) is

a′′H
i = bkσilεklj u

′
j , (39)

where εklj is the alternating unit tensor. Solution (39) con-
stitutes an antisymmetric extension to the symmetric damping
tensor derived in the previous section and described by the first
term of solution (32). In this solution bk are three dimensionless
constants whose values are unknown. It is a reflection of the
nonuniqueness problem: Except for isotropic turbulence it is
impossible to fully specify the damping function on the basis of
a specified fixed-point Eulerian velocity distribution [11,15].

Yet there is a practical way out of the nonuniqueness
problem. It appears that a′′H

i yields only contributions of
relative magnitude O(C0

−2) compared to the previously
determined leading terms in the statistical distributions of
particle displacement. This conclusion is arrived at when
extending the expansion leading to the diffusion equation by
one order in C0

−1; see Sec. V below. It reveals contributions of
relative magnitude O(C0

−2) in diffusivity and convection only.
The same result is obtained for the other term in solution (37)
which describes the effect of non-Gaussianity. In general, the
contribution of gi in solution (36) can be disregarded in any
description which allows for a relative error of O(C0

−2) in
dispersion statistics (see the next section). Setting gi = 0 we
arrive at a Langevin model which has as a damping function

a′
i = −1

2
C0λij εv

′
j + 1

2
λjmu0

k

∂σmi

∂xk

v′
j

+ 1

2
λjn

∂σij

∂xm

(v′
mv′

n + σmn). (40)

This model can be further reduced to elementary form by
replacing the third term by the more simple drift term
(∂/∂xk)σik , which is the fixed-point statistical average of the
third term,

a′
i = −1

2
C0λij εv

′
j + 1

2
λjmu0

k

∂σmi

∂xk

v′
j + ∂σik

∂xk

. (41)

From the analysis in the next section, it can be verified that
representations (40) and (41) result in the same truncation
error of O(C0

−2) in statistical displacement. While the first
term corresponds to the result of the Hamiltonian base case,
the second and third terms in solution (41) represent the
correction due to inhomogeneity in an otherwise locally
homogeneous statistical field. The corrections can be related
to the change of energy which was disregarded in the leading-
order formulation where underlying particle mechanics were
considered Hamiltonian. The second term describes the change
of energy due to changes of covariances in the direction of the
mean flow. This will happen in turbulence in accelerating or
decaying mean flow. The third term describes the effect of
the spatial gradient of fluid velocity covariance. This can be
associated with shearing due to external forcing.

Solution (40) corresponds to an earlier result of Thomson
[4]. It was one of several proposals made for the damping
functions which all satisfy the well-mixed criterion and
which correspond to an entirely Gaussian Eulerian velocity
distribution [13,15]. It is a reflection of indeterminacy because
of nonuniqueness. The present analysis provides a solution. It
reveals descriptions for statistical displacement obtained from
Eqs. (40) or (41) which are unique up to an error of O(C−2

0 ).
In Sec. VI we will indicate that this error is small and amounts
to only a few percentages for shear-induced turbulence.
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V. HIGHER-ORDER FORMULATION
OF THE DIFFUSION EQUATION

Fokker-Planck equation (30) enables derivation of a dif-
fusion equation for particle dispersion which is one order in
C0

−1 more accurate than Eq. (29). The procedure is similar to
that leading to Eq. (29) except that the expansion is extended
with one order in C0

−1 and the full description of a′
i given

by Eqs. (32)–(38) is taken into account. The procedure has
been presented in Refs. [16,17]. A different method is given
below. Here we start from the conservation equation for passive
admixture and derive expressions for mean concentration and
mean turbulent flux using the Fokker-Planck equation. The
method involves expansion schemes for probability density
which are limited to two terms. It is appreciably shorter
and more transparent than the solution procedure published
previously in which a four-term expansion scheme was
employed.

On disregarding transport by molecular motion, a passive
scalar χ carried by an incompressible turbulent fluid satisfies
the conservation equation

∂χ

∂t
+ ui

∂χ

∂xi

= 0. (42)

The conserved scalar can be fluctuating concentrations of
a passive admixture such as smoke or fumes or fluctuating
temperatures of an (almost) incompressible fluid [1]. For the
Eulerian flow field we can write ui = u0

i + u′
i , where u0

i is
mean velocity and u′

i the fluctuating part of velocity at a fixed
point. Now average Eq. (42) at a fixed point; such averaging
is indicated by angled brackets. We then have

∂〈χ〉
∂t

+ u0
i

∂〈χ〉
∂xi

= − ∂

∂xi

〈χu′
i〉, (43)

where the mean concentration 〈χ〉 and the mean turbulent flux
〈χu′

i〉 can be related to the joint probability density p(v′,x) of
velocity and position of admixture particle by the equations

〈χ〉 =
∫ +∞

−∞
pdv′, (44)

〈χu′
i〉 =

∫ +∞

−∞
pv′

idv′. (45)

The density p is described by Fokker-Planck equation (30).
In terms of the time t ′ defined by Eq. (17) and a′′

i defined by
Eq. (32), the Fokker-Planck equation becomes

∂

∂v′
i

(λij v
′
jp) + ∂2p

∂v′
i∂v′

i

= 2ε−1C0
−1

{[
∂

∂v′
i

(a′′
i p) + v′

i

∂p

∂xi

]
+ ∂p

∂t ′

}
. (46)

We now represent p by the expansion of Eq. (18). Substituting
this expansion in the above equation and equating terms of
leading power in C0

−1 yields Eq. (19) as description for the
leading term p0. Its solution is given by Eqs. (21) and (22).
For the next-to-leading-order term we obtain, from Eq. (46),

∂

∂v′
i

(λij v
′
jp1) + ∂2p1

∂v′
i∂v′

i

= 2ε−1

{[
∂

∂v′
i

(a′′
i p0) + v′

i

∂p0

∂xi

]
+ ∂p0

∂t ′

}
. (47)

Invoking the solution for p0, the expressions for a′′
i

[cf. Eqs. (36) and Eqs. (37)], and noting that (∂/∂t ′)p0 =
G0u

0
i (∂/∂xi)pG, we then have

∂

∂v′
i

(λij v
′
jp1) + ∂2p1

∂v′
i∂v′

i

= 2ε−1v′
ipG

∂G0

∂xi

+ G0
∂

∂v′
i

(
pG

∂fc

∂v′
i

)
, (48)

the solution of which is given by

p1 = G1(x,t ′′)pG + G0(x,t ′′)fcpG − 2ε−1σnk

∂G0

∂xk

v′
npG,

(49)

where the first term on the right-hand side is the homogeneous
solution while the second and third terms are particular
solutions. Because pG is zero mean and because of the first of
relations (34), integrals

∫ +∞
−∞ dv′ of the particular solutions are

zero. Hence,
∫ +∞
−∞ p1dv′ = G1, so we can write, for the mean

concentration defined by Eq. (44),

〈χ 〉 = G0(x,t ′′) + C0
−1G1(x,t ′′) + · · · . (50)

The next step is to derive a two-term description for the right-
hand side of the equation pertaining to conservation of mean
admixture concentration [Eq. (43)]. To that end, an expression
is derived for the turbulent flux as defined by Eq. (45) from
Fokker-Planck equation (46). Therefore, multiply the left- and
right-hand sides of Eq. (46) with v′

k , integrate with respect to
v′ over its entire domain, apply partial integration to integrals
containing derivatives with respect to v′

i , and use the property
that probability densities go exponentially to zero as |v′| →
∞. Multiplying the left- and right-hand sides of the resulting
equation with σmk and using σmkλkj = δmj , we obtain, for
turbulent flux, the equation

〈χu′
m 〉 =

∫ +∞

−∞
v′

mp dv′ = 2σmkε
−1

{
C0

−1

( ∫ +∞

−∞
a′′

k p dv′

− ∂

∂xi

∫ +∞

−∞
v′

iv
′
kp dv′

)
−C0

−2 ∂

∂t ′′

∫ +∞

−∞
v′

kp dv′
}
,

(51)

where we used the property that integrals of p with respect
to v′ over the entire v′ domain vary over the slow time t ′′
and do not depend on t ′. Introducing into the right-hand side
the expansion for p [cf. Eq. (18)], describing turbulent flux
according to

〈χu′
m〉 = C0

−1�0m + C0
−2�1m + · · · , (52)

and equating terms of equal power in C0
−1 yields

�0m = 2σmkε
−1

(∫ +∞

−∞
a′′

k p0 dv′ − ∂

∂xi

∫ +∞

−∞
v′

iv
′
kp0 dv′

)

(53)

and

�1m = 2σmkε
−1

(∫ +∞

−∞
a′′

k p1 dv′ − ∂

∂xi

∫ +∞

−∞
v′

iv
′
kp1 dv′

− ∂

∂t ′′

∫ +∞

−∞
v′

kp0 dv′
)

. (54)
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The integrals on the right-hand sides of the above equations
can be evaluated on substituting the expressions for a′′

i , cf.
Eqs. (36)–(38), and the solutions for p0 and p1 given by
Eqs. (21) and (49), and making use of such properties as∫ +∞

−∞

∂fc

∂v′
k

pG dv′ = 0,

∫ +∞

−∞
a′′H

k pG dv′ = 0,

∫ +∞

−∞
v′

n

∂fc

∂v′
k

pG dv′ = 0, (55)

which are obtained by partial integration, using the property
that (∂/∂v′

i)pG = −λij v
′
jpG and implementing relations (34)

and (38). It results in

�0m = −2ε−1σmkσki

∂G0

∂xi

, (56)

�1m = −2ε−1σmkσki

∂G1

∂xi

− 2ε−2σmkσnj

∂σnk

∂xl

u0
l

∂G0

∂xj

− dmj

∂G0

∂xj

+ emG0, (57)

where

dmj = 4ε−2σmkσnjγkn, γkn =
∫ +∞

−∞
a′′H

k v′
npGdv′ (58)

and

em = σmk

∫ +∞

−∞

(
2ε−1a′′H

k + ∂fc

∂v′
k

)
fcpGdv′. (59)

The terms dmj and em represent the effect of the “nonunique”
solution a′′H

i and of the “non-Gaussianity” function fc in
damping function (36) and (37). These terms only contribute
in the next-to-leading-order description of turbulent flux.

Equations (50), (52), (56), and (57) constitute two-term
descriptions in powers of C0

−1 for the left- and right-hand
sides of the equation of conservation of mean admixture; cf.
Eq. (43). Invoking these descriptions into Eq. (43) and equating
leading terms on the left- and right-hand sides, respectively,
yields

∂G0

∂t
+ u0

i

∂G0

∂xi

= ∂

∂xi

(
2C0

−1ε−1σilσlj

∂G0

∂xj

)
. (60)

Note here that the left- and right-hand sides become of the
same order with respect to C0

−1 once we introduce the slow
time t ′′ via Eqs. (17) and (23). The above equation is the
leading-order description of the diffusion equation. It differs
from Eq. (29) by the presence of a single diffusion coefficient
2C0

−1ε−1σilσlj . This is due to the presence of the drift
term 1

2λjn(∂/∂xm)σij (u′
mu′

n + σmn) or, what is equivalent,
(∂/∂xk)σik , in damping function (36). This term was absent
in damping function (15), which was underlying diffusion
equation (29). There is no contribution in diffusion
equation (60) of the terms related to non-Gaussianity fc and
of nonunique solution a′′H

i in damping function (36) and (37).
Potential contributions have vanished because of relations (34)
and (38). The vanishing of contributions of a′′H

i can
also be understood by noting that a′′H

i constitutes an
antisymmetric contribution in the correlation function of
particle velocity [16]. In case of a homogeneous anisotropic
process, i.e., the Hamiltonian base case, diffusion coefficients

are determined by the time integral of the combined velocity
correlation function according to [1],

D0
ij = 1

2

∫ ∞

0
(v′

i(0)v′
j (t) + v′

j (0)v′
i(t)) dt = 2C−1

0 ε−1σilσlj .

(61)

Antisymmetric contributions therefore cancel out in the
leading-order formulation.

Equating terms next to leading order on the left- and
right-hand sides of the equation of conservation of the mean
admixture yields

∂G1

∂t
+ u0

i

∂G1

∂xi

= ∂

∂xi

(
2C0

−1ε−1σilσli

∂G1

∂xj

)

+ ∂

∂xi

(
2C0

−1ε−2σliσjk

∂σlk

∂xn

u0
n

∂G0

∂xj

)

+C0
−1 ∂

∂xi

(
dij

∂G0

∂xj

)
− C0

−1 ∂

∂xi

(eiG0).

(62)

The tensor γkn defined by Eq. (58) can be shown to be
antisymmetric. This follows from Eq. (38) on multiplying this
equation with u′

mu′
n and applying partial integration,∫ +∞

−∞
v′

ma′′H
n pGdv′ +

∫ +∞

−∞
v′

na
′′H
m pGdv′ = 0. (63)

It implies that dij is also antisymmetric, dij + dji = 0, so

∂

∂xi

(
dij

∂G0

∂xj

)
= ∂dij

∂xi

∂G0

∂xj

. (64)

The consequence is that the second-to-last term on the right-
hand side of Eq. (62) reduces to a convection term. The
last term is also a convection term. The terms represent the
effect of the nonunique solution a′′H

i and of non-Gaussianity
fc in the damping function. When we bring these terms to
the left-hand side and join them with the other convective
terms, they describe relative contributions of O(C0

−1), that
is, O(C0

−2) compared to the leading terms of convection.
This is beyond the accuracy of the perturbation scheme,
which is limited to a two-term expansion for the left- and
right-hand sides. Consistency requires dropping these terms.
Multiplying the resulting equation with C0

−1, adding this to
Eq. (60), and combining leading-order and next-to-leading-
order description of the mean concentration by the single
concentration G,

G = G0 + C0
−1G1, (65)

we arrive at the diffusion equation

∂G

∂t
+ u0

i

∂G

∂xi

= ∂

∂xi

(
Dij

∂G

∂xj

)
, (66)

Dij = 2C0
−1ε−1σilσlj + 2C0

−2ε−2σliσjku
0
n

∂σlk

∂xn

. (67)

The above diffusion equation inhibits a relative error due to
truncation of O(C0

−2) in contrast to Eq. (60), which is accurate
to O(C0

−1). The differences between the two equations are
due to the next-to-leading-order contributions in damping
function (40). There is no contribution of gi of damping
function a′′

i described by Eq. (36) in the above diffusion
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FIG. 1. Lagrangian velocity correlations for isotropic Gaussian
decaying turbulence.

equation because gi described by Eq. (37) leads to relative
corrections of O(C0

−2) only.

VI. ACCURACY AND GENERALITY

We derived analytical expressions for damping in the
Langevin equation and for diffusivity in the diffusion equation
through application of a perturbation expansion in which the
inverse of the Kolmogorov constant served as small parameter.
In the subsequent analysis we shall investigate the accuracy
of these expressions and their range of applicability. We shall
make use of results from theory, experiment, and DNS of actual
cases of turbulent flow.

A. Correlations functions of fluid particle velocity

For the perturbation expansion to be effective it is necessary
that the first term which corresponds to the Hamiltonian
base case is the dominant term in the description of the
solution as a whole. This is what is found in the results
for autocorrelation functions of particle velocities obtained
from theory, measurement, and DNS for three important cases
of turbulent flow: decaying grid turbulence, pipe flow, and
channel flow. As shown in Figs. 1–3, in all these cases
results agree quite well with autocorrelations obtained for
the Hamiltonian base case, i.e., the model in which next-
to-leading-order terms in the damping function are dropped
altogether and where the coefficients of the remaining linear
damping term are taken as constant and equal to their values
at the point of marking; this is the model according to
Eqs. (1), (4), (10), and (14). A derivation of the exact result for
decaying isotropic Gaussian turbulence behind a grid can be
found in Appendix A. Formulae for the correlation functions
appropriate for the Hamiltonian base case are presented
in Appendix B. Extensions of these formulas to account
for the effect of finite viscosity are given in Appendix C.
These extensions are needed in comparisons with results of
measurements and DNS at finite Reynolds number (the cases
presented in Figs. 2 and 3).

0 0.05 0.10.2

0.4

0.6

0.8

1

vi’(0)vi’(t)
σii0

1-1

2-2

3-3

tuτR
-1

Hamiltonian base case
DNS
experimental

uτRν-1 = 362
x2R-1 = 0.5
C0 = 6

FIG. 2. (Color online) Lagrangian velocity correlations for pipe
flow. Dots are experimentally obtained results using particle tracking
velocimetry [36], dashes lines are results from DNS [37], and solid
lines are results from the Hamiltonian base model corrected for finite
viscosity. Input data for the Hamiltonian model are in accordance with
DNS data: ε0 = 3.42u3

τ /R, σ110 = 1.65u2
τ , σ220 = 0.72u2

τ , σ330 =
0.94u2

τ , σ120 = −0.48u2
τ , where uτ (=√

τ0/ρ) is shear velocity, x2

is distance from the wall, R is pipe radius, i = 1 is parallel to the wall
in mean flow direction, i = 2 is perpendicular to the wall, and i = 3
is perpendicular to the mean flow and parallel to the wall.

From Eq. (61) it follows that, to leading order, components
of the diffusion tensor can be determined by time integrals
of the velocity correlation functions. The agreement between

0 0.05 0.1 0.15 0.20.2

0.4

0.6

0.8

1

1-1

2-2

3-3

Hamiltonian base case
DNS

tuτH-1

uτHν-1 = 950
x2H-1 = 0.65
C0 = 6

vi’(0)vi’(t)
σii0

FIG. 3. (Color online) Lagrangian velocity correlations for chan-
nel flow. Dashed lines are results from DNS [18], and solid lines are
results from the Hamiltonian base model corrected for finite viscosity.
Input data for the Hamiltonian model are in accordance with DNS
data: ε0 = 2.03u3

τ /H , σ110 = 1.43u2
τ , σ220 = 0.59u2

τ , σ330 = 0.73u2
τ ,

σ120 = −0.36u2
τ , where uτ (=√

τ0/ρ) is shear velocity, x2 is distance
from the wall, H is half-channel width, i = 1 is parallel to the wall
in mean flow direction, i = 2 is perpendicular to the wall, and i = 3
is perpendicular to the mean flow and parallel to the wall.
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Hamiltonian base case
DNS

uτHν-1 = 950
x2H-1 = 0.5
C0 = 6
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FIG. 4. (Color online) Lagrangian velocity cross-correlations for
channel flow. Broken lines are results from DNS [18], full lines
are results from the Hamiltonian base model (without correction
for finite viscosity). Input data for the Hamiltonian model are
in accordance with DNS data: ε0 = 3.27u3

τ /H , σ110 = 1.88u2
τ ,

σ220 = 0.71u2
τ , σ330 = 0.91u2

τ , σ120 = −0.48u2
τ , where uτ (=√

τ0/ρ)
is shear velocity, x2 is distance from the wall, H is half-channel
width, i = 1 is parallel to the wall in mean flow direction, and i = 2
is perpendicular to the wall.

autocorrelation functions shown in Figs. 1–3 thus implies that
the values of the diagonal of the diffusion tensor are well
predicted by the Hamiltonian base model. The same can be
said for the value of the off-diagonal components which are
nonzero in the cases of pipe and channel flow. These are
determined by the average value of opposing cross-correlation
functions; cf. Eq. (61). Moreover, the average values of the
opposing cross-correlations obtained from DNS are found to
agree quite well with those of the Hamiltonian base case
[18]. This has been illustrated in Fig. 4, where we have
plotted cross-correlation functions of channel flow. Results
shown apply to a particular position in the channel; similar
agreement has been found at all other distances away from
the viscous layer at the wall [18]. The agreement implies that
also off-diagonal components of the diffusion tensor can well
be predicted using the Hamiltonian base model. Diffusion
coefficients determine dispersion. The agreement between
velocity correlation functions thus indicates that, for the
considered cases, dispersion is already well described by the
first term of the expansion, i.e., by a model which corresponds
to a locally homogeneous anisotropic Hamiltonian process of
velocity fluctuations.

B. Non-Gaussianity and antisymmetry

As mentioned, to improve accuracy we have extended
the Hamiltonian base case with next-to-leading-order descrip-
tions. It has resulted in a Langevin model in which Eq. (41)
describes the damping function. Application of this model
leads to an error of O(C−2

0 ) in statistical displacement. In
Eq. (41) we have disregarded the contribution of gi in the
general solution of the damping function given by Eqs. (32)

and (36)–(38) and obtained through application of the well-
mixed principle. Here gi consists of two parts [cf. Eq. (37)],
a contribution because of non-Gaussianity described by fc

and the contribution a′′H
i which models antisymmetry in the

damping function. Values for fc can be inferred from the
many data which are available for Eulerian velocity statistics
[5,27–31]. They cover a wide range of cases of turbulent flow
and all show mild deviations from Gaussian behavior. Taking
values for fc which are in line with these data, one finds
corrections in statistical displacement which are only a few
percentages [17].

To asses a′′H
i , we can make use of the results of DNS

and measurements of turbulent flow in pipes and channels
[16–18,36,37] and in uniform shear flow [14]. Anisotropy of
the Eulerian covariance tensor is a measure for antisymmetry
in the damping function. Anisotropy due to shearing is known
to be large in pipe and channel flow and uniform shear flow.
Values for a′′H

i derived from data obtained for these cases are
representative for many, if not all, sorts of turbulence in which
shearing plays a role. They can serve as a rigorous test case for
the presented results and method of solution when it concerns
errors because of disregarding a′′H

i .
To calculate the contribution of a′′H

i we can use solu-
tion (39), which models antisymmetry. The value of the
unknown coefficient bk in this solution can be deduced from
the antisymmetry between cross-correlation functions which
were measured and calculated by DNS. The effect of the
value of bk on dispersion can subsequently be inferred from
a diffusion coefficient in which bk is taken into account (the
diffusion equation can also be derived when description (39)
is included in the damping function; bk then explicitly occurs
in the diffusion coefficient [16]). In this way it was found that
for the various cases considered the effects of antisymmetry
on the diffusion coefficient were minor, i.e., a few percentages
at most.

Antisymmetry of limited magnitude was also seen in the
results of DNS for channel flow [18]. As illustrated in Fig. 4,
the effects of antisymmetry apparent in the difference between
the opposing cross-correlation functions were rather small.
This behavior was seen at all positions away from the viscous
layer at the wall. Mild forms of non-Gaussianity and antisym-
metry comply with the outcome of the present analysis. Energy
change takes place on a time scale which is appreciably longer
than that of statistical velocity fluctuation (by a factor C0) so
underlying particle mechanics are approximately Hamiltonian
[O(C−1

0 )]. Velocity statistics are mildly non-Gaussian [to
O(C−1

0 )], such that Onsager symmetry holds approximately
[to O(C−1

0 )] and that the effects of antisymmetry and non-
Gaussianity on dispersion are small [O(C−2

0 )].

C. Analytical evidence

Statistical turbulence is known to be a basically inhomo-
geneous process in which there is continuous supply and
dissipation of energy. When following a marked fluid particle,
statistical averages of fluid velocity and energy change signifi-
cantly in magnitude over the time scale σε−1 [e.g., cf. Eq. (8)],
where σ is magnitude of mean-square fluctuating velocity. As
follows from Eqs. (1) and (15), particle velocities decorrelate
over the time scale C0

−1σε−1. The presence of C0
−1 allows us
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to distinguish a shorter time scale where statistical velocity
can be modeled according to a homogeneous anisotropic
Hamiltonian-based process. That this is possible can most
directly be inferred from the expressions in closed-form for
decaying grid turbulence presented in Appendix A. Here it can
be seen that expansion of the exact results in terms of powers
of C0

−1 leads to the Hamiltonian base case as the leading-order
description. As shown in Fig. 1, the leading-order description
is already close to the exact result.

For pipe and channel flow it also can be shown in more
explicit analytical terms that approximation by expansion in
powers of C0

−1 works [16]. For wall-induced turbulence there
exists an asymptotically exact description for ε in the log
layer [38]. The correctness of this expression has, among
others, been confirmed by measurements in the atmospheric
surface layer [39]. Although in the log layer ε is inversely
proportional to distance from the wall, it changes only C0

−1

on the time scale of the particle velocity correlation [16]. It is
for this reason, among others, that, even in the log layer where
ε changes significantly in magnitude, the correlation functions
obtained from DNS are well approximated by those of the
Hamiltonian base model in which ε is kept constant and equal
to its value at the point of marking; i.e., the model according
to Eqs. (1), (4), (10), and (11). Moreover, the approximation
of disregarding antisymmetry in the damping function when
describing dispersion seems to be correct. All this is in line with
an approximation scheme based on small C0

−1 and where the
Hamiltonian base model arrives as a leading-order formulation
from the general model of Eqs. (1), (32), and (36)–(38).

D. Higher-order terms and dispersion

The next-to-leading-order terms in the damping function
which are to be retained in a two-term expansion for statistical
displacement are the second and third terms on the right-hand
side of Eq. (41). Both terms describe the effect of covariance
inhomogeneity on the short time scale of particle velocity
fluctuation. The last term results in mean particle drift, and the
second term leads to a correction in diffusivity as can be seen
from the second term in solution (67). Although the mean flow
u0

n is generally large in turbulent flow, the magnitude of the
second term is limited because of conservation of momentum.
An illustration of this is decaying turbulence behind a grid, for
which exact results are available [17]. For grid turbulence
the second term in Eq. (67) is 2

3C−1
0 times the first term.

Comparing the two-term description for diffusivity according
to Eq. (67) with the exact result, we find a relative deviation of
4
9C−2

0 which amounts to 1.2% when C0 = 6. It shows that the
error due to truncation of O(C−2

0 ) is limited in the diffusion
equation as well. An exception is the log layer of wall-induced
turbulence where the error entailed by the diffusion model is
somewhat larger (about 10%). This is because of the strong
variation of ε and the diffusion coefficient with distance from
the wall [16].

E. General shear-induced turbulent flow

The two-term descriptions in powers of C0
−1 constitute a

description for statistical particle displacement which inhibit
a relative error due to truncation of O(C0

−2). For the above

considered cases of decaying grid turbulence, uniform shear
flow, pipe flow, and channel flow this error was found to amount
to a few percentages. The error does not differ much from
the value of C0

−2 itself. In view of the general principles
which underly the derivation, the truncation error will also
be O(C0

−2) in other cases of turbulence. More specifically,
we can expect errors of a few percentages in all those cases
where the conditions in terms of anisotropy, inhomogeneity,
non-Gaussianity, and the value of C0

−1 are similar to those
of the considered cases. This will be true for many, if not all,
sorts of turbulence which originate from shearing. In addition
to the cases considered we mention turbulent flow in boundary
layers, including the atmospheric surface layer, turbulent jets
and wakes, Couette flow, and flow between counter-rotating
disks. In all these cases, reduction of the general Langevin
model of Eqs. (1), (32), and (36)–(38) to the model of Eqs. (1)
and (41) is expected to lead to limited error in the prediction of
displacement statistics. The linear part of the damping function
is the important term under all circumstances. This is because
of its functional form. It contains the coefficients C0, ε, and
λij , where C0 is relatively large while ε and λij always have
appreciable values whatever the sort of turbulence. All other
terms are less significant in magnitude. The contributions
due to non-Gaussianity, antisymmetry, and inhomogeneity
are expected to not differ much from those identified for
wall-induced turbulence in pipes and channels where they were
found to be small. Moreover, the inverse of the Kolmogorov
constant can be used as a parameter to measure and order terms
in the statistical model.

VII. CONCLUDING REMARKS

In our derivation of the statistical description of turbulent
dispersion we started from the Markov approximation for
particle velocity. It finds its justification in Lagrangian Kol-
mogorov theory, the outcome of which is supported by results
of DNS and measurements [7–9]. Given a Markovian-based
Langevin equation for statistical particle velocity, at issue is
the specification of the damping function. The second issue is
the description of statistical particle displacement through a
diffusion equation. Both issues were dealt with by employing
a perturbation scheme based on expansion in powers of C0

−1

where C0 is the universal Kolmogorov constant. Because of
limited smallness of C0

−1, viz. C0
−1 ≈ 1

6 , we did not restrict
our analysis to terms of leading order but also considered terms
next to leading order. The final results are the Langevin model
of Eqs. (1), (2), and (41) and the diffusion equation according
to Eqs. (66) and (67). They inhibit a truncation error of relative
magnitude O(C0

−2) in statistical displacement. This was
shown to lead to a deviation of a few percentages in predicted
dispersion statistics for representative cases of turbulent flow.
The descriptions do not contain fitting constants or empirically
established functions. All coefficients are uniquely determined
by fixed-point Eulerian-based statistical averages of the flow
field and the universal Kolmogorov constant. The models
satisfy the condition of being falsifiable.

Perhaps surprisingly, the leading order formulation of
the Langevin model was found to correspond to a locally
homogeneous anisotropic Hamiltonian-based statistical model
of fluid particle velocity. It substantiates the proposal of the
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pioneers in turbulence theory (Von Kármán, Taylor, Prandtl)
to model turbulent dispersion analogous to diffusion by
molecular motion [1]. What is new is that the diffusion
coefficient is now a well-defined tensor, cf. Eq. (67), and that
the accuracy of the model is known. It is noted that the present
analysis does not entail a conclusion regarding validity of the
concept of turbulent or eddy viscosity.

Allowing for an error of a few percentages in statistical
displacement, the presented models can be widely applied
to cases of shear-induced turbulent flow. Potential areas for
application are diverse and can be of great societal importance.
Examples include the following: fumes from chimneys, ra-
dioactive aerosols from nuclear accidents, sand particles from
dust storms, micron-sized particles from volcanic eruptions,
oil spills in the sea, smells from factories, spray injection in
technical devices, and so on. The presented descriptions can
be applied once the fixed-point Eulerian mean and covariance
and the energy dissipation rate of the flow field are known.
Such information is available or can be made available through
measurements, known analytical descriptions, and results of
computer calculations. Dispersion statistics can then be calcu-
lated from the Langevin model given by Eqs. (1), (2), and (41)
and diffusion equation (66) with diffusion coefficient (67). The
Langevin model yields the most accurate results but requires
the largest calculation effort. The diffusion equation is easier
to handle but is somewhat less accurate.
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APPENDIX A: VELOCITY CORRELATION FUNCTIONS
FOR DECAYING GRID TURBULENCE

In decaying grid turbulence it is preferable to describe the
fluctuations in a frame that moves with the mean flow. It is the
same as in a fixed frame where the grid is pulled with constant
speed through the fluid. The fluctuations behind the grid can be
treated as zero mean, decaying with time t , isotropic, Gaussian,
and homogeneously distributed. Many experiments have been
executed on grid turbulence and the results support existing
theoretical models [40]. The large-Reynolds-number limit of
these models will be used in the present analysis [40]. In view
of isotropy we can restrain ourselves to a statistical description
of velocity in one direction only: v′

1(t). The Langevin equation
for v′

1(t) is given by [13,17]

dv′
1

dt
= −1

2

ε0

σ110

(
C0 + 2

3

)
(t/t0)−1 v′

1

+ [C0ε0(t/t0)−2]1/2w(t), (A1)

where ε0 and σ0 are the energy dissipation rate and mean-
square value of fluctuating velocity at the time of marking
t = t0: ε0 = 3

2σ110t
−1
0 . It is noted that the above equation is

general in the sense that no approximations due to C0
−1 � 1

have been applied. Exactly the same equation is obtained
when applying the two-term expansion for damping according
Eqs. (32) and (36). Evaluating the coefficients in the resulting

equation according to the features of decaying isotropic
turbulence yields Eq. (A1).

Multiplying Eq. (A1) by v′
1(t0) and averaging yields

(d/dt)R = − 3
4

(
C0 + 2

3

)
R/t, (A2)

where R = v′
1(t)v′

1(t0)/σ110 is the correlation function of the
velocity of a passively marked particle. The solution which
satisfies R(t = t0) = 1 is

R = (t/t0)−
3
4 (C0+ 2

3 ) . (A3)

In terms of the time t∗ defined by t∗ = C0 (t − t0) /t0, one can
write

R = exp
[− 3

4

(
C0 + 2

3

)
ln

(
1 + C0

−1t∗
)]

= exp
[ − 3

4

(
C0 + 2

3

) (
C0

−1t∗ − 1
2C0

−2t∗2 + · · · )]
= exp

(− 3
4 t∗

) {
1 + C0

−1
(

3
8 t∗2 − 1

2 t∗
) + · · · }. (A4)

The first term in expansion (A4) is the solution for stationary
(nondecaying) isotropic turbulence. It is equal to the solution
for velocity correlation obtained when adopting the leading-
order formulation of damping in the Langevin equation with
the coefficients evaluated at the point of marking: i.e., the
Hamiltonian base case [cf. Eq. (14)]. In Fig. 1 we have
compared the exact result for correlation [cf. Eq. (A3)] and
the leading term of the expansion with respect to C0

−1 [cf.
Eq. (A4)]. Note that the time axis of Fig. 1 corresponds to
3
2C0

−1t∗. It is seen that the leading term only slightly deviates
from the exact result when C0 = 6.

APPENDIX B: VELOCITY CORRELATION FUNCTIONS
FOR THE HAMILTONIAN BASE CASE

For the Hamiltonian base case the Langevin equation
becomes

dv′
i

dt
= −1

2
C0λij0ε0v

′
j + (C0ε0)1/2 wi (t) , (B1)

where the subscript 0 refers to values at the point and time
of marking. The correlation between the velocity vi(t) of a
particle at time t and its velocity v′

n(0) at time of passive
marking is described by the equation

∂

∂t
(v′

n(0)v′
i(t)) = −1

2
C0λij0ε0(v′

n(0)v′
j (t)). (B2)

We now consider the case where there exists shearing in the
plane, i = 1,2. Fluctuations in direction i = 3 are uncoupled
from those in directions i = 1 and i = 2. We then find, as
solutions of Eq. (B2),

v1
′(0)v1

′(t) = ae− 1
4 ε0C0α1t + be− 1

4 ε0C0α2t , (B3)

where

α1 = λ110 + λ220 +
√

(λ110 − λ220)2 + 4λ120
2, (B4)

α2 = λ110 + λ220 −
√

(λ110 − λ220)2 + 4λ120
2, (B5)

a = (α2 − α1)−1 (α2σ110 − 2) , (B6)

b = (α2 − α1)−1 (2 − α1σ110) , (B7)
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and

v1
′(0)v2

′(t) = (
1
2α1 − λ110

)
λ−1

120ae− 1
4 ε0C0α1t

+ (
1
2α2 − λ110

)
λ−1

120be− 1
4 ε0C0α2t . (B8)

The solution for v2
′(0)v2

′(t) corresponds to Eqs. (B3)–(B7)
with indices 1 and 2 interchanged, while the solution for
v2

′(0)v1
′(t) is equal to that of Eq. (B8) [because of symmetrical

damping in Eq. (B1)]. Furthermore, we have

λ110 = σ220d
−1, λ220 = σ110d

−1,

λ120 = −σ120d
−1, d = σ110σ220 − σ120

2. (B9)

The solution for v3
′(0)v3

′(t) is given by

v3
′(0)v3

′(t) = σ330e
− 1

2 ε0C0σ330
−1t . (B10)

The solution for the Hamiltonian base case of decaying
isotropic turbulence shown in Fig. 1 corresponds to Eq. (B10)
with index 3 replaced by 1. The results shown in Fig. 4 are
based on solution (B8).

APPENDIX C: CORRECTIONS FOR FINITE VISCOSITY
IN THE VELOCITY CORRELATION FUNCTIONS

FOR THE HAMILTONIAN BASE CASE

From Langevin equation (B1), it follows that the slope of
the velocity autocorrelation function at t = 0 is given by{

d

dt
(vi

′(0)vi
′(t))

}
t↓0

= −1

2
εC0 i = 1,2,3, (C1)

where indices ii do not imply summation. Symmetry requires
the slope of autocorrelation to be zero. To achieve zero slope
we need to introduce the working of viscosity. Its effect will be
apparent for short times after marking. During such short times
we can simplify the Langevin model. As can be inferred from
result (C1), we can replace the damping term in Eq. (B1) by
the simpler “uncorrelated” damping term 1

2C0σ110
−1δij ε0vj

′.
The correlation functions derived by applying this simplified
damping term are equal to those derived via the nonsimplified
model whenever t/τci � 1, where τci is the Lagrangian
correlation time

τci = 2σii0C
−1
0 ε−1

0 . (C2)

To model the effect of viscosity we replace the white noise
in the Langevin model with simplified damping term by
“colored” noise [34], so

dvi
′

dt
= −vi

′

τci

+ (C0ε)1/2 fi(t), (C3)

where the colored noise fi(t) is described by the Langevin
model

dfi

dt
= −fi

τη

+ α
1/2
i

τη

wi(t). (C4)

In accordance with Kolmogorov theory, we take for τη the
Kolmogorov time

τη =
(

ν

ε0

)1/2

. (C5)

We can determine αi as follows: Multiply (C3) with vi
′(t),

average, note that vi
′(t) is stationary and vi

′(t)2 = σiio:

σiio

τci

= (C0ε)1/2 fi(t)vi
′(t). (C6)

Multiply (C3) with fi(t) and (C4) with vi
′(t), add up both

equations, average, use (d/dt)fi(t)vi
′(t) = 0 and vi

′(t)wi(t) =
0:

vi
′(t)fi(t)

(
1

τci

+ 1

τη

)
= (C0ε)1/2 fi(t)2. (C7)

Multiply (C4) with fi(t) and average:

fi(t)2 = 1

2

αi

τη

. (C8)

From (C6)–(C8) we then have

αi = 1 + δi, (C9)

where

δi = τη

τci

(C10)

is the ratio of Kolmogorov time to Lagrangian velocity
correlation time. For turbulence at large Reynolds number we
have δi � 1.

Equations determining the velocity correlation function can
now be obtained by multiplying (C3) and (C4) with vi

′(0) and
averaging:

d

dt
(vi

′(0)vi
′(t)) = −vi

′(0)vi
′(t)

τci

+ (C0ε)1/2vi
′(0)fi(t), (C11)

d

dt
(vi

′(0)fi(t)) = −vi
′(0)fi(t)

τη

. (C12)

The solution of (C12) satisfying the initial condition

vi
′(0)fi(t) = 1

2 (C0ε)1/2 at t = 0 (C13)

[cf. Eqs. (C7)–(C9)] is

vi
′(0)fi(t) = 1

2 (C0ε)1/2 e−t/τη . (C14)

The solution of (C11) satisfying the initial condition

vi
′(0)vi

′(t) = σii0 at t = 0 (C15)

is given by

vi
′(0)vi

′(t) = (1 − δi)
−1(σii0e

−t/τci − δiσii0e
−t/τη ). (C16)

For δi = 0, this result reduces to the solution for the Hamilto-
nian base case valid for t/τci � 1. We can extend the above
result to one which is valid for all times according to

vi
′(0)vi

′(t) = (1 − δi)
−1({vi

′(0)vi
′(t)}δi=0 − δiσii0e

−t/τη ),

(C17)

where {v′
i(0)v′

i(t)}δi=0 is the solution for the Hamiltonian base
case given in Appendix B. This result would also have been ob-
tained when applying the above method of coloring the white
noise to the nonsimplified Langevin equation (B1) instead of
Eq. (C3). Disregarding contributions of relative magnitude δ2

i

would then have led to solution (C17). Solution (C17) has been
used in Figs. 2 and 3.
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