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Entropy and heat capacity are calculated in phase sequence of crystal, hexatic smectic-B, and smectic-A
liquid crystals through constant pressure and temperature molecular-dynamics simulations of parallel soft
spherocylinders. The transition from crystal to hexatic smectic-B phase is continuous while the transition to
smectic-A phase is first order. The dependence of the phase sequence against the molecular shape anisotropy is
investigated and there exists a triple point at a rather small anisotropy. Hopping diffusion of molecules is
observed in the hexatic smectic-B phase.
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Entropy S is a fundamental quantity in physics. In mo-
lecular simulations, S has been estimated through statistical
physics approach �1� calculating S=−kB� pB ln pB. The value
of Boltzmann probability pB depends not only on each con-
figuration but also on the entire ensemble through the parti-
tion function, thus the quality of sampling is always crucial.
A different approach to calculate S through the absorption or
production of heat in the system, i.e., thermodynamic ap-
proach, has been proposed recently �2�. Precise calculation of
the change in heat is possible by this method due to the
structure of the Hamiltonian.

Phases with hexatic order, characterized by quasi-long-
range sixfold bond orientational order �BOO�, have been ex-
tensively studied in smectic phases �which are stacks of liq-
uid layers� of liquid crystal compounds �3� and are relevant
to many other systems including superfluids, superconduct-
ors, and liquid membrane to mention a few. Despite of the
work accumulated to date, many aspects remain to be clari-
fied in relation to the theory of defect-mediated melting tran-
sition �4�. The hexatic smectic-B �HexB� phase can be con-
sidered as consisting of stacked two-dimensional �2D�
hexatic layers, however, the correlations between the layers
are also very important since three-dimensional �3D� sixfold
BOOs are observed in these systems. The effect of the most
basic characteristic of liquid crystal materials, i.e., anisotropy
of the molecular shape, is investigated in systems of hard-
core spherocylinders �5� as well as soft spherocylinders with
rotation �6�. However, in neither of these systems the HexB
phase appears. By hindering the rotation of the long axis of
soft spherocylinders, it has been shown that excluded volume
effect alone can give rise to the HexB phase �7�, however
due to the limitation of the simulation methods, the investi-
gation was quite limited. The system of parallel soft sphero-
cylinders is the most primitive model to give rise to the
HexB phase which is consistent with the fact that the orien-
tational order of the long molecular axis is generally very
high in HexB phase.

By thermodynamic approach, the relative entropy and
heat capacity are calculated through the phase sequence of
crystal �Cry�, HexB, and smectic A �SmA� and are used to

define the phase-transition temperatures. We obtain a phase
diagram under constant pressure and temperature. In the
SmA phase, no BOO exists. Not only the nature of the first-
order transition of HexB-SmA but also the continuous nature
of Cry-HexB phase transition is clearly identified. In former
studies, the identification of the Cry-HexB phase-transition
boundaries has been done through analysis of bond orienta-
tional correlation functions �8� or dual criterion of molecular
hopping rate and bond order �9�. We also show that dynami-
cal heterogeneity usually discussed in the context of meta-
stable states, such as glass or supercooled liquid �10�, also
appears in HexB phase.

The model particles are parallel soft spherocylinders re-
sembling that of Kihara �11� which express the interaction
between anisotropic molecules through minimum distance
between them. However, instead of using interaction with
both repulsive and attractive parts, we use purely repulsive
pairwise potential �just as Weeks et al. potential �12� is the
purely repulsive part of the Lennard-Jones potential�
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where r0=21/6D and Rij is the shortest distance between lines
�where the potential is infinite� representing the long axis of
the two spherocylinders, i.e.,
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where �xij ,yij ,zij� is the relative position of the center of
mass of the spherocylinders i and j, and L is the length of the
line representing the long axis of the spherocylinder which is
fixed parallel to the z axis. This corresponds to taking the
moment of inertia as infinite. Translation of the spherocylin-
ders is free. Periodic boundary conditions are applied in x, y,
and z directions. Reduced units where length, energy, and
mass are measured in D, �, and m �where m is the mass of a
spherocylinder�, respectively, are used throughout this work.
We mainly report results for systems with number of sphero-
cylinders N=1344 which form six layers. Calculations with
N=1170, 2340, 4680, and 9360 were also conducted to*aoki@icfd.co.jp
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check the system size effects. Time step of calculation is �t
=1.0�10−4 for all the runs. Data for different temperatures
are obtained by independent runs starting from identical ini-
tial configurations for each L. Each data is an average value
for time duration �t=100 �i.e., 1�106 time steps� at the end
of t	1100 calculation unless otherwise stated. The masses
of the barostat and thermostat are, respectively, M =0.01 and
K=20 000 for most of the calculations.

The molecular-dynamics �MD� method we use was de-
signed to simulate soft matter effectively �2� by using an
explicit symplectic integrator �13�. The barostat is designed
to conform to the changes in both shape and bulk elasticities
by effectively dealing the anisotropic fluctuations �14�. The
thermostat is a Hamiltonian version of Nosé-Hoover dynam-
ics �15�. The entropy is calculated from the change in heat
�Q, i.e.,

�S =
�Q

T
=

1 − 


T
�− W� , �3�

where 
 is the time scaling factor of the Poincaré time trans-
formation and W is the work �2�. Especially the function
�1−
� /T is useful in identifying the nature of the phase tran-
sition, since W is a monotonically slow varying function
quite small compared to the value of the original Hamil-
tonian itself. The change in the value of 
 �initially set to 

=1� is reflecting the absorption or production of heat in the
system.

Phase diagram under constant pressure P=1000 of paral-
lel spherocylinders with various lengths L is given in Fig. 1.
Triple point of Cry, HexB, and SmA phases appears at 1.0
�L�1.05. This length is close to the value where HexB
phase has been previously reported �7�. As the length of the
spherocylinder gets longer, Cry-HexB transition temperature
TCB decreases. This tendency coincides with that of crystal-
hexatic transition temperature of membranes confined in two
parallel plates �see Fig. 1.6 in �4��. The transition tempera-
ture to SmA phase �independent whether it is from Cry or
HexB phase� is linearly dependent on the molecular length L.
The linear dependence of crystal-smectic phase-transition

temperature on molecular length has also been observed in
soft parallel spherocylinders interacting via inverse power
potential �16�.

In Fig. 2, partial molar �a� volume V /N and �b� relative
entropy �S /N �2� against temperature T are shown for sys-
tems of L=2. Partial molar volume v̄=V /N and entropy s̄
=S /N along with internal energy ū=U /N are related to the
partial molar Gibbs free energy �G /�N, i.e., the chemical
potential �, through ��G /�N�P,T=�= ū+ v̄P− s̄T. Figure 2
shows that V /N and �S /N only jump at the HexB-SmA tran-
sition temperature TBA. However, the partial molar relative
entropy �S /N �Fig. 2�b�� has a kink at TCB and clearly shows
the continuous nature of this transition. Since the chemical
potential must be continuous at the HexB-SmA phase transi-
tion, the enthalpy and entropy must compensate �17� at TBA,
i.e., �ū �BA+�v̄ �BAP=�s̄ �BATBA, where �ū �BA, �v̄ �BA, and �s̄ �BA
are, respectively, the jump in values of ū, v̄, and s̄ at the
transition. By using this relation to obtain �s̄ �BA and compar-
ing it to the jump in the value of �S /N at TBA, the difference
in scale �in simulation units� of the relative entropy �S and
true entropy S is known at TBA. Extrapolation of �S /N to
zero is at T28 for Fig. 2�b�, since the initial configuration
used for the series of calculation for L=2 is that of T=28.
Volumetric studies by experiments are rare, however, the
only study we are aware of for Crys-HexB-SmA phase se-
quence �18� shows resemblance to Fig. 2�a�.

In Fig. 3, we further divide the relative partial molar en-
tropy plotted in Fig. 2�b� into two terms, �1−
� /T and −W. It

1 2 3 4

50

100

150

Cry

HexB

SmA

L (units of D)

T
(u

ni
ts

of
ε/

k B
)

FIG. 1. Phase diagram of N=1344 parallel soft spherocylinders
at P=1000 for various lengths L. Transition temperatures are iden-
tified from function �1−
� /T consisting the relative entropy for
Cry-HexB phase transition ��� and transition to SmA phase ���.
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FIG. 2. Partial molar �a� volume and �b� relative entropy for
N=1344 parallel soft spherocylinders with L=2 at P=1000.
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FIG. 3. Functions �a� �1−
� /T and �b� −W consisting the partial
molar relative entropy �S /N in Fig. 2�b� for N=1344 parallel soft
spherocylinders with L=2 at P=1000. The line in �b� is the fitted
temperature dependence −W�T�=3.549�10−1+4.055�10−2T
+3.018�10−4T2. Value of initial Hamiltonian is H0=1.942341
�106 for this series of calculation.
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is evident that the �1−
� /T term �Fig. 3�a�� shows the char-
acteristics of the phase transitions clearly, i.e., the continuous
nature at TCB and the first-order nature at TBA. Especially, the
usefulness of function �1−
� /T to determine TCB is clearly
demonstrated since there exists an extremum at TCB whereas
there is only a kink in the entropy curve. In the case of
spherical soft particles, the function �1−
� /T has been al-
most proportional to the �S /N curve near the crystal-
isotropic liquid phase transition �2�. For shorter parallel
spherocylinders where crystal melts directly to SmA phase
�L�1�, we observed a similar behavior in �1−
� /T.

The differential dH /dT of enthalpy with respect to tem-
perature is shown in Fig. 4. This quantity corresponds to the
curve obtained by differential scanning calorimetry �DSC� in
experiments. However, the thermodynamic properties re-
ported here are free from effects of cooling or heating rates
since independently equilibrated calculations are conducted
at each temperature.

Figure 5 shows the molar heat capacity CP calculated for
the same system as Figs. 2 and 3. The value of CP is obtained
via the fluctuation of the relative entropy �S �19�, i.e., CP

� ��S2�− �S�2�, thus expressed in arbitrary units. In Fig. 5, not
only peaks at TCB but also a step in the value at TBA can be
discerned. The double peak at TCB may result from fluctua-
tion induced force near the critical point confined in periodic
boundary conditions �20�. Anomalous fluctuation at low tem-
peratures, as reported in �21�, was also observed in our simu-
lations. To get reasonable values of second-ordered thermo-
dynamic quantities such as CP required slow relaxation at
lower temperatures with weak coupling to the thermostat,
especially in the crystal phase �t	4000 in simulation time
using mass of thermostats kinetic energy K=20 000 �2��.
When the system was forced to relax fast by strong coupling
to the thermostat �through K=20�, reasonable average values
of first-order thermodynamic quantities were obtained but
resulted in larger values of fluctuation which do not decay,
thus, not leading to reasonable values of second-order ther-
modynamic quantities. It has been reported that strong cou-
pling to the thermostat results in cutting off fluctuations of
low frequencies �22�, which must influence the second-order
thermodynamic quantities. These results clearly show that it
is important to relax the system with weak coupling to the
thermostat to get proper values of second-order thermody-
namic quantities.

Figure 6 shows the sixfold bond orientational order pa-
rameter

C6 =�� 1

Nb
�

j

N

�
k

cos�6kj��� , �4�

where j runs over all molecules in the system, k runs over all
the nearest-neighbor molecules of j, kj is the angle between
the fixed x axis and the projection of the line connecting the
center of mass of particles k and j on the xy plane, and Nb
denotes the total number of bonds in the system. The bracket
� � denotes the time average of duration �t=10 �1�105 time
steps�. Note that C6 contains the information of all layers in
the system. The inset shows how the system size affects the
value of C6. It can be seen that the number of layers in the
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FIG. 4. Temperature dependence of dH /dT for N=1344 parallel
soft spherocylinders with L=2 at P=1000.
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FIG. 5. Molar heat capacity CP in arbitrary units �obtained from
fluctuation of relative entropy� vs temperature T for N=1344 paral-
lel soft spherocylinders with L=2 at P=1000. Inset shows CP

around TCB.
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FIG. 6. Sixfold bond orientational order C6 vs temperature for
parallel soft spherocylinders with L=4 at P=1000. �, N=1344
with six layers; �, N=2340 with three layers; �, N=4680 with six
layers; �, N=9360 with three layers. Inset shows close-up near
HexB-SmA transition.
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system affects the value of C6. The HexB phase appears for
0.717�C6�0.975 for L=4. The values of C6 at TBA are in
the range of 0.65�C6�0.72 with smaller values for shorter
molecules. The values at TCB are 0.65�C6�0.98, reflecting
that the values of TCB becoming lower �thus resulting in
higher C6� for systems with longer molecules. In Fig. 7, we
show some snapshots in the HexB phase where the values of
C6 are shown in Fig. 6. In the bird’s eye view of these snap-
shots �upper panel�, the molecules are shown small to reveal
the relative positions of different layers.

Although the specific volume and C6 vary continuously at
TCB, the dynamics drastically change. At temperatures above
TCB, hopping dynamics is observed. In HexB phase, diffu-
sion of the particles inside each layer �in xy plane� increases
as the temperature rises and shows a high value of diffusion
at temperatures near TBA. Fluctuations of the layer positions
are also observed in the HexB phase, however, diffusion of
molecules among different layers �z direction� only occurs at
temperatures much higher than TBA. In Fig. 8, positions of all
the molecules �projected on xy plane� relative to that at a
certain time are plotted. If the molecule does not move for
the period of time, a dot will be plotted on �0,0� for such

diagrams. In the crystal phase, dots are crowded near �0,0�
since molecules only fluctuate around their equilibrium po-
sitions. In HexB phase, hopping to other vacant sites occurs
as shown in Fig. 8 and dynamical heterogeneity is clearly
observed. There are patches of hexagonal lattice which are
out of position with each other. In addition to the molecular
hopping, the hexatic patches themselves diffuse in the long
run which is the reason for not having many points near
�0,0�. Since Fig. 8 contains data of all the molecules in six
layers, it also shows that correlation between the layers ex-
ists. The hopping dynamics in HexB phase was also ob-
served in Monte Carlo simulations and was used as a crite-
rion to define the boundary between Cry and HexB phases
�9� along with the value of C6. From our simulation, it is
clear that at temperatures close to TCB �identified from rela-
tive entropy�, the hopping rate is negligibly small and has
intermittent characteristics, thus difficult to get reliable sta-
tistics even in the longest run. We also have seen in the
previous paragraph that the values of C6 cannot be a reliable
quantity either to predict the transition temperatures, espe-
cially TCB.

MD simulations have been conducted for a model of liq-
uid crystals and the nature of Cry-HexB-SmA phase transi-
tion has been investigated. The transition temperatures were
identified by relative entropy and heat capacity. In the HexB
phase, hopping dynamics has been observed. It has been
shown that the high-precision symplectic integrator designed
for simulating soft matter is effective in investigating not
only the dynamics but also the thermodynamics of the sys-
tem.
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