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Rogue waves and rational solutions of the nonlinear Schrodinger equation

Nail Akhmediev,' Adrian Ankiewicz,' and J. M. Soto-Crespo”
lOptical Sciences Group, Research School of Physics and Engineering, Institute of Advanced Studies, The Australian National University,
Canberra, Australian Capital Territory 0200, Australia
2Instituto de Optica, CSIC, Serrano 121, 28006 Madrid, Spain
(Received 19 May 2009; published 4 August 2009)

We present a method for finding the hierarchy of rational solutions of the self-focusing nonlinear
Schrodinger equation and present explicit forms for these solutions from first to fourth order. We also explain
their relation to the highest amplitude part of a field that starts with a plane wave perturbed by random small
amplitude radiation waves. Our work can elucidate the appearance of rogue waves in the deep ocean and can
be applied to the observation of rogue light pulse waves in optical fibers.
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I. INTRODUCTION

Rational solutions of the nonlinear Schrédinger equation
(NLSE) play a major role in the theory of rogue waves [1,2].
There is a hierarchy of them with progressively increasing
central amplitude. The first-order rational solution was given
by Peregrine [3] as early as 1983. The next-order one, based
on [7], was recently presented in [1] as a possible explana-
tion for rogue waves with higher amplitude. Simple interac-
tive demonstrations are readily available [4]. In the present
work, we give a technique for the systematic derivation of
the whole hierarchy of these rational solutions. As examples,
we consider the four lowest-order solutions and show that
even the third-order one can appear in numerical simulations
with random initial conditions.

The major reason supporting the claim that rational solu-
tions are important in the composition of ocean waves is that,
as with waves created by modulation instability, they “appear
from nowhere.” In other words, the instability induced from
a small perturbation on top of a plane wave leads to an in-
crease in the perturbation up to its highest amplitude and
then to a decay so that it finally “disappears without a trace.”
Although for rational solutions the growth rate of the insta-
bility is zero, they still develop according to a power law.
This may appear to take a very long time, but on the other
hand, the ocean is vast and there is enough space for the
development of even such slow instabilities.

Rational solutions are limiting cases [5] of either periodic
“Ma solitons” (MS) [6] or “Akhmediev breathers” (ABs)
[7-11]. MSs have to be created directly from initial condi-
tions consisting of the background plane wave+soliton. In
other words, Ma solitons must exist in the wave field right
from the very beginning. Only rational solutions and ABs
belong to the class of excitations that appear from nowhere
[1,10]. ABs, in particular, arise during evolution due to
modulation instability [7,12,13]. Once they have appeared,
they may collide just as can happen with solitons. Collisions
of two or more ABs with transversal frequencies close to
zero may create structures similar to higher-order rational
solutions [11]. Thus, studies of rational solutions of higher
order are of fundamental importance. They may resolve the
mystery of rogue waves in the ocean [14-16] and help in
creating useful rogue waves in optical fibers [17,18].
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As in two of our previous papers [1,11], we deal here with
the standard “self-focusing” NLSE. In the dimensionless
form, it is given by
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where x is the propagation variable and ¢ is the transverse
variable. The notation here for independent variables x and ¢
is reversed in comparison to the convention taken in the
classical work by Zakharov and Shabat [19]. However, our
convention is standard in the theory of ocean waves [20] and
waves in optical fibers [21] so we use it throughout this
paper. In each case, the function ¢ describes the envelope of
the modulated waves, and its absolute value carries informa-
tion about either wave elevation above the water surface or
the intensity of optical wave.

As stated, we are interested in solutions of NLSE (1) that
can be expressed in the form of a ratio of two polynomials.
Thus, they are called “rational solutions.” This form of solu-
tion always appears with a multiplicative exponential factor,
exp(ix), so that the full solution may not be rigorously
termed “rational.” However, this factor disappears when the
absolute value of the function ¢ is calculated and so is irrel-
evant from a physical point of view.

Some solutions involving polynomials have been given
for the “self-defocusing” NLSE [22,23]. We stress that the
latter solutions are for a different equation. Besides, they all
contain singularities and thus do not represent physical situ-
ations. In contrast, all solutions that we present here are finite
everywhere and thus can and do represent real physical
waves.

II. TRADITIONAL DARBOUX TRANSFORMATION
SCHEME

The general scheme for solving the NLSE from given
initial conditions is the inverse scattering technique [19].
Certain classes of solutions can also be constructed with the
use of dressing methods. A particular case of the latter is the
so-called “Darboux transformation” (DT) [24]. The DT can
be used to construct multisoliton solutions or solutions in-
volving several ABs [11]. Solutions of each class consist of a
corresponding “hierarchy” of solutions.
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Rational solutions belong to a special class and generally
cannot be constructed using the traditional DT technique.
The lowest-order rational solution or “Peregrine” soliton can
be obtained either as a limiting case of a Ma soliton or an
AB. Obtaining higher-order rational solutions in a similar
procedure would be highly involved although not completely
impossible. Thus, we have modified the DT technique in
such a way that limits are taken in the intermediate calcula-
tions. This modification has allowed us to find a way to
construct the whole hierarchy of rational solutions.

The NLSE is a condition of compatibility of the two fol-
lowing linear equations:

R,=1JR +UR,
R,=JR +[UR + 1 VR, ()
where U,J and V are the following square matrices:
0 iy i 0
U= s = s 3
[wf 0 } ! {o _,} )
—ilul? o
V:[ e i | W
- il

while R is a column matrix

Rz[:] (5)

with dependent variables r=r(x,r) and s=s(x,), and [ is a
complex eigenvalue. Indeed, it is easy to check that the con-
dition of compatibility

R,=R,

of the linear equations leads directly to NLSE (1).
To make the calculations more transparent, we can sepa-
rately write down each component of the vector [Egs. (2)]:

ro=ids +ilr,

s,=iyr—ils,

ro=ilr+ily's — i.|1,D|2r+ l1//*s,
X 2 2 t

L
sx=—ilzs+il¢r—§¢tr+§|¢|2s, (6)

Equation (2) and Eq. (6) establish a one-to-one correspon-
dence between the solution of the NLSE, ¢, and the solutions
of the linear system, r and s. The linear system can be solved
with ease for the case of trivial solutions of the NLSE, such
as the zero solution (i,=0) or the plane-wave solution [,
=exp(ix)]. In order to deal with more complicated solutions,
we can start with one of the above as a “seeding solution”
and use it with Darboux transformations to obtain more com-
plicated ones. The zero solution allows us to construct the
hierarchy of multisoliton solutions [25], while the plane-
wave solution results in the hierarchy of solutions related to
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modulation instability [26]. Rational solutions have never
been constructed in this way. Instead, they have been ob-
tained as limiting cases of Ma solitons or the so-called
Akhmediev breathers. However, for higher-order rational so-
lutions, these limits are highly complicated. Thus, the best
way to construct them is to use the Darboux scheme or its
equivalent right from the beginning. This will be the aim of
the present paper.

III. HIERARCHY OF RATIONAL SOLUTIONS

Of course, if we have a core solution of the NLSE, then
we can apply scaling and Galilean transforms to obtain
“families” of solutions [5]. Hence, in this paper we present
only the core solutions since it is simple to apply the above
transforms to them to allow ‘“magnification” and nonzero
velocities.

Equations (6) have a complex eigenvalue / that defines a
parameter of the solution of the NLSE to be derived at the
next step of the scheme. Generally, this is any number in the
upper half plane of the complex plane. If we restrict our-
selves to rational solutions, then the choice of the eigenvalue
is very specific. Namely, it has to be /=i. We modify the
procedure outlined in [26] to find the required solutions of
the NLSE. For the origin of the scheme itself, we refer to the
book of Matveev and Salle [24]. We use a plane wave as a
seeding solution of the NLSE,

i = exp(ix). (7)

Our next step is to find two linear functions r=r(x,7) and s
=s(x,7) that make system (6) compatible with ¢=,. Here,
the functions r,s can be multiplied by an arbitrary constant
as they are solutions of the linear set of equations.

Generally, solutions of Eq. (6) can be written in exponen-
tial functions [11]. Solutions related specifically to rational
functions can be obtained as limiting cases of these exponen-
tial solutions when the eigenvalue has a limiting value i.
However, instead of doing this, we introduce an analysis to
find the functions and just use the limiting case to verify our
results (see Sec. VII).

To start with, we split the functions ¢(x,?),r;,s; into their
real and imaginary parts and factor out the exponentials:

lp(x’t) = eix¢(x’t) = [¢Jr(x’t) + i¢ji(x7t)]eix7 (8)
ri(x,1) = [r;,(x,1) + ixr(x,1) Jexp(= ix/2), 9)

s;(x,1) = [s,(x,1) + ixs;(x,1) Jexp(ix/2),, (10)

where index j is related to the order of the solution in the
hierarchy, while subscripts r and i mean the real and imagi-
nary parts, respectively. Then the functions ¢;(x,1),r;,(x,1),
r;i(x,t) do not contain exponentials. In this paper, j is called
“the order of solution” although we stress that it is different
from the definition of the order given in [27].

Now we introduce an important simplification obtained
from the following mirror symmetries of the functions:

8;,(,1) = xr(x, = 1), (11)
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x8;ji(x,t) = rj,(x,— 1). (12)

We denote 7,(x,f)=r;(x,-t) and 7;(x,t)=r;(x,~t). Once

ri(x,1) is fully spec1ﬁed we have all required functions. As

mentloned any of the functions r;,s; can be multiplied by a

constant and it will still give the same solution, ¢j(x,t).
The modified Darboux scheme is

o — (r1,81) = ¢ — (r2,87) = ¥y — (r3,83) = s

All the linear functions r and s in this scheme are found by
directly solving the linear set of Eqgs. (6) with ¢ function
found at the previous step while the solutions of the NLSE
are defined explicitly through the corresponding linear func-
tions.

The first of Egs. (6) is now

J o A
Erjr(x’t) +71,,(0,1) = xbj_y i5(x,0) = by 75, (x,0), (13)

while the second one becomes

J . .
xa_trji(x’t) +XI".]'Z'(X,I) =x¢j_1’rrj,-(x,t) + (ﬁj_l’irjr(.x, t)

(14)

The solution must also satisfy

i, 0) = x iy Fi(x,1) = iy i (x,1)

X
—r(x,t)==r
ox ‘/( ) 2

+ (d)j 1r+ - 11) jl('x t)+

2 jl(x t) ¢j lr(x t)

1

+7 2 ]l('x t) ¢] 1 ,()C t) (15)

The final equation of the set is

)C_V (.X t) 2 ]r(x t) i(x’t) - (ﬁj—l,rfjr(x’t)

. 1
+xpiy iFjilx,1) + 5((1,12,_1’# Jz'—lsi)rjr(x’t)

(-x t) ¢)j lz(x t) + ()C t) d)] lr(x t)

(16)

2]'

Starting with the lowest order j=1, we have ¢,=1, and
the first-order linear differential Egs. (13) and (14) reduce to

d
—r == 17
dt 1r 1r Ty ( )
d

- [+ l'=Al'. 18
dtrl ri=n (18)

As we are interested in rational solutions of the lowest order,
it is an easy task to find the required functions: r,(x,7)
=k (t— ) and r;;(x, Q—kl Here k; can be any constant, and
we choose it to be \2 for convenience. Hence
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1
ri(x,0) = \E[t -3 + ix} exp(—ix/2),

5,(x,1) = \’E{x— i<t+ %)]exp(ix/Z). (19)

Again, r;, and r;; can always be multiplied by the same con-
stant without affecting the solution. Clearly, writing the so-
lutions of Eq. (6) as rational functions from the beginning is
the easiest way to obtain rational solutions of the NLSE.

To obtain the higher-order solutions of the hierarchy, we
still use the Darboux expression for ¢;:

dis.r;
Jib
=i - , (20)
n.
j
where n;=[r/[*+|s;]* in the lowest-order case is n;=1+4s*

+4x2.
For any order, the most convenient way to write the solu-
tion is the following:

)= 1y SEDERED otz o)
o

where G, H, and D are polynomials in the two variables x
and t. The solution remains valid if it is multiplied by e’
with 6 real. To be specific, we take #,(0,0) to be real and
positive. This means that we have IJII(O H— (=1 as ¢
— * oo, Now the vector (r,s,) above allows us to find i,
directly: we obtain G,=4, H,=8, and D,;=nDy=1+41
+4x%, where we have set Dy=1. Thus we get ¢,
=[4—5" MES) —1]exp[ix]. We can multiply this by —1, and we

1+41%+4x>
then obtain the solution as it is more commonly written as

[1]
dfla: |:1_4

For the next step, the standard Darboux scheme gives ex-
plicit formulas for r, and s,. However, in our case, these
expressions fail as all the eigenvalues in the scheme are the
same. To apply the scheme, the eigenvalues should be differ-
ent.

Instead, we solve the linear equations with the ¢ function
found at the previous step, =, to obtain r,,s,. This seems
to be complicated as the complexity of these functions in-
creases at each step. However, knowing that the functions are
rational means that we can still solve the equations explicitly
at higher order if we use a suitable procedure. Calculations
can be relatively simple as we expect the denominators of
r;,5; to be the same as that of #;_; so we use a polynomial (in
two variables) divided by this denominator, Dj_; as an an-
satz. Thus, we can take

1+ 2ix

A explix]. 22
1+4t2+4x2}eXpr] (22)

b(1) +g(x) + py1x°
1

)

where p, is a constant and b(¢) and g(x) are low-order poly-
nomials (here both are of order 4), and
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_h() + Pax® + patx®

ri= D, >

where p, and p; are constants and where /(z) turns out to be
of order 3. We substitute in and equate coefficients. This
directly gives the following results for the real functions, r,,
and ry;:

— 24 204208 = 2 4 327 4 20t 4 61
I~
Dl\”3

ryr=

and

3+3t—48 +4x% — 41x®
I = I .
D] \”3
Applying the mirror symmetry condition, we obtain
2328 -2t 4 3+ 2t - 6

D 1 \\‘”’3

Iyp=X8= =

Similarly, we obtain the equation for s,,. In these functions,
the constant v3 has been chosen for later convenience.
The higher-order solution of the NLSE with j=2 then is

.
Y=t~ 422, (23)
ny
where n,=|r,|*+|s,|*. As r and s are ratios of polynomials, 1,
is also a ratio of two functions D;. Then the second function
D,=n,D, is a single polynomial in two variables. This pro-
duces the exact second-order solution:

G, +ixH
Yo = s explin) = {1 " $]exp(ix),
2
where
3 2 4 2 4 2.2
G2=§—3t -2t =9x" = 10x" = 12t°x~,
15 2 4 2 4 2.2
H2=Z+6t — 41" = 2x7 —4x" = 8t°x”,
and

13 16 16
D,= g{z +9°7 + 41t + ?t6 +33x% + 360t + ?x(’ - 247°x%

+ 16742 + 16t2x4] .

This solution has been presented and illustrated previously in
[1].

The procedure can be continued to obtain the whole hier-
archy of rational solutions ;. The denominator D; in i,
appears again in the factors rj,,s;,; which are used to find
Ui We solve the set of equations from the matrix each

time, with the previous value of #; being used.

IV. THIRD-ORDER SOLUTION

Applying the above technique, we find the first function
r3, being given by

PHYSICAL REVIEW E 80, 026601 (2009)

FIG. 1. (Color online) Third-order rational soliton [Eq. (26)].

. \/E FolD)/16 + 2£5(0) + f,(x,1)
3r— 2 S

D, (24)

where the polynomials fy (1), f5(), and f,(x,) are more cum-
bersome than before and thus are moved to Appendix A.

Similarly,
o \/E mo(1) + xX°my(1) + my(x, 1) 03)
N2 D, ’

where the expressions for m(t), m,(t), and my,(x,1) are given
in Appendix B. Now ny=|r;|*+|s3* is a ratio of two func-
tions, while Dy=n3D, is a single polynomial.

We find the next-order solution of the NLSE in the form
(Fig. 1)

s(t) = [— 1+ M}exp(ix). (26)
Ds
Here
5
G3(X,f) = E an(t)(zx)2”’ (27)
n=0
5
Hy(x,1) = 2 hy, (1)(22)7", (28)
n=0
and denominator
6
D3(X,[) = E dZn(t)xzn’ (29)
n=0

where polynomials g,,(), h,,(t), and d,,() are given in Ap-
pendixes C-E, respectively. Now, it is a straightforward ex-
ercise to verify that ¢;(x,¢) satisfies the NLSE.

The shape of the central peak of the wave at x=0 along
the ¢ axis is particularly interesting as it can be compared
with the results of numerical simulations with random initial
conditions in Sec. VII. Indeed, when x=0, the third-order
solution is greatly simplified and becomes real:

G5(0,1)
D5(0,1)

8o(1)
do(1) '

where polynomials g(¢) and d,(r) are given in Appendixes C
and E by Egs. (C2) and (E2), respectively. The maximum

¢3(0,t) = ¢3(0,t) == 1 + - 1 + (30)

026601-4



ROGUE WAVES AND RATIONAL SOLUTIONS OF THE ...

hp,(0, 1)
7 -

-6 -4 -2 0 2 4 6 t
FIG. 2. (Color online) Magnitude of rational solution, |i3(0,1)

on the central line x=0 as given by Eq. (30). On this line the field
is real and its maximum value is 7.

)

value of t%lf): main peak of the third-order solution is
0
¥5(0,0)=55—-1=7.

The function |¢/5(0,#)| is shown in Fig. 2. It has six zeros
symmetrically located on the ¢ axis. They occur at approxi-
mately +0.3237 86, *=1.093 07, *2.671 36. Thus
|445(0,1)| has five local maxima. The central peak has ampli-
tude of 7, the two second side peaks have amplitudes of
about 1.4, and the two third ones have amplitude of 0.7.

V. FOURTH-ORDER SOLUTION

The complexity of higher-order solutions grows quickly
with increasing order. To avoid pages full of equations, for
the fourth-order solution we just present it on the middle line
x=0 where the amplitude profile reaches its maximum. Thus,
continuing on, we find that r4(0,7)D5 is a polynomial of
order 16:

16

1
rr4(07t) = EE un(zt)n,
3n=0

with the coefficients u, given in Appendix F. The solution
itself on the line x=0 is purely real:

_ G4(0’t)
(0,0 =1+ D—4(0,t)' (31)
Here
9

G4(0,0 =82 q,(20)™",

n=0

10
D4(O’t) = 2 Cn(2t)2n7

n=0

and the coefficients ¢,, and ¢, are given in Appendixes G and
H, res%)ectively. The maximum value is clearly i,(0,0)=1

giig:g) =1+8=9. We plot the magnitude of the fourth-order

solution || on the central line x=0 in Fig. 3.
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hp, (0, 0)
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FIG. 3. (Color online) Magnitude of rational solution, |¢4(0,?)
on the central line x=0, as defined by Eq. (31). On this line, x=0,
the field is purely real. The maximum value of the amplitude profile
is 9.

bl

VI. GENERAL FEATURES OF THE SOLUTIONS

We now can make an overview of the main features of the
functions we have found. The results are summarized in
Table I.

As we progress from j=1 to j=2 and then j=3,4, we find
that the highest power appearing in function r;,D;_, is j%. The
highest power occurring in the function G; and also in H; is
(j=1)(j+2). Furthermore, the highest power in D; is j(j
+1), while the field ;(0,7) for large ¢ approaches (~1)/, the
central maximum, [¢/,(0,0)| is equal to 2j+1 and the number
of zeros is 2j. We are always interested in magnitudes so the
background level (of deep ocean, etc.) is always 1. These
characteristics are summarized in Table I. There is a clear
pattern to the number of terms in the main functions. This
can be seen in Table II.

A. Integral relations

We note that [1]

TABLE 1. Summary of characteristic parameters of rational
solutions presented in this paper. Here r;D;_; : exp means the high-
est exponent occurring in the polynomial r;,D;_y; for the orders
given, it is j2. Next, G,H:exp means the highest exponent occur-
ring in the polynomials G; and H}; here, it is (j—1)(j+2). Further,
D:exp means the highest exponent occurring in Dj; for the orders
given, it is j(j+1). The next column gives the number of zeros in
function ¢;(0,1); this is 2j for the cases here. The final column
gives the maximum amplitude of function ¢;(0,7); it occurs at the
origin and is ¢;(0,0)=2j+1.

Number
j riD;_j:exp  G,H:exp D:exp of zeroes Max. ampl.
1 1 0 2 2 3
2 4 4 6 4 5
3 9 10 12 6 7
4 16 18 20 8 9
J 7 (G-DG+2) jG+1) 2j 2j+1
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TABLE II. Summary of number of terms appearing in the main
functions. For the cases given here, the total number of separate
terms in G; (of course, a few of the coefficients equal zero) varies as
L(1+ 1)(/2+J+2) The function H; has the same number. The num-
ber of terms in D; follows 8(]2+J+2)(]2+]+4)

j Terms in G; Terms in D;
1 1 3

6 10

21 28

f [(x,0)* = 11de =0

for all x so that energy is conserved and equals that of the
background sea level, i.e., |¢;(x,t)|* is equally above and
below the mean sea level.

We now present a different interesting relation. Clearly,
¢j(x,t)—(—1)j approaches zero when x and/or ¢ become
large. Thus we can define

G(0,1) t)
f [4,(0,0) - (- Uj]dt_J_mD(O

Now the integrand for j=1 has no zeros, and we easily find
that Ny=27r. In fact, this integrand has a shape resembling
the function 4 sech(2¢), which is the fundamental soliton of
the NLSE and which also has an integral equal to 27r.

We now apply complex analysis to determine the N; for
I=j=4. Now D;(0,1) is of order j(j+1) (see Table I) and
has j(j+1)/2 sunple zeroes in the upper half of the complex
t plane. Each provides a pole of G(0,1)/D;(0,1), and we can
thus express N; as 27i times the sum of the residues at these
poles. We find that each residue is =i, and they can easily be
added to obtain N,=-27, N3=4m, and Ny=—4m. The fact
that these integrals, involving ratios of apparently compli-
cated polynomials of order of up to 20, turn out to be integer
multiples of 7 again highlights the point that these solutions
are new fundamental objects.

VII. UNCOVERING RATIONAL SOLUTIONS
IN CHAOTIC FIELDS

Now there is a major question: are rational solutions use-
ful in practice or can they only be viewed as an interesting
set of mathematical functions? We demonstrate here that
physical realizations do occur. Indeed, it turns out that the
first-order Peregrine solution is a prototype for the mysteri-
ous rogue waves in the ocean [2]. Clearly, higher-order so-
lutions can, very likely, explain rogue waves of even higher
amplitudes [1]. Direct confirmation of this conjecture comes
from numerical simulations of the NLSE with initial condi-
tions in the form of a plane wave with randomly perturbed
amplitude [11]. Specifically, the wave regions of highest am-
plitude almost coincide in shape with the major peaks of the
rational solutions given here. It would be nice to confirm that
this indeed happens for even higher-order rational solutions.

PHYSICAL REVIEW E 80, 026601 (2009)

max|y(x,t)]

FIG. 4. (Color online) Maximum value of the field amplitude
versus x for one of many realizations, showing the appearance of
wave sections with an unexpectedly high maximum from a random
initial condition. The highest maximum in this simulation is around
7.

In this section we do confirm that this is the case for the
third-order rational solution. In principle, the same could be
done with the fourth and generally jth-order solutions. How-
ever, it is unlikely that the state of ocean surface excitation
could be so high.

Thus, we have solved Eq. (1), taking the initial conditions
to be a plane wave of amplitude one plus random noise:

Px=0,0)=[1+puf(n], (32)

where f(7) is a normalized complex function, whose real and
imaginary parts are independent random functions, uni-
formly distributed in the interval [—1,1], each with a Gauss-
ian correlation function characterized by its correlation
length, 7. As the function f(r) is normalized, the state of
excitation of the ocean surface can be described by the co-
efficients w and 7. A number of examples have previously
been considered in Ref. [11]. As we are interested in the role
of higher-order rational solutions in wave excitations and
these occur with very low probability, we needed to perform
a large number of numerical simulations for many realiza-
tions with different values of 7and u to detect a single case.

A wide numerical grid is used to observe the formation of
a large number of interacting waves inside of it. In most of
the cases, we used 65 536 grid points to cover the temporal
interval [-500,500]. In order to look for the waves of high-
est amplitude, we monitored the maximum value of the field
amplitude at each value of x. As a next step, we made plots
of these maxima versus x. This two-step procedure allowed
us to find the absolute maximum of the wave in two dimen-
sions. Clearly, the absolute maximum depends strongly on
the initial state of ocean excitations w and 7. For the present
study, we adjusted u in such a way that the maximum am-
plitude of 7 could be reached.

Figure 4 shows the results of the simulations described
above. Starting with small random perturbations requires a
relatively long distance, x, which in this case is around 10,
for exponentially growing perturbations to develop. The
ocean surface afterwards arrives at an “excited state.”
Around x=18, the absolute maximum of 7 is reached, as can
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[w(x,0)]
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FIG. 5. (Color online) Wave field near the region with the high-
est maximum, viz. 7 (shaded blue region in Fig. 4). The red dashed
curve shows the ¢ dependence at the value of x where the maximum
is reached. The horizontal red dashed line indicates, for this profile,
the zero amplitude.

be seen from Fig. 4. The remaining part of the curve does not
reach such high values and has been removed from this fig-
ure.

Part of the curve in Fig. 4 is enclosed in a blue interval.
For this interval of x values, the actual wave evolution is
shown in Fig. 5. Again, we show here only a small interval
of ¢ values that encloses the section of the wave with the
highest amplitude. The wave profile around that peak is
shown in Fig. 4 by the dashed red curve. Generally speaking,
the profile is chaotic. However, the central peak of this cha-
otic profile has a special shape. In order to show this, we
repeat this profile, as a blue dashed line in Fig. 6.

For the sake of comparison, in the same figure, we plot
the profile given by the magnitude envelope of the rational
solution of the third order, |¢;(0,7)|, obtained from Eq. (30).
The latter is shown as a dotted red line. A direct comparison
of these two profiles show that the central peaks and the
surrounding two side zeroes perfectly coincide. Of course,
we cannot expect the field away from this to follow the exact
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FIG. 6. (Color online) Comparison of the profiles. The dotted
red curve represents the magnitude of the exact third-order rational
solution, |¢5(0,7)| [Eq. (30)]. The dashed blue curve is obtained
from numerical simulations with random initial conditions. The
central peak and the two main zeroes virtually coincide.
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solution, as the rest of the wave field is a nonlinear superpo-
sition of the third-order solution with chaotic part of the
field. However, the profile of the main peak shows clearly
that rational solutions play a major role in the formation of
rogue waves.

We have no doubt that whenever the highest amplitude of
the wave field reaches the values 9, 11, etc., it would be
defined by the rational solutions of the corresponding order
(4, 5, etc.). However, we leave detailed studies confirming
this claim for the future.

VIII. CONCLUSIONS

In conclusion, we have presented a method for finding
rational solutions of the NLSE and given the explicit forms
for low-order solutions from the first up until the fourth.
While the j=1 case [3] and the j=2 case [1,7] have been
presented before, the j=3 and j=4 ones are completely new.
We have shown that a whole hierarchy of such solutions
exists and have provided the method for finding the solution
for any j in that hierarchy. We have shown that these solu-
tions may appear as the highest amplitude parts of a chaotic
wave field. The possible applications for our results are (1)
explanation of rogue waves in the deep ocean and (2) cre-
ation of high intensity rogue light wave pulses in optical
fibers.
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APPENDIX A: f POLYNOMIALS

_ _ 8, a_2 05
fo(t)=1-3(21) 3(2t) +2(21) 15(2t)
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APPENDIX B: m POLYNOMIALS
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APPENDIX C: g,, POLYNOMIALS
We have for G;(x,1)
5
G3 = E g2n(t)(2x)2n
n=0
= go(1) + (2x)%g5(1) + (2x)*g4 (1) + (2x)%g4(1) + (2x)%g3(1)
+(2x)10810’ (C1)
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_ 2 % 4 i 6 @
g2() ==3-20021)% + 3(2t) - 45(2t) 5 (C3)
4 6
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861 =45 3 :
1
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11
8107 75+ (C7)

APPENDIX D: h,,(f) POLYNOMIALS

We have for Hj(x,1)
5

H3 = E h2n(t)(2x)2n
n=0

= ho(1) + (2x)*hy(t) + (2x) hy() + (2)°he(1) + (2x)*hg(2)
+(2x) 1%, (D1)

where
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2 (2t)8 (2t)'0
ot =2] 77207200 S - 2 27
(D2)
8
hy(1) = %[— 11-28(20)%-2(20)* - %(2:)6 + %] ,
(D3)
6
ha(1) = %[— 107 +19(21)* - 2(2;)4 + (23_2} (D4)
4 ., 20
he(t) = 45[ 29-2(20°+ = } (D5)
2 (20
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2
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APPENDIX E: d,(t) POLYNOMIALS
We have for Ds(x,1)
6
D3=2d2nxzn
n=0
= do(t) + (1) + x*d(0) + 2°d(0) + 2 dy(a) + "0 (1)
+x12d12’ (El)
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28 21)?
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APPENDIX F: u,,(t) COEFFICIENTS

M0=1, u1=—4, M2=O,
20 20 4
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6= 45 T T 3150 T 05
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APPENDIX G: g,,(t) COEFFICIENTS
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q6= 945’ q7;= )
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APPENDIX H: ¢,,(t) COEFFICIENTS
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ce=——, c;=8/11025, cz=1/55125,
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