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Jamming at zero temperature and zero applied stress: The epitome of disorder
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We have studied how two- and three-dimensional systems made up of particles interacting with finite range,
repulsive potentials jarfi.e., develop a yield stress in a disordered statezero temperature and zero applied
stress. At low packing fractiong, the system is not jammed and each particle can move without impediment
from its neighbors. For each configuration, there is a unique jamming threghadtl which particles can no
longer avoid each other, and the bulk and shear moduli simultaneously become nonzero. The distrilghtion of
values becomes narrower as the system size increases, so that essentially all configurations jam at the same
packing fraction in the thermodynamic limit. This packing fraction corresponds to the previously measured
value for random close packing. In fact, our results provide a well-defined meaning for “random close
packing” in terms of the fraction of all phase space with inherent structures that jam. The jamming threshold,
point J, occurring at zero temperature and applied stress and at the random-close-packing density, has prop-
erties reminiscent of an ordinary critical point. As poihtis approached from higher packing fractions,
power-law scaling is found for the divergence of the first peak in the pair correlation function and in the
vanishing of the pressure, shear modulus, and excess number of overlapping neighbors. Moreover, near point
J, certain quantities no longer self-average, suggesting the existence of a length scale that divdrges at
However, point] also differs from an ordinary critical point: the scaling exponents do not depend on dimension
but do depend on the interparticle potential. Finally, as pdistapproached from high packing fractions, the
density of vibrational states develops a large excess of low-frequency modes. Indeed, attheinensity of
states is a constant all the way down to zero frequency. All of these results suggest thdtip@rpoint of
maximal disorder and may control behavior in its vicinity—perhaps even at the glass transition.
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[. INTRODUCTION that one can ask is whether there is something generic about
such transitions so that the freezing of a liquid into a glass
The nature of the glass transition has been called probablyan profitably be compared to the arrest of a flowing granular
“the deepest and most interesting unsolved problem in solidmaterial, or a suspension, as external stresses are reduced
state theoryf1].” The nature of granular materials has also below the yield stress. In other words, can one study systems
been said to lead to equally deep questions in statisticahat can explore different states either through thermal fluc-
physics: “One might even say that the study of granulartuations or through externally applied stresses, and search for
materials gives one a chance to reinvent statistical mechaniesifying concepts that describe their arrested dynamics as
in a new contexf2].” Indeed, only a few years ago, the state different aspects of a more general “jamming” behayié[?
of understanding of granular matter was compared to “the Our approach to this problem is to describe both glassy
level of solid-state physics in 193B3].” There is no doubt systems and granular ones using the concept of a “jamming
that there are hard and deep problems associated with boffhase diagram.” In such a diagram, the “phase boundary”
types of systems and it may seem, at the outset, foolish to trynarks the point where the response of the system has be-
to study both problems simultaneously. However, there haveome so sluggish as to make it appear solid on any experi-
been significant advances in both fields of study that indicatenental time scale. Using this framework, one can gain in-
that these problems are perhaps intimately related. They bo#tight into the relationship between athermal jamming and
deal with amorphous systems of particles in which the dythermal glass transitions, and appreciate what are the control
namics is perched precariously near a transition between \aariables that govern dynamical slowing down under many
flowing and a static state; that is, both systems are close todifferent conditions. In this paper, we describe simulations of
jamming threshold where all dynamics ceases. One questicet model liquid with frictionless, finite-range repulsive inter-
actions. Because the potentials fall to zero at some fixed
finite radius, such a system may be a starting point for un-
*Permanent address: Department of Mechanical Engineeringjerstanding macroscopic granular or colloidal systems as
Yale University, New Haven, CT 06520-8284, USA. well as liquids. For such potentials, there is one special point,
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at zero temperature and zero applied shear stress on the sur- T
face separating the jammed and unjammed regions, which

has exceptional and unique properties. The goal of this paper

is to elucidate some of the important properties of this spe-

cific jamming transition in depth. We have found that the .
transition near this point has some aspects that resemble a Unjammed
critical point and other properties that are not expected for a Jammed 5
normal second-order transition. However, just as with a more

conventional critical point, there is the tantalizing possibility

that it may control the region around it and thereby govern J

the nature of the entire jamming surface in the phase dia- 1/

gram.

We will first describe what is meant by jamming and what ~ FIG. 1. “Jamming phase diagram.” The jammed region, near
systems may profitably be studied under this rubric. We willthe origin, is enclosed by the depicted surface. The point lakbkled
then describe the jamming phase diagram and show the ini$ the boundary of the jammed region®t0 and> =0. Adapted
portant consequences that can be drawn from it. The natufePm Ref.[13].
of the transition at zero temperature and zero applied shear

stress will then be described to show why it is such an jm-9&neous in space and intermittent in tijd€]. However, the
portant and unique transition. parameters that control jammiritemperature for the glass

transition, applied shear stress for a foam, packing fraction
for a colloidal suspensigrare so different that previously it
A. Systems that jam was difficult to see how to compare the jamming transitions

. ) at a quantitative level.
Jamming occurs when a system develops a yield stress in

a disordered statf4]. In many cases, it is difficult to tell
whether a system has an infinite stress relaxation fianel
hence a yield stregsor whether it has a finite stress relax- ~ We proposed in Ref.13] that different routes to kinetic
ation time that exceeds the time scale of one’s measuremergirest can be tied together by a “jamming phase diagram,”
Therefore, an alternate definition is that jamming occursshown schematically in Fig. 1. The shape of the jamming
when a system develops a stress relaxation time that exceesigrface may be different for different systems. The choice of
a reasonable experimental time scale in a disordered stat@xes is dictated by the parameters that control the transition
According to these definitions, many systems jam. Granulaio jamming in different systems, namely, temperaflirden-
materials can flow when they are shaken or poured through ity or packing fractiong, and shear stresS. Note thatT
hopper, but jam when the shaking intensity or pouring rate isind ¢ are traditional axes for phase diagrams, Buis not.
lowered[5]. Colloidal suspensions of particles are fluid, butIn the unjammed regime, the system flows at non2&rso

jam when the pressure or packing fraction is rai§éfl 2 is a nonequilibrium axis. Why should there be such an axis
Foams and emulsiongoncentrated suspensions of deform-in the jamming phase diagram? One reason is that shear
able bubbles or dropletdlow when a large shear stress is stress introduces fluctuations in the unjammed regime by
applied, but jam when the shear stress is lowered below thtorcing the system to explore different packing configura-
yield stresq7]. It should be emphasized here that granulartions. Recent studies show that such fluctuations can be de-
materials, foams, and dense emulsions are athermal in tiseribed by an “effective temperature” that has many of the
sense that ordinary room-temperature thermal fluctuationsttributes of a true temperatufg#4—17. Moreover, the dy-

are too insignificant to allow the system to explore phasenamics of a sheared system whose effective temperature is
space. However, for other systems—typically those consisttowered toward jamming are quantitatively similar to the dy-
ing of smaller particles, such as molecular liquids—namics of an equilibrium system whose temperature is low-
temperature plays an important, if not dominant, role. Thesered toward the glass transitiph8,19. These results help to
liquids jam(if crystallization does not intervene fiysis tem-  justify the existence of shear stress as an axis on the phase
perature is lowered or density is increased—this is the glasgiagram.

transition[8]. There are a number of striking similarities in ~ The ordinary phase diagram for the glass transition lies in
the phenomenology of these different transitions. Despitéhe vertical plane coming out of the page of Fig. 1, namely,
much effort, no significant static structural signature—as opthe (14)-T plane. At high packing fraction, there is a tran-
posed to a kinetic slowing down—of jamming has been ob-sition between a supercooled liquid and a glass that occurs at
served experimentally in any of these systd@is However, T,. (Although the relaxation times appear as if they will
we have proposed that such a signature can be observed irdiverge close to the transition line, it is impossible in practice
quantity initially measured for granular materigfs0]. An-  to track their increase past the times scales accessible to ex-
other similarity among the different systems is that the in-periment. Thus, the transition lin€; marks the position
crease of the stress relaxation time tends to be supewhere the relaxation time has reached some large threshold.
Arrhenius as a function of the control paramef&d]. In Its exact position may depend to a small extent on the largest
addition, all systems show kinetic heterogeneities near théme that an experimentalist is willing to run an experiment.
onset of jamming, where particle mobilities become heteroThis definition corresponds to the conventional one used for

B. Jamming phase diagram
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Tq in glass-forming liquids.As the packing fraction is low- e(1-rijlo))a for r;<oy,
ered,T, normally decreasg®0]. This glass-transition line is V(rij) =
represented by the curve separating the jamined glas$

and unjammedi.e., liquid regions in the (1$)-T plane.

The ordinary phase diagram for a foam or emulsion would

be in the horizontal plane coming out of the page, namelywheree is the characteristic energy scale of the interaction,
the (1ip)-= plane of Fig. 1. At a fixed packing fraction, one rj; is the separation between the centers of particksd],
must apply a shear stress higher than the yield stress in ordand gj; is the sum of the radii of particldsandj. We study
for the system to flow at an experimentally measurable sheahree different potentials, namelyg=2 for repulsive har-
rate. Thus, the yield stress as a function of packing fraction ignonic springs,a=3/2 for repulsive nonlinear springs that
the curve that separates the jammed and unjammed regioggs parder than harmonic springs, ame 5/2 for repulsive

in this plane. As the packing fraction decreases toward Closﬁertzian interactions that are softer than harmonic springs

E%Ck'ln[%’ltg% yield stress typically decreases, as indicated I&8]. It is important to note that the interactions are finite in

Mode-coupling theorists suggested years ago that the cof@n9e—particles do not interact unless they overlap. Poten-
loidal glass transition and molecular glass transition are th&@ls Of this form were motivated by granular materials where
same despite the fact that the control variables are differer@rticles have a well-defined diameter and do not interact
[23]. More recently, mode-coupling theories have been exexcept for a strong repulsive force that keeps the particles
tended to include shear strgg8l] or other control variables from deforming too much. In our two-dimension&2D)
not derivable from Hamiltonianf25]. The jamming phase simulations, we have used 50-50 mixtures of particles with a
diagram suggests a reason why different jamming transitionsize ratio of 1.4 in order to prevent crystallizati®9,30.
might be related, independent of the validity of the mode-The diameter of the smaller particle is denotedsbyin three
coupling approximation. dimensions(3D), we have studied the same bidisperse mix-

While it has long been recognized that temperature, packiure as well as monodisperse systems with particle diameter
ing fraction, and stress can all control the stress relaxatiog, We have studied the finite-size effects by varying the
time, the concept of the jamming phase diagram is a produthumber of particles in the sample betweer M<4096 in
tive way to correlate jamming in different amorphous sys-2p and 3D.
tems. The diagram implies that these three control param- of crycial importance is the protocol for the creation of

eters are important to all systems, so that one can study &nfigurations af=0 and a given packing fractios. To

single system as a function of all three variables. The diagyain sych states, we start each simulation with a fixed num-

gram has proved to be a useful way to think about experipqa, of ; ; ; o
. particlesN, with the particle positions chosen com-
ments, as shown recently by Trapgteal. [26] on solidifica- pletely at randonithis corresponds =) within a square

tion of attractive colloids. It also explicitly suggests new . L o
experiments to be done. For example, it suggests that O:g‘cublc box with side length and periodic boundary con-

()

0 for rij=ay,

should measure how the relaxation time in a glass-forming/!tions- Starting with randomly generatda-< states guar-
liquid depends on applied stress. It also suggests that t tees that we sample all phase space equal!y._ We then bring
introduction of a temperature to an otherwise jammed athefN€ System to the nearest potential-energy minimum by con-
mal system can help the system to flow. That is, temperaturgl@ntly moving downward on the potential energy surface.
is a relevant variable for these transitions. This is, of courseWe do this using conjugate-gradient techniqiigt]. Each

in qualitative accord with the daily experience that shakingconjugate gradient energy minimization is terminated when
an otherwise jammed material can reinitiate flow. Perhap§ne of the following two stopping criteria is satisfiéd) the

the most significant implication of the diagram is that thetotal potential energy per particle satisfié&N<10"*° (this
jammed region might control the behavior nearby and thagorresponds to a very small pressyre; 1019 and(2) V/N

this is why different systems behave so similarly as theyfor successive iterations deviates by less than'20This

slow down on their approach to the jammed state. procedure brings the system extremely closd t00. Note
that this procedure is identical to that for finding the “inher-
Il. JAMMING AT POINT J ent structures” of thel =« stateq32].

In addition to studying th&d =0 states generated by the

Perhaps the most daunting problem in studying any jamprotocol described above, we explore their properties by per-
ming transition is that the jammed surface depicted in Fig. kurbing them slightly. We compress them, decompress them,
is typically not sharp, and is defined by the system’s relaxor apply shear strains. After each infinitesimal perturbation,
ation time exceeding experimental time scales. Howevelye can again employ the conjugate-gradient technique. Since
there is one point on the jamming phase diagram that is wekhjs technique takes the system to the bottom of its local
defined[27], namely, the point labeledin Fig. 1. This point  potential well, the quantities we measure in this way are
exists at zero temperature and zero applied shear stress f@lated to the static, or infinite-timet € ), response(the
systems with repulsive, frictionless, finite-range potentialsstatic bulk or shear moduB., or G..) of the configurations.
This section is devoted to the special properties of pdint \\e have also measured the 0 moduli B, andG, by mea-
suring the response to a perturbation immediately after it has
been appliedbefore minimizing the energy by the conjugate

To explore point, we have studied potentials of the fol- gradient technique The shear and bulk moduli are obtained
lowing form: by measuring the response of the pressure teff@sir

A. Method
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to shear and compression perturbations, whgrgis the a

component oﬂj andd is the dimensionality of the system.
To measure the bulk modulus, we calcul&e ¢dp/dae,
where the pressure is=% ,p,./d. To measure the shear
modulus, we calculat&=dx/dy, whereX=—p,,, after
applying a shear strain in thedirection with a strain gradi-
ent in they direction. The pressung stressy,, bulk modulus
B, and shear modulu§& are measured in units of/ o9, FIG. 2. The infinite-time stresA3, =3 (y) —2(0) following an
lengths are measured in units®f and time scales or inverse applied shear straiy. The resulting stress-strain curve is linear for
frequencies are measured in unitsmf/m where all par- sufficiently small strains and independent of the sign of the strain.
ticles have equal masas. Open (filled) symbols indicate negativépositive) strains. These
curves were generated using 3D monodisperse systdm<$12)
) ) ) ) ] with harmonic repulsions. Circles and squares represent systems
B. J represents the onset of jamming for a single configuration  \yith packing fractionsp— ¢.=10"2 and 104, respectively. The
It is important to note that each initidl=c state can solid lines have slopes equal to 1. The shear modulus, yield stress,
yield a different value of the packing fractiaf,, where the and yield strain(where stress vs strain becomes n'onlimamd to
pressure and potential energy first become nonzero. Despif§'0 as¢ approachesp., whereg, is the onset of jamming for a
this ambiguity about the value of the threshabd, we find ~ 9'ven configuration.
that there are robust results when we measure properties as a
function of ¢ — ¢, including scaling laws, that appear to be pressure, we decompress the system in small steps, applying
the same for all initial configurations. In Sec. Il C, we will conjugate-gradient energy minimization after each step, until
examine the nature of the distribution of these valuegof  the pressure reaches zerodat. We insure that the system
In this section, we will show that it is possible to locate adoes not cross over any energy barriers during these proce-
well-defined onset of jammingp., for each initial state. dures by compressingor decompressingin successively
To test whether a givefi=0 state is jammed or not, two smaller increments. As the density variation is made finer
separate criteria must be met: a jammed state must haveaad finer, we make sure that we end up in precisely the same
nonzero static(i.e., infinite tim@ value of both the bulk configuration for all the particles independent of the size of
modulus and the shear modulus. As we show below, for eactihe increment. Increments were in the rangk¢
state that we have studied, the static bulk and static shear[10 10 4], with smaller increments used for smaller
moduli approach zero at the same density. Thus, ¢,  systems and systems closerdp.
specifies the onset of jamming for each state. At each packing fraction, we measure the static shear
At T=0 andX =0, no two particles can interact if the modulusG.., by applying a very small shear strain, mini-
density is low enough. If two particles were to overlap, theirmizing the energy with the conjugate gradient technique, and
repulsive potentials would simply push them apart during theneasuring the final induced stre¢&gain, we insure that no
conjugate gradient energy minimization process until they n@nergy barriers are crossed by applying successively smaller
longer touched. Since there is neither thermal energy nancrements of shear strain. The strain increments were in the
shear stress to compete with the particles’ potential energyange [5x 10 8-10"°] with smaller increments used for
they will never be forced back into contact. Thus, at suffi-smaller systems and systems closepto) The shear modu-
ciently low densities, there are no particle overlaps and théus is calculated by measuring the linear relation between
final potential energy and the pressurp are both zero so stress and strain, as shown in Fig. 2.
that the system has a zero static bulk modulus. At the thresh- Figure 3 shows the results for the presspigs a function
old packing fractionp.., particles just come into unavoidable of ¢— ¢, for monodisperse systems in three dimensions us-
contact since there is no longer enough free space to alloimg both harmonic &= 2) and Hertzian ¢=5/2) potentials.
them to move apart. As the system is compressed further, th&fe also include our earlier results for bidisperse systems in
particles overlap, the energy and pressure are nonzero amgo and three dimensions using those same two potentials
the bulk modulus is nonzero because the pressure increasey]. We find that the data fop as a function of¢— ¢,
upon compression. collapse onto a single curve for different initial statesch
For each initialT=o state, we first obtain &=0 state  set of points corresponds to data from five different sjates
using conjugate gradient minimization. For tiiat 0 state, Thus, although each initial state has a different value of
we measure a precise value ¢f, as follows: If the con- all states behave the same way as a functiop 6f¢p. when
figuration has zero pressure, we compress the sysbtgm compressed above, .
increasing the size of each particle by the same fixed frac- In Fig. 4, we show the static shear modul@s for the
tion) in very small steps, applying conjugate-gradient energysame initial states as shown for the pressure. Again, we find
minimization after each step, until the pressure becomes northat data for different initial states collapse on a single curve
zero at¢.. Conversely, if the configuration has a nonzerowhenG,, is plotted againsty— ¢.. Note that¢, was deter-

log,, |AZ]
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FIG. 3. Upper curves: Pressupevs ¢— ¢. for 3D monodis-
perse(circles, 3D bidispersgdiamond$, and 2D bidisperséleft-
ward triangles systems with harmonic repulsionst€2). The
solid line has slope of 1.0. Lower curvgsvs ¢— ¢ for 3D mono-
disperse(squarey 3D bidispersdupward triangles and 2D bidis-
perse (downward triangles systems with Hertzian repulsionsy (

=5/2). The solid line has a slope of 1.5. These symbols for the

different systems are used throughout the tBkt 1024 N=512)
particles were used for the 2(3D) systems.

mined by where th@ressureapproaches zero, not by where
the static shear modulus first approaches zero. Thus, Figs. 3
and 4 show that the static shear moduBisand the pressure

p (and therefore, the static bulk modul&s, as wel) ap-

proach zero at the same packing fractipnto a precision of
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FIG. 5. Fractionf; of jammed states as a function @ffor (a)
2D bidisperse systems and ftl) 3D monodisperse systems with
harmonic and Hertzian repulsions. (@ and (b), the lines(down-

better than two parts in 20for the monodisperse systems. ward triangles represent potentials with=2 (a=5/2). f; for 2D
Each state develops a bulk modulus and shear modulus at thalisperse systems withv=3/2 are also shown ifia) using plus
same packing fraction. This is true for all polydispersities,symbols. Each curve represents a different systempize

dimensionalities, and potentials studied. Thug, truly
marks the onset of jamming for a given initial state.

Note that in measuring the static shear modulus, we appl
a shear stress in a given direction. Although we have show

¢— ¢.=10"°, the only zero-frequency modes correspond to
olated clusters of “rattlers,” i.e., particles that do not over-
p with any other particles and to uniform translations of the

that every studied state can withstand a shear stress in th@ptire system. The lack of any nontrivial zero-frequency

direction for ¢> ¢, it is not obvious from these measure-
ments that every state can withstand a shear stressyn
arbitrary direction. To address this, we have studied the e

genvalues of the dynamical matri84] for our T=0 con-

modes shows unambiguously that the system can withstand a
shear stress in all directions. We will discuss the statistics of

i[attlers in greater detail in Sec. Il E and the properties of the

dynamical matrix in more detail in Sec. Il G.

figurations with harmonic repulsions. We find that at least for

-1

2

0o

=3

-4 |

log,, G

4 -3 -2
Iog1o (¢_¢c)

FIG. 4. Upper curves: Static shear modul@s vs ¢— ¢, for
3D monodispersécircles, 3D bidispersgdiamond$, and 2D bid-
isperse(leftward triangleg systems with harmonic repulsions (
=2). The solid line has a slope of 0.5. Lower curv€s; vs ¢
— ¢, for 3D monodisperse(squarey 3D bidisperse (upward
triangles, and 2D bidispersédownward triangles systems with
Hertzian potentials 4=5/2). The solid line has a slope of 1.8.
=1024 N=512) particles were used for the ABD) systems.

C. Onset of jamming is sharp in the limit
of infinite system size

In the preceding subsection, we showed that different ini-
tial random {T=«) states have inherent structureE=(0
state$ that jam at different threshold values,. Here we
measure the distribution of jamming thresholds. For each
system sizeéN and packing fractionp, we start with at least
500 (100 for the largest system sizeandom {T =) con-
figurations and use the conjugate gradient method to quench
each configuration infinitely rapidly td=0. We then find
the fraction of these final states that are “jammed,” i.e., that
have a finite pressure and static shear modulus. The resulting
fraction f; of jammed states is shown as a functiongoin
Fig. 5a) for a two-dimensional bidisperse system and in Fig.
5(b) for a three-dimensional monodisperse system with har-
monic repulsions. Similar graphs were shown for three-
dimensional bidisperse systems with harmonic repulsions in
Ref. [27].

In measuring these distributions, the system remains at
one fixed, well-defined density since we dot dilate or

011306-5



O’HERN et al. PHYSICAL REVIEW E 68, 011306 (2003

-1
60 | 300 |
-15 1
2 w0 200 | 2 .|
o o
100 | <
20 25
(@ y v A
0 R R o X Z X 3 ) ) )
0.80 0.82 0.84 0.86 0.80 082 084 0 1 > 3 4
: : . log,, N
300 | — N=16 1 [ —— N=64 1
TN T N2 g FIG. 7. Width of the distribution of jamming thresholdsvs the
| T Nedo9e number of particleN for 2D bidisperse, 3D bidisperse, and 3D
r 1 monodisperse systems with harmonic and Hertzian potentials. The
solid curve has a slope of 0.55. The symbols have the same
meaning as in Fig. 3.
d of the @=2 (harmonic; solid lines distributions. In Figs.
0 == , 6(b)—6(d), we overlay the distributions fat=5/2 on top of
058 062 0.66 0.6 0.62 0.64 those fora=2 for all systems studiedD bidisperse, 3D
¢ ¢ bidisperse, and 3D monodispersd several system sizéé

Within numerical error, the different potentials yield identi-
cal distributions at eacN.

Figure 6 also shows that it is unlikely that a jamming
threshold ¢, will be found at very low packing fraction,

FIG. 6. (@) Distribution of jamming thresholdB;(¢.) for a 2D
bidisperse system witN =64 for the three different potentials stud-
ied (@=3/2, 2, and 5/2) P;(¢.) for (b) 2D bidisperse systemé)

3D bidisperse systems, afd) 3D monodisperse systems with har- Where almost all states are uniammed. or at very high pack-
monic and Hertzian potentials for various system sizegala(d), | ' yhighp

the pluses, lines, and downward triangles represent potentials with'9 flrlactlon, Wherhe a:j”.m.:)a”. states arg alrg.all\:)_/ jammed. For
a=3/2, 2, ande=5/2, respectively. The distributions for small 3D small systems, the distributions are rog shamncreases,
monodisperse systeml& 64) were not shown ifD) because we they become sharper and taller. To quantify the change of the

wanted to emphasize the monotonic behavior of the ped(itb.) distributions with system size, we extract the full width at
at largeN. half maximum of the distributiony, for eachN. The results

are plotted in Fig. 7 and are not monotonic N At very
. . . . smallN, there are only a few distinct configurations available
shrink the particles. Also, during the quench itself, there %0 a static packing, so the distribution of jamming thresholds

no dynamics. The system only travels on the potential energ) . o . .
surface and descends via the most rapid route to the near Pétnarrow. The width grows with increasir{jto a maximum

local potential-energy minimum. This distribution is there- nearN=10 for bidisperse systems and ndés 30 for 3D

fore not a function of the dynamics used in obtaining the monodisperse systefasAbove this value, the width de-

final configurations, but depends only on the fixed potential-Creases with increasiny. At the system size where the dis-

energy landscape. By starting wiTh= states, we are sam- tributions are widestN~ 10 there is a reasonable probability

; : : . of systems jamming at packing fractions as low as roughly
pling configuration space uniformly. Thus, the result shown(ﬁzo_80 in 2D bidisperse systems atid-0.58 in 3D bidis-

in Figs. §3) and 4b) is a measure of the total fraction of erse and monodisperse systems. Perhaps this is a coinci-

configuration spacé.e., the probability that belongs in the gence butitis interepstin th)allt the v.alue in BE)D corresponds to

basins of attraction of final configurations that are jammed. 7 . « g - P :
previous estimates of “random loose packing” from experi-

Figures %a) and 8b) show that the fraction of jammed .
state% depe5n<)js senEs(iti)ver on system size. For thje 2D bidi nents[35]. It has been reported that hard particle methods

. . methods that strictly prohibit particle overlapan produce
perse systenfFig. 5a)], the curves progressively sharpen . ) ) ;
with increasingN, eventually approaching a vertical jump. ![ﬁr;r:nfhde Steelfs i\g'ttmep%?;'::gu?igﬁt'g?s.atr:ﬁir?reor::Ch]lower
The 3D monodisperse systeffig. 5b)] shows a similar P . orJ go E%_ ‘
behavior forN>64. For smaller values f, there is enough However, we have carried out similar hard particle simula-

partial crystallization to produce additional structure in thef[Ions and find that these lovi-states are not jammed accord-

curves. ing to our definition given above. Instead_, these states are
We calculate the distribution of jamming thresholds unjammed and fall apart when they are slightly compressed

Pj(¢c) by differentiating the data in Fig. 5 with respect to > Isnh?r?éelglrgeN regime, Fig. 7 shows that the full width at

¢. We find that the distributions are insensitive to the inter-hahc maximum of the diétribL.Jtion scales as

particle potential used. This is illustrated in Figapfor 2D

bidisperse systems at a fixed system $ize64. In this fig- w=woN~ @ @)

ure, we overlay the distributions fer=5/2 (Hertzian repul-

sions; downward triangl@¢enda=3/2 (plus symbolsontop  with 2 =0.55+0.03 andwy=0.16+0.04 for all of the sys-
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ing. Our value should be compared to other recent estimates
of random close packing),.,~0.64[37,38. This similarity
is not a coincidence.

Random close packing cannot be defined in a mathemati-
cally precise way because the terms “random” and “close
packed” are at odds with one anothg38]. Because the
close-packing density of an fcc packing is/\/18~0.74
>0.64, one can always make the system more highly close
, . . packed (but less randopnby introducing some degree of
0 05 1 15 2 crystalline order. How random the system should be versus

|c,g10 L how close packed it should be is arbitrary. Torquatal.
therefore propose another term, “maximally random jammed

FIG. 8. Deviation of the peak in the distribution of jamming state.” By “jammed,” they mean that any particle or set of
thresholds from its asymptotic valle,— ¢*| vs L for 2D bidis-  particles cannot be translated relative to any of the rest of the
perse, 3D bidisperse, and 3D monodisperse systems with harmongarticles in the system, and by “maximally random,” they
and Hertzian potentials. The solid curve has a slope o£1.40.  suggest a definition based on minimization of order param-

The symbols have the same meaning as in &jp. eters characterizing the extent of crystalline order, bond ori-
. o _ . entational order, et¢39].
tems studied. This implies that &diverges, the width ap- ~ Here we suggest an alternate interpretation for random

proaches zero and the distribution of jamming thresholds apelose packing using the language of a maximally random
proaches & function. In other words, in the thermodynamic jammed state, but with different meanings attached to maxi-
limit, essentially all of phase space jams at the same packingially random and jammed. In our case, the valbit is
fraction ¢*. This means that point in the jamming phase obtained by extrapolating the peak of the distribution of jam-
diagram is well defined as the onset of jamming. ming thresholds to infinite system size. The peak of the dis-
tribution corresponds to the packing fraction with the maxi-
D. Point J is random close packing in an infinite-size system  mum fraction of phase spacee., themaximum entropythat

belongs to the basin of attraction of jamming thresholds in
Our results are relevant to hard-sphere systems becaus€ S

- , . . ; e thermodynamic limit. We therefore propose that another
the T=0 configurations obtained by this protocol are al-

lowed hard-sphere configurations if none of the particlesWay to define maximally random is by where the entropy of

overlap. Thus, at sufficiently lowp, the conjugate gradient !ggﬁ] es(;aitsets) '?hemz;)i(slgqurg'ag?ig?zz?g_t#:ru";?é t%ggggeof
minimization technique will invariably yield allowed hard- J y bp d Y

sphere states. Our protocol yields special insight into th the dynamica! mat(i>(yyith the exception of isolated qlgsters
nature of random close packing, a highly reproducible bu%f rattlers. This deflnm'on'has th? advgntage of av0|d|ng the
heretofore somewhat vaguely de,fined state tOrder parameter description, which wlll always be subject to
We make the connection to random closé packing by as uncertainty since one never knows |_f one has calculat(_eo! _the
roper order parameter. It also provides a cleaner definition

'nlg wDatvl\'/s thellln?ltlng?l;w vtalue Ioi_thetjr?mmlngkj thrg?h- of the word jammed, since it depends on the nature of zero-
old ¢*. We calculate it by extrapolating the peak posi Ionsfrequency modes of the dynamical matrix. If one is testing

¢o Of thg dlstrlbu.tlons shown in Fig. 6 V\.”th respect t2 the whether a system is jammed by shifting particles, it is un-
system size. In Fig. 3;, we plot the deviation 44 from ¢ likely that one will hit on the exact combination of particle
as a function oL =N"%, whered is the dimensionality. The — gpifiq that is characterized by the eigenvector of a zero-
peak position approaches its limiting asymptotic value as greq,ency mode. Finally, we note that our finding that virtu-
power law inL: ally all initial states jam at the same valgé in the thermo-

bo— * =L 1. (4) dynamic limit may explain why the value of random close

packing is so robust despite the fact that it has not been well

By fitting the data to this form, we obtain=0.71+0.08 and ~ defined in the past. Although regions of the system can crys-
8,=0.12+0.03 for all systems studied. PreviousB7], we tallize, such states are extremely rare and therefore unlikely
obtainedg* for bidisperse systems in two and three dimen-f0 be observed for sufficiently large systems.

sions. For monodisperse three-dimensional systems, we now The above definition of random close packing, or the
find maximally random jammed state, is completely well defined

for soft, finite-ranged repulsive potentials. What can be said
¢*=0.639+0.001. (5) about hard spheres? We can approach the hard-sphere limit

by making the potential harder and harder, that is, by making
We find that¢* does not vary with potential; this follows the exponent in the potentiak, [see Eq.(1)] approach O.
from our result that the distributions of jamming thresholdsMeasuring$* as a function ot will then produce a limiting
are independent of potentiakvE 3/2,a¢=2,0=5/2) within  hard sphere, value for random close packing. Note that our
the uncertainty of the measurement. Note that the value afesults for¢* are the same, within measurement error, for
¢* in Eq. (5) for monodisperse three-dimensional systems isx=3/2, «=2 (harmonig, and « =5/2 (Hertzian). Thus, the
very close to what has been reported for random close packalue of ¢* is insensitive toa, suggesting that the hard-
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sphere limit of¢* is the same as the value we have given in of
Eq. (5). Of course, it is not clear that the hard-sphere limit is
well defined; different ways of taking the hard-sphere limit
may lead to different results. If that is indeed the case, we
would argue that hard spheres are a singular limit and thus
unphysical. One should therefore concentrate on softer po-
tentials for which unambiguous definitions can be con-
structed.

Another way that has often been employed to study hard-
sphere configurations near random close packing is to con- -3 - - - -
duct density ramps. For example, in the Lubachevsky- -6 5 -4 3 -2 -

Stillinger algorithm [40], a hard-sphere system at low log,, ($—9,)

packing fraction is suddenly compress@y increasing the .
radii of all the particles at some fixed rate a higher pack- FIG. 9. Upper curves: Excess num_ber of contacts _per particle
ing fraction. In the limit of infinite quench rate, one finds that Z=Z VS ¢— ¢ for 3D systems: monodisperse, harmoftiacles);

the system jams at a random-close-packing density. One aionodisperse, Hertziarisquarek bidisperse, harmonic(dia-
vantage to our protocol for systems with softer but stillmondg’ and bidisperse, Hertz'a(m'PW?rq trianglefs Lower curves:
finite-ranged repulsive potentials is that, since the density i€~ Zc VS &~ & for 2D systems: bidisperse, harmoriieftward

] | idi . H i i les N=1024
always held constant, we can quench the system to the 1‘|n§r angle and bidisperse, Hertziafiownward triangles 0

o . =512) particles were used for the 2ABD) systems. The sym-
state within a fixed energy landscape. In the Lubachevskygs hav)e I?he same meaning as in Figz.([?s.) y y

Stillinger algorithm, the energy landscape changes through-

out the density ramp because the density necessarily varie . . . .
throughout the procedure. ?L?T’mp inZ at the jamming thresholdj., of a given state. For

One of the strengths of our procedure is that dynamics has ¢i , there are no overlapplng nelgthZsO, while for
no role. If we introduce dynamics by quenching the tempera¥ — bc therg areZ, overlappllng ne|ghbor_s. The value B
ture of the system at some finite rate, we bias the distribu¢@" P€ obtained by measuridgat values just above,, as
tions of jamming thresholds toward higher values ¢f shown in Fig. 9. The straight lines in the plots are fits to the
These distributions no longer represent features only of thgata of the form
potential-energy surface, but now also depend on dynamics 7 _ Y
through the quench rate. By contrast, our distributions are 27 2= Zo( = )", ©)

lel tri ty of th tential- face. . . .
SOlely a geometric property of the potentiabenergy suriace where {=0.50+0.03 for all potentials, dimensions, and

polydispersities studied.

As mentioned in Sec. Il B=5% of the particles are rat-

An isostatic configuration is defined by having the num-tlers with no contacts at all, which do not contribute to the
ber of contacts in the systerN,Z/2, equal to the number of connected network. If we exclude the rattléss that we are
force balance equatiorig1], whereZ is the average number only studying properties of the connected netwaaskd as-
of contacts per particle. When this occurs, there is a uniqgusume{=0.5, then we obtain precise values &y, listed in
solution for the forces between particles in a static packingTable I. These results are consistent v+ 2d in all cases,
because the number of equations equals the number of uiwplying that the jamming threshold is an isostatic point. In
knowns. For purely repulsive, frictionless systems of spherithe thermodynamic limit¢p.— ¢*, so pointJ is an isostatic
cal particles, the number of force balance equatiomMédso  point. Note that our results fa show that pointl is theonly
the isostatic condition i¥=2D, whered is the dimension- point at which the packing is isostatic; aboy¢, we find
ality of the system. We finf27] that there is a discontinuous Z>2d so additional equationghe constitutive relations for

E. Point J is an isostatic point

TABLE I. Coefficients and exponents for the power-law scaling of prespushear modulus.., and
coordination numbeZ — Z,, for all systems studied.

Power-law scaling

System Quantity
p G. Z-Z.
D Polydispersity @ pg (+0.05) #(+0.03) G2(%0.05) y(*+0.05) Zo(+0.5) {(+0.04) Z,(+0.03)
2 Bi 2 0.34 1.01 0.24 0.47 3.6 0.49 3.98
2 Bi 5/2 0.27 1.50 0.21 0.99 3.3 0.48 3.98
3 Bi 2 0.28 1.03 0.21 0.48 84 0.47 5.98
3 Bi 5/2 0.18 151 0.17 1.02 7.4 0.49 5.98
3 Mono 2 0.48 1.01 0.34 0.49 7.7 0.51 5.98
3 Mono 5/2 0.35 1.50 0.14 0.95 7.7 0.47 5.98
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FIG. 10. (a) Fractionf, of particles that are rattlers as a function
of ¢— ¢, for a 3D monodisperse system with harmonic repulsions
at several system sizéé (b) f, vs ¢— ¢ for aN=1024 bidisperse FIG. 11. (@ The radial distribution functiong(r) for a N

system with harmonic repulsions in 2[) Number of clusterd\, =1024 monodisperse system with harmonic repulsions in 3D at
containing N, rattlers for five N=10000 2D bidisperse systems ¢—¢.=10 ' and 10 2. The height of the first peagi(r,) and its
with harmonic repulsions ap— ¢.~10"25, left-hand widths are defined(b) Height of the first peak ofi(r) as

a function of ¢ — ¢ for the same system as {@). The solid line
has slope-1. (c) Left-hand widths of the first peak ofg(r) as a
function of ¢ — ¢, for the same system as {g). The solid line has
slope 1.

the particles, which depend on the potential yseeé needed
to solve for the forces between particles.
A more stringent condition for isostaticity is that the con-

nected network(i.e., all particles in the system exclu_ding ishing length scale gives rise to a divergencey(n) in the
rattler9 has no zero-frequency modes. As dlscussed in Se¢orm of & functions atr =gy, the sum of the radii of neigh-
Il B, we have looked for zero-frequency modes in packingsing particles. For simplicity, we will focus on monodis-
aboveg¢,, and have tested configurations with packing frac-perse systems. Recall from Sec. I E that/gt there are no

. . 6 . .
tions as little as 10° above ¢.. For all configurations contacts, whereas ak , Z jumps to the isostatic valuz,

tested, we have seen no zero-frequency modes except thos L e i
associated with rattlers or with uniform translations. This_ezd' This discontinuity inZ implies that there must be &

. - function ing(r) just at¢. and that the area underneath this
suggests that p0|_n1has no nontnwal zerq-frequency modes. 6 function gr]n(ugtJ be exg)cctly the coordination number at jam-
We have studied the fractiofy of particles that are rat-

tlers as a function ofb— ¢, for both 2D bidisperse and 3D ming: Z,=2d. This divergence is distinct from the diver-

monodisperse systems with harmonic interactions. We Sho\gggﬁe_sssoci?teﬁevgth trhewpiv_ver/-lavl/li/r;c;ease ath\[/zzt]r]le first
in Figs. 1Ga) and 1@b) that the fraction of rattlers decreases PE2¥ ! g(r) [whereg(r)~(1-r/a) sf—o

with increasing packing fraction. We show in Fig.(&0that i?ﬁ;e:ga;rggwer law is integrable whereas this one has a
the fraction of rattlers is independent of system sizeNor Fioure 11{;1) shows a(r) for a monodisperse. three-
>64 in 3D. For the 2D bidisperse system, we have also 9 9(r) P ’

studied the distribution of rattler cluster sizes. We find thatdlmensmnal system at two different valuest ¢.. Note

most clusters have a single rattler and larger clusters ar%?a; asé gpproachesﬁvi/from ?:bove:[hthe flrlstt_peakfgﬂr]ovx;_s ;
more rare. This is shown in Fig. (®. igher and narrower. We can trace the evolution of the firs

peak by measuring its height as a functiondf ¢, [Fig.
11(b)]. We find that the height of the first peakratdiverges
F. g(r) diverges at pointJ: A vanishing length scale as a power law:

A signature of jamming at point manifests itself in the 9(ro)=0go(d— o), (7)
pair correlation functiorg(r). At this point, the particles just
begin to touch so an important length scale—the distancevith gy=0.90+0.02 and»=0.993+0.002. Previous hard-
between nearest-neighbor particles—goes to zero. This vasphere simulationg43] have measured, with much less pre-
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cision, the height of the first peak @s is approached from
below and found a similar exponent.

In Fig. 11(c), we plot the left-hand width at half-height of
the first peak ofg(r) as a function of¢— ¢.. This width
approaches zero as— ¢, as a power law:

s=so(¢— bo)®, 8

wheresy=0.39+0.04 andA =1.01+0.005.

G. There is an excess low-frequency contribution
to the density of vibrational states at pointJ

The normal modes of vibration provide a complete basis
set to describe the motions of the particles in a jammed sys-
tem. There have been many studies of normal modes in dis-
ordered system§44—-51. In this section, we describe the
normal mode spectrum as a function of packing fraction
abovedg, . A zero-frequency mode would indicate that some,
possibly complicated, set of cooperative displacements of the
particles could be made with no cost in energy. There should
always bed such modes corresponding to the simple uniform
translation of the system for each of thielimensions. Every
rattler particle will likewise contributed zero-frequency
modes. If a configuration ath=¢. is isostatic, as we
claimed in Sec. Il E, then abowg, the only zero-frequency FIG. 12. Density of stateB () vs w for a 3DN=1024 system
modes should be the trivial uniform translations of the entirewith harmonic repulsions at packing fractiote far from ¢, and
system and the rattlers. As we mentioned above, we havé) close toé. .
found no other, nontrivial, zero-frequency_ modes. On thehighest packing fractions, we see that there is an identifiable
other hand, we must expect some change in the nature of the”. . 2

on whereD(w) increases aw“, as expected. As the

low-frequency modes as the packing fraction for a jammec[egl . AN .
configuration is lowered toware, . At this point, some ex- packing fraction is lowered, however, we see that the region
(o 1

tended mode or modes must approach zero frequency sinceO{ w* behavior shrinks, reminiscent of the results found in

is precisely atp. that the system “falls apart” and becomes Sef'rgfghg;;:'grﬁgib)ék\;vseelsholx rﬂjtﬁiselhoazvfre(lirbti(c(re) 2Ss(¢em
unjammed withdN zero-frequency modes. How does the PP ¢ Y- P y '

. 2 . _ .
density of states evolve as— ¢, approaches zero? In order \r’ée ii?}ehgg Slr%r;uor‘:];t?l) tr)eeglr?n lﬁ?}ig (i) Ic?vf/)fgreo-tljér;rcri]:ass that
to compute the normal modes and frequeneiesf the sys- 9 P y P q

: . . ) are inaccessible in a system of this size because the excita-

tem, we diagonalize the dynamical matrix of the sysf&dq. . ; ;
; ; ions would have wavelengths that exceed the linear size of
The eigenvalues are the squares of the frequencies and the

. A . -the system. Even though there is @8 behavior at¢— ¢,
eigenvectors are the polarization vectors of the particles in : h h
each mode. =0.1, Fig. 12Zb) shows thaD (w) drops asw goes to zero.

As in a crystal one expects the low-frequency excitationé-lowever’ asp— ¢ decreases still further, this drop B )

to be the long-wavelength sounbngitudinal and trans- disappears. Bp— ¢.=10"", there is no evidence of it at all
versé modes. This assumption gives a density of norma ndD(w) appears to approach a constant at zero frequency.

mode frequenciesD (), proportional tow®~ 2. An earlier his striking result is unanticipated. As the packing fraction
simulation[46] found an increase in the low-frequency den- 'S '0Wered, the density of states approaches a limiting, con-

sity of states as the number of nearest neighbors in a gla%ant’ nonlzero r:/alue,(;nste;d o_f”:/anlsrr:mg as exp??ted_for
was reduced. As we will show, our present results suppo fng-wav? englt s?un modes. d us, t i;ﬁn;ls a prmﬁrz(ijnon
this claim. In the previous study46], nearest-neighbor ?rozrinnzg]:vzus ow-frequency modes as p approache
bonds were severed at random with some probability. Here, :
we control the number of overlaps by varying the packing , )
fraction, and we can reducall the way down to the isos- H. Power-law scaling near pointJ

tatic value by approaching_ . In Fig. 12, we show the So far, we have discussed a number of quantities that
density of states obtained for a monodisperse harmonic syscale as power laws witlh— ¢, as the jamming threshold is
tem in three-dimensions witiN=1024 particles aff=0.  approached from the high-density side. Such quantities in-
Figure 12a) contains the familiar result for compressed sys-clude pressur@ (Fig. 3), static shear modulu., (Fig. 4),
tems with packing fractiong that are far abovep.. The  and coordination numbeZ—Z. (Fig. 9. In addition, we
largest¢— ¢ studied is comparable to typical liquid densi- have shown that the widtv (Fig. 7), and peak positiorp,

ties in an equivalent Lennard-Jones systgB@]. For the (Fig. 8), of the distribution of jamming thresholds display
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power-law scaling with system size. Here we discuss the 1. Interpretation of power-law exponents
power-law exponents and their implications.

; ; Some of the exponents for the scalings with- ¢. are
Figure 3 shows that the pressure vanishes as a power | P gs vk b

i aéf’(raightforward to understand, while others are, as yet, with-
as¢— e : out explanation.
0= po( b bo)" ) Pressure and bulk modulu3he exponent for pressure,

0 ¢ y~a—1, can be explained if the system responds perfectly
affinely to compression. If the deformation is affine, one
would expect the exponent for the pressure to be the same as
for the force law; this argument yieldg=a—1. Similarly,
we would expect the bulk modulus to behave as a power law:

The values foipy and ¢ are listed in Table I. Our results for
¢ are consistent with

Yy=a—1, (10
. o o B~ (o= ¢0o)”, (18)
independent of polydispersity or dimensionality.
The static shear modulus scales as with B=a—2, because the bulk modulus is related to the
derivative of pressure with respect to packing fraction. We
G..=G2(p—be)?, (11)  can check to see if the response of the packing to compres-

sion is truly affine by comparing the zero-time bulk modulus
whereG? andy are listed in Table I. The results are consis- Bo to the infinite-time, or static, bulk moduli. . To obtain
tent with By, we apply a compressior expansionand measure the
change of pressure without allowing any of the particles to
y=a—3/2, (12) relax their positions. By construction, the compresgiex-
pansion is perfectly affine throughout the sample because
we increasddecreasgthe radii of all of the particles by the
pame fixed fraction(This is different from how one com-
presses a sample in a laboratory experiment, where the per-
turbation is applied at the boundaries of the samgle.ob-
tain B,,, on the other hand, we first apply the affine
(=112 (13) compressior(or expansioj then allow the particles to shift
' their positions by minimizing the energy using the conjugate

. . . . . . .. _gradient technique. If the response to compression is per-
independent of potential, dimensionality, and pOIydISperSItyfgec'[ly affine thgn the particlespwill not shift dFL)Jring the coﬁ-

;ll—grlfs riisggtrlf 208 r:;:?%rgzv;'jlze:;g estimates from SImUIa'jugate gradient process because the energy is already a mini-

; ' . mum. In that case, we would expdégt=B,. The results are
The height of the first peak @f(r) scales as a power law. shown in Fig. 13. For all potentials, polydispersities, and
. _ dimensions studied, we consistently find ti&at<<B,, but
9(ro)=Qo(dp—dc) " (14 that they both scale with the same power, consistent Rith

. _ . . =a—2. These results show that nonaffine deformations due
with 7=0.993£0.002. This result was obtained for a three-, qisorder in the packing do reduce the coefficient of the

dimensional monodisperse system with harmonic repulsion%ca"ng of the bulk modulus, but do not change the exponent.
Similarly, the left-hand width of the first peak g{r) scales  |;is not obvious why the exponent is unchanged.

as a power law: Shear modulud.ike the bulk modulus, the shear modulus
is also given by two derivatives of the energy. However, we

independent of polydispersity or dimensionality.

As discussed earlier in Sec. Il E, the coordination numbe
Z—Z. scales as a power law with— ¢, [see Eq.(6)] with
an exponent consistent with

_ A
s=So(¢— ¢, (15 do not find that the scaling exponent for the static shear
modulus y satisfiesy=a—2. Rather, we findy~a—1.5
whereA =1.01+0.005. [see Eq(12)]. To gain insight into this discrepancy, we have

Finally, recall the form of the fits to the width and peak axamined the zero-time shear modulBg as well as the
position of the jamming threshold distributions, E¢®.and  static or infinite-time shear modult@.. . As with the bulk
(4), where the width scales a&~N"" and ¢*—d;  modulus, to measur®, we first apply an affine shear strain
~L~*". Figure 7 shows thd appears to be independent of and measure the resulting stress without allowing any of the
potential, polydispersity, and dimensionality. We fifdl  particles to shift their positions. To meas@e , on the other

=0.55+0.03, consistent with hand, we apply the conjugate gradient technique once the
affine shear is applied and measure the resulting stftss
w=1/2. (16  the energy has been minimized. Since the shear modulus is

the second derivative of the energy, we would expect the
For the peak position, Fig. 4 shows thats independent of exponent forG, to be yo=a—2. This is indeed what we
potential, polydispersity, and dimensionality. We find find, as shown in Fig. 14. The figure shows tfat<G,, as

=0.71*+0.08, consistent with expected; the system relaxes to a lower value of the shear
stress than it has initially. Although Lacasseal. [21] have
v=2/3. (17) previously pointed out that nonaffine deformations can re-
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curves have slopes equal to 0 and 0.5(dp (d), and(f), the solid
curves have slopes equal to 0.5 and NG=1024 (N=512) were
used for the 2003D) systems.

FIG. 13. Zero-time By) (closed symbols and infinite-time
(B..) (open symbolsbulk moduli vs¢— ¢, for (a) 2D bidisperse
systems(b) 3D bidisperse systems, arid) 3D monodisperse sys-
tems with harmonic and Hertzian potentials. The solid curves have
slopes equal to 0 and 0.5l=1024 (N=512) particles were used The fact that{ is also independent of dimensionality sug-
for the 2D (3D) systems. gests that there is a property of the packing that is indepen-

. . . dent ofd.
duce the shear modulus in emulsions, they did not show that racent result§42] for the pair correlation functiom(r)

the effect of these deformations would be to produce & ihree-dimensional harmonic packings slightly below the
power-law dependence of the shear modulus upon compre smming threshold show thaf(r) contains a power-law re-
sion. Our r_esults show that such a power-law scaling existg;,n, nearr =, whereo is the sphere diameter:
for the static shear modulus and that the effect of the non-
affine deformations is to shift the value of the exponent from
vy=a—2 (appropriate to the=0, affine situationto y~ «
—3/2 (appropriate to thé=o case where all relaxation has
been allowed to take plageThe effect of nonaffine defor-
mation is much more pronounced for the shear modulus thali one assumes an affine deformation upon compression,
it is for the bulk modulus. In the latter case, the power-lawconsistent with the scaling results for pressure and bulk
exponent remained unaffected and only the prefactor wag0odulus, then one of the consequences of(E9). is that the
changed. In the case of the shear modulus, the nonaffireoordination number should increase with the power
deformation changes the scaling exponent as well as the 1/2, as we have observed. Thus, the scaling in(E§). is
prefactor. As the critical densityp. is approached from consistent with our resulf=1/2. The origin of both results,
above, the nonaffine deformations play a larger and largeffowever, is still not understood.
role so thatG,/G.. diverges aigp,. Height and width of first peak of(g). We find that the
Coordination numberFigure 9 shows that the coordina- height of the first peak o§(r) diverges with an exponent
tion number scales a8—Z.~(¢— ¢.)¢, where({ is inde- 7~1[see Eq(14)] and that the left-hand width of the first
pendent of potential, polydispersity, and dimensionality. Thepeak vanishes with an exponeht=1 [see Eq.(15)] as ¢
fact that is independent of potential is intriguing because it— ¢, . The fact thaty~A is consistent with our expectation
suggests that depends only on the geometry of the packing.that the area of the first peak is rouglzy.

g(r)c(1—r/o) 12 (19
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2. Discussion of finite-size scaling exponents -2 T T . .

We have found that there are very strong system-size ef-
fects. AsN diverges, the width of the distribution of jamming =3t ]
thresholds vanishes a¢™, leaving aé-function distribu-
tion at pointJ. We find that(} is very close to 1/2see Eq. o 4 1
(16)]. It is not obvious that this result can be explained by a 2
simple central limit theorem argument because the packing 8’ -5t .
density is a subtle property of the packing geometry. Inde- —

pendent of the explanation for this exponent, there are still -6 | i
correlations extending across the entire system once it is
jammed. _7 , , , ,
The peak position shifts toward the random-close-packing -7 -6 -5 -4 -3 )

density asL =Y. This result suggests that there is a long Iog <F>
length scale appearing in the problem near the onset of jam- 10
ming, which scales asd{(—¢;)~". Note that our resul FIG. 15. Pressurp vs average interparticle fordd) for a 3D
=0.71+0.08 is a typical value for a correlation length expo- monodisperse systemNE&512) with harmonic repulsions. The
nent. solid line has slope equal to 1.

I Lack of self-averaging at point J =0.636, which is near the peaf, of the distribution of

At point J, there is no self-averaging in the sense that thgamming thresholds for the three-dimensional system shown
average properties of a very large system are not the same @8=1024). As the packing fraction is increased abeg
the average over an ensemble of many smaller systems at tHee curves foP(F/(F)) andP(F/({F)) look more and more
same packing fraction. This property can be understood bgimilar. This is consistent with the argument above that the
considering a system of siZ¢ and the behavior abl di- lack of self-averaging is most pronounced near the peak of
verges. For a finite-sized system, Fig. 6 shows that there isthe distribution of jamming thresholds. A simple argument
distribution of jamming thresholdgh.. Consider a given for the shape of the tail d?(F/({(F))) was given earlief27].
packing fractiong which is within this distribution. Some of
the configurations at thig will be jammed, and others will . . . . . .

0 [

be unjammed wittp=0. For an unjammed configuratiqn \ .@M ¢ $=0.636
Sop. 0 ¢=0.644
ey

=0 for every subregion of the configuration, as wéllhis is —_
exact even in the infinite system-size limiHowever, at the Lﬁ Qo
samed, there will exist jammed configurations for which v
p>0. For those configurations, we have foymd O for al- L -2 f T
most all subregions. There are only small clusters of rattlersD- %.
o
(=)
ke,

that have zero local pressures. The number of such clusters

decreases rapidly with the size of the clugsme Fig. 1(c)]. 4l %1» |
Thus, the value of the pressure averaged alleconfigura- (a) S

tions cannot be the same as the value of the pressure aver s s s s s ¥

aged over an arbitrary given configuration. As a result, there 0 1 2 3 4 5 6 7
is no self-averaging. As the system siéncreases, the dis- F/<F>

tribution of jamming thresholds narrows. As a result, the lack
of self-averaging will be observed over a smaller regiowpof
that eventually narrows to a poifypoint J) in the infinite N 0 ¢ i
limit. Peesy; * $=0.636

The lack of self-averaging is evident in the distribution of %ﬁ' O ¢=0.644
interparticle normal forces between particlB¢F) [27]. For Teseee,
a given configuration, the average interparticle fofEe is -2 r '\re:o‘;\“"“-....“ 1
directly proportional to the pressure of that configuration as &= %’\Q %0 eeee
shown in Fig. 15 for a 3D monodisperse system with har- 0- 'bJ‘Q,Q
monic repulsions. Depending on whether one normalizes the ov)c-’ - b:n
forces in a given configuration tgF), the average within  © -4 7 (b) patre) i
that configuration, and then average&~/(F)) over many 00
configurations, or whether one normalizes the forces of all 0 2 4 6 8
configurations to the same global average fof€e), and F/<<F>>
then calculate®(F/{(F)), one will get a different distribu-
tion function. This is shown in Fig. 16 for a 3D monodis-  FIG. 16. Distribution of interparticle normal forces for a 3D
perse system with harmonic repulsions. Note that the differmonodisperse N=1024) system with harmonic repulsiong)
ence betweerP(F/{F)) and P(F/{F))) is largest nearp  P(F/{(F)) vs F/{F) and(b) P(F/{FY) vs F/{F).

P(F/<<F>>)
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One might estimate the transverse length scale by com-
puting how many particles must move laterally in order to
insert an extra particle. This is the parking lot mofe8].
According to this argument, the transverse length scale
should diverge ag; ~(d.— ¢) Y@V, for p< ¢, where
d is the dimensionality. We note, however, that this result
does not agree with the correlation length exponent that we
obtained from the finite-size scaling analygsee Eq.(17)],
which appears to be independent of dimensionality.

Although pointJ resembles a critical point, it has proper-
ties unlike any other critical point ever studied. The expo-
nents appearing in the scaling relations are independent of
dimension, but do depend on the potential. The former ob-
servation could be reconciled with a normal critical point if
the upper critical dimension for jamming was less than 2, but
then we would not expect different potentials to yield differ-
ent exponents. Likewise, if each different potential was in a

In many ways, poind resembles a critical point. We have different universality class and yielded different exponents,
shown in Figs. 3, 4, 9, 11, 13, and 14 that there is power-lavthen the upper critical dimension should be above 3. There
scaling near poind of quantities such as the pressure, sheaare other properties of poidt which are unusualalthough
modulus, bulk modulus, coordination number, and the heighhot unheard offor a critical point. At packing fractions be-
and width of the first peak of the pair correlation function low pointJ, the pressure, shear modulus, and contact number
[27]. We have also shown in Figs. 7 and 8 that there isare all zero and the energy is zero everywhere. There are no
finite-size scaling since the width and peak position of thefluctuations in these quantities, even infinitesimally close to
distributions of jamming thresholds scale with the size of thepoint J, as ¢— ¢* from below. In addition, there is a dis-
system. This is reminiscent of behavior near an ordinarycontinuous jump in the value of the coordination numker
critical point. Finally, we demonstrated in Fig. 16 that prop-from zero toZ. at ¢*. We also note that we have identified
erties, such as the force distribution, do not self-average near length scale that goes &ero at this point: the spacing
point J. As the system size increases, the packing fractiorbetween particles that form the connected network in the
must be tuned closer and closer to the peak of the distribjammed state. This is seen in the divergence of the first peak
tion of jamming thresholds in order to see the breakdown obf g(r) (Fig. 11). At a critical point, one expects a single
self-averaging. This is also what one expects near an orddivergent length scale and not a length scale going to zero.
nary critical point, where the temperature must be tuned Perhaps, the most disturbing feature of painfrom the
closer and closer to the critical point as the system size inpoint of view of ordinary critical phenomena, is the differ-
creases in order for the correlation length to exceed the sygnce in the behavior at fixed pressure and fixed volume. At
tem size. fixed volume, we observe a finite-size rounding of power-

The lack of self-averaging near poihtind the power-law law scaling and finite-size effects such as the lack of self-
scaling of the width and peak position of the jammingaveraging. This is because different states have different jam-
threshold distribution with system size, all suggest that therening thresholds,¢.. At a fixed ¢, different states are
is a correlation length that diverges at polhtWhat might  averaged together and the clean power-law behavior we ob-
this length scale be? We speculate that there is a transverserve as a function ap— ¢, will be rounded. However, Fig.
length scale that does diverge as palris approached from 3 shows that a fixed pressure corresponds to a fixed value of
below. If the system is held at a packing fraction slightly ¢— ¢.. When we plot quantities as a function®f- ¢, we
below the critical value, the system is unjammed and thelo not see finite-size rounding of power-law behavior. Even
particles can all move and rearrange. However, the numbebr a finite-sized system, the behavior of the shear modulus,
of particles that must move in order to allow a rearrangemengtc. appears to be a clean power-law down to the smallest
will depend on how close one is to the transition. Thus, in anmeasurable values @f— ¢.. Thus, we do not see measur-
infinite system, if one applies a fixed, infinitesimal velocity able finite-size effects at fixed pressure. The divergence of
to a single particle, we would expect the particle to disturbg(r) also occurs even for a finite-sized system. These results
the surrounding particles as it moves. This disturbance wilare very different from what one would expect for an ordi-
extend to a distancé; , the transverse length scale, in a nary critical point.
direction perpendicular to the applied force. We expect that It has been suggested also that paimhight correspond
&7 will diverge as one gets close to the transition because a@® the onset of rigidity percolatiof59]. However, we note
the density approaches the close-packing value, more arttiat there are some significant differences. First, there are no
more particles must rearrange to allow for the single-particleoverlaps between particles below poiht At point J, the
motion in the longitudinal direction. The idea behind this number of overlaps jumps discontinuously from 0 Zg
transverse length scale is shown in Fig. 17. Similar ideas are2d (whered is the dimensionality of spageln rigidity
currently being explored experimentally in granular systemgercolation, by contrast, the number of bonds increases con-
with friction [55] and in colloidal systemg56,57]. tinuously [60]. Second, in our case, the number of zero-

FIG. 17. Sketch of the transverse length scale.

J. Critical behavior near point J
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point J to d(1+N,) (which accounts for the translation of

the entire system and thé, rattlerg above point]. This is

again different from rigidity percolation, where the number

of floppy modes decreases continuoufd@]. Third, above

point J, the spanning rigid cluster has a fractal dimension of

d, the same as the space dimension, while in rigidity perco

lation, the spanning rigid cluster has a fractal dimensior

lower thand [60]. Finally, the correlation length exponent (T q) )
that we extract from the finite-size scaling of the peak of the G
distribution of jamming thresholds;~0.7, is significantly

lower than that calculated for rigidity percolatiom~1.2

frequency modes jumps discontinuously fromiN below T T
L \'%

L+V _-'-._-

[60]. J 1 /q)
IIl. IMPLICATIONS OF POINT J FOR THE GLASS FIG. 18. A sketch of the jamming phase diagram in Thé/¢
TRANSITION plane for a system with short-ranged repulsion and longer-ranged

) ) _ attraction. For simplicity, we have assumed that crystallization does
We have shown that poirk marks a well-defined transi- ot occur. The jammed region lies underneath the curve mafrjed

tion from the unjammed to the jammed state. Because thgeyond (r,,1/#,), where the glass transition curve crosses the lig-

conjugate gradient method allows us to probe the infiniteuid density at coexistence, the available states depend on quench
time behavior of the system, we have been able to show thajstory.

the system develops a truly static shear modulus at point

Where pointJ lies with respect to the jamming surface de- with short-ranged repulsions and longer-ranged attractions,
picted in Fig. 1 depends on one’s definition. Since the glasshere is still a well-defined distance at which the repulsion
transition line is usually defined as the temperature where thganishes; this is the position of the minimum in the pair
relaxation reaches some large but finite threshold valuepotential. As with the theory of liquids, attractions are a
pointJ in this definition strictly lies within the jammed phase small perturbation to the strong repulsive core; they merely
since the relaxation time there is infinite. Since palites  hold the system at a sufficiently high density so that the
just below the jamming surface of the phase diagram, ongepulsions can come into pldg1]. We therefore expect the
might expect it to control behavior in its vicinity if it is pehavior we find near poirkto be a good approximation to
indeed a critical point. If so, it may be the long sought-afterthe behavior of liquids down to the density at which the glass

phase transition underlying the glass transition. In this sectransition line crosses the liquid-vapor coexistence curve.
tion, we discuss why we suspect that the physics of pdint

may hold clues for understanding the entire jamming surface
of Fig. 1, including the glass transition itself.

One might wonder why poini is important to real glass- We noted above that the first peak of the pair correlation
forming liquids, where there are not only finite-ranged repul-functiong(r) diverges at poind. This has two consequences
sive interactions, such as those we have included in our cathat have been observed in studies of the glass transition. The
culations, but also longer-ranged attractions. The jammingjrst has to do with the static structure fact(kk), measured
phase diagram for a real liquid would look quite different from scattering experiments, and the second has to do with
from the one depicted in Fig. 1. In addition to the jammingthe emergence of a peak in the distribution of normal forces,
surface, one has to consider the vapor-liquid phase coexisB(F), as measured experimentally in granylé2] and col-
ence curve since particles can attract one another. In Fig. 18idal [63] systems, and numerically in previous work on
we have sketched the jamming phase diagram inTi#ié$  models of glass-forming liquidsl0].
plane when attractions are present. For simplicity, we have At point J, the first peak ofg(r) is infinitely high and
explicitly assumed that there is no possibility of crystalliza-narrow. This property elucidates one heretofore puzzling as-
tion. (If crystallization were taken into account, then the lig- pect of studies of supercooled liquids. The static structure
uid that coexists with vapor could be metastable to the crysfactor S(k) is related by a Fourier transform tr) so the
tal.) In Fig. 18, the glass transition temperature decreaseé-function peak ing(r) produces oscillations i8(k). There
with increasing 1¢ and eventually crosses the liquid-vapor will not be a divergence (k) at any wave vectok. This is
coexistence region afT(,1/¢,), as shown. Once the glass different from what one finds at a critical point where there is
transition curve crosses the left-hand side of the coexistenca diverging susceptibility at some value lof(In the case of
curve, which represents the lowest accessible liquid density ferromagnetic transition, this would be the magnetic sus-
a variety of states can be obtained depending on the quenaeptibility atk=0.) Thus, the signature of the transition at
history. The dashed part of the glass transition curve, whiclpoint J is different from that observed in ordinary second-
ends at point], is not necessarily accessible to systems withorder phase transitions. As one moves away from pbinto
liquid-vapor phase transitions. the jammed region, thé function ing(r) broadens and de-

Even though point] does not necessarily exist for real creases in height, but the oscillationsS(k) persist. Repre-
liquids, it can still influence the glass transition. In systemssentative plots o5(k) at two different values ofp— ¢ are

A. Significance of divergence in pair correlation function
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FIG. 19. Static structure fact@(k) at ¢— =101 and 104
for a 3D monodisperse system with harmonic repulsions.

shown in Fig. 19. These are qualitatively similar to experi-
mental results foiS(k) at highk, which also show oscilla-
tions [64]. This clarifies why searches for structural signa-
tures of the glass transition that have examined the shape of ) . o
S(k), either at smalk or in the vicinity of the first peak, FIG. ZQ. Netvvork of mterpartlcle forces for a 2D bidisperse
have not found a divergent behavior. system W|t_h harmor_nc repulgon_s at— ({)C:_ 10 %% and N=2§6.

It has long been recognized that the first peakg6f) The_lntensny of the line shading is proportional to the magnitude of
rises and sharpens as the temperature is lowered toward tHi Interparticle force.
glass transition. However, the change of behavior as one ) . ,
crosses the glass transition is only quantitative. A criteriorfifough a network of interparticle forces, suggesting that an
suggested many years aff6] that the glass transition oc- order parameter for jamming may be foundlln the nature of
curs when the first peak reaches a threshold height, seerg§Ch @ network. Forces on a particle must either be balanced
rather arbitrary. In a previous stud{0], we showed that by otherforc_es or give rise to accelerations. At hlgh tempera-
there is aqualitative change in a quantity closely related to {Ures, there is a lot of kinetic energy, and particles are con-

g(r). This is the distribution of normal force(F): stantly accelerated by unbalanced forces. At lower tempera-
tures, however, the forces on particles tend to balance more
P(F)dFocrd=1g(r)dr, (200  because accelerations are smaller, and at zero temperature,

forces on particles balance perfectly so that the system is
whered is the dimensionality of the system. This quantity mechanically stable at packing fractions above pdirithe
has been measured experimentally at the boundaries of statigsulting network of forces & =0 is shown just above the
granular packing§62] and in the interior of colloidal glasses onset of jamming in Fig. 20. The order parameter for the
[63]. In all these studies of jammed systen®(F) was glass transition presumably depends on at least a three-
found to contain a peak. Our previous studies show that article quantity in order to characterize the force network.
peak develops if?(F) as the jamming surface is approachedHowever, P(F), which is only a two-particle quantity,
by lowering T, increasingé, or decreasing [10,66. This  clearly couples to the force network. A peakR(F) reflects
signature was observed for all the potentials we have studieghe existence of the network because the forces on all par-
including the full Lennard-Jones interaction, the Weeks-icles can only balance if they are of roughly the same mag-
Chandler-AndersefWCA) interaction[61], harmonic repul-  nitude. This intuition highlights the importance of poihto
sions, and Hertzian repulsions. Thus, the development of the glass transition. AT=0, as the packing fraction is in-
peak inP(F) provides a signature of the onset of jamming creased through poird the number of overlaps jumps from
from purely structural data. From E0), one can show that z=0 (no force networkto Z=2d (a dense force network as
P(F) develops a peak only if the first peak @fr) is suffi-  shown in Fig. 20. Thus, point] marks the development of a
ciently high and narrow. The criterion for a peakRtF) is  force network that supports shear stress.

ding 1-d d’F/dr?
ar 1 dFidr

(21 B. Significance of anomalous low-frequency modes in density
of states

The fact that the onset of jamming is correlated with the first Perhaps, the most striking evidence that the physics at
peak ofg(r) becoming high and narrow enough suggestspointJ may be related to the nature of glasses and the glass
that the entire jamming surface may be controlled by paint transition is to be found in the behavior of the density of
In order for a system to jam, it must be able to supportvibrational states at low frequencies. In contrast to our ex-
shear stress for a very long time. The stress is supportegectation that the density of states should varyDsv)
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xw? at low frequenciesin three dimensionswe find that at  the bulk and shear modulus, it is well defined in thes
point J, the density of states approaches a nonzero constahimit and provides a clean definition of random close pack-
value asw—0 (see Sec. Il G ing. In many ways, it behaves as a critical point, while in
We suspect that these extra low-frequency modes are préthers it has properties not normally associated with a
marily transverse in nature. It is clear from the behavior ofsecond-order phase transition. For example, many quantities,
the zero- and infinite-time shear mod@®@j, andG,, that the  such as pressure and shear modulus, scale as power laws
transverse modes must become increasingly soft due to thwith ¢— ¢, but the scaling exponents depend on the inter-
relaxation allowed by non-affine deformations ds ap-  particle potential and not on dimension.
proaches¢.. The ratioG,/G,, diverges at this pointsee From the finite-size scaling results that we have reported,
Sec. I HJ). The bulk modulus, in contrast, does not showone might also conjecture how quenched disorder imposed
any particular softening due to nonaffine relaxations andexternally(such as from pinning sites in a flux lattice or from
By/B.., is a constant ag approaches). (see Sec. IH)L  optical traps in a colloidal suspensjowould affect the na-
This suggests that the anomalous low-frequency modes atere of the jamming phase diagram. If we assume that the
more transverse than longitudinal in character. Moreoverspacing between defects limits the correlation length in the
since G,/G,, diverges, and the difference betwe€g and  system, instead of the finite size of the box that we employed
G.. arises from spatially inhomogeneous nonaffine relaxin these studies, then we would expect that the jamming
ations, we expect that there must be significant high-wavéhreshold at poind would be smeared out in much the same
vector contributions mixed into the anomalous mofk4. way as we find in finite-sized systems. Thus, if we were to
As ¢— ¢C+, we also know that the normal modes areadd a “quenched disorder” axis to the jamming phase dia-
becoming more anharmonic. This was shown in Fig. 2 wher@ram, one of the implications of our work would be that as
it is clear that the linear region of the stress versus straifinore quenched disorder is added, the distribution in jam-
curves becomes smaller s is approached. The effect of ming thresholds will broaden.
this anharmonicity still needs to be determined. Our studies here have been confined to purely frictionless
Our results, that anomalous low-frequency vibrationalparticles. We suspect that for systems with frictional interac-
modes proliferate and herald unjamming ésapproaches tions, the distribution of jamming thresholds should broaden
pointJ, are of clear relevance to a large body of experimentafts Well. This would be in accord with experimental observa-
data on excess vibrational modes in glasses. Two results réons that static frictional packings can exist over a wide
flect these excess states rather directly. The first is the bosdange of densities.
peak, measured by light andray scattering[68] and in Perhaps, most significant is that at pothtnany of the
simulations[69], which indicates an excess of vibrational Properties of disordered glassy systems have their most pro-
states at low frequencies, above those predicted by Deby@ounced expression. Just as a crystal is the most ordered of
behaviol] D (w) w? in three dimensionis The second is the states, pointl may be considered to be the most disordered
low-temperature specific heat of glasses: of states. As at a critical point, where the correlations across
the entire system are most easily observable, at pbthe
nature of the disordered phase is most plainly seen. The con-
cv=ADebyeT3+ BT+ Ceycesd - (220  stant density of low-frequency normal modes and the diver-
gence in the first peak ig(r) are two extraordinary ex-
In addition to the Debye term from long-wavelength soundamples. Both are sensitive to global properties of the system;
modes, there is a linear term in the specific heat and aP(w) because it deals with the longest wavelength modes in
excessT® term above that predicted by the velocities of the system and(r) because the overlap between all par-
sound. The linear term has been ascribed to the existence ti¢les simultaneously goes to zero. In addition, both of these
a new type of mode: two-level tunneling systefis70]. We  observations have implications for how real glassy systems
note that a constant density of states as we have found &ehave. It is tempting to think that poiditnay provide a key
point J, would, by itself, produce a linear term without the to understanding the nature of the entire surface in the jam-
necessity of assuming a new set of tunneling excitationgming phase diagram and to argue that the properties of other
However, since glasses exist well above paintve would — glassy states should be understood as a perturbation around
not expect such a linear term to persist all the way down tdhis “most disordered” of states. Thus, one might say that
zero temperature. Nevertheless, there is still a remarkableointJ represents the epitome of disorder and the essence of
excess density of states even far away from pdinthicn  glassiness.
would contribute to both the exce¥s term and to the boson
peak—both strong signatures of glassy behavior.
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