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Equilibrium free-energy differences from nonequilibrium measurements:
A master-equation approach
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In has recently been shown that the Helmholtz free-energy difference between two equilibrium configura-
tions of a system may be obtained from an ensembfanité-time(nonequilibrium measurements of the work
performed in switching an external parameter of the system. Here this result is established, as an identity,
within the master equation formalism. Examples are discussed and numerical illustrations provided.
[S1063-651%97)10710-3

PACS numbsg(s): 05.20—y, 02.50.Ga, 05.70.Ln, 82.20.Fd

INTRODUCTION width, reflecting the fluctuations iV from one switching
measurement to the next, afidl) its centroid shifts to the
Consider some finite classical system that depends on aight,

external parametex. For instance, the system might be a
lattice of coupled classical spins ard may denote the I
strength of an externally applied magnetic field, or the sys- W_J dWp (Wt W=AF, 2
tem might be a gas of particles anda parameter specifying o )
the volume of a box enclosing the gas. Now suppose thafs & result of dissipatiofsee Fig. 1[2,3].
after allowing the system to come to equilibrium with a heat Equation(1) gives the free-energy differende- in terms
reservoir at temperaturk, we change, or “switch,” the ex- Of the work performed during a single infinite-tinfquasi-
ternal parameter, infinitely slowly, from an initialsay, Statid process. By contrast, E() gives an upper bound on
A=0) to a final ¢ =1) value. The system will remain in AF, from an ensemble of finite-timghence nonequilibriugn
quasistatic equilibrium with the reservoir throughout therepetitions of the switching process. Recenf}, it was
Switching process and the totabrk performed on the sys- shown that one can in fact extract the value\ét itSEIf, not

tem will equal the Helmholtz free-energy difference betweeruSt an upper bound, from the information contained in
the initial and final configurationgl]: p(W,t,). Specifically, the following result was shown to be

valid for any switching time ¢:

W-=AF=F,~Fo. W W= | et ex— W)= exi - BAF),

HereF, denotes the equilibrium free energy of the system at ®
temperatureT, for a fixed value of\. The subscript oW  where 8~ '=kgT. This result gives the value of an equilib-
reminds us that this result is valid for infinitely slow switch- rium quantity AF in terms of an ensemble of finite-time,
ing of the parameter. nonequilibrium measurements. As discussed in Rgfand
Now, what happens if, after allowing the system and res;, gec. v below, the inequalitWBAF [Eq. (2)] follows
ervoir to equilibrate, we switch the value »fat afinite rate? immediately from Eq(3).
In this case the system will lag behind quasistatic equilib- Equation(3) was derived by treating the system of inter-
rium with the reservoir and the total work will depend on the g5t and reservoir, coupled together, as a large, isolated, clas-
microscopic initial conditions of system and reservoir. Thusgica| Hamiltonian system. The Hamiltonian governing the
anensemblef such switching measurements, each prepareg}stion in the full phase space was taken to be a sum of three
by first allowing the system to equilibrate with the reservoir, arms: one for the system of interest (), one for the reser-
Wi.|| yigld a di.stribution of v_alues ofv. .Let_p(W,.tS) denote voir, and a final ternth;,,, coupling the two. The magnitude
this distribution, wheret; is the “switching time” over o the interaction termh;,, was explicitly assumed to be
which the value oh is changed from 0 to XWithout loss of  egigible in comparison to the other two terms. With these
generality, assume a uniform switching rate=t;*.) In  assumptions, Eq3) follows from the properties of Hamil-
other words,p(W,t;)dW is the probability that the work tonian evolution(see Ref[4] for details.
performed in switching. from 0 to 1, over a timdg, will The purpose of the present paper is to rederive the same
fall betweenW and W+dW. In the limit t;—o, we get result within a different framework. Instead of considering
W=AF [Eg. (1)] and sop— §(W—AF) in this limit. For  deterministic evolution in the full phase space, containing
finite tg, however, (i) the distributionp acquires a finite both the system of interest and reservoir degrees of freedom,
we will treat only the evolution of the system of interest
itself, described by a trajectors(t). This evolution will be
*Electronic address: chrisj@t6-serv.lanl.gov stochastic rather than deterministic and will be governed by a
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FIG. 1. Distribution of values of workp(W,ts) performed during an ensemble of independent switching measurements at a given
switching timetg. The vertical line represents&function atW=AF and corresponds th—o; in that limit, the work performed during
a single switching process is exactly equalA&. The smooth distribution represemi$Wi,t,) for a finite value oftg. In this case the

ensemble-average work exceeds the free-energy differevice\F, since energy is dissipated in a finite-tirizeversible process.

master equation. We will assume that this stochastic evolusume that there exists a phase space of varidlelgs, the
tion is Markovian and that it satisfies detailed balance. positions and momenta of constituent partickesch that the

In presenting this alternative derivation, we are motivatednstantaneous microscopic state of our system is completely
by several factors. First, master equations are a common togescribed by the values of these variables. tetenote a
in statlst|cal_ physics; therefore, it is reassuring to see that Egpoint in this phase space. The evolution of our system with
(3) follows in a natural way from the master-equation ap-time is then described by a trajectazft). The kind of evo-
proach. Second, in thls.derlvatlon there is no need to eXp"C[lJtion that will most interest us is not the evolution of an
itly assume weak coupling between the system and reservoig,ated system, but rather that of a system in contact with a
since a reservoper sedoes not enter into the analysis; given pea path. Hence the trajectoryt) will in general besto-
the assumptions stated below, &8} is identicallytrue. Fi- o i veflecting the “random” influence of the heat bath.
nally, one might come away from Re#] with the feeling Next, assume the existence of a parameter-dependent

that the validity of Eq(3) depends directly on the properties o Lo T .
of Hamiltonian evolution, in particular Liouville’s theorem. Hamllfconlaon(z). Th_e Hamiltonian is just a function that,
The treatment herein dispels this notion: Hamilton's equafor @ fixed value o, gives the total energy of the system of

tions appear nowhere in the derivation. This point is particu/Nterest, in terms of its instantaneous stae The value o

larly relevant in the context of numerical simulations, wherethus parametrizes the external forces acting on the system

the evolution of a thermostated system is often realized witharising from, e.g., external fields and confining potentials

the use of non-Hamiltonian equations of motion. When the system is isolatel,, happens to generate the time
The plan of this paper is as follows. In Sec. | we establishevolution of the system, through Hamilton’s equations, but

notation and terminology and specify precisely our assumpwe will not make use of this property in deriving our central

tions regarding Markovian evolution and detailed balance. Irresult.

Sec. Il we derive our central result. In Sec. Ill we consider GivenH,(z), we now define

specific examples of stochastic processes for which the result

is valid. In Sec. IV we briefly discuss the possible utility of

Eq. (3) to the numerical computation of free-energy differ- Zx(ﬁ)Ef dz exd — BH\(2)], (43

ences. In Sec. V we illustrate our central result with numeri-

cal simulations. We conclude with a few remarks in Sec. VI.

Two appendixes provide derivations of results used in the

main text.

FA(B)==B"1InZ\(B), (4b)

where B is a real, positive constanfWe are being a bit
cavalier with units herezZ, should be divided by a constant
to make it dimensionless. However, since this constant only
We begin by specifying precisely what we mean by theshifts the value of, by a fixed amount and therefore does
termswork and free energythroughout this paper. We as- not affect the free-energy differenég —F,, we ignore it)

|. PRELIMINARIES
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Z,(B) andF,(B) are of course thegartition functionand izations of the switching process. 1{z,t) denotes the time
free energyof the system, respectively, amgi'* is the tem-  dependent distribution of this ensemble in phase space, then
perature, in units of energy3= 1/kgT). However, in follow-  this distribution obeys

ing the derivation presented below, it may be most conve-

nient to_ vieV\_/ thes_e quar_ltities_ ab_stractly _ra_ther than in ﬂ(z,t)=f dz'f(z ,HR\(Z,2), (8a)
connection with their physical significancg: is just some at

positive constant and, (8) andF,(B8) are the functions of . . ,

3 defined by Eq(4). In what follows, we will never compare Wherex=»x(t). We will abbreviate this as

free energies or partition functions at different temperatures, Jf
hence the dependence Bf andZ, on B will be left im- —=R,f, (8b)
plicit. The central quantity of interest in this paper will be the at

free-energy differencAF=F,—F for a fixed value of. ~ ] ]

As mentioned, the time evolution of the system of interestVhereR, is a linear operator acting on the space of phase-
is described entirely by éstochastif phase-space trajectory Space densities. Equation(8) is our master equation; when
Z(t) In generaL this evolution will depend on the externa”y the time d(?pendence ﬂﬂs known and a'n initial distribution
imposed time dependence of describing the changing ex- fo is specified, Eq(8) uniquely determines the subsequent
ternal fields to which the system is subject. Let us considegvolution of the phase-space densfity _
the evolution of the system from an initial tinte=0 to a N addition to the Markov assumptidiEq. (8)], we will
final timet=t¢ over which the value of is switched from 0  !Mpose another assumption on our stochastic process: de-
to 1 at a uniform ratex(t) =t/ts. Given this time depen- tailed balance. Ii is hg:-lc_i fixed,z(t) be_comes stationary
dence of\ and given the trajectorg(t) describing the evo- Markov process, describing the evolution of a system in con-

lution of the system, the totavork performed on the system tact with a heat reservoir, when the external forces acting on
is the time integral oh gH, /ax along the trajectory the system are time independent. Under such evolution, the

canonical distribution in phase spa@mrresponding to the
fixed value of\) ought to be invariant. By Eq8), this is

tS . (9H)\
W= fo dta IN @), (5) equivalent to the statement thaf annihilates the canonical
distribution:

where A=d\/dt=t_1. For the evolution of an isolated A
Hamiltonian system, this reduces toN=H,(z(ts)) Ry exd —BH\(2)]=0. ©

—H(z(0)), by Hamilton’ tions; in thi th k_ . . . -
0(2(0)), by Hamiltor's equations; in this case the wor o'l;h|s places a condition on the linear operaRy. We as-

performed on the system is just the change in its energy. F that tochasti tisfies thi diti d
a system in contact with a heat bath, however, this no Ionge?l?me at our stochastic process satisties this condition an
ill refer to this assumption adetailed balance(Usually,

holds since there is a constant exchange of energy with th . .
bath g oy etailed balance is expressed as the somewhat stronger as-

We will assume that the evolution of our system in phase®/MPton

space is Markov proces$5]. This means that the stochastic

evolution z(t) is entirely characterized by the transition R\(Z'.2) - exf — fH\(2)] _ (10)
probability functionP(z’,t|z,t+ At). This gives the prob- Ry\(z,Z') exd—pBH\(Z')]

ability distribution for finding the system in a stataat time

t-+At, given that at an earlier tinteit was known to be at’.  Equation(9) follows immediately from Eq(10). Just set the
Taking the derivative oP with respect taAt and evaluating Products of the cross terms equal and then integrate Zver
at At—0", we get a function The distinction between Eq$9) and (10) is of little impor-

tance in the present context, so for simplicity we refer to Eq.
(9) as detailed balance.

Having been led to assume detailed balance by consider-
ing the behavior of the system whanis fixed, it may seem
which gives the instantaneous transition rate fignto z, at  natural to make another assumption. Namely, if our stochas-
timet. The dependence & on time arises through whatever tic process is meant to describe a system in contact with a
external parameters of the system and reservoir are availabteservoir, then for fixed we expect the system to thermal-
and time dependent. In our case we assume only one sudte: After an initial relaxation time, the system samples its
parameter\, characterizing external forces; therefore, wephase space canonically; equivalently, an arbitrary initial en-
write semblefy(z) relaxes to a canonical distribution in phase

space. We may express this assumption formally as

J
R(z’,z;t)zmP(z’,t|z,t+At)|AHo+, (6)

R(Z',z;t)—>R\(Z',2). (7
n 1
In other words, the instantaneous transition Rtieom z’ to limU,(t)fo(2)= 7= exd —BH\(2)] (11)
t—o A
z depends on only through the value ok(t).

Let us now shift our focus from the description of a single ) . N
system to that of arensembleof systems, each evolving for any normalized'o(z). The operatot, (t) =expR,t) ap-
according to the stochastic Markov process just described?€aring on the left-hand side is just the evolution operator
This ensemble represents infinitely many independent reakorresponding to the equation of motiati/dt=R,f, for
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fixed A. Equation(11) says that any initial distributiofiy(z) t . dHy ,
relaxes to a canonical distribution and then stays there. We w(t)= Jodt )‘W(Z(t ))-
will refer to this as the assumption tiiermalization Note

that while thermalizatiofEq. (11)] implies detailed balance Thus W=w(t.). Now consider all those trajectories in the
[Eq. (9)], the converse is not true. Since it will turn out that ensemble that happen to pass through the phase-space point
the proof of Eq.(3) requires only the weaker assumption of gt time t and let Q(zt) denote the average value of

detailed balance and not the stronger thermalization assumpxg — Aw(t)] over this particular subset of trajectories. Fi-
tion, we will assume in what follows that E(9) holds,but  nally, define

not necessarily Eq. (11unless explicitly stated.

Physically, we expect both thermalization and detailed g(zt)=1(z,t)Q(z1). 14
balance to hold as long as our master equation describes a
system in contact with a genuine heat reservoir. HoweverNote thatg(z,0)=f(z,0) sincew(0)=0 for every trajectory.
one can easily imagine situations in which the evolution satGiven these definitions, the ensemble average of-egy\)
isfies Eq.(9) but not Eq.(11). A specific example, which we may be expressed as
will analyze in Sec. lll, is that of an isolated Hamiltonian
system. Note that if thermalization does not hold, then the o A
validity of Eq. (1), W.,=AF, is not guaranteed since that X~ BW) J dzg(zty). (19
result assumes that during an infinitely slow switching pro- )
cess the system remains in quasistatic equilibrium with V€ will now solve forg(zt).
reservoir. Equatiori3) nevertheless remains valid, provided ~ The functiong(zt) obeys
detailed balance is satisfied.

(13

At this point we are ready to prqceed with a proqf of Eq. (9_9= ( Ifz)\—,BxﬁHA)g, (16)
(3). Concrete examples of stochastic processes satisfying the dt 2N
assumptions made in this section will be discussed in Sec. o )
I, and numerically simulated in Sec. V. with A=X\(t). To see this, imagine for a moment that each

trajectoryz(t) in the ensemble represents a “particle” mov-

ing about in phase space. Furthermore, assume that the
Il. DERIVATION “mass” of each particle is time dependent and is given by
p(t)=exd —pw(t)]. Each particle thus begins with mass
unity «(0)=1. The functionQ(z,t) is then the average mass
€% those particles that are found at a poinat timet and
g(z,t) represents the time-dependenass densityn phase
space(after normalization of the number density to unity
f?‘Ezdz=1). This mass density is time dependent for two rea-
sons. First(a) the mass of each particle changes with time at
Y fate proportional to its instantaneous mass:

The overbar appearing on the left-hand side of E3j.
denotes an average over an infinite ensemble of independ
realizationg(repetition$ of the switching process. Each real-
ization is described by a trajectorft), O<t=<tg, specifying
the evolution of the complete set of phase-space variables
the external parametar is switched from O to 1. The entire
ensemble is then described by a time-dependent phase-sp
density: At any timet, f(z,t) represents a snapshot of the
distribution of trajectories in phase space. Since we assume _ _ C9H,
that the system equilibrates with the reserveitth A held pu(t)y=—pw(t)u(t)= —ﬁxx(z(t)),u(t). (17)
fixed at Q before the start of each realization, we have a

canonical distribution of initial conditioni5] This contributes a term

f(z,00=2," exfd — BHo(2)]. (12) %9

_aH,
g ——BAW(z)g(z,t) (18)

A

During the switching process, however, the ensemble doeg, ;q/5t. Second,(b) the mass density evolves due to the
not (in general remain in instantaneous canonical equilib- fiow™ of particles, described by our master equation

rium. In other words, although the distribution B . . .
f=Z;1 exp(—8H,) is a(stationary solution of Eq.(8) for A aflot=R,f. This flow of particles contributes a term

fixed it is not, in general, a solution of Eq8) when A g
depends on time. Thus, for-0, a snapshot of the trajecto-
ries will reveal a distributiorf(z,t) that lags behind the ca-
nonical distribution corresponding to(t). The amount of
lag present by the time a given value Xfis reached will
depend on how rapidly or slowly we performed the switc
ing on the way to that value.

For every trajectoryz(t) in our ensemble, we can com-
pute the total workV performed on the systefiq. (5)]. Our
task is now to evaluate the ensemble average of-egj\). 7
To do this, let us first define, for a given trajectarft), a 9(zt)=Z5 exd — BH,\(2)]= _)‘ff(z)’ (20)
functionw(t) that is the “work accumulated” up to time VA

R\Q. 19

at B
Adding these contributionga) and (b) gives Eq.(16). An
h-alternative derivation of this evolution equation, based on a
path-integral formulation, is given in Appendix A.
Given the initial conditions  g(z,0)=f(z0)
=Zy'exd—BHo(2)], Eq. (16) is solved by
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where\ =A(t) andff denotes the canonical distribution in  Since evolution under Eq23) describes an isolated sys-
phase space for a given value ®f This result is easily tem(no heat bath the thermalization assumpti¢gq. (11)]
verified with the help of Eq(9). Then, using Eq(15), we is not met and the work performed in the limit of infinitely
finally arrive at slow switching will in general not equal the free-energy dif-
ference:W..# AF. Equation(3) nevertheless remains true,
—_— __ even in this limit.
exp— W) =2, lf dz ex — AH4(2)] This last statement is easily illustrated with a one-
dimensional harmonic oscillator. Let the Hamiltonian be

z
= >~ =exp(— BAF). (21) 02X
0 _ 2
Hx(x,p)—?+wxi. (25
Q.E.D. A different proof of Eq(3) has been discovered by
Crooks[7]. For a given temperature, the partition function is given by
It is worthwhile to draw attention to a curious feature of 7z, =2#/Bw, and the free-energy difference is
the evolution of our “mass density(z,t). Recall that the
evolution off(z,t) depends nontrivially on the rate at which RN RPN 3|
we switch\: At finite switching ratesf(z,t) lags behind the AF=—p""In Z_O_B In P (26)
instantaneous equilibrium distribution. By contrast, the time
dependence ofj(zt) is very simple: The mass density is Let us now imagine a trajectory(t) evolving under this
determined uniquely by the instantaneous valuk;afee Eq.  Hamiltonian, as\ is changed infinitely slowly from 0 to 1;
(20). Thus no matter how slowly or rapidly we switoh  assume for specificity thaé, > w,. SinceH, /w, is an adia-
from 0 to 1,9(zt) will always evolve through exactly the batic invariant for the harmonic oscillatdi8], we have
same continuous sequence of “canonical” mass densities; = (w,/wg)Eg, WhereE, (E,) is the initial (final) energy
specified by Eq(20); g never develops a lag the sense that of the oscillator. The work performed on an isolated system
f does. is equal to the change in its energy, so we get
Equation(20) also implies the result W..=[(w,/wg) —1]Ey. A canonical distribution of initial
energiesE, then leads, after some algebra, to the following

-7 S ]
ex — Aw(D)]= Z_Zzexli—ﬁ(Fx—Fo)]- 22) ensemble distribution of values ¥:

M ofW )= wof3 woBW W (2
A=\(t), which is in effect a restatement of our central re- im p(W,ty) = ———exp — ———|6(W), (27
sult, Eq.(3). ts= e v

where 6 denotes the unit step function. It is straightforward
. EXAMPLES to verify that this distribution satisfies E¢B).

As another example, consider a single particle bouncing
ground inside a three-dimensional cavity with hard walls,
where the shape of the cavity is a function )f Let V,
denote the volume of the cavity. The free-energy difference
is thenAF= "1 In(V,/V,). Assume that, when is held
fixed, the motion of the particle is ergodic over the energy
As a first case, we take deterministic evolution under theshell (the five-dimensional surface of constant energy in six-

We have shown that Eq3) is true for Markovian pro-
cesses satisfying detailed balance. Let us consider a few e
amples of such processes.

A. Hamiltonian evolution

HamiltonianH, , asA\ is varied from O to 1: dimensional phase spacelso assume that;<V,. Now,
] imagine that we allow the particle to evolve Xass switched
z={z,H,}, (23)  infinitely slowly from 0 to 1. For this system the quantity

. o H¥2), is an adiabatic invariarf®]; therefore the total work
where { , } denotes the Poisson bracket. Ordinarily, ON€performed on a particle with initial energyE, is

would not call this a stochastic process, but of course it maWVwZ[(VO/Vl)Z’?’— 1]E,. Taking an ensemble of such par-
be viewed as a special case of such. This evolution is Margcles, defined by a canonical distribution of initial conditions

kovian andR, is just the Poisson bracket operator (atA=0), we get
Ryf={H,.f}. 24 483w\ V2 W
Wf={H\.f} (24 lim p(W,tS)z(ﬁ—f_r ) ex;{ - 'BT) o(W), (29
It immediately follows that detailed balan€Eg. (9)] is sat- ts®

isfied. The central result of this paper then tells us that if W&yherer =(Vy/V,)%3—1. As with the example of the har-
(i) start with a canonical distribution of initial conditions i o P straightforward to show that this dis-
f(z,0)=251 exd —pBHq(2)] and (ii) allow trajectories to tribution p satisfies Eq(3).

evolve deterministically from these initial condition&qg.
(23)] as\ is varied from 0 to 1, then this ensemble of tra-
jectories will satisfy Eq.(3), regardless of how slowly or
quickly we perform the switching. This result was proven Next, let us consider modifying Hamilton’s equations by
more directly in Ref[4]. adding both a frictional and a stochastic force

B. Langevin evolution
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X=p, (293 tim_e evolution ofg regardless of how slowly or quickly we
switch the external parameter.

p=—a,V, — yp+FE(t). 29h
P 7P ® (29 C. Isothermal molecular dynamics

We have assumeg a one-degree-of-freedom system and aThe Langevin equations above provide a simple method
HamiltonianH, = p?/2+V,(x). Let us furthermore take the for numerically simulating the evolution of a thermostated
stochastic forcd-(t) to represent white noise, with an auto- system(i.e., a system in contact with a heat batwithout

correlation function given by explicitly simulating the many degrees of freedom of the
- = bath. The termF(t) may be implemented by generating a
(F(t)F(t2))=Dpd(ta—ty). (300 small, random momentum “kick” at each time step in the

numerical integration of the equations of motion. This
method works both for static Hamiltonians and, as in the
case considered in the present paper, for Hamiltonians made
time dependent through the variation of an external param-
eter. In the past decade or so, methods for using explicitly
deterministicequations of motion to simulate thermostated
systems have proven very usefdl0]. These generally go
under the name oisothermal molecular dynamic§MD).
5%f Typically, the heat bath is represented by one or more “ex-
Tl (32)  tra” degrees of freedom. Then, in the extended phase space
p X .
that includes both the system of interest and the extra de-

Since EQq.(32) is of the form af/at=lfz)\f, this process is gree{s) .OT ffeed"m’ the evqlutiqn is govgrned by a _set of

i ) ] A o eterministic (but non-Hamiltoniah equations of motion.
Markovian. Furthermore, inspection reveals tRgtsatisfies  These are tailored so that when the Hamiltonian describing
Eq. (9), i.e., detailed balance holds. Thus the conditions fokne system of interest is static, the variables representing the
the validity of Eq.(3) are met: Given an ensemble of systemsgysiem of interest explore phase space canonically, at least to
evolving under this stochastic process as changed from 4 good approximation.
0 to 1 over a timetg, and given an initial distribution An example of an IMD scheme NoseHoover dynamics
f(z,0)=2," exd—BHo(2)], we are guaranteed that this en- [11,17], represented by the equations of motion
semble will satisfyexp(—BW)=exp(—BAF) for any switch-

Finally, let us impose a fluctuation-dissipation relation be-
tween the frictional and stochastic forces

y=BDp/2. (31)

An ensemble of trajectories evolving under the stochasti
process just defined satisfies the Fokker-Planck equation

o v, O De
E—{ A }+7%(p )+

ing time ts. {a=p, p=—VV,—{phn, (359
Equation(29) is aLangevinset of equations. Ik is held
fixed, an ensemble of trajectories evolving under these sto- Z:(K/KO— 1)/ 72 (35b)

chastic equations of motion will relax to a canonical distri-

bution on phase space. In other words, the evolution spece have again assumed a kinetic-plus-potential Hamil-
fied by Eqs(29)—(31) satisfies not only detailed balance, but tonian; the indexh runs over alD degrees of freedom of the
the stronger assumption of thermalization as well. If we starsystem,K=2npﬁ/2 is the total kinetic energy of the system,
with a canonical distribution, at =0, and then switch the Ky=D/28 is the thermal average ¢, and the parameter
value of the external parameter infinitely slowly x0=1, acts as a relaxation time. Let us imagine a trajectory evolving

then the ensemble of trajectories will remain in quasistatidn the extended phase space,{) space, under these equa-

equilibrium over the course of the switching process: tions of motion, as\ is switched from 0 to 1. The workV
. performed on the system of interest is defined, as before, by
f(zt)=2, " exd —BH\(2)], A=\(1), tg—ce. Eq. (5). While this expression does not explicitly contain the

(33)  bath variable’, W is nevertheless a function of the full set of

) _ initial conditions ,,{y) since the evolution of the system of
The creeping value of thus d.rag.s‘(z.,t) through a contm_u— interest(z) is coupled to that of the heat bath)(
ous sequence of canonical distributions. Furthermore, in this |, ref. [4], it was shown that if one started with a distri-

limit, the “work accumulated” will be the same function of 1, \sion of initial conditions in the extended phase space given
time for every trajectory in the ensemble(t)=F, —F; b
each trajectory represents a system evolving in quasistatic
equilibrium with the reservoir. Thus the quanti®(z,t) de- f(z,¢,0)xexp{—[BHo(2) + ?72/2]} (36)
fined earlier is given, in this quasistatic limit, by
and if one then propagated an ensemble of trajectories from
Q(zt)=exd —B(F\—Fy)1=2,1Z,. (34  these initial conditions, under the Neb®over (NH) equa-
tions of motion, as. was switched from O to 1 over a tintg
It then follows that the functiom=fQ [Eq. (14)] satisfies  and computed the workV for each trajectory, then Eq3)
9(zt)=Z;" exd—BH\(2)] [Eq. (20)], from which we get  would hold identically for this ensemble. This was shown by
exp(—BW)=exp(— BAF). Of course, when we switck from inspection.
0 to 1 over dinite time tg, neither Eq(33) nor Eq.(34) will Our purpose here is to use the central result of the present
in general hold; nevertheless, E0), and therefore our paper to establish simple criteria for determining whether or
central result, will remain valid since Eq1l6) governs the not Eq.(3) is valid for a particular implementation of IMD.
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In general, the heat bath is represented\byariables,; to
{n. Let y=(z¢q,....{n) denote a point in the
(2D + N)-dimensional extended phase space, wiieis the
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tions of work and free energy, Eqgl) and(5).] These con-
siderations lead to the following simple conclusion.
Suppose we have a system described by a Hamiltonian

number of degrees of freedom of the system of interest. Thehl, (z2) and we wish to compute the free-energy difference
the thermostating scheme in question is defined by a set &§F=F,—F,. Suppose furthermore that we are given a

deterministic equations of motion in this space:

y=Ky(y), (37)

scheme for IMD; that is, we have a set of “heat bath” vari-
ables ¢,,...,{n), along with equations of motion in the ex-
tended phase space, as per &7). Then, if a functiong of

the heat bath variables can be found such that the distribution

of which Eq.(35) is an example. An ensemble of trajectories f S« exd — 8(H, +q)] is stationary under the equations of mo-
evolving under these equations of motion may be describegdon (with \ fixed), then we can comput&F as follows. Let
by a distributionf (y,t), which satisfies the continuity equa- an ensemble of trajectories evolve from an initial distribution

tion
AR K,f)=R,f 38
rri r?_y'( =R (39
Now suppose that we can find a functiofZ,,...,{N)
such that the distribution
feoexp{— B[H\(2)+a(Z1.-..40) T} (39

is stationary under the evolution defined by E2j7) whenA
is held fixed. That is,

R, fC=0. (40)
(For the NH equationsy= £?72/23 satisfies this conditioh.

We will allow gq to depend onB and any otherconstant
parameters, but not ok. The distributionff(y) may be

focexd —B(Ho+0Q)], as\ is switched from 0 to 1 over a
finite switching timet,. Compute the workV for each tra-
jectory, as per Eq5), and then compute the ensemble aver-
age of exp{-BW). This average will equal exp(BAF).

D. Monte Carlo evolution

As a final example, again, motivated by computer simu-
lations, let us consider the evolution oMonte Carlo(MC)
trajectory, as\ is switched from 0 to 1. In this case both the
trajectory and the parameter evolved in discrete steps,
rather than continuously:

Z(t)—29,21,. 42N » (43

)\(t)—>)\o,}\1,...,)\N , )\n:n/N. (44)

The initial point in phase spa@g is sampled from a canoni-
cal distribution, with the value of fixed atA,=0. One then

viewed as the canonical distribution in the extended phasﬁnagines thah changes abruptly fromy=0 to\;=1/N; as

space since it is invariant whenis held fixed. Now define a
function

Hy(y)=H,\(2)+a({y,... (41)

which we may think of as aextended Hamiltoniar This is
not meant to imply that{, generates Eq37) as a “real”

'é’N)r

a result, a quantity of worlkéw, = th(zo) - on(Zo) is per-
formed on the system. Then, the system jumps to the next
point in phase spacg generated fronz, by a MC algorithm
appropriate to the Hamiltoniam1 (see Appendix B One
then continues to alternate between discrete changesud
discrete MC jumps in phase space, until the entire “trajec-

Hamiltonian would; in general those equations are noniory” (Zo,...,zy) is obtained and the value of is 1. The

Hamiltonian] By Eq. (40)

R, exf — BH,(y)]=0. (42)

Now forget for a moment the division between the system

total work performed during this discrete switching process
is

N
MWo= 2 [Hy (Z0-2)=Hy _(20-1)]. (45)

N
W=,
n=1

of interest and the heat bath and treat the entire extended
phase space as a phase space for some system of interest,Noite that “time” does not enter into this scheme. The qua-

which a parameter-dependent energy functtog(y) is de-
fined. The evolution given by E@37) then satisfies the two
conditions listed in Sec. Ili) it is Markovian[Eq. (38)], and
(ii) it satisfies detailed baland&q. (42)]. Thus our central
resultexp(— BW)=exp(— BAF) is identically true for an en-
semble of trajectories evolving under E§7) from an initial
distribution f ycexp(—B8H,), provided we replace KHz) by
H\(y) in computing W and\F. However, it is easily veri-
fied that we will get exactly the same values for béthand
AF usingH, (y), as we would obtain witl, (z). In the case
of W, this is because only the first term &, (namely,H,)
depends on; for AF, it follows from the fact that the par-

sistatic limit is obtained by letting the number of steps be-
come arbitrarily largeN— oo,

Let us now imagine that we generate an infinite ensemble
of MC trajectories, each of lengtN. We do this by imple-
menting the above procedure repeatedly, each time feeding
in a different string of random numbers to generate the initial
conditionsz, and the subsequent MC steps. Given such an
ensemble, we compute the wovk performed on each tra-
jectory [Eq. (45] and then the ensemble average of
exp(—pBW). As shown in Appendix B, this average will equal
exp(—BAF). This should come as no surprise: A trajectory
generated by the MC algorithm isMarkov chain with de-

tition function for the extended Hamiltonian factorizes into tailed balance built into the individual steps. This evolution

an integral over the variables and an integral over tlie
variables and only the former depends)ar{See the defini-

thus satisfies, in discretized form, the two assumptions re-
quired for the validity of Eq(3).
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Let us now consider the two limiting casé=1 and The integral on the right-hand side may be evaluated by
N—co. The latter is the MC equivalent of the quasistatic samplingng points in phase space from eachMfdifferent
limit. In this case our ensemble proceeds through a discreteanonical distributiongcorresponding to equally spaced val-
infinitesimally spaced sequence of canonical equilibrium disues of A from 0 to 1), for a grand total oN=nsM points
tributions, and the work performed on each trajectori i5, sampled. The average éH, /J\ is then computed at each
as per Eq(1). The resultexp(— SW)=exp(— BAF) then fol-  value of A, and from theseM averages the integral is ob-
lows automatically. In the opposite limN=1, the workw  tained. With the exception of a few very simple systems
performed on a particular trajectory is given by (e.g., ideal gases and harmonic oscillakotise standard way

to obtain a canonical distribution is to first allow the system

W=H;(z))—Ho(z0)=AH(z) (N=1). (46) to “age,” that s, to relax to an equilibrium statistical state,

under some MC or IMD scheme. In implementing the nu-
merical evaluation of Jd\(aH, /d\), , it is often too time

_ _ _ consuming to age the system independently at each dfithe
(exp(— BAH))o=exp(— BAF), “7) selected values of. Instead, the final point sampled at one

where( ), denotes a canonical average with respeat+d. value may be used to genera}te the initial point sampled at the

This result is a well-known identity for the free-energy dif- next value ofs. Of course, this means that at eacliexcept

Equation(3) then reduces to

ferenceAF; see Eq(48) below. AN=0) we are actually sampling from a slightly out-of-
equilibrium distribution, which leads to a systematic efiior
IV. FREE-ENERGY COMPUTATIONS fact, an overestimaten the evaluation of the integral.

A limiting case of this procedure arises when we take
While Eq. (3) is interesting in its own right, it may addi- ng=1, i.e., exactly one point is sampled at each valua .of
tionally prove useful in the numerical computation of free- This is theslow growthmethod[18]. As stressed by Rein-
energy differences. The field of free-energy computations isiardt and co-worker$3,19,2q, if we view the chain of
decades old, with diverse applications, and a very large bodgoints (z,,...,zy) thus generated asteajectory evolving in
of literature exists on the subjeft3]. In this section, with- phase spacésA\ is switched from 0 to ), then the integral
out attempting a survey of the field, we discuss a few pointappearing on the right-hand side of E¢49) represents the
relevant to the possible application of H§) to free-energy work W performed on the system over the course of the
computations. These comments expand on ones made in Rafwitching process. This picture is a compelling one, as it
[4]. attaches a very physical interpretation to the numerical
Most methods of computing free-energy differences areevaluation of Eq(49): Instead of computing an integral, we
variants of either théhermodynamic integratiofirl) orther-  are simulating the evolution of a thermostated system, with
modynamic perturbatiofiTP) methods(For an exception to the idea that, in the limit of infinitely slow switching, the
this statement, see the work of Holian, Posch, and Hoovework performed on the system will equal the free-energy
[14], where two different expressions faF, based on time-  difference AF. For a finite switching rate, the above-
integrated heat transfer, are derived within the framework ofnentioned systematic error inherent in the slow growth
isothermal molecular dynamigsTP is based on the identity method is simply a manifestation of the inequate AF;
[15] see Eq.(2) and Refs[3,20,21. This interpretation of free-
_ energy computations is referred toadiabatic switchingor
AF=—p""In(exp(— BAH))o,  (AH=H;~Hy), 48 finite-time variation and indeed may be viewed as a separate
(48) method, distinct from thermodynamic integration.

where ( ), denotes a canonical average with respect to a N the context of adiabatic switching, EB) says that if
fixed value of\. Using a method such as Monte Carlo, one'Ve run an ensemble of finite-timr finite-N, for Monte
samplesN points in phase space from the canonical distribu-C2r10 simulations of the switching process, using, for in-

tion corresponding ta =0 and then one takes the average ofStance, one of the methods described in Sec. Ill, then the
exp(— BAH) over theseN points. In principle, the method is average of expf BW) over this ensemble of simulations will

exact forN—: in practice, unless the canonical distribu- €9ual €xpt-BAF). Assuming perfect numerical accuracy and
tions corresponding tél, and H, overlap to a significant an infinite ensemble of S|r_nula_1t|pns, this is aract state-
degree, the average of expBAH) will be dominated by me_”t- .Anothe.r way OT p”“'F‘g it is as follows: For a single
points in phase space that are visited extremely rarely durinfjnite-time switching simulation, the value of expW) pro-
the canonical sampling, so numerical convergence Wwith Vides anunbiasedestimate of expf SAF). By contrast, the
will be prohibitively slow. One way to get around this prob- value of W gives a biased estimate &fF (i.e., W=AF).
lem is to break up tha interval[0,1] into small subintervals Indeed, the former statement implies the latter in the same
and then use Eq48) to compute the free-energy difference Way that Eq.(48) implies the Gibbs-Bogoliubov-Feynman
corresponding to each subinterval. Other, more sophisticatéfequality[22]: (AH),=AF. Let us consider this for a mo-
methods of extracting the best efficiency from E4g) have  ment.
been developed over the ye&is]. Given a real function of a real variabjgx), it is easy to

Tl is based on the identity17] show that ifd%y/dx?=0 for all x, then

H\

1 J 1 N 1
AFZJ'O d)\<W>)\. (49 Nzl Y(Xi)ay(ﬁzl Xi) (50
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FIG. 2. Simulations of an isolated harmonic oscillator whose natural frequency is switchedfrerh.0 to w,=2.0 over a switching
timet,. At each of five values of, 10° simulations were carried out. The upper and lower sets of points show the ordinary avak&yes (
and the exponential averages”) of the work, respectively. The dashed line isvét= 1.5, the dotted line a&iV=AF=1.0397.

for any set of point$x,,... xy}. If these points are the result Ns
of random sampling from some ensemble, then &), in *=—B"11n N—E exp(— BW,) . (55
the limit N— o, may be rewritten as si=1

y(x)=y(x), (5)  For Ng=1, W* and W® are identical and the expectation

. N X
where the overbar denotes an ensemble average. Applyinvdjllue of either iSV. For Ns—<2, by contrastW” converges

this result toy(x) = expx, with x= — W, we get to AF, wheread\?® converges taV. For intermediate values
of Ng, the following inequality chain holds:
exp(— BW)=exp — BW). (52

X a’
This is identically true for any distributiop(W). We may AF=(WH)={(W)). 6

now combine this result with Eq3) to getVV;AF. ) i . -
Now, what if we perform a finite numbe\; of identical [Both inequalities are derived by combining Ed8) and

. > a "
switching simulations? L&t/ denote the work performed on (50 W'_th the def|n|t|on§ ofW aan J1n othF:ervords,_as
the system during thith simulation and let an estimate ofAF, the “exponential averageW” is statis-

tically less biased than the ordinary averafy@ for Ng>1.

1 Ns On the face of it, the last statement seems to imply that if
We= N—E W, (53)  we perform more than one switching simulation, then we are
si=1

better off usingW* rather thanW? as our best guesgr
upper boungfor AF. In practice, however, Eq3) may be
subject to the same disease as the TP identity, (E§).
Namely, if the values otV obtained from repetitions of the
switching simulation typically differ from one another by
much more tha !, then the average of exp(BW) will be
o dominated by values o that are very rarely sampld@3].
((Wa))zwzf dWp(W)W=AF. (549  Thus the convergence ¥* to AF, in the limit Ng— o, may
be much slower than the convergenceVgt to W, in the
The double angular brackets, denotiegpectation value same limit. In other words, for a finite number of switching
specifically mean an average over all possible setdNof simulations W* may be subject to considerably largeatis-
simulations. Now, Eq(3) suggests that rather thah®, we tical fluctuations thanWV?, even though itsystematicerror
consider the following quantity as our best estimate\&: (expectation value minuAF) is, by Eq.(56), smaller.

be the average over these values. We may view/tie as
numbers sampled randomly from a distributipfW) satis-
fying Eqg. (3). Then the expectation value W?* provides a
rigorous upper bound oAF:
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FIG. 3. Same as Fig. 2, except that the harmonic oscillator is now subject to a frictional and a stochastic force, a$28gr THe
dashed line gives the free-energy differedde=1.0397.

The preceding comments point to the following tentative In the first set of simulations, the oscillator is isolatéd
conclusion. If one runs a set ™ switching simulations, evolves under Hamilton’s equations, withtime dependent
with the goal of computingAF, and if the spread in the although the initial conditions are sampled from a canonical
values of workW obtained is not much larger tha#i %, then  ensemble corresponding %o=0:
the exponential averag&™ defined by Eq(55) should pro- P
vide a better estimate ¢br tighter upper bound 9mAF than _P%o _ 24 2,2
the ordinary averag@/®. This conclusion is supported by a fop.0)= 2 X~ B(p™+ wpx)/2]. (57)
calculation by Hunter, as described in Rgf]; see also the _ o )
numerical illustrations in the following section. Five different values of the switching time were chosgn:

Of course, a more detailed study of the possible utility of=1.0, 3.0, 10.0, 30.0, and 100.0, and for eagta total of
Eq (3) to free_energy Computations should be made. In parNS: 105 simulations were carried out. F|gure 2 shows the
ticular, it is not ruled out that there exist methods around theverage value of work obtained at each switching titffeas

limitation mentioned in the previous paragrag@d]. well as the exponential averayé‘. [See Eqs(53) and(55).]
Since Hamiltonian evolution satisfies detailed balance, but
V. NUMERICAL RESULTS not thermalizatior{as defined in Sec),lwe do not expect the

work performed in the limits—o° to equal the free-energy

In this section we illustrate our central result with numeri- differenceAF. Rather, we expedV..=[ (w4 /wgy) — 1]E, for
cal experiments. The first four sets of simulations involve aa single trajectorysee Sec. Il A and therefore for a canoni-
harmonic oscillator whose natural frequency is switchedcal distribution of initial energies
from wy=1.0 to w;=2.0. The evolution is implemented us- o
ing, in turn, each of the four examples discussed in Sec. Ill. lim W=[(w,/wy)—1]8 1=1.5. (58
Then, we present results involving a more complicated sys- tg—oo
tem: a gas of interacting particles inside an externally. A — . . .
pumped piston. All of these cases satisfy the condition dis] "€ values ofW* shown in Fig. 2 are consistent with this
cussed at the end of Sec. IV, namely, the spread in the valu&XPectation. Equatio(8), meanwhile, predicts
of W is not much greater thad™ 1. (Otherwise, the conver- lim W= AF (59)
gence ofW* to AF, in the limit of many simulations, would Ng— o0
be poor)

For the harmonic-oscillator simulations, we take thefor anyvalue oftg. Again, the numerical results are consis-
Hamiltonian given by Eq.(25), with »,=1.0+\N and tentwith the prediction: The values @* shown in Fig. 2 all
\(t) =t/t as throughout this paper. Also, we tgBeé'=1.5.  fall very close toAF.

Thus the free-energy difference is AF= For the second set of simulations, we added a frictional
B In(w;/wp)=1.0397. and a stochastic force, as described by E88)—(31), with
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FIG. 4. In these simulations, the harmonic oscillator is thermostated with the IMD scheme described in the®tsixhuldlions at
ts=1.0 were performed and the dots in this figure show the final locations in phase space of these trajectories.

Dp= O._6 andB~'=1.5. The evolution now represents thatof  f(x,p,Z,£,00xexd — B(p?+ wSXZ)/z— T2+ E2)12].
an oscillator coupled to a heat bath. The stochastic force was 61)
implemented by generating a random momentum kick
(sampled from a Gaussian distributjoat each time step It is easily verified by inspection that, if the value ofwere
dt=0.01 in the numerical integration. As with the Hamil- held fixed at 0, then this distribution would be invariant un-
tonian evolution, 19 simulations were performed at each of der Eq.(60). This is therefore the canonical distribution cor-
the five switching times and the results ## andW* are  responding to this IMD scheme and the functepdefined in

plotted in Fig. 3. Here walo expect that the work/ will ~ Sec. lll C is given by
approachAF=1.0397 ag,—c, and the results fow? sup- 92 w2
port this. At the same time, the exponential averdgefalls (4.8 =T+ E)2B. (62)

very close toAF for each switching time, as predicted by This set of simulations was used to illustrate E20),

Eq:r(hS). t simulati in involved a th tated h evaluated at=t,. (See the discussion at the end of Seg. II.
€ next simulations again involved a thermostate arFigure 4 is a scatter plot showing the distribution of final

monic oscillator, only this time isothermal molecular dynam- ; ; ;
) " . values in phase spacg(ts),p(ts)), for the 1C trajectories.
ics was used to implement the coupling to the heat bath. Th igure 5 shows several contour lines of this distribution, af-

ElarlyculazrslMDdsc':henﬂe us;\(fvd vr\:astdsvtedopeq Ely Hoodver anqer smearing each point with a Gaussian of variance 0.04 in
Tr? ian [ t]' an ]lnvo:(es : '?h eat E:j dva;:a ¢sand (. both thex andp directions. Thus the lines shown are actu-
e equations of motion in the extended phase space are ally contours of the function

x=p, (603 10

Fp) = 2 0x—xi(t)3(p—pi(ts),  €=0.04,

si=1

p=—wix—{p— BEp°, (60b) (63)

where 6, is a normalized Gaussian of varianeg and

(x;(1),pi(t)) gives the phase space evolution of itile tra-

] jectory in the ensemble of simulations. As can be seen from
E=(B%p*—3Bp?)I 72 (60d  both figures, this distribution does not correspond to the ca-

nonical distribution forH,. Indeed, its skewness illustrates

wherer is a relaxation time whose value was set to unity. Athe lag that develops between the evolving phase-space den-

total of Ng=10° switching simulations were performed, with sity and the instantaneous canonical distribution.

a switching timet,=1.0. At the start of each simulation, Next, the solid lines in Fig. 6 show contours of the func-

initial conditions were sampled from the distribution tion g(x,p,ts) defined in Sec. Il, obtained from the same set

{=(Bp?—1)I72, (600
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FIG. 5. Contour plot of the distributiof(x,p,ts), constructed from the data shown in Fig. 4, with Gaussian smoothing.

of simulations. Again, Gaussian smoothing was used, so the As a final example, we take a system more complicated

solid lines are contours of the function

13
No 2y (1) 0(p=Pi(to)

g(x,p,ts) =

Xexp(—BW;), €=0.04, (64)

whereW,; is the total work performed on the system during

theith simulation. The dashed lines in Fig. 6 show the cor-

responding contours of thgredictedmass densitg(x,p,ts)

[Eq. (20)], with the same Gaussian smoothing function
folded in. The agreement between the two sets of contours
very good. This shows that, indeed, when one assigns
weight exp(-8W) to each of the points in the scatter plot,

than a harmonic oscillator, namely, a gasngf=50 interact-

ing particles inside a piston that is taken through one cycle of
pumping. Specifically, the particles are confined within a
two-dimensional box with hard walls, whose initial dimen-
sions are X 1; over the course of the switching process, one
of the wall first moves inward until the area enclosed by the
box is three-quarters of its initial value and then back out
again. This pumping of the piston is cosinusoidal: xhend

y dimensions of the box are given by

L,(A\)=1.0, (65)

is
a

Ly(\)=0.875+0.125c0627\), (66)

Fig. 4, then the resulting weighted distribution is canonical inwhere\ =t/ts and the total switching time ig,= 10.0.

the sense of Eq20).
In the final set of simulations involving the harmonic os-
cillator, we used Monte Carlo evolution, with the Metropolis

In their interactions with one another and with the walls,
the particles act as hard disks of radiRs- 0.005; between
collisions each particle moves freelffhus, over a switching

algorithm. Here, the duration of a simulation is characterizedime t,=10.0, a typical particle suffers several collisions

by the number of MC step rather than by a switching time
ts. Ten different values of N were considered,
N=5,10,20,50,.,5000, and for each a total of 1@imula-
tions were performed. Figure 7 show# and W* for each
value of N; as before, the results agree nicely with Egs.
(2)—(3). Figure 8 showsp (W), the distribution of values of
W obtained from the 10simulations, for each of the ten
values ofN. Although the distributiongy are quite differ-

ent, the integrall dWpn(W)exp(—=BW) [i.e., expE BWY)] is
independent ofN, as shown by the values & in Fig. 7.

with other particleg.Work is performed on the gas each time
a particle bounces off the moving wall.

Molecular dynamics was used for the evolution, i.e., con-
tinuous trajectories for the particles were computed as func-
tions of time. However, at each time step in the integration of
the equations of motion, a single particle was randomly se-
lected and a random kick, a discrete change in the momen-
tum of the chosen particle, was generated. The kick was then
either accepted or rejected according to the Metropolis algo-
rithm [26], corresponding to a temperatuge 1=0.5. This
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FIG. 6. The solid line shows contours of the functig(x,p,ts), constructed from the data shown in Fig. 4; the dashed line shows
contours of the theoretical prediction fgtx,p,ts) [Eg. (20)]. Both are smoothed with Gaussians.

simulates coupling to a heat reservoir: If all the walls of thewere chosen from a canonical ensembe {=0.5) and the
box were fixed, the gas would relax to thermal equilibriumwork performed on the gas, as a function of time, was com-
from any initial conditions. puted. The horizontal axis shows time. The solid line gives
Figure 9 shows results obtained fravig=10* such simu-  the work performed on the gas up to tirei.e., the work
lations. For each simulation, the initial conditions of the gasaccumulatedw(t), averaged over alNg simulations. Let

2 AL LA | T R T v M
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N
FIG. 7. Similar to Fig. 3, except here the evolution of the thermostated oscillator is implemented using Monte Carlo rather than Langevin

evolution. The duration of a simulation is now characterized by the number of MC Ntegther than a switching timg . For each of ten
values ofN, 10¢° simulations were carried out.
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FIG. 8. For each of the ten sets of MC simulatidsse Fig. 7, the distribution of values of worky (W) was obtained. This figure shows
these ten distributions, frolN=>5 (lowest peakto N=5000 (highes}. (Although the peak moves toward the right with increasighe
actual average work performed goes down; see the valué#€ oh Fig. 7)

Wa(t)z(lle)Eilewi(t) denote this average, wheng(t) is  confirmation of our central result, in the form given by Eqg.
the work accumulated during thiéh simulation. The dashed (22). Note that the dotted line represents the work thatild

line gives the exponential average have beerperformed on the gas, in the limit of infinitely
slow switching ¢s— ). Thus for the dashed line, we have
Ns effectively extracted thigjuasistaticbehavior, from an en-
wX(t)=—pB"1In N—E exd — Bw;(t)] (67)  semble offinite-timeswitching simulations.
si=1
of the work accumulated. Botiw?(t) andw*(t) were com- VI. SUMMARY AND DISCUSSION

puted from the same set of 4@ajectories. i )

Since the piston returns to its initial position at the end of  1he central goal of this paper has been to establish the
the switching process, the final free-energy difference igexact validity of the resulexp(— W) =exp(~ BAF), within
zero: AF=F,—F,=0. We see that the dashed line indeedthe framework of the master-equation approach. This result
returns to zero at=t,, with very good accuracy. By con- IS unusual in that it expresses the form of an equality
trast, the average work performed on the systepper ling ~ [rather than an inequality, e.g., EQ)] the relationship be-
ends atW*=w?(t;) =1.534. This represents dissipated en-tween the workW performed on an out-of-equilibrium sys-
ergy: the gas “heats up” when pumped at a finite rate. ~ tem(more precisely, on aensemblef systems driven out of

At intermediate times, we expect equilibrium by varying an external parametand the free-
energy difference\F between two equilibrium states of the
wXt)=F,—Fy, A=\(t) (68)  system. A few comments are now in order.

In classical statistical mechanics, the equilibrium “state”
(in the limit of infinitely many switching simulationsby Eq.  of a system is described by a canonical distribution in phase
(22). If the gas were truly ideal, then the free-energy differ-space: f€(z2)=2"! exd{ —BH(2)]. Its free energy is then
ence would be given by given by

Fa—Fo=npB8 1In(Ag/A)) (ideal gas, (69 F—(H)-g'S=—g 1z, 70
where A, denotes the area enclosed by the box. However,

since the particles do interact with one another, as hard disksyhere(H)=[f°H and S= —kg[fC In f€. Thus the free en-

this expression folF, —F, is not exact. Nevertheless, the ergy F (like the entropyS) is a quantity associated with a
size of each particle is small enougR+£0.005) that Eq. statistical ensemblef microscopic states of the system.
(69) ought to represent an excellent approximation. The dotWhen the system depends on some external parameter, then
ted line in Fig. 9 shows this approximation g —F,. This  so does the canonical ensemble, as in turn does the free-
line is very close to the exponential averddashed ling in  energy. The quantitAF of central interest throughout this
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w(t)

FIG. 9. Simulations of a gas of interacting hard disks inside a piston that goes through one cycle of pfiingpiimg then oul, over a
switching timet,. The evolution is MD, but MC “kicks” are included to provide a thermostat. A total of &inulations were performed.
The solid line gives the average and the dashed line the exponential average of the work as a functiom@tjraedw*(t), respectively.
The dotted line gives the theoretical prediction Fgr—Fq [Eq. (69)], with A=\(t), for the case of an ideal gas.

paper has been the free-energy differefmeconstant tem- that even if we switchrreversibly, so that the system ends

perature between two such equilibrium ensemblfe,f;o(z) up in some nonequilibrium statistical sta®&, we can still

andf_;(2). extractAF (=FB—F*) from an ensemble of such measure-
In deriving Eq. (3) we introduced a time-dependent ments.

phase-space densifi{z,t), describing the evolution of our Of course, if we are dealing with a system that satisfies

ensemble of trajectories. Note that, although the initialthe thermalization assumption, then, at the end of the switch-

phase-space density coincides with the canonical distributiolilg process, we can always, at no cost in work, hold the

used to compute the free energy, value of A fixed and allow our ensemble to relax, for an
additional  time t, to thermal equilibrium:
f(2,0=1_o(2), (7)) f(zts+te)=Fc_4(2). In this case the\F that appears on

_ _ . o . ~ the right-hand side of Eq3) doesequal the free-energy
the final density doesot (typically) coincide with the distri-  difference between the initial and final statistical states of the

bution for whichF, is defined: system.
c Equation(3) was derived, as an identity, under the as-
f(zty) #fy-1(2). (72)  sumptions of Markovian evolution and detailed balance, as

spelled out in Sec. I. This derivation is complementary to the

This is due to the lag that develops between the ensemble @he presented in Ref4], in which the degrees of freedom of
trajectories and an instantaneous canonical distribution ifhe heat reservoir were treated explicitly. Neither of the as-
phase space. ThusF is not the free-energy difference be- sumptions of Sec. | was assumed in Ref], but the cou-
tween the initial and final states of the syst¢V], but  pling between the system and reservoir was taken to be
rather, as stated in the preceding paragraph, between twgeak, so the result there was an approximate one, with small
different canonical ensemblesy_, and f{_,, only the corrections expected from the small but finite interaction
former of which reflects the actual distribution of micro- Hamiltonian. Of course, in a real physical system, neither the
scopic states of the system at any time during the switchingarkov assumption nor detailed balance will be met exactly,
process. so the derivation presented herein is strictly speaking valid

Another way of putting this is as follows. Suppose we areonly for a particular class ahodelsof physical reality. Nev-
interested in the free-energy difference between two equilibertheless, because the result is exact for these models and
rium statistical states of a systesandB (corresponding to  because the Markov and detailed balance assumptions are
ffzo andfle, respectively. Ordinarily, we would compute often very good approximations for physical systems, the
or measure\F by reversiblycarrying the system from to  result is a useful one. Furthermore, as illustrated in Sec. Il
B, i.e., by switching\ infinitely slowly. Equation(3) tells us  models of thermostated systems that are commonly used in
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theoretical and numerical studie® satisfy these assump- the probability density for a particular path is
tions; Eq.(3) is therefore exactly valid for these models.

It would be very interesting, of course, to find a physical ~P(z(t))= P(Zo)Pftl(Zo|21) Pftz(zﬂzz)'"PftN(ZN—ﬂZN)-
system on which a laboratofas opposed to numerigax- (A4)
periment testing the validity of E¢3) would be feasible. As
mentioned in Ref[4], such a system would almost certainly Herep(zo) =2, * exd —BHo(z)] is the probability distribu-
have to be microscopic, or at most mesoscopic in size.  tion for the initial conditionz, Pf‘(z’|z) is the transition

Finally, from both a theoretical and a computational pointprobability fromz’ to z (in time ét) as a function of, and
of view, it would be worthwhile to consider possible exten- A,=n/N. It is the Markov assumption that allows this fac-
sions or generalizations of E(3). In particular, are analo- torization. The workW may be expressed as
gous results valid for ensembles other than the canonical
ensembldfixed N,V,T) considered here, e.g., microcanoni-
cal, grand canonical, and isothermal isobaric? Presumably, W(Z(t)):nzl OHn(Zn-1),
the role of the Helmholtz free energywould then be played
by other thermodynamic potentials, for instance, the Gibb:wherec?HnEHAn—Hxnfl. [In writing Egs.(A4) and(A5) we
free energy in the case of the isothermal-isobaric ensemblgmplicitly assume that\(t) evolves in N discrete steps

S\ =1/N that occur at time$y,t;,...,ty_1. This “staircase”
ACKNOWLEDGMENTS evolution becomea (t) =t/t, in the limit N—o.]
Combining Eqs(A1)—(A5), we arrive at

N
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M-1
APPENDIX A au(@=| 11 J dz,|p(zp)e~PoH1Z)
n=0
In this appendix we present a derivation of Efj6) dif- st B st
ferent from the one given in Sec. Il. For a given stochastic X PR (2o]zy) -7 APPmB-IPY (7 4|2),
trajectoryz(t), the workW is given by a path integral along (A7)

that trajectory{Eq. (5)]. We are interested in evaluating the
average of exp{ BW) over an ensemble of trajectories, ob- where I=M=<N. This is the discretized version of the func-
tained by sampling initial conditions from a canonical en-tion g(z,t) introduced in the main body of the text:
semble and then evolving stochastically from each of these

initial conditions. The quantitgxp(—AW) thus constitutes a Im(2)=9(zty). (A8)
sum over all paths, with each patfft) in our ensemble

weighted by the factor exp(BW). We may write this as In particular, note thaexp(~SW)=/dzgy(2). This set of

functionsgy, satisfies the recursion relation

exp(—,BW)zfde(z(t))exp(—,BW), (A1) (.3]M+1(Z)=fdZMgM(ZM)(37’85'4""*1(2'\"”3)(\9t (zml2).
M+1

where dm denotes a measure in the space of paitt3, (A9)

P(z(t)) denotes the probability densityith respect to this Now, to first order indt, we have
measurg of choosingz(t) by sampling randomly from the

ensemble of trajectories, ami=W(z(t)) [as per Eq(5)]. e PoMat) = 1— BSHy 1 1(2y), (A10)
Let us now divide the time intervdlOts] into N time st
steps of durationst=ts/N and let us denote a particular Pusi(ZM:D=0(zy—2)+6tRy | (zv,2). (All)
trajectoryz(t) by its phase-space locations=2z(t,) at times o o ] ] ] .
t,=nat, 0<n<N. Thus Combining this with our recursion relation givé® leading
orde
2(t)— (29,21, 1ZN)- (A2)

— Z)— 2)]=— z)6H z)/ 6t
The limit N—oo (with t fixed) is implied. Choosing a Eu- st LOu+1(2) = Gu(2)]= = Agu(2) SHu+1(2)

clidean measure in path space,
+f dzuam(zwRy,, . (2w ,2),

f dmzf dzof dzl--'f dzy, (A3) (A12)
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which becomes Eq16) in the limit N— oo,

APPENDIX B

Here we prove the assertiémade in Sec. I)that Eq.(3)

is identically true when the switching process is carried out
using the Monte Carlo method. Some of the steps in the

proof will be similar to those in Appendix A, but the as-
sumptionN—c will not be made here.

As mentioned in Sec. lll, a trajectoryy,...,zy) is ob-
tained by alternating discrete changes in the valuk wafith

random jumps in phase space generated by the MC alg

rithm. This algorithm, parametrized by the valuengftakes
as input a pointz and output a point’. Let P,(z|z') denote
the probability of generating an outpzitfrom an inputz, for

a given value of\. Detailed balance is built into the algo-
rithm

f dze PM@P, (72/)=e Ah(E@) (B1)

for any\. (This may be accomplished by, e.g., the Metropo-

lis method[26].) Thus a canonical distribution of input
gives a canonical distribution of outpmt.
The probability of obtaining a particular trajectory

(z9,--
then

1
P(zg,....2n) = Z_oe_BHO(ZO)P)\l(ZO|Zl)'"P)\N(ZN—1|ZN)-

(B2)
Combining this with Eq(45) for the work, we get
& 1
exp(— BW) = H f dz, — @~ BHo(z0) g = BH1(2)
n=0 ZO
X p)\l(zo|21). ..@ BoHN(ZN-1)
X Py (Zn-1l2n), (B3)

where 6H,=H, —H, . Now notice that exjp- BHy(zo) 1
can be combined with ekpBdHi(zg)] to give

C. JARZYNSKI

.,Zy) over the course of the entire switching process is

56

ex;{—,BHM(zO)]. The only other factor in the integrand that
depends org, is le(zo|zl). Performing the integraf dz,,
we get

| daoPizgfzyren - g, (o)1 =exit - pH, (2001,
(B4)
using Eq.(B1). This takes care of the first of tié+ 1 inte-

grals appearing in E4B3). We now repeat this process, first
combining ex@—,BHM(zl)] (obtained from thedz, integra-

0_

tion) with exd —BdHx(z;)] to get ex@—,BH)\z(zl)], then in-
tegrating overz;, and so forth. At the end of this process of
“rolling up” the factors and integrating, we are left with

- 1
eXF(_ﬂW):f dZNZ_O exd —BH1(zy)]

(B5)

Zl_
Z—O—GXK—BAF).

Q.E.D. Note that Eq(20) for g(z¢t), derived within the
framework of continuous-time evolution, also has a Monte
Carlo counterpart. Namely, fordM <N, let us define

M-1
gM<z>=g0 dz,Pu(Zo,- . Zm—1,2)EXP(— BWy) ,
(B6)

where Py, gives the probability of sampling a particular se-
quence of phase space points in the fivktMonte Carlo
steps andwvy, is the work accumulated during those steps.
Thus, in terms of our ensemble of MC trajectorigg,(2) is
the weighted phase-space density afkrsteps, where the
weight assigned to each trajectory is expiwvy,). Then,
writing an explicit expression foP), in the form given by
Eqg. (B2) and rolling up factors and integrating as above, it
follows easily that

1 Ly c
9u(2)= 7 e = BH,,(2)]= 7 ~15, (2). (B7)
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