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Equilibrium free-energy differences from nonequilibrium measurements:
A master-equation approach

C. Jarzynski*
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~Received 18 June 1997!

In has recently been shown that the Helmholtz free-energy difference between two equilibrium configura-
tions of a system may be obtained from an ensemble offinite-time~nonequilibrium! measurements of the work
performed in switching an external parameter of the system. Here this result is established, as an identity,
within the master equation formalism. Examples are discussed and numerical illustrations provided.
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INTRODUCTION

Consider some finite classical system that depends o
external parameterl. For instance, the system might be
lattice of coupled classical spins andl may denote the
strength of an externally applied magnetic field, or the s
tem might be a gas of particles andl a parameter specifying
the volume of a box enclosing the gas. Now suppose t
after allowing the system to come to equilibrium with a he
reservoir at temperatureT, we change, or ‘‘switch,’’ the ex-
ternal parameter, infinitely slowly, from an initial~say,
l50) to a final (l51) value. The system will remain in
quasistatic equilibrium with the reservoir throughout t
switching process and the totalwork performed on the sys
tem will equal the Helmholtz free-energy difference betwe
the initial and final configurations@1#:

W`5DF[F12F0 . ~1!

HereFl denotes the equilibrium free energy of the system
temperatureT, for a fixed value ofl. The subscript onW
reminds us that this result is valid for infinitely slow switc
ing of the parameter.

Now, what happens if, after allowing the system and r
ervoir to equilibrate, we switch the value ofl at afinite rate?
In this case the system will lag behind quasistatic equi
rium with the reservoir and the total work will depend on t
microscopic initial conditions of system and reservoir. Th
anensembleof such switching measurements, each prepa
by first allowing the system to equilibrate with the reservo
will yield a distribution of values ofW. Let r(W,ts) denote
this distribution, wherets is the ‘‘switching time’’ over
which the value ofl is changed from 0 to 1.~Without loss of
generality, assume a uniform switching ratel̇5ts

21 .! In
other words,r(W,ts)dW is the probability that the work
performed in switchingl from 0 to 1, over a timets , will
fall betweenW and W1dW. In the limit ts→`, we get
W5DF @Eq. ~1!# and sor→d(W2DF) in this limit. For
finite ts , however, ~i! the distributionr acquires a finite
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width, reflecting the fluctuations inW from one switching
measurement to the next, and~ii ! its centroid shifts to the
right,

W̄[E dWr~W,ts!W>DF, ~2!

as a result of dissipation~see Fig. 1! @2,3#.
Equation~1! gives the free-energy differenceDF in terms

of the work performed during a single infinite-time~quasi-
static! process. By contrast, Eq.~2! gives an upper bound on
DF, from an ensemble of finite-time~hence nonequilibrium!
repetitions of the switching process. Recently@4#, it was
shown that one can in fact extract the value ofDF itself, not
just an upper bound, from the information contained
r(W,ts). Specifically, the following result was shown to b
valid for any switching time ts :

exp~2bW![E dWr~W,ts!exp~2bW!5exp~2bDF !,

~3!

whereb21[kBT. This result gives the value of an equilib
rium quantity DF in terms of an ensemble of finite-time
nonequilibrium measurements. As discussed in Ref.@4# and
in Sec. IV below, the inequalityW̄>DF @Eq. ~2!# follows
immediately from Eq.~3!.

Equation~3! was derived by treating the system of inte
est and reservoir, coupled together, as a large, isolated,
sical Hamiltonian system. The Hamiltonian governing t
motion in the full phase space was taken to be a sum of th
terms: one for the system of interest (Hl), one for the reser-
voir, and a final termhint coupling the two. The magnitude
of the interaction termhint was explicitly assumed to be
negligible in comparison to the other two terms. With the
assumptions, Eq.~3! follows from the properties of Hamil-
tonian evolution~see Ref.@4# for details!.

The purpose of the present paper is to rederive the s
result within a different framework. Instead of considerin
deterministic evolution in the full phase space, contain
both the system of interest and reservoir degrees of freed
we will treat only the evolution of the system of intere
itself, described by a trajectoryz(t). This evolution will be
stochastic rather than deterministic and will be governed b
5018 © 1997 The American Physical Society
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FIG. 1. Distribution of values of workr(W,ts) performed during an ensemble of independent switching measurements at a
switching timets . The vertical line represents ad function atW5DF and corresponds tots→`; in that limit, the work performed during
a single switching process is exactly equal toDF. The smooth distribution representsr(W,ts) for a finite value ofts . In this case the

ensemble-average work exceeds the free-energy difference,W̄.DF, since energy is dissipated in a finite-time~irreversible! process.
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master equation. We will assume that this stochastic ev
tion is Markovian and that it satisfies detailed balance.

In presenting this alternative derivation, we are motiva
by several factors. First, master equations are a common
in statistical physics; therefore, it is reassuring to see that
~3! follows in a natural way from the master-equation a
proach. Second, in this derivation there is no need to exp
itly assume weak coupling between the system and rese
since a reservoirper sedoes not enter into the analysis; give
the assumptions stated below, Eq.~3! is identically true. Fi-
nally, one might come away from Ref.@4# with the feeling
that the validity of Eq.~3! depends directly on the propertie
of Hamiltonian evolution, in particular Liouville’s theorem
The treatment herein dispels this notion: Hamilton’s eq
tions appear nowhere in the derivation. This point is parti
larly relevant in the context of numerical simulations, whe
the evolution of a thermostated system is often realized w
the use of non-Hamiltonian equations of motion.

The plan of this paper is as follows. In Sec. I we establ
notation and terminology and specify precisely our assum
tions regarding Markovian evolution and detailed balance
Sec. II we derive our central result. In Sec. III we consid
specific examples of stochastic processes for which the re
is valid. In Sec. IV we briefly discuss the possible utility
Eq. ~3! to the numerical computation of free-energy diffe
ences. In Sec. V we illustrate our central result with nume
cal simulations. We conclude with a few remarks in Sec.
Two appendixes provide derivations of results used in
main text.

I. PRELIMINARIES

We begin by specifying precisely what we mean by t
terms work and free energythroughout this paper. We as
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sume that there exists a phase space of variables~e.g., the
positions and momenta of constituent particles! such that the
instantaneous microscopic state of our system is comple
described by the values of these variables. Letz denote a
point in this phase space. The evolution of our system w
time is then described by a trajectoryz(t). The kind of evo-
lution that will most interest us is not the evolution of a
isolated system, but rather that of a system in contact wi
heat bath. Hence the trajectoryz(t) will in general besto-
chastic, reflecting the ‘‘random’’ influence of the heat bath

Next, assume the existence of a parameter-depen
HamiltonianHl(z). The Hamiltonian is just a function tha
for a fixed value ofl, gives the total energy of the system
interest, in terms of its instantaneous state~z!. The value ofl
thus parametrizes the external forces acting on the sys
~arising from, e.g., external fields and confining potentia!.
When the system is isolated,Hl happens to generate the tim
evolution of the system, through Hamilton’s equations, b
we will not make use of this property in deriving our centr
result.

Given Hl(z), we now define

Zl~b![E dz exp@2bHl~z!#, ~4a!

Fl~b![2b21 ln Zl~b!, ~4b!

where b is a real, positive constant.~We are being a bit
cavalier with units here:Zl should be divided by a constan
to make it dimensionless. However, since this constant o
shifts the value ofFl by a fixed amount and therefore doe
not affect the free-energy differenceF12F0, we ignore it.!
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Zl(b) and Fl(b) are of course thepartition function and
free energyof the system, respectively, andb21 is the tem-
perature, in units of energy (b[1/kBT). However, in follow-
ing the derivation presented below, it may be most con
nient to view these quantities abstractly rather than
connection with their physical significance:b is just some
positive constant andZl(b) andFl(b) are the functions of
b defined by Eq.~4!. In what follows, we will never compare
free energies or partition functions at different temperatu
hence the dependence ofFl and Zl on b will be left im-
plicit. The central quantity of interest in this paper will be th
free-energy differenceDF[F12F0 for a fixed value ofb.

As mentioned, the time evolution of the system of inter
is described entirely by a~stochastic! phase-space trajector
z(t). In general, this evolution will depend on the externa
imposed time dependence ofl, describing the changing ex
ternal fields to which the system is subject. Let us consi
the evolution of the system from an initial timet50 to a
final time t5ts over which the value ofl is switched from 0
to 1 at a uniform ratel(t)5t/ts . Given this time depen-
dence ofl and given the trajectoryz(t) describing the evo-
lution of the system, the totalwork performed on the system
is the time integral ofl̇]Hl /]l along the trajectory

W[E
0

ts
dtl̇

]Hl

]l
„z~ t !…, ~5!

where l̇5dl/dt5ts
21 . For the evolution of an isolated

Hamiltonian system, this reduces toW5H1„z(ts)…
2H0„z(0)…, by Hamilton’s equations; in this case the wo
performed on the system is just the change in its energy.
a system in contact with a heat bath, however, this no lon
holds since there is a constant exchange of energy with
bath.

We will assume that the evolution of our system in pha
space is aMarkov process@5#. This means that the stochast
evolution z(t) is entirely characterized by the transitio
probability function P(z8,tuz,t1Dt). This gives the prob-
ability distribution for finding the system in a statez at time
t1Dt, given that at an earlier timet it was known to be atz8.
Taking the derivative ofP with respect toDt and evaluating
at Dt→01, we get a function

R~z8,z;t ![
]

]~Dt !
P~z8,tuz,t1Dt !uDt→01, ~6!

which gives the instantaneous transition rate fromz8 to z, at
time t. The dependence ofR on time arises through whateve
external parameters of the system and reservoir are avai
and time dependent. In our case we assume only one
parameterl, characterizing external forces; therefore, w
write

R~z8,z;t !→Rl~z8,z!. ~7!

In other words, the instantaneous transition rateR from z8 to
z depends ont only through the value ofl(t).

Let us now shift our focus from the description of a sing
system to that of anensembleof systems, each evolving
according to the stochastic Markov process just describ
This ensemble represents infinitely many independent r
-
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izations of the switching process. Iff (z,t) denotes the time
dependent distribution of this ensemble in phase space,
this distribution obeys

] f

]t
~z,t !5E dz8 f ~z8,t !Rl~z8,z!, ~8a!

wherel5l(t). We will abbreviate this as

] f

]t
5R̂l f , ~8b!

whereR̂l is a linear operator acting on the space of pha
space densitiesf . Equation~8! is our master equation; whe
the time dependence ofl is known and an initial distribution
f 0 is specified, Eq.~8! uniquely determines the subseque
evolution of the phase-space densityf .

In addition to the Markov assumption@Eq. ~8!#, we will
impose another assumption on our stochastic process:
tailed balance. Ifl is held fixed,z(t) becomes astationary
Markov process, describing the evolution of a system in c
tact with a heat reservoir, when the external forces acting
the system are time independent. Under such evolution,
canonical distribution in phase space~corresponding to the
fixed value ofl) ought to be invariant. By Eq.~8!, this is
equivalent to the statement thatR̂l annihilates the canonica
distribution:

R̂l exp@2bHl~z!#50. ~9!

This places a condition on the linear operatorR̂l . We as-
sume that our stochastic process satisfies this condition
will refer to this assumption asdetailed balance. „Usually,
detailed balance is expressed as the somewhat stronge
sumption

Rl~z8,z!

Rl~z,z8!
5

exp@2bHl~z!#

exp@2bHl~z8!#
. ~10!

Equation~9! follows immediately from Eq.~10!. Just set the
products of the cross terms equal and then integrate ovez8.
The distinction between Eqs.~9! and ~10! is of little impor-
tance in the present context, so for simplicity we refer to E
~9! as detailed balance.…

Having been led to assume detailed balance by consi
ing the behavior of the system whenl is fixed, it may seem
natural to make another assumption. Namely, if our stoch
tic process is meant to describe a system in contact wi
reservoir, then for fixedl we expect the system to therma
ize: After an initial relaxation time, the system samples
phase space canonically; equivalently, an arbitrary initial
semble f 0(z) relaxes to a canonical distribution in pha
space. We may express this assumption formally as

lim
t→`

Ûl~ t ! f 0~z!5
1

Zl
exp@2bHl~z!# ~11!

for any normalizedf 0(z). The operatorÛl(t)[exp(R̂lt) ap-
pearing on the left-hand side is just the evolution opera
corresponding to the equation of motion] f /]t5R̂l f , for
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fixed l. Equation~11! says that any initial distributionf 0(z)
relaxes to a canonical distribution and then stays there.
will refer to this as the assumption ofthermalization. Note
that while thermalization@Eq. ~11!# implies detailed balance
@Eq. ~9!#, the converse is not true. Since it will turn out th
the proof of Eq.~3! requires only the weaker assumption
detailed balance and not the stronger thermalization assu
tion, we will assume in what follows that Eq.~9! holds,but
not necessarily Eq. (11), unless explicitly stated.

Physically, we expect both thermalization and detai
balance to hold as long as our master equation describ
system in contact with a genuine heat reservoir. Howe
one can easily imagine situations in which the evolution s
isfies Eq.~9! but not Eq.~11!. A specific example, which we
will analyze in Sec. III, is that of an isolated Hamiltonia
system. Note that if thermalization does not hold, then
validity of Eq. ~1!, W`5DF, is not guaranteed since tha
result assumes that during an infinitely slow switching p
cess the system remains in quasistatic equilibrium wit
reservoir. Equation~3! nevertheless remains valid, provide
detailed balance is satisfied.

At this point we are ready to proceed with a proof of E
~3!. Concrete examples of stochastic processes satisfying
assumptions made in this section will be discussed in S
III, and numerically simulated in Sec. V.

II. DERIVATION

The overbar appearing on the left-hand side of Eq.~3!
denotes an average over an infinite ensemble of indepen
realizations~repetitions! of the switching process. Each rea
ization is described by a trajectoryz(t), 0<t<ts , specifying
the evolution of the complete set of phase-space variable
the external parameterl is switched from 0 to 1. The entire
ensemble is then described by a time-dependent phase-s
density: At any timet, f (z,t) represents a snapshot of th
distribution of trajectories in phase space. Since we ass
that the system equilibrates with the reservoir~with l held
fixed at 0! before the start of each realization, we have
canonical distribution of initial conditions@6#

f ~z,0!5Z0
21 exp@2bH0~z!#. ~12!

During the switching process, however, the ensemble d
not ~in general! remain in instantaneous canonical equili
rium. In other words, although the distributio
f 5Zl

21 exp(2bHl) is a ~stationary! solution of Eq.~8! for l
fixed, it is not, in general, a solution of Eq.~8! when l
depends on time. Thus, fort.0, a snapshot of the trajecto
ries will reveal a distributionf (z,t) that lags behind the ca
nonical distribution corresponding tol(t). The amount of
lag present by the time a given value ofl is reached will
depend on how rapidly or slowly we performed the switc
ing on the way to that value.

For every trajectoryz(t) in our ensemble, we can com
pute the total workW performed on the system@Eq. ~5!#. Our
task is now to evaluate the ensemble average of exp(2bW).
To do this, let us first define, for a given trajectoryz(t), a
function w(t) that is the ‘‘work accumulated’’ up to timet:
e
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w~ t !5E
0

t

dt8l̇
]Hl

]l
„z~ t8!…. ~13!

Thus W5w(ts). Now consider all those trajectories in th
ensemble that happen to pass through the phase-space pz
at time t and let Q(z,t) denote the average value o
exp@2bw(t)# over this particular subset of trajectories. F
nally, define

g~z,t !5 f ~z,t !Q~z,t !. ~14!

Note thatg(z,0)5 f (z,0) sincew(0)50 for every trajectory.
Given these definitions, the ensemble average of exp(2bW)
may be expressed as

exp~2bW!5E dz g~z,ts!. ~15!

We will now solve forg(z,ts).
The functiong(z,t) obeys

]g

]t
5S R̂l2bl̇

]Hl

]l Dg, ~16!

with l5l(t). To see this, imagine for a moment that ea
trajectoryz(t) in the ensemble represents a ‘‘particle’’ mo
ing about in phase space. Furthermore, assume that
‘‘mass’’ of each particle is time dependent and is given
m(t)5exp@2bw(t)#. Each particle thus begins with mas
unity m(0)51. The functionQ(z,t) is then the average mas
of those particles that are found at a pointz at time t and
g(z,t) represents the time-dependentmass densityin phase
space~after normalization of the number density to uni
* f dz51). This mass density is time dependent for two re
sons. First,~a! the mass of each particle changes with time
a rate proportional to its instantaneous mass:

ṁ~ t !52bẇ~ t !m~ t !52bl̇
]Hl

]l
„z~ t !…m~ t !. ~17!

This contributes a term

]g

]t U
A

52bl̇
]Hl

]l
~z!g~z,t ! ~18!

to ]g/]t. Second,~b! the mass density evolves due to th
flow of particles, described by our master equati
] f /]t5R̂l f . This flow of particles contributes a term

]g

]t U
B

5R̂lg. ~19!

Adding these contributions~a! and ~b! gives Eq.~16!. An
alternative derivation of this evolution equation, based o
path-integral formulation, is given in Appendix A.

Given the initial conditions g(z,0)5f (z,0)
5Z0

21exp@2bH0(z)], Eq. ~16! is solved by

g~z,t !5Z0
21 exp@2bHl~z!#5

Zl

Z0
f l

C~z!, ~20!
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wherel5l(t) and f l
C denotes the canonical distribution

phase space for a given value ofl. This result is easily
verified with the help of Eq.~9!. Then, using Eq.~15!, we
finally arrive at

exp~2bW!5Z0
21E dz exp@2bH1~z!#

5
Z1

Z0
5exp~2bDF !. ~21!

Q.E.D. A different proof of Eq.~3! has been discovered b
Crooks@7#.

It is worthwhile to draw attention to a curious feature
the evolution of our ‘‘mass density’’g(z,t). Recall that the
evolution of f (z,t) depends nontrivially on the rate at whic
we switchl: At finite switching rates,f (z,t) lags behind the
instantaneous equilibrium distribution. By contrast, the ti
dependence ofg(z,t) is very simple: The mass density
determined uniquely by the instantaneous value ofl; see Eq.
~20!. Thus no matter how slowly or rapidly we switchl
from 0 to 1,g(z,t) will always evolve through exactly the
same continuous sequence of ‘‘canonical’’ mass densit
specified by Eq.~20!; g never develops a lagin the sense tha
f does.

Equation~20! also implies the result

exp@2bw~ t !#5
Zl

Z0
5exp@2b~Fl2F0!#, ~22!

l5l(t), which is in effect a restatement of our central r
sult, Eq.~3!.

III. EXAMPLES

We have shown that Eq.~3! is true for Markovian pro-
cesses satisfying detailed balance. Let us consider a few
amples of such processes.

A. Hamiltonian evolution

As a first case, we take deterministic evolution under
HamiltonianHl , asl is varied from 0 to 1:

ż5$z,Hl%, ~23!

where $ , % denotes the Poisson bracket. Ordinarily, o
would not call this a stochastic process, but of course it m
be viewed as a special case of such. This evolution is M
kovian andR̂l is just the Poisson bracket operator

R̂l f 5$Hl , f %. ~24!

It immediately follows that detailed balance@Eq. ~9!# is sat-
isfied. The central result of this paper then tells us that if
~i! start with a canonical distribution of initial condition
f (z,0)5Z0

21 exp@2bH0(z)# and ~ii ! allow trajectories to
evolve deterministically from these initial conditions@Eq.
~23!# as l is varied from 0 to 1, then this ensemble of tr
jectories will satisfy Eq.~3!, regardless of how slowly o
quickly we perform the switching. This result was prov
more directly in Ref.@4#.
e

s,

-

x-

e

y
r-

e

Since evolution under Eq.~23! describes an isolated sys
tem ~no heat bath!, the thermalization assumption@Eq. ~11!#
is not met and the work performed in the limit of infinitel
slow switching will in general not equal the free-energy d
ference:W`ÞDF. Equation~3! nevertheless remains true
even in this limit.

This last statement is easily illustrated with a on
dimensional harmonic oscillator. Let the Hamiltonian be

Hl~x,p!5
p2

2
1vl

2 x2

2
. ~25!

For a given temperature, the partition function is given
Zl52p/bvl and the free-energy difference is

DF52b21 ln
Z1

Z0
5b21 ln

v1

v0
. ~26!

Let us now imagine a trajectoryz(t) evolving under this
Hamiltonian, asl is changed infinitely slowly from 0 to 1
assume for specificity thatv1.v0. SinceHl /vl is an adia-
batic invariant for the harmonic oscillator@8#, we have
E15(v1 /v0)E0, whereE0 (E1) is the initial ~final! energy
of the oscillator. The work performed on an isolated syst
is equal to the change in its energy, so we g
W`5@(v1 /v0)21#E0. A canonical distribution of initial
energiesE0 then leads, after some algebra, to the followi
ensemble distribution of values ofW:

lim
ts→`

r~W,ts!5
v0b

v12v0
expS 2

v0bW

v12v0
D u~W!, ~27!

whereu denotes the unit step function. It is straightforwa
to verify that this distribution satisfies Eq.~3!.

As another example, consider a single particle bounc
around inside a three-dimensional cavity with hard wa
where the shape of the cavity is a function ofl. Let Vl

denote the volume of the cavity. The free-energy differen
is thenDF5b21 ln(V0 /V1). Assume that, whenl is held
fixed, the motion of the particle is ergodic over the ener
shell ~the five-dimensional surface of constant energy in s
dimensional phase space!; also assume thatV1<V0. Now,
imagine that we allow the particle to evolve asl is switched
infinitely slowly from 0 to 1. For this system the quantit
Hl

3/2Vl is an adiabatic invariant@9#; therefore the total work
performed on a particle with initial energyE0 is
W`5@(V0 /V1)2/321#E0. Taking an ensemble of such pa
ticles, defined by a canonical distribution of initial condition
~at l50), we get

lim
ts→`

r~W,ts!5S 4b3W

pr 3 D 1/2

expS 2
bW

r D u~W!, ~28!

where r 5(V0 /V1)2/321. As with the example of the har
monic oscillator, it is straightforward to show that this di
tribution r satisfies Eq.~3!.

B. Langevin evolution

Next, let us consider modifying Hamilton’s equations b
adding both a frictional and a stochastic force
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ẋ5p, ~29a!

ṗ52]xVl2gp1F̃~ t !. ~29b!

We have assumed a one-degree-of-freedom system a
HamiltonianHl5p2/21Vl(x). Let us furthermore take the
stochastic forceF̃(t) to represent white noise, with an aut
correlation function given by

^F̃~ t1!F̃~ t2!&5DPd~ t22t1!. ~30!

Finally, let us impose a fluctuation-dissipation relation b
tween the frictional and stochastic forces

g5bDP/2. ~31!

An ensemble of trajectories evolving under the stocha
process just defined satisfies the Fokker-Planck equation

] f

]t
5$Hl , f %1g

]

]p
~p f !1

DP

2

]2f

]p2 . ~32!

Since Eq.~32! is of the form ] f /]t5R̂l f , this process is
Markovian. Furthermore, inspection reveals thatR̂l satisfies
Eq. ~9!, i.e., detailed balance holds. Thus the conditions
the validity of Eq.~3! are met: Given an ensemble of system
evolving under this stochastic process, asl is changed from
0 to 1 over a timets , and given an initial distribution
f (z,0)5Z0

21 exp@2bH0(z)#, we are guaranteed that this e
semble will satisfyexp(2bW)5exp(2bDF) for any switch-
ing time ts .

Equation~29! is a Langevinset of equations. Ifl is held
fixed, an ensemble of trajectories evolving under these
chastic equations of motion will relax to a canonical dist
bution on phase space. In other words, the evolution sp
fied by Eqs.~29!–~31! satisfies not only detailed balance, b
the stronger assumption of thermalization as well. If we s
with a canonical distribution, atl50, and then switch the
value of the external parameter infinitely slowly tol51,
then the ensemble of trajectories will remain in quasista
equilibrium over the course of the switching process:

f ~z,t !5Zl
21 exp@2bHl~z!#, l5l~ t !, ts→`.

~33!

The creeping value ofl thus dragsf (z,t) through a continu-
ous sequence of canonical distributions. Furthermore, in
limit, the ‘‘work accumulated’’ will be the same function o
time for every trajectory in the ensemble:w(t)5Fl2F0;
each trajectory represents a system evolving in quasis
equilibrium with the reservoir. Thus the quantityQ(z,t) de-
fined earlier is given, in this quasistatic limit, by

Q~z,t !5exp@2b~Fl2F0!#5Zl /Z0 . ~34!

It then follows that the functiong[ f Q @Eq. ~14!# satisfies
g(z,t)5Z0

21 exp@2bHl(z)# @Eq. ~20!#, from which we get
exp(2bW)5exp(2bDF). Of course, when we switchl from
0 to 1 over afinite time ts , neither Eq.~33! nor Eq.~34! will
in general hold; nevertheless, Eq.~20!, and therefore our
central result, will remain valid since Eq.~16! governs the
a
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time evolution ofg regardless of how slowly or quickly we
switch the external parameter.

C. Isothermal molecular dynamics

The Langevin equations above provide a simple meth
for numerically simulating the evolution of a thermostat
system~i.e., a system in contact with a heat bath!, without
explicitly simulating the many degrees of freedom of t
bath. The termF̃(t) may be implemented by generating
small, random momentum ‘‘kick’’ at each time step in th
numerical integration of the equations of motion. Th
method works both for static Hamiltonians and, as in t
case considered in the present paper, for Hamiltonians m
time dependent through the variation of an external para
eter. In the past decade or so, methods for using explic
deterministicequations of motion to simulate thermostat
systems have proven very useful@10#. These generally go
under the name ofisothermal molecular dynamics~IMD !.
Typically, the heat bath is represented by one or more ‘‘
tra’’ degrees of freedom. Then, in the extended phase sp
that includes both the system of interest and the extra
gree~s! of freedom, the evolution is governed by a set
deterministic ~but non-Hamiltonian! equations of motion.
These are tailored so that when the Hamiltonian describ
the system of interest is static, the variables representing
system of interest explore phase space canonically, at lea
a good approximation.

An example of an IMD scheme isNosé-Hoover dynamics
@11,12#, represented by the equations of motion

$q̇5p, ṗ52¹Vl2zp%n , ~35a!

ż5~K/K021!/t 2. ~35b!

We have again assumed a kinetic-plus-potential Ham
tonian; the indexn runs over allD degrees of freedom of the
system,K5(npn

2/2 is the total kinetic energy of the system
K05D/2b is the thermal average ofK, and the parametert
acts as a relaxation time. Let us imagine a trajectory evolv
in the extended phase space, (z,z) space, under these equ
tions of motion, asl is switched from 0 to 1. The workW
performed on the system of interest is defined, as before
Eq. ~5!. While this expression does not explicitly contain th
bath variablez, W is nevertheless a function of the full set o
initial conditions (z0 ,z0) since the evolution of the system o
interest~z! is coupled to that of the heat bath (z).

In Ref. @4#, it was shown that if one started with a distr
bution of initial conditions in the extended phase space gi
by

f ~z,z,0!}exp$2@bH0~z!1z2t 2/2#% ~36!

and if one then propagated an ensemble of trajectories f
these initial conditions, under the Nose´-Hoover ~NH! equa-
tions of motion, asl was switched from 0 to 1 over a timets
and computed the workW for each trajectory, then Eq.~3!
would hold identically for this ensemble. This was shown
inspection.

Our purpose here is to use the central result of the pre
paper to establish simple criteria for determining whether
not Eq.~3! is valid for a particular implementation of IMD
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In general, the heat bath is represented byN variables,z1 to
zN . Let y5(z,z1 ,...,zN) denote a point in the
(2D1N)-dimensional extended phase space, whereD is the
number of degrees of freedom of the system of interest. T
the thermostating scheme in question is defined by a se
deterministic equations of motion in this space:

ẏ5Kl~y!, ~37!

of which Eq.~35! is an example. An ensemble of trajectori
evolving under these equations of motion may be descri
by a distributionf (y,t), which satisfies the continuity equa
tion

] f

]t
52

]

]y
•~Kl f ![R̂l f . ~38!

Now suppose that we can find a functionq(z1 ,...,zN)
such that the distribution

f l
C}exp$2b@Hl~z!1q~z1 ,...,zN!#% ~39!

is stationary under the evolution defined by Eq.~37! whenl
is held fixed. That is,

R̂l f l
C50. ~40!

~For the NH equations,q5z2t 2/2b satisfies this condition.!
We will allow q to depend onb and any otherconstant
parameters, but not onl. The distribution f l

C(y) may be
viewed as the canonical distribution in the extended ph
space since it is invariant whenl is held fixed. Now define a
function

Hl~y![Hl~z!1q~z1 ,...,zN!, ~41!

which we may think of as anextended Hamiltonian. @This is
not meant to imply thatHl generates Eq.~37! as a ‘‘real’’
Hamiltonian would; in general those equations are n
Hamiltonian.# By Eq. ~40!

R̂l exp@2bHl~y!#50. ~42!

Now forget for a moment the division between the syst
of interest and the heat bath and treat the entire exten
phase space as a phase space for some system of intere
which a parameter-dependent energy functionHl(y) is de-
fined. The evolution given by Eq.~37! then satisfies the two
conditions listed in Sec. II:~i! it is Markovian@Eq. ~38!#, and
~ii ! it satisfies detailed balance@Eq. ~42!#. Thus our central
result exp(2bW)5exp(2bDF) is identically true for an en-
semble of trajectories evolving under Eq.~37! from an initial
distribution f 0}exp(2bH0), provided we replace Hl(z) by
Hl(y) in computing W andDF. However, it is easily veri-
fied that we will get exactly the same values for bothW and
DF usingHl(y), as we would obtain withHl(z). In the case
of W, this is because only the first term ofHl ~namely,Hl)
depends onl; for DF, it follows from the fact that the par
tition function for the extended Hamiltonian factorizes in
an integral over thez variables and an integral over thez
variables and only the former depends onl. @See the defini-
n
of

d

e

-

ed
, for

tions of work and free energy, Eqs.~4! and~5!.# These con-
siderations lead to the following simple conclusion.

Suppose we have a system described by a Hamilton
Hl(z) and we wish to compute the free-energy differen
DF5F12F0. Suppose furthermore that we are given
scheme for IMD; that is, we have a set of ‘‘heat bath’’ va
ables (z1 ,...,zN), along with equations of motion in the ex
tended phase space, as per Eq.~37!. Then, if a functionq of
the heat bath variables can be found such that the distribu
f l

C}exp@2b(Hl1q)# is stationary under the equations of m
tion ~with l fixed!, then we can computeDF as follows. Let
an ensemble of trajectories evolve from an initial distributi
f 0}exp@2b(H01q)#, as l is switched from 0 to 1 over a
finite switching timets . Compute the workW for each tra-
jectory, as per Eq.~5!, and then compute the ensemble av
age of exp(2bW). This average will equal exp(2bDF).

D. Monte Carlo evolution

As a final example, again, motivated by computer sim
lations, let us consider the evolution of aMonte Carlo~MC!
trajectory, asl is switched from 0 to 1. In this case both th
trajectory and the parameterl evolved in discrete steps
rather than continuously:

z~ t !→z0 ,z1 ,...,zN , ~43!

l~ t !→l0 ,l1 ,...,lN , ln5n/N. ~44!

The initial point in phase spacez0 is sampled from a canoni
cal distribution, with the value ofl fixed atl050. One then
imagines thatl changes abruptly froml050 to l151/N; as
a result, a quantity of workdW15Hl1

(z0)2Hl0
(z0) is per-

formed on the system. Then, the system jumps to the n
point in phase spacez1 generated fromz0 by a MC algorithm
appropriate to the HamiltonianHl1

~see Appendix B!. One

then continues to alternate between discrete changes inl and
discrete MC jumps in phase space, until the entire ‘‘traje
tory’’ ( z0 ,...,zN) is obtained and the value ofl is 1. The
total work performed during this discrete switching proce
is

W5 (
n51

N

dWn5 (
n51

N

@Hln
~zn21!2Hln21

~zn21!#. ~45!

Note that ‘‘time’’ does not enter into this scheme. The qu
sistatic limit is obtained by letting the number of steps b
come arbitrarily large:N→`.

Let us now imagine that we generate an infinite ensem
of MC trajectories, each of lengthN. We do this by imple-
menting the above procedure repeatedly, each time fee
in a different string of random numbers to generate the ini
conditionsz0 and the subsequent MC steps. Given such
ensemble, we compute the workW performed on each tra
jectory @Eq. ~45!# and then the ensemble average
exp(2bW). As shown in Appendix B, this average will equ
exp(2bDF). This should come as no surprise: A trajecto
generated by the MC algorithm is aMarkov chain, with de-
tailed balance built into the individual steps. This evoluti
thus satisfies, in discretized form, the two assumptions
quired for the validity of Eq.~3!.
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Let us now consider the two limiting casesN51 and
N→`. The latter is the MC equivalent of the quasista
limit. In this case our ensemble proceeds through a discr
infinitesimally spaced sequence of canonical equilibrium d
tributions, and the work performed on each trajectory isDF,
as per Eq.~1!. The resultexp(2bW)5exp(2bDF) then fol-
lows automatically. In the opposite limitN51, the workW
performed on a particular trajectory is given by

W5H1~z0!2H0~z0![DH~z0! ~N51!. ~46!

Equation~3! then reduces to

^exp~2bDH !&05exp~2bDF !, ~47!

where^ &0 denotes a canonical average with respect tol50.
This result is a well-known identity for the free-energy d
ferenceDF; see Eq.~48! below.

IV. FREE-ENERGY COMPUTATIONS

While Eq. ~3! is interesting in its own right, it may addi
tionally prove useful in the numerical computation of fre
energy differences. The field of free-energy computation
decades old, with diverse applications, and a very large b
of literature exists on the subject@13#. In this section, with-
out attempting a survey of the field, we discuss a few po
relevant to the possible application of Eq.~3! to free-energy
computations. These comments expand on ones made in
@4#.

Most methods of computing free-energy differences
variants of either thethermodynamic integration~TI! or ther-
modynamic perturbation~TP! methods.~For an exception to
this statement, see the work of Holian, Posch, and Hoo
@14#, where two different expressions forDF, based on time-
integrated heat transfer, are derived within the framework
isothermal molecular dynamics.! TP is based on the identit
@15#

DF52b21 ln^exp~2bDH !&0 , ~DH[H12H0!,
~48!

where ^ &l denotes a canonical average with respect t
fixed value ofl. Using a method such as Monte Carlo, o
samplesN points in phase space from the canonical distrib
tion corresponding tol50 and then one takes the average
exp(2bDH) over theseN points. In principle, the method i
exact forN→`; in practice, unless the canonical distrib
tions corresponding toH0 and H1 overlap to a significant
degree, the average of exp(2bDH) will be dominated by
points in phase space that are visited extremely rarely du
the canonical sampling, so numerical convergence withN
will be prohibitively slow. One way to get around this pro
lem is to break up thel interval@0,1# into small subintervals
and then use Eq.~48! to compute the free-energy differenc
corresponding to each subinterval. Other, more sophistic
methods of extracting the best efficiency from Eq.~48! have
been developed over the years@16#.

TI is based on the identity@17#

DF5E
0

1

dl K ]Hl

]l L
l

. ~49!
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The integral on the right-hand side may be evaluated
samplingns points in phase space from each ofM different
canonical distributions~corresponding to equally spaced va
ues ofl from 0 to 1!, for a grand total ofN5nsM points
sampled. The average of]Hl /]l is then computed at eac
value of l, and from theseM averages the integral is ob
tained. With the exception of a few very simple system
~e.g., ideal gases and harmonic oscillators!, the standard way
to obtain a canonical distribution is to first allow the syste
to ‘‘age,’’ that is, to relax to an equilibrium statistical stat
under some MC or IMD scheme. In implementing the n
merical evaluation of*0

1dl^]Hl /]l&l , it is often too time
consuming to age the system independently at each of thM
selected values ofl. Instead, the final point sampled at onel
value may be used to generate the initial point sampled at
next value ofl. Of course, this means that at eachl ~except
l50) we are actually sampling from a slightly out-o
equilibrium distribution, which leads to a systematic error~in
fact, an overestimate! in the evaluation of the integral.

A limiting case of this procedure arises when we ta
ns51, i.e., exactly one point is sampled at each value ofl.
This is theslow growthmethod@18#. As stressed by Rein
hardt and co-workers@3,19,20#, if we view the chain of
points (z0 ,...,zN) thus generated as atrajectory evolving in
phase space~asl is switched from 0 to 1!, then the integral
appearing on the right-hand side of Eq.~49! represents the
work W performed on the system over the course of
switching process. This picture is a compelling one, as
attaches a very physical interpretation to the numer
evaluation of Eq.~49!: Instead of computing an integral, w
are simulating the evolution of a thermostated system, w
the idea that, in the limit of infinitely slow switching, th
work performed on the system will equal the free-ener
difference DF. For a finite switching rate, the above
mentioned systematic error inherent in the slow grow
method is simply a manifestation of the inequalityW̄>DF;
see Eq.~2! and Refs.@3,20,21#. This interpretation of free-
energy computations is referred to asadiabatic switching~or
finite-time variation! and indeed may be viewed as a separ
method, distinct from thermodynamic integration.

In the context of adiabatic switching, Eq.~3! says that if
we run an ensemble of finite-time~or finite-N, for Monte
Carlo! simulations of the switching process, using, for i
stance, one of the methods described in Sec. III, then
average of exp(2bW) over this ensemble of simulations wi
equal exp(2bDF). Assuming perfect numerical accuracy an
an infinite ensemble of simulations, this is anexact state-
ment. Another way of putting it is as follows: For a sing
finite-time switching simulation, the value of exp(2bW) pro-
vides anunbiasedestimate of exp(2bDF). By contrast, the
value of W gives a biased estimate ofDF ~i.e., W̄>DF).
Indeed, the former statement implies the latter in the sa
way that Eq.~48! implies the Gibbs-Bogoliubov-Feynma
inequality @22#: ^DH&0>DF. Let us consider this for a mo
ment.

Given a real function of a real variabley(x), it is easy to
show that ifd2y/dx2>0 for all x, then

1

N (
i 51

N

y~xi !>yS 1

N (
i 51

N

xi D ~50!
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FIG. 2. Simulations of an isolated harmonic oscillator whose natural frequency is switched fromv051.0 to v152.0 over a switching
time ts . At each of five values ofts , 105 simulations were carried out. The upper and lower sets of points show the ordinary averageWa)
and the exponential averages (Wx) of the work, respectively. The dashed line is atW51.5, the dotted line atW5DF51.0397.
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for any set of points$x1 ,...,xN%. If these points are the resu
of random sampling from some ensemble, then Eq.~50!, in
the limit N→`, may be rewritten as

y~x!>y~ x̄ !, ~51!

where the overbar denotes an ensemble average. App
this result toy(x)5expx, with x52bW, we get

exp~2bW!>exp~2bW̄!. ~52!

This is identically true for any distributionr(W). We may
now combine this result with Eq.~3! to getW̄>DF.

Now, what if we perform a finite numberNs of identical
switching simulations? LetWi denote the work performed o
the system during thei th simulation and let

Wa[
1

Ns
(
i 51

Ns

Wi ~53!

be the average over these values. We may view theWi ’s as
numbers sampled randomly from a distributionr(W) satis-
fying Eq. ~3!. Then the expectation value ofWa provides a
rigorous upper bound onDF:

^^Wa&&5W̄[E dWr~W!W>DF. ~54!

The double angular brackets, denotingexpectation value,
specifically mean an average over all possible sets ofNs
simulations. Now, Eq.~3! suggests that rather thanWa, we
consider the following quantity as our best estimate ofDF:
ng

Wx[2b21 ln
1

Ns
(
i 51

Ns

exp~2bWi ! . ~55!

For Ns51, Wx and Wa are identical and the expectatio
value of either isW̄. For Ns→`, by contrast,Wx converges
to DF, whereasWa converges toW̄. For intermediate values
of Ns , the following inequality chain holds:

DF<^^Wx&&<^^Wa&&. ~56!

@Both inequalities are derived by combining Eqs.~3! and
~50! with the definitions ofWa andWx.# In other words, as
an estimate ofDF, the ‘‘exponential average’’Wx is statis-
tically less biased than the ordinary averageWa for Ns.1.

On the face of it, the last statement seems to imply tha
we perform more than one switching simulation, then we
better off usingWx rather thanWa as our best guess~or
upper bound! for DF. In practice, however, Eq.~3! may be
subject to the same disease as the TP identity, Eq.~48!.
Namely, if the values ofW obtained from repetitions of the
switching simulation typically differ from one another b
much more thanb21, then the average of exp(2bW) will be
dominated by values ofW that are very rarely sampled@23#.
Thus the convergence ofWx to DF, in the limit Ns→`, may
be much slower than the convergence ofWa to W̄, in the
same limit. In other words, for a finite number of switchin
simulations,Wx may be subject to considerably largerstatis-
tical fluctuations thanWa, even though itssystematicerror
~expectation value minusDF) is, by Eq.~56!, smaller.
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FIG. 3. Same as Fig. 2, except that the harmonic oscillator is now subject to a frictional and a stochastic force, as per Eq.~29!. The
dashed line gives the free-energy differenceDF51.0397.
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The preceding comments point to the following tentat
conclusion. If one runs a set ofNs switching simulations,
with the goal of computingDF, and if the spread in the
values of workW obtained is not much larger thanb21, then
the exponential averageWx defined by Eq.~55! should pro-
vide a better estimate of~or tighter upper bound on! DF than
the ordinary averageWa. This conclusion is supported by
calculation by Hunter, as described in Ref.@4#; see also the
numerical illustrations in the following section.

Of course, a more detailed study of the possible utility
Eq. ~3! to free-energy computations should be made. In p
ticular, it is not ruled out that there exist methods around
limitation mentioned in the previous paragraphs@24#.

V. NUMERICAL RESULTS

In this section we illustrate our central result with nume
cal experiments. The first four sets of simulations involve
harmonic oscillator whose natural frequency is switch
from v051.0 tov152.0. The evolution is implemented us
ing, in turn, each of the four examples discussed in Sec.
Then, we present results involving a more complicated s
tem: a gas of interacting particles inside an externa
pumped piston. All of these cases satisfy the condition d
cussed at the end of Sec. IV, namely, the spread in the va
of W is not much greater thanb21. ~Otherwise, the conver
gence ofWx to DF, in the limit of many simulations, would
be poor.!

For the harmonic-oscillator simulations, we take t
Hamiltonian given by Eq. ~25!, with vl51.01l and
l(t)5t/ts as throughout this paper. Also, we takeb2151.5.
Thus the free-energy difference is DF5
b21 ln(v1 /v0)51.0397.
f
r-
e
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d

I.
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es

In the first set of simulations, the oscillator is isolated~it
evolves under Hamilton’s equations, withl time dependent!,
although the initial conditions are sampled from a canoni
ensemble corresponding tol50:

f ~x,p,0!5
bv0

2p
exp@2b~p21v0

2x2!/2#. ~57!

Five different values of the switching time were chosen:ts
51.0, 3.0, 10.0, 30.0, and 100.0, and for eachts a total of
Ns5105 simulations were carried out. Figure 2 shows t
average value of work obtained at each switching timeWa as
well as the exponential averageWx. @See Eqs.~53! and~55!.#
Since Hamiltonian evolution satisfies detailed balance,
not thermalization~as defined in Sec. I!, we do not expect the
work performed in the limitts→` to equal the free-energy
differenceDF. Rather, we expectW`5@(v1 /v0)21#E0 for
a single trajectory~see Sec. III A! and therefore for a canoni
cal distribution of initial energies

lim
ts→`

W̄5@~v1 /v0!21#b2151.5. ~58!

The values ofWa shown in Fig. 2 are consistent with thi
expectation. Equation~3!, meanwhile, predicts

lim
Ns→`

Wx5DF ~59!

for any value of ts . Again, the numerical results are consi
tent with the prediction: The values ofWx shown in Fig. 2 all
fall very close toDF.

For the second set of simulations, we added a frictio
and a stochastic force, as described by Eqs.~29!–~31!, with
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FIG. 4. In these simulations, the harmonic oscillator is thermostated with the IMD scheme described in the text. 105 simulations at
ts51.0 were performed and the dots in this figure show the final locations in phase space of these trajectories.
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DP50.6 andb2151.5. The evolution now represents that
an oscillator coupled to a heat bath. The stochastic force
implemented by generating a random momentum k
~sampled from a Gaussian distribution! at each time step
dt50.01 in the numerical integration. As with the Ham
tonian evolution, 105 simulations were performed at each
the five switching times and the results forWa and Wx are
plotted in Fig. 3. Here wedo expect that the workW will
approachDF51.0397 asts→`, and the results forWa sup-
port this. At the same time, the exponential averageWx falls
very close toDF for each switching time, as predicted b
Eq. ~3!.

The next simulations again involved a thermostated h
monic oscillator, only this time isothermal molecular dyna
ics was used to implement the coupling to the heat bath.
particular IMD scheme used was developed by Hoover
Holian @25# and involves two heat bath variablesz and j.
The equations of motion in the extended phase space a

ẋ5p, ~60a!

ṗ52vl
2x2zp2bjp3, ~60b!

ż5~bp221!/t 2, ~60c!

j̇5~b2p423bp2!/t 2, ~60d!

wheret is a relaxation time whose value was set to unity.
total of Ns5105 switching simulations were performed, wit
a switching timets51.0. At the start of each simulation
initial conditions were sampled from the distribution
as
k

r-
-
e
d

f ~x,p,z,j,0!}exp@2b~p21v0
2x2!/22t 2~z21j2!/2#.

~61!

It is easily verified by inspection that, if the value ofl were
held fixed at 0, then this distribution would be invariant u
der Eq.~60!. This is therefore the canonical distribution co
responding to this IMD scheme and the functionq defined in
Sec. III C is given by

q~z,j!5t 2~z21j2!/2b. ~62!

This set of simulations was used to illustrate Eq.~20!,
evaluated att5ts . ~See the discussion at the end of Sec.!
Figure 4 is a scatter plot showing the distribution of fin
values in phase space„x(ts),p(ts)…, for the 105 trajectories.
Figure 5 shows several contour lines of this distribution,
ter smearing each point with a Gaussian of variance 0.0
both thex and p directions. Thus the lines shown are act
ally contours of the function

f̃ ~x,p!5
1

Ns
(
i 51

Ns

de„x2xi~ ts!…de„p2pi~ ts!…, e50.04,

~63!

where de is a normalized Gaussian of variancee, and
„xi(t),pi(t)… gives the phase space evolution of thei th tra-
jectory in the ensemble of simulations. As can be seen fr
both figures, this distribution does not correspond to the
nonical distribution forH1. Indeed, its skewness illustrate
the lag that develops between the evolving phase-space
sity and the instantaneous canonical distribution.

Next, the solid lines in Fig. 6 show contours of the fun
tion g(x,p,ts) defined in Sec. II, obtained from the same s
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FIG. 5. Contour plot of the distributionf (x,p,ts), constructed from the data shown in Fig. 4, with Gaussian smoothing.
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of simulations. Again, Gaussian smoothing was used, so
solid lines are contours of the function

g̃~x,p,ts!5
1

Ns
(
i 51

Ns

de„x2xi~ ts!…de„p2pi~ ts!…

3exp~2bWi !, e50.04, ~64!

whereWi is the total work performed on the system duri
the i th simulation. The dashed lines in Fig. 6 show the c
responding contours of thepredictedmass densityg(x,p,ts)
@Eq. ~20!#, with the same Gaussian smoothing functi
folded in. The agreement between the two sets of contou
very good. This shows that, indeed, when one assign
weight exp(2bWi) to each of the points in the scatter plo
Fig. 4, then the resulting weighted distribution is canonica
the sense of Eq.~20!.

In the final set of simulations involving the harmonic o
cillator, we used Monte Carlo evolution, with the Metropo
algorithm. Here, the duration of a simulation is characteriz
by the number of MC stepsN rather than by a switching time
ts . Ten different values of N were considered
N55,10,20,50,...,5000, and for each a total of 105 simula-
tions were performed. Figure 7 showsWa and Wx for each
value of N; as before, the results agree nicely with Eq
~1!–~3!. Figure 8 showsrN(W), the distribution of values of
W obtained from the 105 simulations, for each of the te
values ofN. Although the distributionsrN are quite differ-
ent, the integral*dWrN(W)exp(2bW) @i.e., exp(2bWx)] is
independent ofN, as shown by the values ofWx in Fig. 7.
he
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As a final example, we take a system more complica
than a harmonic oscillator, namely, a gas ofnp550 interact-
ing particles inside a piston that is taken through one cycle
pumping. Specifically, the particles are confined within
two-dimensional box with hard walls, whose initial dime
sions are 131; over the course of the switching process, o
of the wall first moves inward until the area enclosed by
box is three-quarters of its initial value and then back o
again. This pumping of the piston is cosinusoidal: thex and
y dimensions of the box are given by

Lx~l!51.0, ~65!

Ly~l!50.87510.125cos~2pl!, ~66!

wherel5t/ts and the total switching time ists510.0.
In their interactions with one another and with the wal

the particles act as hard disks of radiusR50.005; between
collisions each particle moves freely.~Thus, over a switching
time ts510.0, a typical particle suffers several collision
with other particles.! Work is performed on the gas each tim
a particle bounces off the moving wall.

Molecular dynamics was used for the evolution, i.e., co
tinuous trajectories for the particles were computed as fu
tions of time. However, at each time step in the integration
the equations of motion, a single particle was randomly
lected and a random kick, a discrete change in the mom
tum of the chosen particle, was generated. The kick was t
either accepted or rejected according to the Metropolis a
rithm @26#, corresponding to a temperatureb2150.5. This
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FIG. 6. The solid line shows contours of the functiong(x,p,ts), constructed from the data shown in Fig. 4; the dashed line sh
contours of the theoretical prediction forg(x,p,ts) @Eq. ~20!#. Both are smoothed with Gaussians.
he
m

a

m-
es
simulates coupling to a heat reservoir: If all the walls of t
box were fixed, the gas would relax to thermal equilibriu
from any initial conditions.

Figure 9 shows results obtained fromNs5104 such simu-
lations. For each simulation, the initial conditions of the g
 s

were chosen from a canonical ensemble (b2150.5) and the
work performed on the gas, as a function of time, was co
puted. The horizontal axis shows time. The solid line giv
the work performed on the gas up to timet, i.e., the work
accumulatedw(t), averaged over allNs simulations. Let
angevin
FIG. 7. Similar to Fig. 3, except here the evolution of the thermostated oscillator is implemented using Monte Carlo rather than L
evolution. The duration of a simulation is now characterized by the number of MC stepsN rather than a switching timets . For each of ten
values ofN, 105 simulations were carried out.
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FIG. 8. For each of the ten sets of MC simulations~see Fig. 7!, the distribution of values of workrN(W) was obtained. This figure show
these ten distributions, fromN55 ~lowest peak! to N55000 ~highest!. ~Although the peak moves toward the right with increasingN, the
actual average work performed goes down; see the values ofWa in Fig. 7.!
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wa(t)[(1/Ns)( i 51
Ns wi(t) denote this average, wherewi(t) is

the work accumulated during thei th simulation. The dashed
line gives the exponential average

wx~ t ![2b21 ln
1

Ns
(
i 51

Ns

exp@2bwi~ t !# ~67!

of the work accumulated. Bothwa(t) andwx(t) were com-
puted from the same set of 104 trajectories.

Since the piston returns to its initial position at the end
the switching process, the final free-energy difference
zero: DF[F12F050. We see that the dashed line inde
returns to zero att5ts , with very good accuracy. By con
trast, the average work performed on the system~upper line!
ends atWa[wa(ts)51.534. This represents dissipated e
ergy: the gas ‘‘heats up’’ when pumped at a finite rate.

At intermediate times, we expect

wx~ t !5Fl2F0 , l5l~ t ! ~68!

~in the limit of infinitely many switching simulations!, by Eq.
~22!. If the gas were truly ideal, then the free-energy diffe
ence would be given by

Fl2F05npb21 ln~A0 /Al! ~ ideal gas!, ~69!

whereAl denotes the area enclosed by the box. Howe
since the particles do interact with one another, as hard d
this expression forFl2F0 is not exact. Nevertheless, th
size of each particle is small enough (R50.005) that Eq.
~69! ought to represent an excellent approximation. The d
ted line in Fig. 9 shows this approximation toFl2F0. This
line is very close to the exponential average~dashed line!, in
f
is

-

-

r,
s,

t-

confirmation of our central result, in the form given by E
~22!. Note that the dotted line represents the work thatwould
have beenperformed on the gas, in the limit of infinitely
slow switching (ts→`). Thus for the dashed line, we hav
effectively extracted thisquasistaticbehavior, from an en-
semble offinite-timeswitching simulations.

VI. SUMMARY AND DISCUSSION

The central goal of this paper has been to establish
~exact! validity of the resultexp(2bW)5exp(2bDF), within
the framework of the master-equation approach. This re
is unusual in that it expressesin the form of an equality
@rather than an inequality, e.g., Eq.~2!# the relationship be-
tween the workW performed on an out-of-equilibrium sys
tem~more precisely, on anensembleof systems driven out of
equilibrium by varying an external parameter! and the free-
energy differenceDF between two equilibrium states of th
system. A few comments are now in order.

In classical statistical mechanics, the equilibrium ‘‘state
of a system is described by a canonical distribution in ph
space: f C(z)5Z21 exp@2bH(z)#. Its free energy is then
given by

F5^H&2b21S52b21 ln Z, ~70!

where^H&5* f CH andS52kB* f C ln fC. Thus the free en-
ergy F ~like the entropyS) is a quantity associated with
statistical ensembleof microscopic states of the system
When the system depends on some external parameter,
so does the canonical ensemble, as in turn does the
energy. The quantityDF of central interest throughout thi
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FIG. 9. Simulations of a gas of interacting hard disks inside a piston that goes through one cycle of pumping~first in, then out!, over a
switching timets . The evolution is MD, but MC ‘‘kicks’’ are included to provide a thermostat. A total of 104 simulations were performed
The solid line gives the average and the dashed line the exponential average of the work as a function of time,wa(t) andwx(t), respectively.
The dotted line gives the theoretical prediction forFl2F0 @Eq. ~69!#, with l5l(t), for the case of an ideal gas.
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paper has been the free-energy difference~at constant tem-
perature! between two such equilibrium ensemblesf l50

C (z)
and f l51

C (z).
In deriving Eq. ~3! we introduced a time-depende

phase-space densityf (z,t), describing the evolution of ou
ensemble of trajectories. Note that, although the ini
phase-space density coincides with the canonical distribu
used to compute the free energyF0,

f ~z,0!5 f l50
C ~z!, ~71!

the final density doesnot ~typically! coincide with the distri-
bution for whichF1 is defined:

f ~z,ts!Þ f l51
C ~z!. ~72!

This is due to the lag that develops between the ensemb
trajectories and an instantaneous canonical distribution
phase space. ThusDF is not the free-energy difference be
tween the initial and final states of the system@27#, but
rather, as stated in the preceding paragraph, between
different canonical ensembles,f l50

C and f l51
C , only the

former of which reflects the actual distribution of micr
scopic states of the system at any time during the switch
process.

Another way of putting this is as follows. Suppose we a
interested in the free-energy difference between two equ
rium statistical states of a system,A andB ~corresponding to
f l50

C and f l51
C , respectively!. Ordinarily, we would compute

or measureDF by reversiblycarrying the system fromA to
B, i.e., by switchingl infinitely slowly. Equation~3! tells us
l
n

of
in

wo

g

e
-

that even if we switchirreversibly, so that the system end
up in some nonequilibrium statistical stateB* , we can still
extractDF ([FB2FA) from an ensemble of such measur
ments.

Of course, if we are dealing with a system that satisfi
the thermalization assumption, then, at the end of the swi
ing process, we can always, at no cost in work, hold
value of l fixed and allow our ensemble to relax, for a
additional time t rel , to thermal equilibrium:
f (z,ts1t rel)5 f l51

C (z). In this case theDF that appears on
the right-hand side of Eq.~3! does equal the free-energy
difference between the initial and final statistical states of
system.

Equation ~3! was derived, as an identity, under the a
sumptions of Markovian evolution and detailed balance,
spelled out in Sec. I. This derivation is complementary to
one presented in Ref.@4#, in which the degrees of freedom o
the heat reservoir were treated explicitly. Neither of the
sumptions of Sec. I was assumed in Ref.@4#, but the cou-
pling between the system and reservoir was taken to
weak, so the result there was an approximate one, with s
corrections expected from the small but finite interacti
Hamiltonian. Of course, in a real physical system, neither
Markov assumption nor detailed balance will be met exac
so the derivation presented herein is strictly speaking v
only for a particular class ofmodelsof physical reality. Nev-
ertheless, because the result is exact for these models
because the Markov and detailed balance assumptions
often very good approximations for physical systems,
result is a useful one. Furthermore, as illustrated in Sec.
models of thermostated systems that are commonly use
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theoretical and numerical studiesdo satisfy these assump
tions; Eq.~3! is therefore exactly valid for these models.

It would be very interesting, of course, to find a physic
system on which a laboratory~as opposed to numerical! ex-
periment testing the validity of Eq.~3! would be feasible. As
mentioned in Ref.@4#, such a system would almost certain
have to be microscopic, or at most mesoscopic in size.

Finally, from both a theoretical and a computational po
of view, it would be worthwhile to consider possible exte
sions or generalizations of Eq.~3!. In particular, are analo
gous results valid for ensembles other than the canon
ensemble~fixed N,V,T) considered here, e.g., microcanon
cal, grand canonical, and isothermal isobaric? Presuma
the role of the Helmholtz free energyF would then be played
by other thermodynamic potentials, for instance, the Gi
free energy in the case of the isothermal-isobaric ensem
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APPENDIX A

In this appendix we present a derivation of Eq.~16! dif-
ferent from the one given in Sec. II. For a given stochas
trajectoryz(t), the workW is given by a path integral alon
that trajectory@Eq. ~5!#. We are interested in evaluating th
average of exp(2bW) over an ensemble of trajectories, o
tained by sampling initial conditions from a canonical e
semble and then evolving stochastically from each of th
initial conditions. The quantityexp(2bW) thus constitutes a
sum over all paths, with each pathz(t) in our ensemble
weighted by the factor exp(2bW). We may write this as

exp~2bW!5E dmP„z~ t !…exp~2bW!, ~A1!

where dm denotes a measure in the space of pathsz(t),
P„z(t)… denotes the probability density~with respect to this
measure! of choosingz(t) by sampling randomly from the
ensemble of trajectories, andW5W„z(t)… @as per Eq.~5!#.

Let us now divide the time interval@0,ts# into N time
steps of durationdt5ts /N and let us denote a particula
trajectoryz(t) by its phase-space locationszn[z(tn) at times
tn[ndt, 0<n<N. Thus

z~ t !→~z0 ,z1 ,...,zN!. ~A2!

The limit N→` ~with ts fixed! is implied. Choosing a Eu-
clidean measure in path space,

E dm5E dz0E dz1 •••E dzN , ~A3!
l
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the probability density for a particular path is

P„z~ t !…5p~z0!Pl1

dt ~z0uz1!Pl2

dt ~z1uz2!•••PlN

dt ~zN21uzN!.

~A4!

Herep(z0)5Z0
21 exp@2bH0(z0)# is the probability distribu-

tion for the initial conditionz0, Pl
dt(z8uz) is the transition

probability fromz8 to z ~in time dt) as a function ofl, and
ln[n/N. It is the Markov assumption that allows this fa
torization. The workW may be expressed as

W„z~ t !…5 (
n51

N

dHn~zn21!, ~A5!

wheredHn[Hln
2Hln21

. @In writing Eqs.~A4! and~A5! we

implicitly assume thatl(t) evolves in N discrete steps
dl51/N that occur at timest0 ,t1 ,...,tN21. This ‘‘staircase’’
evolution becomesl(t)5t/ts in the limit N→`.#

Combining Eqs.~A1!–~A5!, we arrive at

exp~2bW!5F )
n50

N E dznGp~z0!e2bdH1~z0!

3Pl1

dt ~z0uz1!•••e2bdHN~zN21!PlN

dt ~zN21uzN!.

~A6!

Let us now introduce

gM~z!5F )
n50

M21 E dznGp~z0!e2bdH1~z0!

3Pl1

dt ~z0uz1!•••e2bdHM~zM21!PlM

dt ~zM21uz!,

~A7!

where 1<M<N. This is the discretized version of the func
tion g(z,t) introduced in the main body of the text:

gM~z!5g~z,tM !. ~A8!

In particular, note thatexp(2bW)5*dzgN(z). This set of
functionsgM satisfies the recursion relation

gM11~z!5E dzMgM~zM !e2bdHM11~zM !PlM11

dt ~zMuz!.

~A9!

Now, to first order indt, we have

e2bdHM11~zM !512bdHM11~zM !, ~A10!

PlM11

dt ~zM ,z!5d~zM2z!1dtRlM11
~zM ,z!. ~A11!

Combining this with our recursion relation gives~to leading
order!

1

dt
@gM11~z!2gM~z!#52bgM~z!dHM11~z!/dt

1E dzMgM~zM !RlM11
~zM ,z!,

~A12!
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which becomes Eq.~16! in the limit N→`.

APPENDIX B

Here we prove the assertion~made in Sec. III! that Eq.~3!
is identically true when the switching process is carried
using the Monte Carlo method. Some of the steps in
proof will be similar to those in Appendix A, but the as
sumptionN→` will not be made here.

As mentioned in Sec. III, a trajectory (z0 ,...,zN) is ob-
tained by alternating discrete changes in the value ofl with
random jumps in phase space generated by the MC a
rithm. This algorithm, parametrized by the value ofl, takes
as input a pointz and output a pointz8. Let Pl(zuz8) denote
the probability of generating an outputz8 from an inputz, for
a given value ofl. Detailed balance is built into the algo
rithm

E dze2bHl~z!Pl~zuz8!5e2bHl~z8! ~B1!

for anyl. ~This may be accomplished by, e.g., the Metrop
lis method @26#.! Thus a canonical distribution of inputz
gives a canonical distribution of outputz8.

The probability of obtaining a particular trajector
(z0 ,...,zN) over the course of the entire switching process
then

P~z0 ,...,zN!5
1

Z0
e2bH0~z0!Pl1

~z0uz1!•••PlN
~zN21uzN!.

~B2!

Combining this with Eq.~45! for the work, we get

exp~2bW!5F )
n50

N E dznG 1

Z0
e2bH0~z0!e2bdH1~z0!

3Pl1
~z0uz1!•••e2bdHN~zN21!

3PlN
~zN21uzN!, ~B3!

wheredHn[Hln
2Hln21

. Now notice that exp@2bH0(z0)#

can be combined with exp@2bdH1(z0)# to give
r
e

th
e

t
e

o-

-

s

exp@2bHl1
(z0)#. The only other factor in the integrand tha

depends onz0 is Pl1
(z0uz1). Performing the integral*dz0,

we get

E dz0P~z0uz1!exp@2bHl1
~z0!#5exp@2bHl1

~z1!#,

~B4!

using Eq.~B1!. This takes care of the first of theN11 inte-
grals appearing in Eq.~B3!. We now repeat this process, fir
combining exp@2bHl1

(z1)# ~obtained from thedz0 integra-

tion! with exp@2bdH2(z1)# to get exp@2bHl2
(z1)#, then in-

tegrating overz1, and so forth. At the end of this process
‘‘rolling up’’ the factors and integrating, we are left with

exp~2bW!5E dzN

1

Z0
exp@2bH1~zN!#

5
Z1

Z0
5exp~2bDF !. ~B5!

Q.E.D. Note that Eq.~20! for g(z,t), derived within the
framework of continuous-time evolution, also has a Mon
Carlo counterpart. Namely, for 1<M<N, let us define

gM~z!5 )
n50

M21 E dznPM~z0 ,...,zM21 ,z!exp~2bwM ! ,

~B6!

wherePM gives the probability of sampling a particular s
quence of phase space points in the firstM Monte Carlo
steps andwM is the work accumulated during those step
Thus, in terms of our ensemble of MC trajectories,gM(z) is
the weighted phase-space density afterM steps, where the
weight assigned to each trajectory is exp(2bwM) . Then,
writing an explicit expression forPM in the form given by
Eq. ~B2! and rolling up factors and integrating as above,
follows easily that

gM~z!5
1

Z0
exp@2bHlM

~z!#5
ZlM

Z0
f lM

C ~z!. ~B7!
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