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Mean-field theory links the physiological properties of individual neurons to the emergent dynamics of neural
population activity. These models provide an essential tool for studying brain function at different scales;
however, for their application to neural populations on large scale, they need to account for differences between
distinct neuron types. The Izhikevich single neuron model can account for a broad range of different neuron
types and spiking patterns, thus rendering it an optimal candidate for a mean-field theoretic treatment of brain
dynamics in heterogeneous networks. Here we derive the mean-field equations for networks of all-to-all coupled
Izhikevich neurons with heterogeneous spiking thresholds. Using methods from bifurcation theory, we examine
the conditions under which the mean-field theory accurately predicts the dynamics of the Izhikevich neuron
network. To this end, we focus on three important features of the Izhikevich model that are subject here to
simplifying assumptions: (i) spike-frequency adaptation, (ii) the spike reset conditions, and (iii) the distribution
of single-cell spike thresholds across neurons. Our results indicate that, while the mean-field model is not an
exact model of the Izhikevich network dynamics, it faithfully captures its different dynamic regimes and phase
transitions. We thus present a mean-field model that can represent different neuron types and spiking dynamics.
The model comprises biophysical state variables and parameters, incorporates realistic spike resetting conditions,
and accounts for heterogeneity in neural spiking thresholds. These features allow for a broad applicability of the

model as well as for a direct comparison to experimental data.
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I. MEAN-FIELD DYNAMICS OF POPULATIONS
WITH DIFFERENT NEURON TYPES

Mathematical models are a necessary tool for understand-
ing brain function and dynamics [1,2]. Due to the vast number
of neurons and synapses in the brain, methods from statistical
physics and mean-field theory provide a powerful tool for
modeling its mesoscale dynamics [3-5]. Classic mean-field
models apply heuristic arguments derived from experimen-
tal data to propose equations that govern the evolution of
averaged quantities such as population firing rates or mean
postsynaptic potentials [6-9]. While these classical models
have contributed to our understanding of interacting neural
populations within and across brain areas, they do not ac-
count for phenomena emerging from spike synchronization,
nor do they relate single-cell properties to mean-field dynam-
ics [10,11]. A more recent formulation of mean-field theory
derives a set of closed-form mean-field equations from the
evolution equations of a set of all-to-all coupled spiking neu-
rons, therefore overcoming these problems [12—-14].

Mean-field equations derived from spiking neurons enable
the study of the effects of heterogeneously distributed single
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cell parameters at the mean-field level. Unfortunately, the
spiking neural networks for which mean-field equations have
been derived so far are defined based on dimensionless state
variables, such as the phase on the unit circle or a dimen-
sionless representation of a membrane potential [12,13]. Here
we apply this approach to the derivation of mean-field equa-
tions for networks of coupled Izhikevich (IK) neurons, which
come in two different versions: a dimensionless version and a
version with state variables with physical units [2,15]. Using
the latter version of the IK model, the parameters of the IK
neurons can be specified through recordings of individual
cell properties such as cell membrane capacitance, resting
membrane potential, or firing threshold [2]. Furthermore, the
IK neuron model can represent a wide range of neuron types
and neural firing patterns, thus providing an ideal model for
large-scale models of the dynamics of heterogeneous neural
populations [15-17].

Deriving the mean-field equations for networks of IK
neurons represents a challenge. The essence of the mean-
field theory that has been successfully applied to quadratic
integrate-and-fire neurons and theta neurons [12,13] lies in the
ansatz that the state variables of all neurons in the population
are fully captured at all times by a Lorentzian probability
distribution. This ansatz, known as the Lorentzian ansatz, is
mathematically equivalent to the Ott-Antonsen ansatz [13,18].
Crucially, the ansatz requires that the dynamics of a sin-
gle neuron can be reduced to a single state variable: its
phase on the unit circle. Since the IK neuron model is a
two-dimensional neuron model, this reduction is not possible
without further simplifying assumptions.

Published by the American Physical Society


https://orcid.org/0000-0002-4445-0340
https://orcid.org/0000-0001-7696-447X
https://orcid.org/0000-0002-3782-0518
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.107.024306&domain=pdf&date_stamp=2023-02-16
https://doi.org/10.1103/PhysRevE.107.024306
https://creativecommons.org/licenses/by/4.0/

GAST, SOLLA, AND KENNEDY

PHYSICAL REVIEW E 107, 024306 (2023)

In the remainder of this article, we derive the mean-field
equations for networks of all-to-all coupled IK neurons with
distributed firing thresholds and analyze how the underlying
simplifying assumptions affect the mean-field dynamics of a
network of IK neurons. We show that the mean-field model
accurately captures a wide range of dynamic regimes and
phase transitions of the underlying spiking network. Further-
more, we analyze the conditions under which the mean-field
predictions become less accurate. These conditions include
(a) strong spike-frequency adaptation at the single cell level,
(b) narrow spike reset conditions, and (c) strong neural het-
erogeneity. We relate these conditions to the simplifying
assumptions used in the derivation of the mean-field equa-
tions, and show that even in these cases the mean-field
predictions capture the qualitative properties of the bifurcation
diagrams of the corresponding spiking networks, although the
quantitative fit becomes worse. Finally, we provide a correc-
tion term that accounts for narrow spike reset conditions.

II. MEAN-FIELD MODELS OF COUPLED
IZHIKEVICH NEURONS

A. The spiking neural network

We consider networks of coupled Izhikevich (IK) neurons
of the form

Coi =k(v; —v.)(vi —vg;) —u +1+gs(E —v;), (1)

Tt = —u; + b(v; — v,) + Tuk Z s(t—1f), @

k\tk<t
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where v; and u; represent the membrane potential and the
membrane recovery variable of the ith neuron in a network [2].
This neuron is defined to spike when v; > v, where v, is the
peak membrane potential; when this condition is met, a spike
is counted and v; is reset to the reset potential vy. The recovery
variable u; is driven by two terms. The term «8(f — tl-") in the
right-hand side of Eq. (2), where § is the Dirac delta function
and t¥ is the time of the kth spike of the ith neuron, represents
an increase of u; by k whenever the ith neuron spikes. This
introduces a spike-frequency adaptation mechanism into the
neuron model, since u; enters into Eq. (1) as a hyperpolariz-
ing variable. The term scaled by b in the right-hand side of
Eq. (2) couples the recovery variable u; to the subthreshold
membrane potential fluctuations [15]. Additional parameters
that control the behavior of the neuron are the cell capac-
itance C, the leakage parameter k, the resting potential v,,
the spike threshold potential vy, and the recovery variable
time constant t,. Finally, the neuron in Eq. (1) receives two
forms of input current: an extrinsic current /, and a synaptic
current that depends on the dimensionless synaptic activation
s, the maximum synaptic conductance g, and the synaptic
reversal potential £E. We model the synaptic activation s as
the convolution of the mean-field activity of the network with
an exponential activation kernel; this can be expressed as a
first-order differential equation of the form

N
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where 7, is a decay time constant, J is a global coupling
constant, and the double sum in the right-hand side of the
equation represents the average firing rate r(¢) of the entire
population at time ¢. Thus, Eq. (3) represents the synaptic
activation of each neuron in an all-to-all coupled network of
N neurons.

It has been shown that the population dynamics of cer-
tain families of spiking neural networks are fully captured
by their average firing rate and average membrane poten-
tial, and that their mean-field equations can be derived via
the Ott-Antonsen ansatz or the equivalent Lorentzian ansatz
[13,14,18]. Most recently, a study has shown that the mean-
field equations for a system of abstract, dimensionless IK
neurons can be derived using a similar approximation [19].
We will follow the latter approach to derive the mean-field
equations for the heterogeneous spiking neural network given
by Egs. (1)-(3).

B. Incorporating neural heterogeneity into mean-field models

One important aspect of the spiking neural network consid-
ered here is that it allows for heterogeneity across neurons in
the network. Typically, dimensionless mean-field models in-
corporate spiking heterogeneity by treating the input variable
I = n; 4+ Ix(¢) as a distributed quantity, with neuron-specific
background input n; and global extrinsic input I (z). The
spike threshold vy has also been related to single cell hetero-
geneity [6,20].

While the input  enters Eq. (1) as an isolated term, the
threshold vy is multiplied by the state variable v;; a distribu-
tions of values of vy in the population thus couples nonlinearly
to the membrane potential dynamics of the neuron. So, while
distributions over I can represent heterogeneity in the tonic
drive to a population, distributions over vy represent het-
erogeneity of the electrophysiological properties across cells
within a population. Another important difference between
these two sources of neural heterogeneity is their experimental
accessibility. Spike thresholds can be measured in single cells
via patch-clamp recordings and slow input current ramps. The
form of the distributions of spike thresholds across cells can
be chosen to capture the results of such recordings. On the
other hand, background current distributions are a lumped rep-
resentation of all input currents to a cell that are not explicitly
incorporated in the model and are thus much harder to infer
from neural recordings.

For these reasons, we focus on vy as the heterogeneity pa-
rameter. The values of vy ; in the network model are assumed
to be neuron specific and drawn from a probability distribution

p(vg).

C. Derivation of the mean-field equations

We consider the system given by Eqs. (1)—(3) in the ther-
modynamic limit, i.e., when N — oo. In this limit, the state of
the system can be defined via a density function p(v, u, vy, ).
For a given neuron, this quantity represents the joint probabil-
ity density of its spike threshold vg, membrane potential v, and
recovery variable u at time 7. The conservation of the number
of neurons implies that the probability density p(v, u, vg, t)
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must satisfy a continuity equation
9 a ;
—pW,u,v9,1) = — —[p(v,u, vy, 1)G (v, u, 5, vg)]
ot v

0
- a—[p(v, u, vg, 1)G" (v, w)l, )
u

where the right-hand side of Eq. (4) represents the proba-
bility flux given by the vector field

1
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The order parameters for which we wish to derive mean-
field equations are the average firing rate r(¢), the average
membrane potential v(z), and the average recovery variable
u(t), where averages are evaluated across neurons. These
order parameters can be defined in terms of Eq. (4) via the
following integrals:

r(l‘)=//Gv(vp,u,S,UG)P(Up,M,UG,I)dudve, ™)
Vg YU

v(t):/ //v,o(v,u, vg,t)dvdudvg, ()

u(t):/ //up(v,u, vg, t)dudv duy, )]

While Egs. (8) and (9) are simply the expected values of u
and v, Eq. (7) represents the probability flux at v = v), (that is,
the proportion of neurons emitting a spike at time #) under the
assumption that v, — oo and vg — —o0. We evaluate Eq. (9)
by following the approach outlined in [19], which critically
assumes that u > k for any vy, that is, for any neuron in
the population. This regime amounts to assuming that spike-
frequency adaptation [the term in Eq. (22) that scales with «]
in the model is small. Under this assumption, the dynamics
of u(t) can be approximated by replacing the spike train of
the individual neuron ik 81 — t¥) with the average firing

rate across neurons r(t) = 1lv Z?lzl Zk\z%q 5(t — t]'?):
(R
T, =b(v—v,)—u+ K" (10)

With this approximation, the continuity equation (4) can be
integrated with respect to u to yield

) 0
—p(, tlvg) = ——[G"(v, u, s, ve) p(v, t|vg)], (11)
ot ov

where we additionally used that p(v, vg, 1) = p(v, t|vg)p(vg).
For a more detailed description of the derivation outlined
above, see [19].

To obtain expressions for » and v, we apply the Lorentzian
ansatz outlined in [13]. We assume that the distribution over v
can be fully captured at any time ¢ by a Lorentzian probability
distribution

1 x(t, vg)
p(v, tlvg) = i

TGPty 02

centered at y and with half-width-at-half-maximum x. As
shown in [13], these two parameters of the Lorentzian dis-
tribution are inherently related to r and v via

C
an(’)=f Xt v)pue)dvg = x(t), (13)

Vo

v(t)=/ y(t, vg)p(vg) dvg = y(1). (14)

By plugging Eq. (12) into Eq. (11) and equating the left-
and right-hand side in powers of v, we find that the sys-
tem dynamics can be described by a single complex variable
z(t, vg) = x(t, vy) + iy(t, vg), the dynamics of which obey

a
C2(t, vg) = il—ka(t, v9)? +iezt, vo) + Bl (15)
where o and 8 are defined as

o = k(v +vg) + gs, (16)

B =kvvg+gE—u+1. (17

Finally, to derive the equations for r(¢) and v(¢) from
Eq. (15), we would like to solve the integral

1 d
= — —z(t, v vg)dvyg. 18
: C/W, 200, v )p(uy) (18)
As shown in [13], this integral can be evaluated analytically if
p(vg), the distribution of the heterogeneous spike threshold, is
chosen to be a Lorentzian density function

1 A,

V)= —————,
p(ve) 7 [vg — Dg)* + A}

(19)
centered at vy and with half-width-at-half-maximum A,. For
this choice of p(vy) we can solve Eq. (18) by evaluating
%z(l, vy ) at the single pole of the integrand in the upper half
of the complex plane vy = vy + iA,. Under further consider-
ation of Eq. (13) and Eq. (14), it holds that z(z, vy + iA,) =
x(t)+iy@) = %r(t) + iv(t). By plugging this relationship
into Eq. (18) and solving for » and v, we obtain the following
set of coupled ordinary differential equations:

. AR
Cr =
nC

(v —v)+rkCv—v, — vg) — gs), (20)

c
Cy =kv(v — v, — Vg) — nCr(AU + %r>

+kv.vg —u+1+ gs(E —v), 21
T, =b(v — v,) — u + Tk, (22)
T8 = — s+ T Jr. (23)

For the derivation of Eq. (23), we used Eq. (3) together
with r(t) = ]L\, Z?’:I Zk\l;’_‘@ 8(t — tj’?). Note that the choice of
pole for the evaluation of %z(l, vy) is based on the require-
ment that x(¢) = %r(t) > 0 Vt. The choice of the pole at
vg = Uy + iA, in the upper half of the complex plane can lead
to a violation of this requirement in conditions where the IK
network is strongly hyperpolarized, i.e., when v — v, < 0. In
this condition, %z(t, vp) has to be evaluated at the pole in the
lower half of the complex plane, vy = vy — iA,.
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Accounting for this state dependence of the choice of the
pole where the integral is evaluated, the mean-field equa-
tions become

_ A k%o,
TS

Cr (W —v,) + r(kQu — v, — 7p) — gs), (24)

. _ xC
Cv=kv(v—v, —0g)— nCr(Av o, + 7r)

+ kv, vg —u+ 1+ gs(E — v), (25)
T =b(v —v,)—u—+ tKr, (26)
8 =—s+ 1 Jr, 27

where o, = sgn(v — v,) is 1 when v — v, > 0 and —1 other-
wise. Under the assumptions that spike-frequency adaptation
is small and that spike peak and reset potentials approach
positive and negative infinity, respectively, this final set of
four coupled ordinary differential equations fully captures the
macroscopic dynamics of the spiking neural network given by
Egs. (1)-(3). Below we demonstrate via numerical compar-
isons of the dynamics of the mean-field model and the spiking
neural network model that this is indeed the case.

Furthermore, we analyze how well the mean-field predic-
tions describe the macroscopic dynamics of the spiking neural
network when each of the assumptions on which the mean-
field derivation is based is violated. Finally, we analyze the
quality of mean-field predictions when the assumption of a
Lorentzian distribution of the spike threshold heterogeneity
is violated in the spiking neural network. To this end, we
truncate the heavy tails of the Lorentzian probability distri-
bution at different spike thresholds and study its effect on
the mean-field dynamics of the spiking neural network. This
modification on the assumed form of p(vy) accounts for the
biological fact that spike thresholds are confined to a finite
range of potentials, bound by the resting membrane potential
from below and the peak membrane potential from above.

Finally, as noted above, Eqgs. (20)—(23) are valid only for
regimes where (v — v,) > 0 and are thus a special case of
Eqgs. (24)—(27). It is in this condition that spiking occurs in
our model, and it is the regime studied in the remainder of
this article. For all the parameters of interest studied here, the
requirement [v(t) — v,] > 0 is satisfied at all times ¢. Thus,
our comparison between the mean-field dynamics and the
dynamics of spiking neural networks involves simulations of
Egs. (20)—(23) and Egs. (1)—(3).

D. Form of the recovery variable u

We derived the mean-field equations (20)—(23) for a net-
work of IK neurons with neuron-specific recovery variables
u;, as defined by Eq. (2). Following the approach of [19], we
showed that the mean-field dynamics of the average recovery
variable u as defined by Eq. (9) are coupled to those of the
average membrane potential v and average firing rate r of the
population [see Eq. (22)]. This result is equivalent to the result
obtained in [21,22]. Whereas a steady-state approximation
was used in [21] to derive the mean-field equations, the adia-
batic approximation used in [22] was based on the assumption

that the dynamics of the recovery variables u; are slow in
comparison to the dynamics of the membrane potentials v;.

Strikingly, these different approaches all result in the same
mean-field equation for u, which is the mean-field equa-
tion derived in [23] for spiking neural networks where all
neurons share a single global recovery variable u. The dy-
namic equations of the spiking neural network considered in
[23] are given by

Coi=k(v; —v)(v; —vg;)) —u+1+gs(E —v;), (28

N N
ruuz—u+%;(vj—vr)+ t;,K Z Z 8(r = 1)),

J=l k<t

(29)

and the dynamics of s is still controlled by Eq. (3). Although
both the spiking network with neuron-specific recovery vari-
ables u; and the spiking network with a global recovery
variable u produce the same mean-field equations, it is likely
that their dynamics are not identical. To examine how spik-
ing neural networks with neuron-specific vs global recovery
variables differ in their dynamics, and to determine how both
spiking models differ from their mean-field approximation,
we compare the dynamics of both the spiking neural network
given by Egs. (1) and (2) and the spiking neural network
given by Eqgs. (28) and (29) to the dynamics predicted by the
mean-field model of Egs. (20)—(23).

III. MEAN-FIELD MODELING
OF ADAPTATION-INDUCED BURSTING

Our first assumption in deriving the mean-field model
[(20)—(23)] is that spike-frequency adaptation is small, i.e.,
u > k for any vy. Here we examine how well the predic-
tions of the mean-field theory capture the dynamics of the
spiking neural network when « is systematically varied. To
this end, we performed a bifurcation analysis of the mean-
field model over input current / and adaptation parameter «,
using PyRates [25] and Auto-07p [26], and compared it to
numerical approximations of the bifurcation structure of the
spiking neural network.

To locate the bifurcation points for the spiking neural
network, we performed numerical integration of the network
Egs. (1)-(3) for an all-to-all coupled population of N =
10000 neurons over a time interval of 20 s. This value is much
larger than the time constant of the regular-spiking model
neurons, which is T = 8 ms [2]. We used the explicit Euler
method with an integration step size of 0.001 ms. Over the
course of the integration interval, we slowly ramped up the
background current /(¢) from 20 pA to 70 pA in the first 10 s
and then linearly decreased it back to 20 pA in the second
10 s, resulting in a rate of change of 5.0 pA/s. We used the
troughs and peaks of the recovery variable (u;) averaged
over the population to locate fold and Hopf bifurcations, re-
spectively, as a function of the input current /. For similar
approaches that used changes in the dynamics of neural state
variables during slow parameter sweeps to identify phase tran-
sitions, see [27-30].

Figures 1(d) and 1(e) depict representative dynamics of
the average recovery variable and the background current /
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(a) 2D bifurcation diagram (b) K =25.0 pA
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FIG. 1. Strong spike-frequency adaptation reduces mean-field accuracy. (a) Bifurcations in the 2D parameter space spanned by the spike-
frequency adaptation strength « and the input current /. Green (gray) regions depict synchronized-oscillatory (asynchronous, bistable) regimes.
Green (gray) solid lines depict curves of Hopf bifurcation (fold bifurcation) solutions. Orange squares, black diamonds, and green circles
represent Bogdanov-Takens, cusp, and generalized Hopf bifurcations, respectively. Gray (green) x markers depict fold (Hopf) bifurcations
identified in the dynamics of a spiking neural network with neuron-specific recovery variables u;. (b), (c) Solution for the dimensionless
mean-field variable s as a function of I for two different values of the spike frequency adaptation strength «. Purple solid lines represent
stable steady-state solutions; gray dotted lines represent unstable steady-state solutions. Green solid lines represent the minima and maxima of
limit cycle solutions. Gray triangles and purple circles mark fold and Andronov-Hopf bifurcations, respectively. Note that the fold bifurcation
in (c) is the fold bifurcation of a limit cycle; it marks the collision of a stable and an unstable limit cycle branch in the close vicinity of
the Andronov-Hopf bifurcation. This bifurcation landscape is typically found in the vicinity of generalized Hopf bifurcations [24]. (d), (e)
Dynamics of the mean-field model (green), the spiking neural network with neuron-specific recovery variables u; (blue), and the spiking neural
network with a global recovery variable u (orange), for two different values of the spike frequency adaptation strength «. The top two rows
depict the synaptic activation s and recovery variable u as a function of time, both averaged across neurons; the bottom row depicts the applied
input current / as a function of time. Note that for illustration purposes, input currents shown here increase much faster than the timescale used
to identify approximate bifurcation points in (a), and that the input current in (d) was decreased (increased) in the second (first) half of the
trial to locate the fold bifurcations that lie on the left (right) solution branch of the bistable region in (a). Vertical dashed lines in the plot for
u represent the troughs in u used to locate fold bifurcation point (d) or the peaks in u used to locate Hopf bifurcation points (e) for the input
parameter /. Horizontal dashed lines for 7 in the bottom row of (d) and (e) indicate the values of / where fold or Hopf bifurcation points occur,
as identified from the troughs and peaks in u, respectively.

as used for locating fold [in Fig. 1(d)] and Hopf [in 1(e)]
bifurcations. Note that we increase the ramping of the input
current / to 20.0pA/s for the plots in in Figs. 1(d) and 1(e), in
order to make the transient dynamics of the network easier
to see. For simplicity, we use u to refer to the population
average recovery variables of each of the three models that
we compare in Figs. 1(d) and 1(e), i.e., the global recov-
ery variable of the mean-field model given by Eq. (22), the
global recovery variable given by Eq. (29), and the average
of the neuron-specific recovery variables (u;) with u; given
by Eq. (2). Note that while fold bifurcations are identified as
broad, single troughs in (i;), Hopf bifurcations are located at
the onset of intervals in which peaks separate multiple narrow
troughs. We repeated this procedure for multiple values of

the spike-frequency adaptation strength « to approximate the
fold and Hopf bifurcation curves in the 2D parameter plane
spanned by I and k. All other model parameters were set to
the values reported in Table 1.

Figure 1(a) shows that x controls whether the spiking
neural network expresses a bistable or an oscillatory regime:
the former exists for small values of «, whereas the latter
requires relatively large values of k. As expected, we find that
the accuracy of the mean-field model is reduced when « is
increased and the u > k assumption of [19] is violated. The
location of the fold bifurcations predicted by the mean-field
theory matches the location of the fold bifurcations estimated
from the spiking neural network dynamics for 1 < k < 40.
However, the larger x becomes, the stronger is the deviation
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TABLE I. Model parameters for a regular-spiking IK neuron.

Parameter Value Parameter Value
C 100 pF k 0.7nS/mV
v, —60 mV Vg —40 mV

g 1nS E 0 mV

T, 33.33 ms Ty 6.0 ms

K 20 pA b —2.0nS

J 15 N 10000

Vp, =V 1000 mV A, 0.5mV

between the bifurcation curves calculated from the mean-field
model and the ones extracted from the dynamics of a spiking
neural network with neuron-specific recovery variable u; [see
Fig. 1(a)]. Note that the average values of u do not meet the
condition u > « for most values of k depicted in Fig. 1(a), as
can be seen in the middle row of Figs. 1(d) and 1(e).

Nevertheless, we find that even for larger values of « the
spiking neural network exhibits a bifurcation structure that
is qualitatively similar to that of the mean-field model. The
bistable regime is most pronounced at small values of / and
k, and the oscillatory regime emerges for higher values of
I and k. Violations of the small spike-frequency adaptation
assumption merely lead to a shift of the bifurcation curves
in parameter space; this shift increases as k increases. Finally,
Figs. 1(d) and 1(e) demonstrate that the mean-field predictions
are in better agreement with the dynamics of the spiking
neural network governed by a global recovery variable u, as
described by Egs. (28) and (29). This reflects the fact that the
mean-field model effectively assumes that the fluctuations of
the u; variable across neurons are negligible. While this as-
sumption holds by construction in the spiking neural network
with a global recovery variable u, it does not necessarily hold
for networks with individual recovery variables u;. This is
particularly the case in networks with spike threshold or input
current heterogeneity. Neurons with different spike thresholds
will differ in their individual firing rates, which causes het-
erogeneity in the recovery variables u; via the dependence
of u; on those firing rates, scaled by « [see Eq. (2)]. We
conclude that spiking neural networks with neuron-specific
recovery variables u; behave qualitatively similarly to spiking
neural networks with a global recovery variable u, but that the
quantitative agreement between the two becomes worse as k
increases.

IV. MEAN-FIELD MODELING OF DIFFERENT
SPIKE WAVEFORMS

Another factor limiting the applicability of the mean-field
model is the assumption that v, — oo and vy — —00, namely
that a spike is emitted as the membrane potential approaches
a peak of oo, and that following a spike the membrane poten-
tial resets to —oo. These assumptions were necessary for the
analytic derivation of the mean-field equations. However, the
variety of firing patterns that the IK neuron model is able to
exhibit depends on finite values of v, and vy [2,15].

In this section, we examine the mismatch between the
mean-field model and spiking neural network dynamics given
realistic finite values for the peak and reset potentials. To

correct for this mismatch, we introduce an input rescaling fac-
tor I* that allows the mean-field model to be adapted to better
match the observed dynamics of spiking neural networks with
finite spike resetting parameters.

A. Relationship between peak/reset potential values and firing
rate of the IK model neuron

We first analyze the impact of v, and vg on the dynamics
of a single IK neuron. Neither parameter enters into Eq. (1);
v, and vy affect the IK neuron dynamics only in the spiking
regime, where spike-triggered resetting of the membrane po-
tential takes place. It is in this regime that we examine the
effect of v, and vy on the dynamics of a single IK neuron. The
adiabatic approximation that u; changes infinitesimally slowly
with respect to v; leads to an analytical solution to Eq. (1),

1 kt i 2vi(ty) — ¢
vi(l)=§{\/mtan|: f—i-tan‘l (%)]—F%}

(30)

where

!

can be interpreted as a lumped sum of input currents to the
neuron, with o = k(v, + vg) + gs and B = kv, vy + gsE —
u—+1, as given by Eq. (16) and Eq. (17), respectively. For
similar applications of the adiabatic approximation to neu-
rodynamic system with multiple time scales, see [22,31,32].
We assume p; > 0, which is equivalent to assuming that the
neuron is in a spiking regime. For more detailed descriptions
of the adiabatic approximation and how it can be used to ab-
sorb a spike-frequency adaptation variable into the membrane
potential dynamics of a spiking neuron, see [22,31,32].

Based on Eq. (30), the spiking frequency of an IK neuron
receiving a positive lumped input current ¢ > 0 can be calcu-
lated by setting v;(fo) = vo and solving for the time ¢ it takes
for v;(t) to reach v, yielding

k/1i
= v (32)
2Cy;

i

where

2v, — % 209 — £
—1 P % —1 k
yi = tan (—) — tan (—) (33)
A Mi i
Equations (32) and (33) establish a functional relationship

between the firing rate r; of a single IK neuron and the spike
reset condition defined via v, and vy.

B. Mean-field correction for spike resetting

To obtain a revised set of mean-field Eqs. (20)—(23) that
correct for the effects of finite peak and reset potentials, we
used the limits v, — oo and vy — —oo. In this limit, y; — 7

and Eq. (32) simplifies to
ko ¥
_ K (34)

o = Sxc
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FIG. 2. Firing rates under different spike reset conditions. (a) Steady-state firing rates r; of single neurons as a function of the input / for
different reset potentials vy. Color code as in (b). (b) Differences between the steady-state firing rates of a neuron with vy — —oo as assumed
in the mean-field model and neurons with different finite values of the reset potential vy. (c) Adjusted input I* as a function of / for different
reset potentials as per Eq. (36). Color code as in (b). (d) Steady-state solution for the dimensionless mean-field variable s as a function of the
input /. Gray triangles represent fold bifurcations. Solid (dotted) lines represent stable (unstable) solutions. Feedback via the recovery variable
u [given by Eq. (40)] was turned off by choosing ¥ = 0 and b = 0; all other parameters were chosen according to Table I. (e), (f) Synaptic

activation dynamics s for the spiking neural network, and for both uncorrected and corrected mean-field models, for two values of v,.

where u is defined as

. 4pF a2
M= (k) '
In Eq. (35), B* = kv,vg + gsE — u + I*, and I* is an “ad-
justed” extrinsic input current that can be different from /. The
differences between r; and r, in the absence of an adjustment
to I are shown for different values of vy in Figs. 2(a) and 2(b)
when I* =1
These differences in the output firing rates of single neu-
rons will cause a corresponding mismatch between the firing
rates predicted by the mean-field theory and those of a spiking
neural network with v, < oo and/or vy 3> —o0. At the single
cell level, the difference in firing rates between r; and ry
for v, < 0o and vy > —oo can be corrected by choosing the
adjusted extrinsic input as

(35)

2k
L e
I, otherwise.

% +u; —kvovg —gsE  if p >0,

(36)

Figure 2(c) shows the resulting relationship between /* and
I. Tt reveals that I* > [ is required to achieve ro, = r; when [
is large enough to elicit spiking, and that the magnitude of the
difference grows with I and with vy, which shapes I* through
its contribution to y. The piecewise structure of Eq. (36)
preserves a monotonic and continuous relationship between
I and I*. Continuity follows from evaluating lim,_,o+ I*. In

this limit, the term ”2;‘2" in Eq. (36) - O and I* — .

1

To incorporate this input adjustment into the mean-field
theory, we derive the mean-field equations for a network of
globally coupled IK neurons where the membrane potential
of the ith neuron evolves according to

Co =k —v)(vi —vg;) —u; +I" + gs(E —v;), (37)

instead of Eq. (1). We use a first-order approximation to %I *,
which allows us to simplify Eq. (36) by replacing vy by vy and
assuming that both p and y are functions of vy instead of vy.
This approximation amounts to setting the corrected input I*
to all neurons to that of the average neuron of the network,
disregarding any potential effects in the mean-field dynamics
due to fluctuations in I* caused by fluctuations in vy. Under
this assumption, the mean-field equations can be derived as
outlined in Sec. II C, to obtain

A _
Cr= v —v)+rkQv—v, —vg) —gs], (33)
nC
. _ nC
Cv=kv(v—v,— ) — nCr(AU + 7r>
+kvvg —u+I"+ gs(E —v), (39)
T, =b(v—v,.)—u—+ tKr, 40)
T8 =—s5+ 1Jr, 41

with 7* given by Eq. (36) with vy — ¥p. Importantly,
the continuous nature of /* allows for the application of
methods from dynamical systems theory such as numerical
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parameter continuation. As shown in Figs. 2(d)-2(f), the
correction term leads to a substantially improved agreement
between the mean-field theory and the spiking neural network
dynamics. Note, however, that the striking agreement be-
tween mean-field theory and spiking neural network dynamics
shown in Figs. 2(e) and 2(f) holds for the optimal condition of
a single population of IK neurons with b = 0 and « = 0 (all
other parameters were chosen according to Table I). Under
these conditions, any potential mismatch that might arise due
to the adiabatic approximation we used to obtain Eq. (30) can
be neglected.

It should also be noted that the correction term /* becomes
less accurate when vy > v,, that is when the reset potential
after spiking is above the resting membrane potential, as is
the case in some bursty spiking neurons. Under this condi-
tion, spike resetting affects not only the firing rate but also
subthreshold dynamics. Since I* as given by Eq. (36) applies a
correction only when p > 0, no correction is applied in these
subthreshold regimes.

C. Effects of spike resetting on the dynamics
of a two-population model

To test whether the corrected I* can also improve the
agreement between mean-field theory and spiking neural net-
work dynamics for finite values of v, and vy under less
optimal conditions, we considered a network of interacting
regular-spiking neurons and fast-spiking interneurons, us-
ing the model equations and parameters reported in [23].
Regular-spiking neurons are modeled as excitatory neu-
rons with spike-frequency adaptation, whereas fast-spiking
interneurons are modeled as inhibitory interneurons with-
out spike-frequency adaptation (see [2]). We compared
the dynamics of the uncorrected and corrected mean-field
models to the spiking neural network dynamics of this two-
population network for three different spike reset conditions:
v, = 1000 mV and vy = —1000 mV, v, = 50 mV and vy =
—100 mV, and v, =40 mV and vy = —60 mV. Again, we
used numerical bifurcation analysis to identify the bifurcation
structure of the mean-field model in the 2D parameter space
spanned by the background current to the fast-spiking neuron
population /; and the width of the spike threshold distribution
across fast-spiking neurons A r,. To identify the location of
the fold and Hopf bifurcations in the two-population spiking
neural neuron network, we used the method described in the
previous section.

The comparison between Figs. 3(a)-3(c) and Figs. 3(d)-
3(f) reveals that the corrected mean-field model predicts
synchronized oscillations in the dynamics of the spiking neu-
ral network more accurately than the uncorrected mean-field
model. This agreement is shown in Figs. 3(g) and 3(h),
for spiking neural networks with v, = 1000 mV and vy =
—1000 mV or v, = 50 mV and vy = —100 mV, respectively.
Furthermore, we find that the bifurcation structure of the
spiking neural network with realistic spike resetting, v, =
50 mV and vy = —100 mV, follows the prediction of the cor-
rected mean-field model [see Fig. 3(b)], while the IK network
with less realistic spike resetting, v, = 1000 mV and vy =
—1000 mV, shows a bifurcation structure closer to that of the
uncorrected mean-field model [see Fig. 3(d)]. As expected,

the correction becomes less necessary as the absolute values
of v, and vg become unrealistically large.

Figures 3(b), 3(c), and 3(h) further reveal that the correc-
tion term becomes less accurate as the absolute values of v,
and vy decrease. The bifurcation structure predicted by the
corrected mean-field model accurately captures the dynamics
of the corresponding spiking neural network for v, = 50 mV
and vg = —100 mV, but the mean-field predictions for v, =
40 mV and vy = —60 mV overestimate the areas of the oscil-
latory and bistable regions in the 2D parameter space spanned
by Ay, and Iy, This discrepancy arises because we have
assumed that the firing thresholds vy of the neurons in the
spiking neural network followed a heavy-tailed distribution.
In the regime where the absolute values of v, and vg are
small, the effective range of values for vy becomes narrower,
as values such that vy > v, or vy < vy are excluded. In the
following section, we investigate the general issue of defining
a probability distribution p(vg) on a restricted domain, and its
implications for the mean-field model.

We conclude that inaccuracies between spiking network
and mean-field theory arising from finite spike resetting con-
ditions can be accounted for by introducing a corrected input
term in the mean-field model. This correction term provides a
substantially improved fit of the spiking network dynamics for
vo < v, and v, large enough that the cumulative probability
density fvt"::vio p(vg) dvy is sufficiently small.

V. MEAN-FIELD EFFECTS OF TRUNCATED
DISTRIBUTIONS

Here we consider the effects of assuming that the spik-
ing thresholds v, in the spiking neural network follow a
Lorentzian distribution across neurons, with probability den-
sity function given by Eq. (19). This assumption allows for
a particularly strong reduction in the dimensionality of the
mean-field equations, but it introduces a heavy-tailed distri-
bution defined over the entire domain [—o0, oc]. The spiking
threshold vy is a membrane potential, a continuous variable
that can, in principle, span the unbounded domain [—o0, o],
but the symmetry of the term (v; — v,)(v; — vp) in Eq. (1)
indicates that vy effectively becomes v, and vice versa if
v, > vy. So vy should be bounded from below: vy > v, > vy.
It is evident from Eq. (1) that vy is also bounded from above,
as v; could never diverge to produce a spike if vy > v,,.

Therefore in practice v, < vy <vp, and a truncated
Lorentzian distribution must be used at the level of the spiking
neural network, such that v, < vg; < v, Vie[l,2,...,N].
We use a truncated Lorentzian that retains the symmetry of
the original Lorentzian

7 (vg) = gsp(vg) if Uy ‘¢ <up <Vg+¢, )
0 otherwise,

where ¢ is the truncation threshold, g4 is a normalization con-
stant that enforces ffooo p*(vg)dvy = 1, and p(vy) is given by
Eq. (19). We used such a truncated Lorentzian with ¢ = v, for
all spiking neural network results reported above. To sample
from Eq. (42), we randomly sampled all spike thresholds vg ;
using the Lorentzian density function p(vg) and resampled
those neurons i for which vy, i fell outside the truncation
range. Since the mean-field derivation requires the use of
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FIG. 3. Bifurcation structure and network dynamics in an excitatory-inhibitory network for different spike reset conditions. (a)—(c) 2D
bifurcation diagrams in the plane of fast-spiking spike threshold heterogeneity A, and fast-spiking neuron input /, for three different spike
reset conditions. Regions of parameters space depicted in green (gray) represent synchronized-oscillatory (asynchronous-bistable) regimes
as predicted by the corrected mean-field model. Solid green (gray) lines depict the Hopf (fold) curves predicted by the corrected mean-field
model. Black diamonds represent cusp bifurcations, and green circles represent generalized Hopf bifurcations. Green (gray) x markers depict
the locations of Hopf (fold) bifurcations from the spiking neural network dynamics. (d)—(f) Same as (a)—(c), except that mean-field predictions
follow from the uncorrected mean-field model. (g), (h) Synaptic activation variable s (dimensionless) as a function of time for regular rs
(blue) and fast fs (orange) spiking neurons, for two different spike reset conditions. Solid lines represent the solutions of the spiking network,
dashed lines the mean-field model. The input to the fast-spiking neurons was stepped from Iz, = 20 pA (no shading) to Iz, = 30 pA (light gray
shading), to Iy, = 40 pA (dark gray shading). We chose I, = 50 pA, Ay, = 0.3 mV, and all other parameters as specified in the Appendix.

the full Lorentzian distribution, the mean-field model based
on a full Lorentzian distribution over the spiking thresholds
can approximate only the spiking model based on a truncated
Lorentzian distribution over this model parameter.

We now examine how this approximation affects the agree-
ment between mean-field theory and spiking neural network
dynamics. To this end, we compared the average firing rate dy-
namics of the mean-field model to that of a spiking population
of coupled regular-spiking neurons for different truncation
conditions. We systematically varied either the width of the
spike threshold distribution A, or the truncation threshold ¢,
and calculated the firing rate difference D, = r — (r;). Mean-
field and spiking neural network dynamics were obtained
from the numerical integration of Egs. (38)—(41) and Egs. (1)-
(3), respectively, using the parameters from Table II.

TABLE II. Model parameters for IK neurons used to study the
effects of truncated Lorentzian spike threshold distributions.

Parameter Value Parameter Value

C 100 pF k 0.7 nS/mV
v, —80 mV 1 250 pA

g 1 nS E 0mV

T, 33.33 ms T, 6.0 pF

K 20 pA b —2.0nS

J 15 N 10000

Uy, — Vg 1000 mV
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FIG. 4. Effects of a truncated Lorentzian distribution of spike
thresholds on the mean-field dynamics. (a) Probability density as
a function of the spiking threshold vy for Lorentzian distributions
with vy = —40 mV and different widths A,. Both v, and A, are
measured in mV. The transition from solid to dashed lines indi-
cates the truncation. Dotted vertical lines represent two different
values of the truncation threshold ¢, also measured in mV. (b),
(c) Mean and variance of the difference D, between the average
firing rates of the mean-field model vs the spiking network as a
function of the Lorentzian width A, and the cutoff threshold ¢.
(d), (e) Power-spectral density (PSD) of the average firing rate in
the spiking network for different spiking thresholds and truncation
thresholds, respectively. Both A, are ¢ are measured in mV. We used
¢ = 40 mV for (b) and (d) and A, = 1 mV for (c) and (e).

The results of these calculations are shown in Fig. 4. As
expected, either increasing the width of the spike threshold
distribution A, or reducing the truncation threshold ¢ leads to
an increased average firing rate difference (D, ) between mean-
field prediction and spiking network dynamics [Figs. 4(b)
and 4(c)]. In both cases the cumulative probability density
in the truncated tails is increased, rendering the mean-field
assumption less accurate. Interestingly, increases in A, led
to a decreased variance of D,, whereas decreases in ¢ led
to an increased variance of D,. We argue that the power
spectral densities of the population spiking activity depicted
in Fig. 4(d) reflect a desynchronization in the neural dynamics
caused by increased spike threshold heterogeneity. Specifi-
cally, we find that the power spectral densities become more
flat as the spike threshold heterogeneity increases, reflect-
ing a loss of synchrony-induced resonance frequencies [see
Figs. 4(d) and 4(e)]. Both decreasing the width of the spike
threshold distribution and decreasing the truncation thresh-
old result in a more homogeneous spiking network and thus
cause increased synchrony in its firing rate fluctuations. As
can be seen from the difference between Figs. 4(d) and 4(e),
the spectral properties of these synchronous network dynam-

ics depend on the particular shape of the spike threshold
distribution.

For a more detailed discussion of the relationship between
population dynamics and spike threshold heterogeneity, see
[23]. Importantly, we find that the magnitude of the average
firing rate differences between mean-field model and spiking
network is small compared to the firing rate fluctuations in
the spiking network; this discrepancy is thus likely to have
little effect on qualitative aspects of network dynamics. This
is as seen in Figs. 3(a)-3(c), where increases in the width of
the spike threshold distribution of fast-spiking neurons A s (y
axis) do not affect the accuracy of the mean-field predictions.

VI. CONCLUSION

The spiking activity of neurons is shaped by their un-
derlying electrophysiological properties; different cell types
typically exhibit dramatically different spiking responses to
the same input. To understand the computational conse-
quences of this diversity, we must study its effect at the level
of neural population dynamics. Approaches such as mean-
field modeling provide insight into the emergent dynamics
of neural populations, but these models most commonly treat
all neurons as identical copies of each other and omit physi-
ological properties differentially associated with known cell
types in the brain. Here we have presented a mean-field
model of a network of coupled Izhikevich (IK) neurons with
biophysiological state variables and parameters, an approach
that allows us to predict how neural population dynamics
are shaped by the distinct response properties of individual
neurons.

A key advantage of IK model neurons is that the parameters
and state variables of the model neurons, such as the mem-
brane capacitance, the membrane potential, or the maximum
conductance of synapses, are based on electrophysiological
properties that can be measured directly [2,16]. Through the
tuning of these parameters, the IK model can represent vari-
ous neuron and synapse types, and thus account for different
sources of neural heterogeneity in the brain [15,22]. These
features render our mean-field model particularly well suited
for interpreting neural recordings and developing large-scale
models of multiple interacting neuron types [17]. Our work
contributes to such efforts by providing a mean-field model
that links single cell properties to population-level dynamics,
thus helping to bridge different scales of brain organization
[3,4,33,34].

Our model also introduces a novel approach to account
for heterogeneity in neuron spike thresholds, a property of
neuron populations that has been well characterized experi-
mentally (e.g., [35-37].) As demonstrated in [23], the degree
of variance in spiking thresholds across a neural population
has strong effects on the dynamic regimes that these popula-
tions exhibit. We found these effects to determine the dynamic
regimes of excitatory-inhibitory circuits that represent key
elements of cortical organization [38—40]. Here we provided
a detailed analysis of the simplifying assumptions required to
derive the mean-field model for populations of heterogeneous
spiking neurons and the biases that these simplifying assump-
tions introduce in the predicted mean-field dynamics.
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For the derivation of the mean-field model, we built upon
previous work that derived mean-field equations for spiking
neural networks [12,13] in a manner that avoids often invoked
asynchronous firing [41-44], an assumption that negates the
possibility of collective oscillations. The significant progress
provided by this alternative approach was initially limited by
the use of abstract spiking neuron models not based on iden-
tifiable physiological parameters. Compared to the IK model,
these models apply to only a limited range of neuron types
and spiking patterns. While numerous studies have extended
mean-field theory to account for mechanisms such as spike-
frequency adaptation [32], synaptic plasticity [45,46], or gap
junctions [47,48], all of these studies were based on spiking
neuron models written in terms of dimensionless variables
and parameters. As a result, these models do not provide a
direct link between the model parameters and experimentally
accessible quantities that characterize neural structure and
function.

Here we presented a mean-field model that does provide
such a link and may therefore be used to make experimen-
tally testable predictions about the effect of the physiological
properties of individual neurons on population dynamics.
For example, we can determine how changes in neural rest-
ing potentials, spike waveforms, or rate of spike-frequency
adaptation can be expected to change population responses.
These predictions might be tested through direct experimental
manipulation, or by studying how physiological properties
naturally vary across cortical regions and layers, as in [49],
and relating these differences to cell population dynamics
across regions.

To assess the feasibility of using mean-field techniques to
study the population dynamics of physiologically relatable
neural models, we analyzed the validity of the mean-field
model under violations of three key assumptions that are
required for the closed form derivation presented here.

We first examined the assumptions regarding the strength
of spike-frequency adaptation in the spiking neural network.
Previous studies have demonstrated that spike-frequency
adaptation has a critical impact on the emergence of syn-
chronized states such as population bursting in networks of
coupled excitatory neurons [31,32,50]; this is therefore an
important element to include in mean-field population models.
To derive the equation for the mean-field dynamics of the
average recovery variable u, we followed [19] in assuming
that spike-frequency adaptation is weak in comparison to the
magnitude of the recovery variable. As expected, we found
that the violation of this assumption decreases the agreement
between the predicted mean-field dynamics and the actual
dynamics of the spiking neural network. However, our results
suggest that the bifurcation structure of the spiking neural
network is preserved in the mean-field model even when
spike-frequency adaptation is strong. Although the input in-
tensity at which bifurcations occur is shifted relative to that
of the spiking network, our mean-field model nonetheless
captured the emergence of synchronized and bistable states
observed in spiking neural networks. We conclude that our
mean-field model is a useful tool for analyzing population
dynamics in the presence of spike-frequency adaptation.

We next examined the assumptions pertaining to the spike
reset condition in the mean-field model. As discussed in

[13,48], the derivation of the mean-field equations requires
the assumption that IK neurons produce their spike when
v; = v, — 00; upon spiking, the IK neurons are reset to v; =
vg — —oo. This assumption is particularly problematic when
using biophysiological neuron models, as neural membrane
potentials fall within a relatively narrow range [1]. Further-
more, setting vy and v, to specific, finite values is needed
for IK model neurons to reproduce the spiking dynamics
of different biological neuron types [15,17,51]. Our results
indicate that imposing realistic spike reset conditions mostly
leads to an increase in the average firing rate of the spiking
network model relative to the mean-field model. We derived a
rescaling of the background input to the network and showed
that this adjustment is sufficient to correct for the increased
firing rate introduced by realistic spike reset conditions. This
rescaled input can be used in the mean-field equations, leading
to a significantly improved agreement between mean-field
and spiking neural network dynamics. We conclude that the
mean-field model derived in this work can describe the mean-
field dynamics of spiking networks with realistic spike reset
conditions.

Finally, we examined our assumption that neural spike
thresholds follow a Lorentzian distribution. In a biological
system, values in the heavy tails of the Lorentzian will never
be observed; the values of vy cannot exceed the peak potential
v, or be lower than the resting potential v,.. The spiking neural
networks are based on a truncated Lorentzian distribution of
spike thresholds with v, < vy < v, whereas the derivation of
the mean-field model requires us to assume a full Lorentzian
distribution. We found that the agreement between mean-field
and spiking models depended on how strongly the distri-
bution for vy was truncated in the spiking neural network;
however, the difference between mean-field predictions and
spiking neural network dynamics was small in comparison
to the finite-size fluctuations of the latter. Furthermore, we
found a good agreement between mean-field predictions and
spiking neural network dynamics in all models examined in
this work, once inaccuracies caused by spike frequency adap-
tation or narrow spike reset conditions were accounted for. We
conclude that the full Lorentzian approximation for the distri-
bution of spike thresholds leads to mean-field predictions that
reliably match the dynamics of spiking neural networks. This
result implies that truncated Lorentzian distributions can be
used to fit experimental measurements of spike thresholds in
biological neural populations, and that our mean-field model
can then be used to analyze their population dynamics. A
similar approach has been used to analyze the impact of spike
threshold heterogeneities in different interneuron populations
on the dynamics of mesoscopic brain circuits [23]. There, the
statistics of distinct spike threshold distributions measured in
brain slices (see [35,52]) were fitted to truncated Lorentzian
distributions and the impact of spike threshold heterogeneities
on the phase transitions of mesoscopic brain circuits was
analyzed.

In conclusion, we have derived and analyzed a mean-field
model of interacting heterogeneous spiking neurons. Our de-
tailed analysis of the mean-field model predictions provides
a clear picture of the conditions under which the mean-field
predictions can be expected to be a reliable representation of
the dynamics of spiking networks. As our mean-field model
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was built upon IK neural models, it provides a degree of
flexibility and biophysical detail that allows it to be applied
to neural recordings in a wide range of brain regions and
systems.
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APPENDIX: TWO-POPULATION MODEL

In this Appendix we present the full set of equations and
parameter values used for the two-population excitatory-
inhibitory model. Each population is characterized by a
system of three equations of the same form as Egs. (1)-(3),
with additional terms proportional to couplings J,, that
determine the strength of interaction within and between pop-
ulations a and b.

The spiking neural network dynamics of a system of all-
to-all coupled excitatory regular-spiking and inhibitory fast-
spiking neurons are given by the following:

Crsiv;s — k' (v;‘s _ vrs) (v;‘s _ v(;s) _

d[ i urs +Irs

_i_Jr’rgrssrs(Ers _ U;’S) +Jr,fgfssf§(th _ r@)’
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N
T, Eu =b" ]v Xz: —Uu
.L,rsKrs N
"N Za (Alb)
j=1
N
d ’s
o —s" = - 6 Alc
i N; (Ale)
d N
Cfsavifs — kts (Uifs _ vfs) (Ufs Ugs) ufs + Ifs
_i_]f’rgrssrs(Ers _ vifs) +Jf’f fs(Ets _ fs)’
(Ald)
N
fs fs _ of f £ £
T, Eus =b" NZ:UJ-S—vrs —u®
j=1
‘L’:SKfS .
+ 5 8(vf —vp), (Ale)
j=1
d .L,fs N i X
st = =t 00 — ). (ALD
j=1

where the superscripts rs and fs denote regular-spiking and
fast-spiking populations, respectively. This model has four
coupling terms J,;, V a, b € {r, f}, reflecting the strength of
input from a given population b to a given recipient population
a. The mean-field equations for this two-population model can
be derived following the procedure outlined in the main text

TABLE III. Model parameters for a fast-spiking IK neuron.

Parameter Value Parameter Value
C 20 pF k 1.0 nS/mV
v, —55mV Uy —40 mV
g 1nS E —65 mV
T, 5.0 ms T, 8.0 ms
K 0 pA b 0.025 nS
J 15 N 10000
Uy, — Vg 1000 mV A, 1 mV
to obtain
d AT (k'S 2 B
e = BUC o) (2 o )
7Cr
_ rIgrssrs _ gtssts) (A2a)
d - -
Crszvrs — krsvrs (vrs _ v;s _ U(l;s) + krsv;svg)s
— 7 CSp <A;S + JTkCr;rs rrs) —u + I
+ Jr’rgrser(Ers _ vrS) 4 Jr,fngSfS(EfS _ vrS),
(A2b)
d
T;saurs — brs (vrs _ vm) M + _L,rsKrsrrs (AZC)
rsi s __ rs rs A2d
s = —s" 4T (A2d)
d AfS(ka)Z
f: £ f fs
C Sar S = —:TCfS (v S — vrs)
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(A2f)
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rfsisfs = s 4 5, (A2h)
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The default parameters for the regular-spiking neurons in
Table I represent a version of the regular-spiking neuron

TABLE IV. Coupling strengths for the two-population model.

Parameter Value Parameter Value
Jrr 16 Jos 16
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suggested in [2], modified here to exhibit reduced spike-
frequency adaptation and different values of the peak and reset
potentials.

The default parameters for the fast-spiking neurons in
Table III represent a version of the fast-spiking neuron

suggested in [2], modified here to exhibit different values of
the peak and reset potentials.

The synaptic connection strengths used for networks of
coupled regular- and fast-spiking neurons are reported in
Table I'V.
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