PHYSICAL REVIEW E 105, 014123 (2022)

Relaxation to steady states of a binary liquid mixture around an optically heated colloid
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We study the relaxation dynamics of a binary liquid mixture near a light-absorbing Janus particle after
switching on and off illumination using experiments and theoretical models. The dynamics is controlled by the
temperature gradient formed around the heated particle. Our results show that the relaxation is asymmetric: The
approach to a nonequilibrium steady state is much slower than the return to thermal equilibrium. Approaching a
nonequilibrium steady state after a sudden temperature change is a two-step process that overshoots the response
of spatial variance of the concentration field. The initial growth of concentration fluctuations after switching on
illumination follows a power law in agreement with the hydrodynamic and purely diffusive model. The energy
outflow from the system after switching off illumination is well described by a stretched exponential function of
time with characteristic time proportional to the ratio of the energy stored in the steady state to the total energy

flux in this state.
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I. INTRODUCTION

Relaxation processes are fundamental phenomena in soft
and condensed matter physics. The most research attention
has been paid to relaxation processes close to equilibrium,
which are now well understood [1-6]. This is not the case for
relaxation near nonequilibrium steady states, although various
aspects of transient nonequilibrium dynamics have been ad-
dressed in recent studies [7-15]. One of the basic questions
here is what determines the timescales for a given system
to reach a nonequilibrium steady state and to relax back to
equilibrium. This problem is of particular relevance for light-
absorbing particles that heat up under laser illumination of
an appropriate wavelength [16]. In response to an emerging
temperature gradient, the surrounding medium restructures
giving rise to a variety of curious phenomena, which can be of
great practical use. For example, irradiated gold nanoparticles
enhance locally a lipid membrane permeability [17], which
is used in various photothermal therapies; hot nanoparticles
can trigger cell fusion [18]; and optically heated colloids may
self-propel [19-24] or, if trapped by a laser beam, become
microscopic engines [25-27]. Switching on and off illumina-
tion is the way to steer these processes, which is of special
importance when the fluid medium surrounding the particle
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phase-separates in response to a temperature variation [28].
Then, it is of immediate interest to know how quickly the
medium near the particle changes its structure after switch-
ing on illumination, compared with the speed of return to
the equilibrium state after switching it off, and how this
can be controlled. Understanding relaxations of binary liquid
mixtures in the presence of temperature gradients is also of
greatest relevance for applications, such as in optical fluid
pumps [29], phase separation in microfluidic cavities [30], and
phoretic motion of colloids in liquid mixtures [31]. Here, we
address these issues in a system which over the last decade
has become a paradigm for studying various aspects of active
matter, i.e., a Janus silica particle half coated by gold and
suspended in a binary liquid mixture [32]. Initially, the binary
solvent at its critical composition is prepared in the mixed
state at temperature 7y = 28 °C below its lower critical point
T.. After applying green laser illumination onto the sample
[see Fig. 1(a)], the temperature nonisotropically increases
around the particle surface. This is due to the absorption peak
of gold around A = 532 nm and the poor absorption of silica
and of the surrounding fluid at that wavelength. With sufficient
laser intensity, the induced temperature quench exceeds 7.
locally. This results in local demixing of a binary solvent
around the colloid, which is responsible for its active motion
[33-37].

In the nonequilibrium steady state one observes a sta-
ble droplet covering the Janus particle asymmetrically; the
droplet is much more pronounced near the hot golden cap
[see Fig. 1(b)]. Our experimental data and results of numer-
ical calculations within two theoretical models reveal that
the reorganization of the concentration field around the Janus
colloid until the steady state is reached is remarkably slow,
whereas returning to the initial homogeneous distribution after
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FIG. 1. (a) Schematic representation of the side view (x-z plane)
of the sample cell composed of two glass plates at separation i ~ 2R,
where R is the particle radius, which is suspended in a PnP-water
mixture at its critical composition below 7. At such confinement
the particle is immobilized. Green laser illumination of intensity / is
applied onto the sample in the z direction from above. (b) Sketch of
the main particle axis along which the spatial variance of the order
parameters is computed up to distance L from the particle surface.

The dark area on the right side of the colloid corresponds to the
golden cap.

switching off illumination is relatively fast. This asymme-
try has not been noticed so far. The relaxation to a steady
state and back to equilibrium in our system has curious fea-
tures due to the presence of a temperature gradient. Among
them is the power law of the early relaxation after switching
on illumination (ON process). The power-law exponent ~2,
as predicted from both purely diffusive and hydrodynamic
models, is in excellent agreement with the experiment. This
agreement supports the existence of a generic mechanism of
the initial process connected to the formation of surface layers
[38]. On the other hand, the relaxation to equilibrium after
switching off the illumination (OFF process) is a stretched
exponential with a characteristic time decreasing as the illumi-
nation power increases, which we attribute to the temperature
gradient previously formed by the laser-induced heating of the
particle’s golden cap.

II. EXPERIMENTAL RESULTS

In our experiments, we use a binary liquid mixture of
propylene glycol n-propyl ether (PnP) and water, the lower
critical point (LCP) of which is 7. = 31.9°C at its critical
composition (0.4 PnP mass fraction) [39]. In order to charac-
terize the relaxation of such a binary liquid around the heated
colloid, we study the time evolution of the image intensity
profile —% < ¢ < % measured along the main particle axis,
where ¢ is related to the concentration profile [38]. The
value ¢ = 0 corresponds to the fully mixed fluid, whereas
¢ <0 and ¢ > O represent locally water-rich and PnP-rich
regions, respectively. Spatiotemporal variations of ¢ originate
from the difference between the refractive index of water
and PnP within the temperature range of the experiments
[(30 £5)°C], n = 1.331 £ 0.001 and n = 1.410 &£ 0.002, re-
spectively. In the mixed phase at Ty < T, and without laser
illumination, the refractive index of the binary liquid in ther-
mal equilibrium is homogeneous, thereby leading to a uniform
light intensity pattern recorded by the camera around the Janus
colloid. On the other hand, if the power of the incident laser is
sufficiently high such that the golden cap reaches the temper-
ature T > T, spatial variations of the refractive index due to
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FIG. 2. Time evolution of the spatial variance of the order param-
eter ¢(r,t), computed along the main particle axis R <r <R+ L
(with L = 25 um), for different values of the temperature increase
AT induced by optical heating. (a), (b), (c), and (d) correspond to
AT =17.8,9.1, 104, and 11.7 °C, respectively. At time t = —10 s
the laser illumination is switched on, thus leading to the formation a
nonequilibrium steady concentration field around the particle, while
at t = 0 it is switched off. Insets: images of the steady state at t =
—1 5. (e) and (f) show the initial growth of the spatial variance from
the experiment (A7 = 7.8°C) and from the numerical simulations
(h = 4) of the hydrodynamic model, respectively. §¢7 = 0.001 and
S¢3 = 0.003 03.

the local phase separation of the fluid give rise to deviations
of the light intensity recorded by the camera from the uniform
intensity under thermal equilibrium conditions, which allows
us to implement shadowgraph visualization [40,41].

At a given time ¢, we compute the spatial variance of ¢
along R < r < R+ L, defined as

1 R+L
<A¢><r)2>=z fR drp(rt) — (g% (1

where

1 R+L
(p(1)) = Z/ dr¢(r, 1) 2
R

is the spatial average of the order parameter ¢(r, t) at time ¢
along the main particle axis, as shown in Fig. 1(b). For all the
calculations presented in the following, L = 25 pum, which is
approximately two times the particle radius. Note that when
the concentration profile has reached a steady state, (A¢(¢ )2)
remains constant over time, whereas a time dependence of
(A@(t)?) reveals the transient behavior of the concentration
field of the fluid during ON and OFF processes. On the other
hand, the minimum value of (A¢(z)?) is set by the intensity
fluctuations on the color map for a fully mixed binary liquid
mixture, whose standard deviation is ¢y = 0.03.

Figure 2 shows the time evolution of (A¢(t)?) for different
values of the temperature increase AT =T — Ty = 7.8, 9.1,
10.4, and 11.7 °C of the golden cap of a Janus particle (radius
R = 12 pum, strongly hydrophilic cap and weakly hydrophilic
silica hemisphere) above the bath temperature 7Tp = 28 °C <
T., where T > T, is the temperature of the golden cap under
green illumination. At time ¢ = —10 s, the illumination is
switched on, which leads to the transient coarsening process
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investigated in our previous paper [38]. Due to the heating
of the particle, the concentration profile changes with respect
to the initial uniform concentration in thermal equilibrium at
temperature 7y, for which (¢(¢)) = 0 and (AP(t)?) = 8(])3 =
0.001. During the first ~200 ms, we observe a monotonic
increase in the spatial variance, which can be described by
a power law (A¢(1)?) — 8¢ = 12 as shown in Fig. 2(e). This
initial growth can be attributed to the dynamics of the trav-
eling composition layers [38]. Later the nonlinear growth of
a water-rich droplet around the cap dominates, leading to a
complex nonmonotonic time dependence of (A¢(¢)?), with a
maximum followed by a subsequent decay until it saturates
to a mean constant value corresponding to the final nonequi-
librium steady concentration field. It is worth noting that this
behavior of the spatial variance of ¢ is similar to the initial
overshoot in response to an external field found in diverse soft
materials, such as actin networks [42], colloidal suspensions
[43,44], polymer melts [45], or a yield-stress fluids [46]. In
our system, the maximum in (A¢(t)?) results from local phase
separation around the warmer part of the colloid after switch-
ing on illumination, which proceeds via a two-step process
under a steplike temperature variation across the critical tem-
perature. This mechanism shares some similarities with the
origin of the overshoot in the nonlinear response of entangled
polymer solutions [47], where the stress overshoot is also
a consequence of a two-step process under a steplike shear
rate. In that case, there is an initial elastic energy storage
mechanism (similar to the transient layering in our system)
followed by a sudden dissipative energy release after the
stress peak (in our system, the droplet formation). Significant
fluctuations around the mean steady-state value of (A¢(t)?)
occur due to the strong concentration fluctuations taking place
inside the water-rich droplet, as will be discussed later. The
duration of the transient state until the concentration field
relaxes to the nonequilibrium steady state strongly depends
on the value of the AT. Interestingly, a further increase in
AT gives rise to a qualitatively different behavior of the time
evolution of (A¢(t)?), in which the transient exhibits a very
slow relaxation to the nonequilibrium steady state with strong
concentration fluctuations and more than a single maximum;
see Figs. 2(c) and 2(d). This is correlated with the final shape
of the water-rich droplet formed in the nonequilibrium steady
state. In the case shown in Figs. 2(a) and 2(b), the droplet
covers partially the colloid surface (see the insets). However,
for AT > 9.1°C, the temperature is sufficiently high to form
a droplet that completely surrounds the colloidal particle.
The relaxation from the nonequilibrium steady concentration
field under green illumination to a thermal-equilibrium state
at temperature 7y = 28 °C is achieved by switching off the
laser at time t = 0, as shown in Fig. 2. In this case, the
time evolution of (A¢(¢)?) is monotonically decreasing in
time for all values of AT. In the long-time limit, the spatial
variance of the order parameter ¢(r,¢) reaches the con-
stant value (A¢(t)?) = 6(]5% = 0.001, thus revealing the full
relaxation of the fluid to thermal equilibrium, where the
concentration profile is uniform. As shown in Fig. 3(a), the
relaxation is well described by the stretched exponential

B
(Ap(1)") = 85 + Aexp [—(T;) } (3)
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FIG. 3. (a) Dependence on the rescaled time (¢ /7, )? with 8 =
0.62 of the difference between the spatial variance of ¢(r, ¢) and the
offset value 8¢2, normalized by the amplitude A, after switching off
the green illumination at time ¢ = 0 s, for different values of AT
(symbols). The symbols correspond to AT = 7.8°C (blue circles),
9.1°C (green squares), 10.4 °C (orange diamonds), and 11.7 °C (red
triangles). The solid line represents Eq. (3). (b) Relaxation time Tt
of nonequilibrium concentration profile after switching off the laser
for different values of the temperature difference AT.

with 8 = 0.62 for all values of AT, regardless of the shape of
the nonequilibrium stationary droplet. As shown in Fig. 3(b),
the resulting values of the relaxation time 7,¢ decrease upon
increasing the temperature difference AT . The stretched ex-
ponential, called in physics the Kohlrausch-Williams-Watts
(KWW) function [48,49], is known to describe relaxations
if, e.g., each of the constituent particles is relaxing exponen-
tially through a single energy barrier but there are different
barrier heights for different particles such as in glassy sys-
tems [50,51], buckled colloidal monolayers [52], cytoskeletal
networks [53], or the luminescence decay of colloidal quan-
tum dots [54]. In our system, such a distribution of different
barrier heights for the relaxation of the concentration field
is produced by the spatial heterogeneity created by initial
temperature gradient.

III. THEORETICAL DESCRIPTION

Our theoretical description of the relaxation process
is based on the fluid particle dynamics (FPD) method
[55]. In this approach, the Janus particle is described by
the shape function S(r,x) = %[1 + tanh(l%;x‘)] and the
particle orientation function O(r,x,n) = %[1 + tanh(%n .
l::‘ )], where r is the coordinate of the lattice space and x
is the position of the center of the particle. ds represents
the width of the smooth interface such that, in the limit
of ds — 0, S is unity and zero in the interior and exte-
rior of the particle, respectively. n is the unit vector along
the particle orientation, and dp is a sharpness parameter
of the particle orientation. Roughly, one has O = 1 on the
capped side [n- (r — x)/|r — x| > dp]. Otherwise, one has
O = 0. We consider a binary liquid mixture with an upper
critical temperature of demixing (UCP); therefore heating
by illumination in the experiment corresponds to cooling
in our model. In our modeling, we focus on universal fea-
tures of the system near the UCP, which are the same as
for the LCP, in order to be able to compare with the ex-
periment. If one would like to model the LCP beyond the
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universal features, one would have to take into account spe-
cific interactions, e.g., hydrogen bonding, that give rise to
mixing in low temperatures. The mixture is characterized by
the concentration field ¢(r) and the temperature field 7'(r).
The local energy density of the binary mixture e(p, X, n, T)
is a sum of the kinetic energy ey (T) = %kBT and the in-
teraction energy e,(¢,x,n) = (1 — S)[—%(p2 + %(Vgp)z] +
20 — ¢p)*S + [Wu + (We — Wy)OlgldsVS|. kg (=1) is the
Boltzmann constant, and € (>0) is the interaction parameter.
W. and W, represent the symmetry-breaking surface fields.
The second term in ¢, is introduced to avoid solvent invasion
into the particle. x, and ¢, are its control parameters. Since
¢ is conserved locally, its time development is given by the
conservation law:

dp 2

2= Vm-v. (—va?) +omn, @
0 1
VeV (LTVF> —hOldsVS],  (5)

where L, and Ly are positive kinetic coefficients. The Gaus-
sian white noise ¢ obeys the relation (¢(F,t)¢(¥,t)) =
—2850V28(F — 7)8(t — t'); ¢ is the strength of the noise. We
ignore the off-diagonal terms. % represents the cooling power,
and the temperature field is calculated from e(gp, x,n, T).
Because the system is nonisothermal, the chemical potential
is calculated from the entropy density s as u© = —T(g—;)e. Ex-
pressions for s and p are given in Appendix A. In mean field,
o gives the critical point at ¢. = 0 and T. = €¢/(akg). When
T < T, the UCP symmetric mixture is phase separated. The
velocity v(r) of the hydrodynamic flow obeys the following
hydrodynamic equation:

V. (Vo Ve~ S0 Lo IS, (% v
V9T Qx 2 Q an p

+VI{n+ e —MSHV : v+ (V: V) +F=0. (6)

The first term is the mechanical stress stemming from the
concentration inhomogeneity, i.e., the interface tension. The
second and third terms are due to the particle translation and
rotation. p is the pressure obtained by the incompressible
condition V - v = 0. Within the FPD method, the fifth term is
due to the viscous stress, in which 7 and 7, are the viscosity of
the solvent and the inside of the particle, respectively. The last
term, Fy = K(x — Xo)%, is introduced in order to fix the par-
ticle at its initial position Xy by imposing a harmonic potential
with spring constant K. By neglecting the convection terms in
Egs. (4) and (5) the model reduces to the nonisothermal purely
diffusive model of type B.

IV. NUMERICAL RESULTS

We solve the evolution equations numerically (for details
of numerical simulation, see Appendix B). For the initial
configuration we assume ¢(r,t) = 0 throughout, 7 = 1.17;
everywhere, and no flow. At t = —400 we perform a tem-
perature quench at the capped surface of the particle by
switching on the cooling power 4. At¢ = 0 the cooling power
is switched off, and the time evolution is registered up to t =
400. A snapshot of the concentration field ¢(r, ¢) att = 0 and

—h=1
—h=2 |
—h=3
—h=4

0.002

(v ()?)

0.001f

) . . . 0 n h
-400 -200 0 200 400 -400 -200 0 200 400
t t

FIG. 4. Numerical results of the hydrodynamic model. (a) Snap-
shot of the concentration field around the Janus particle at time
t = —400. The capped surface (oriented toward the x axis) is cooled
with the power h = 4. (b) Time evolution of the spatial variance
(A@(t)?) of the concentration field averaged over the whole sample
for h = 4. (c) Time evolution of the fluctuations (v?) of the velocity
field averaged over the whole sample for several values of the cooling
power h.

h = 4 is shown in Fig. 4(a). The binary solvent is phase sepa-
rated around the colloid forming an asymmetric droplet within
which the concentration field strongly fluctuates. Figure 4(b)
shows how the spatial variance (Ag(t)?) of the concentration
field averaged over the whole sample changes in the whole
period of time for various temperature quenches. Velocity
fluctuations are shown in Fig. 4(c). During the ON process
(A(t)?) resulting from the hydrodynamic model exhibits a
noisy nonmonotonic behavior which is very similar to the be-
havior of (A¢(t)?) observed in experiment. In contrast, purely
diffusive model B gives a smooth and monotonic evolution to-
wards the steady state [see Fig. 7(a) in Appendix C]. It is well
established that thermal fluctuations in liquids in the presence
of stationary temperature gradients are anomalously large and
very long ranged [56]. They occur as a result of a coupling
between temperature and velocity fluctuations. In liquid mix-
tures a stationary temperature gradient induces a stationary
concentration gradient via the Soret effect. Fluctuating hy-
drodynamics for a binary fluid mixture bounded between
two parallel plates with different temperatures predicts that
nonequilibrium fluctuations of concentration, temperature,
and velocity will be present at a stationary state of a mixture
[57]. However, because in liquid mixtures the ratio between
thermal diffusivity and the mass diffusion coefficient (Lewis
number) and the ratio between the kinematic viscosity and the
mass diffusion coefficient (Schmidt number) are commonly
larger than unity, nonequilibrium fluctuations in concentration
will be dominant. Here, we study nonequilibrium fluctuations
not only at a stationary state, but also when approaching
it. In the initial stage, the hydrodynamic flow is weak, so
that both hydrodynamic and purely diffusive models give a
similar growth of concentration fluctuations: (A¢(r, 1)(t)?)1p
calculated along the main particle axis R < r < R+ L with
L = 100 in the x-y plane passing through the particle can be
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FIG. 5. Numerical results of the hydrodynamic model. (a) Fitting
numerical results for normalized spatial variance (Aq(r, £ )(t ) ip of
the concentration field calculated along the main particle axis during
the OFF process to the stretched exponential decay given by Eq. (3)
(dashed line) with g = 0.62, for different values of & (symbols).
S¢p = 0.003 03. (b) Relaxation time 7,¢ of nonequilibrium concen-
tration profile after switching off cooling for different values of the
cooling power h.

described by the power law ~t% [see Figs. 2(f) and 7(b) in
Appendix C], in a perfect agreement with the experimental
data. We stress that this initial behavior cannot be described
by linearized equations. In the late stage, on the other hand,
the concentration fluctuations are caused by coupling between
the concentration and velocity fields, because the Lewis num-
ber is large in our simulations. From Figs. 4(b) and 4(c),
we can see that for our choice of parameters the velocity
fluctuations are comparable to the concentration fluctuations.
Other predictions of fluctuating hydrodynamics indicate that
the intensity of nonequilibrium fluctuations is proportional
to (VT) and that for small wave numbers g the intensity
of the nonequilibrium concentration fluctuations diverges as
g~*, which is much stronger than the divergence of critical
concentration fluctuations as g2 near a consolute point [57].
Comparing our experimental data shown in Figs. 2(a) and 2(d)
and the theoretical curves for 2 = 1 and & = 4 in Figs. 4(b)
and 4(c), we can conjecture that indeed, thermal fluctuations
are stronger for larger temperature gradients. Due to technical
difficulties, we have not analyzed the g dependence of our
results. In the simulations, we also observe that returning to
equilibrium is much faster than approaching the steady state.
Remarkably, during the OFF process the time dependence
of {(@(r,t)(t)*)ip is well described by Eq. (3) with the same
exponent 8 = 0.62 as in the experiment, as shown in Fig. 5.
The characteristic time of the stretched exponential decay
decreases with the cooling power. This trend is also similar
to the one observed in the experiment. With increasing values
of hor AT, alarger temperature gradient builds up around the
colloid, which speeds up relaxation to the equilibrium.

Next, we compute the energy of the system, which is
practically not accessible from experiment. As can be inferred
from Figs. 6(a) and 6(b), (e) is dominated by the kinetic
contribution (er), and hence it decreases after the cooling
is switched on and increases upon switching off the cooling
power. Restructuring of the concentration field in response
to the temperature changes is much slower in both ON and
OFF processes, as mirrored in the evolution of (e,). Achiev-
ing the nonequilibrium stationary value of (e,) takes longer
because the initial concentration field is uniformly distributed,
whereas returning to equilibrium starts from a concentrated
distribution and therefore is faster [58]. Finally, relaxation of

1(0)
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FIG. 6. Evolution of (a) the concentration field contribution (e,)
to the energy and (b) the total energy (e) of the system for different
values of the cooling power &. (e) and (e,) are the spatial averages
of e and e,. (c) Initial decay time 7, of the total energy (e) after
switching off the laser and the ratio A{e(t = 0))V/J between the
energy stored in the steady state and the total energy flux at this state
for different values of A. V is the system volume.

the energy to equilibrium is well described by Eq. (3) with
the exponent 8 = 0.62 and the characteristic decay time og,
which decreases with & as can be seen in Fig. 6(c). Decay
of (¢(r,1)(t)*)1p and (er) in the purely diffusive model B
is better described by a sum of the exponential and stretched
exponential functions of time; see Appendix C. We find that
Tof 1S almost the same as the initial decay time 7t obtained
from the change rate of the energy att = 0. Interestingly, both
characteristic times are proportional to the ratio 7 between the
energy stored in the nonequilibrium steady state and the total
energy flux in this state 7 = A{e(t = 0))V/J; see Fig. 6(c).
The same holds for the initial decay time 7 obtained in
model B [as can be seen in Fig. 8(d) in Appendix C]. A
similar observation was made for the energy outflow from
the Lennard-Jones system, but only for initial times after the
shutdown of energy flux into the system [59].

V. SUMMARY

In summary, we have investigated the relaxation process
of the concentration field of a binary mixture around a
Janus colloid heated by laser illumination through the criti-
cal temperature of the fluid. Our results show a pronounced
asymmetry in the approach to a nonequilibrium state under
a temperature gradient around the colloid with respect to
the relaxation of the fluid back to equilibrium at constant
temperature. While in the former the dynamics is dominated
by transient composition layers until the final noisy steady
state is reached, the latter is faster and follows a stretched
exponential decay consistent with the characteristic timescale
of energy outflow after the shutdown of the energy input. In
particular, we show that such a relaxation timescale is directly
related to the energy stored in the nonequilibrium steady state
and the total energy flux. Further experimental and theoretical
efforts could help to address the connection between these two
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FIG. 7. Numerical results from the purely diffusive model B.
(a) Time evolution for the spatial variance (A¢(t)?) of the concentra-
tion field averaged over the whole system for different values of the
cooling power h. (b) The initial growth of (A¢(¢)?)p of the concen-
tration field calculated along the main particle axis after switching on
cooling at # = —5000. §¢2 = 0.003 03. (c) Normalized (Ag(t)*)ip
after switching off cooling at time r = 0 for different values of A.
The horizontal axis is scaled with the characteristic decay time of the
fast mode [see Eq. (C1)]. (d) The & dependence of two times, Ty
and Ty, characterizing the decay of (A¢(t)?)p after switching off
cooling obtained from fitting to the function f(z) given by Eq. (C1)
with 8 ~ 0.62.

quantities with the relaxation from nonequilibrium states in
other systems.
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FIG. 8. Numerical results for time evolution of (a) the contribu-
tion (e,) to the total energy density due to the concentration field and
(b) the total energy density (e) of the system calculated within the
purely diffusive model B for different values of the cooling power
h. (e) and (e,) are the spatial averages of e and e,, where V is the
system volume. (c) The / dependence of two times, Tpy and oy,
characterizing the decay of (e) after switching off cooling obtained
from fitting to the function f(¢) given by Eq. (C1). (d) Initial decay
time 7y of (e) after switching off the laser and the ratio A(e(r =
0))V/J between the energy stored in the steady state and the total
energy flux at this state for different values of 4.
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APPENDIX A: ENTROPY DENSITY AND CHEMICAL
POTENTIAL OF THE HYDRODYNAMIC MODEL

Close to the critical point the entropy density can be written
as

a , b, v
s(9.%.T) = —ks(1 = S)( 5¢*+-0* ) +ks|In ( 5 | +1],
2 4 A3

(AL)

where a and b are positive constants, Ar(oc T~!/2) is the
thermal de Broglie length, and v is the molecular volume; thus

p=(—38(ksTa— €)¢ +kpThp’] — CV - [(1 — S)Vg]
HWo + (W = W)ONdsVS| + xpl@ — 9p)S.  (A2)

APPENDIX B: PARAMETERS OF THE
NUMERICAL SIMULATIONS

The simulation box has size 240 x 240 x 52 in units of
the lattice spacing A = 1. The walls are placed at z = 1 and
z = 52. The nonslip boundary conditions for the hydrody-
namic flow are imposed at the walls, i.e., v(z=1) = v(z =
52) = 0. The temperatures at the walls are kept above the
critical temperature T(z = 1) = T(z = 52) = 1.1T;. The con-
centration flux —L,V (/T ) is imposed to vanish at the walls.
The periodic boundary conditions are applied to the x and y
directions. The time increment is At = 0.001. We take the
particle radius R = 20 and set ds = 1 and dp = 0.033. The
capped surface is strongly hydrophilic with W, = —2.0, while
the uncapped surface is weakly hydrophilic with W, = —0.2.
InEq. (A2) wesete =1,C =4, x,=95,¢9, =0,a=1, and
b = 1. In equations for time evolution [Egs. (4) and (5)], we
employ L, = (1 = S), Ly = 10(1 +285), and & = 107*. In
the hydrodynamic equation (6), we set n = 0.5, n. = 25, and
K = 100.

Calculation of stationary state fluxes. The inlet and outlet
fluxes are calculated as

Jin = /drh(’)|d5VS|, B1)
1
Jour = /dA . LTVF’ (B2)
where [ dA represents the integral over the two walls.

APPENDIX C: RESULTS FROM THE PURELY
DIFFUSIVE MODEL B

The cooling power is applied at 1 = —5000 and removed
at t = 0. The spatial variance (A¢(¢)?) of the concentration
field averaged over the whole system increases monotonically
until the cooling is switched off [Fig. 7(a)]. After a rapid
initial growth, which is due to concentration waves traveling
from the surface, (Ag(t)?) approaches the steady-state value
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logarithmically. The initial growth of the concentration field
(A@(t)*)1p calculated along the main particle axis follows
well the power law = t2, in agreement with experimental
and hydrodynamic model results [Fig. 7(b)]. The decay of
(A@(t)?)p after the removal of / is fitted well by the function

() = ay exp(—t /Trast) + a2 exp[—(t/Tgow)’1 + ¢ (C1)

with experimental value 8 = 0.62. Characteristic time T,
of fast exponential decay dominating at very short times is

almost independent of the cooling power. Time 7y, char-
acterizing the stretched exponential decay decreases with
increasing cooling power. If we treat 8 in Eq. (C1) as a fitting
parameter, both characteristic times change only slightly. The
fitted value of 8 varies from ~20.72 for h = 0.5 to ~0.62 for
h = 4. Results for the total energy density (e) averaged over
the system and the contribution to it from the concentration
field (e,) are shown in Fig. 8. After switching off cooling, e
is also well described by Eq. (C1) with the stretched exponent
B ~ 0.58.
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