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Enhanced diffusion of a tracer particle in a lattice model of a crowded active system
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Living systems at the subcellular, cellular, and multicellular levels are often crowded systems that contain
active particles. The active motion of these particles can also propel passive particles, which typically results in
enhanced effective diffusion of the passive particles. Here we study the diffusion of a passive tracer particle in
such a dense system of active crowders using a minimal lattice model incorporating particles pushing each other.
We show that the model exhibits several regimes of motility and quantify the enhanced diffusion as a function
of density and activity of the active crowders. Moreover, we demonstrate an interplay of tracer diffusion and
clustering of active particles, which suppresses the enhanced diffusion. Simulations of mixtures of passive and
active crowders show that a rather small fraction of active particles is sufficient for the observation of enhanced
diffusion.
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I. INTRODUCTION

The behavior of individual particles within a crowded en-
vironment is influenced by the complex collective behavior of
the surrounding particles [1–4]. Indeed, many biological sys-
tems are densely packed. Molecular systems in the cytoplasm
of cells [1,5], colonies of bacteria [6], biofilms [7], and tissues
[8] are a few examples. Often, the crowded environment con-
tains active particles that are driven out of equilibrium due to
the local injection and dissipation of energy. On the molecular
scale, these active particles may be molecular motors pulling
cargoes through cytoplasm and stirring it [9–11] or enzymes
exhibiting enhanced diffusion [12,13]. On the cellular scale,
these could be self-propelled cells swimming in a suspen-
sion or moving through a tissue or a colony of cells [14,15].
This means that detailed balance is not fulfilled in these sys-
tems, so they cannot be described by equilibrium statistical
mechanics.

The observation of individual probe or tracer particles
within such a system provides a method to quantify crowding
effects as well as to probe for the degree of crowding if this is
difficult to determine directly. Such probes include the diffu-
sion of the tracer particle [16,17] as well as specific chemical
reactions or conformational changes such as the compaction
of a polymer chain as measured by FRET-probes at the two
ends of the polymer [18,19].

*Leila.abbaspour@theorie.physik.uni-goettingen.de
†Stefan.klumpp@phys.uni-goettingen.de

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

Diffusion of molecules and particles in complex environ-
ments has been studied on a range of length scales and the
complex environment can give rise to dynamic phenomena
such as anomalous diffusion [20,21]. Specifically, diffusion of
a passive tracer particle in an active system has been studied in
various experimental and theoretical model systems. Notably,
Wu and Libchaber [22] studied the trajectories of polystyrene
beads in a suspension of swimming bacteria and observed
enhanced diffusion of the beads. Such enhanced diffusion
has been studied extensively, both theoretically [23–30] and
experimentally [25,31–37]. Extensions of the simplest system
include three-dimensional systems [36], the presence of obsta-
cles [34] and confinement, and effective interaction between
passive particles [38].

Interactions between particles in suspension can be com-
plex and generally involve hydrodynamic interactions in
addition to simple excluded volume and particle-particle col-
lisions. Therefore, simplified minimal model systems can help
to advance our understanding of the role of active processes.
Both continuum models [39] and lattice models [40,41] have
been used for that purpose. Enhanced diffusion of a tracer in a
crowded active system has been observed in models with and
without hydrodynamic interactions [25,42].

Specifically, lattice models provide a conceptually sim-
ple and often computationally inexpensive approach to study
complex phenomena based on particle-particle interactions.
In the case of active particle systems, lattice approaches
have been used to study clustering and phase separation
[27,43–46]. Specifically, modifications of the dynamic rules
can easily be implemented to investigate whether results are
generic or specific to given dynamics.

Following this approach and applying it to tracer diffusion,
here we study a minimal lattice model incorporating particle-
particle collisions as well as different diffusion coefficients
of different particle types to investigate the effect of activ-
ity and density of crowders on tracer diffusion, neglecting
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FIG. 1. Lattice model of a dense system of active particles (blue) containing a passive tracer particle (red). (a) Overview of the model on
a hexagonal lattice. (b) Active particles perform run-and-tumble motion and move persistently in the same direction with probability 1 − α

and randomize that direction (tumble) with probability α (i.e., α/6 for each direction). (c) The passive tracer particle (red) performs a simple
random walk; its diffusion coefficient is modulated by the parameter β. (d) Collision rules among particles.

hydrodynamic interactions. Importantly, the collision rule we
introduce goes beyond the simple exclusion rule often used in
lattice models and allows for the pushing of one particle by
another particle attempting to move to the first one’s lattice
site. We quantify the enhanced diffusion as a function of these
parameters and relate the observed tracer diffusion to cluster-
ing of active particles. Finally, we generalize our analysis to
the case of a binary mixture of active and passive particles.
Our results indicate how the interplay between activity and
density of crowders can lead to significant enhancement of the
diffusion of a tracer but also limits that enhancement through
clustering of the active particles.

II. MODEL

We consider a hexagonal lattice [see Fig. 1(a)] in two
dimensions, consisting of M = 256×256 sites, with periodic
boundary conditions (effects of the system size are discussed
in Appendix A). There are in total n particles on the lattice,
of which Na = χAN are active and can self-propel following a
simplified run-and-tumble motion, and the rest are passive and
exhibit diffusive behavior. We define ρ as the number density
of the system, which is defined as the total number of particles
divided by the number of lattice sites.

For updating the position of all particles at each time step,
n random actions take place in the system. A particle may be
picked more than once in one single time step, giving rise to
fluctuation of its speed. On average, however, all particles are
picked equally often.

The active particles have run-and-tumble dynamics, where
they move persistently in one direction (initially chosen at
random) and then reorient with a tumbling probability α,
resulting in long directed runs with abrupt turns. At each time

step, the active particle moves in the same direction as in
its last step with probability 1 − α, and tumbles to choose
a new direction with probability α/6. For instance, for α =
0.001, the active particle takes, on average, 1000 persistent
steps in the same direction, and then tumbles and chooses
one out of the six possible directions with equal probability
[see Fig. 1(b)]. In the case of passive particles, we set α = 1:
The particle reorients at each time step and therefore steps
to each site with a probability of 1/6. Since our aim is to
study the effect of active particles on the overall motion of
a passive particle, we put (at least) one passive tracer in the
system, which in general has a different Brownian diffusion
coefficient set by a parameter β. The tracer steps to each
neighbor site with probability (1 − β )/6, with 0 � β � 1 as
shown in Fig. 1(c). When β = 0, the tracer has the same
dynamics as an ordinary passive particle, meaning it can move
in each time step. As β increases, the tracer diffuses more
slowly and, in the limiting case of β = 1, it can only move by
being pushed by its neighbors.

We now define collision rules among the particles. We use
a modified exclusion rule, which in addition to ensuring that
each site is occupied by at most one particle also allows for
particles pushing each other. In each stepping attempt of a par-
ticle, we check whether the target site on the lattice is empty or
occupied. If it is empty, then the particle is allowed to update
its position, as described above. If the site is occupied, then
there are two possibilities, depending on the second-neighbor
site of the particle in the same direction. If the latter site is
empty, the stepping particle pushes the particle in the target
site to the second-neighbor site and moves to the target site
itself. Otherwise, the update is rejected [see Fig. 1(d)]. Note
that there is no alignment interaction between particles in the
pushing process. All simulations described in the following
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FIG. 2. Diffusion of tracer particles with different diffusion coefficients in a system of active crowders. (a)–(c) The mean-square
displacement (thick blue lines) shows diffusive motion for β = 0 and anomalous diffusion for β = 0.9, 1. The red lines indicate the diffusive
motion of the tracer in an otherwise empty lattice in (a) and (b); in (c), the tracer would not move in that case. The dashed lines indicate the
scaling behavior of the different regimes by showing the power laws fitted to the mean-square displacement. (d)–(f) show trajectories (ti and
t f indicate initial and final time, respectively, in the trajectory plots), the figures in the last row show the zoomed view of the trajectories at the
early stages. Each column corresponds to the value of β indicated above it. The other parameters are ρ = 0.025, α = 0.0001.

were run for 106 time steps with 1000 realizations of each
condition.

III. RESULTS

A. Tracer in a purely active system

1. Mean-square displacement

We first discuss the results for a passive tracer particle in
the presence of only active crowders (i.e., Na = N or χA ≈ 1).
We considered densities in the range of 0.01 � ρ � 0.4 and
the tumbling probability of active particles between 0.0001 �
α < 1.

We begin our analysis by evaluating the mean-square dis-
placement (MSD) of the tracer particles. We note that for
Brownian motion, the MSD is given by 〈(�r)2〉 = 2dDt ,
where �r is the displacement of a particle in a given time
interval of t , d is the spatial dimension (which is 2 in our
case), D is the diffusion coefficient, and 〈·〉 denotes an ensem-

ble average. So-called anomalous diffusion is characterized
by an MSD 〈(�r)2〉 ∼ tγ , where γ �= 1 is a real positive
number that classifies the different types of diffusion: subdif-
fusion for 0 < γ < 1, γ = 1 is a typical diffusion process and
super-diffusion for γ > 1 (where γ = 2 gives rise to ballistic
motion).

In Figs. 2(a)–2(f), we have plotted the MSD and corre-
sponding trajectories as a function of time for the three cases
of β = 0, 0.9, and 1. In all three cases, the density and the
tumbling probability of crowders are the same: ρ = 0.025 and
α = 0.0001. For a purely passive Brownian tracer with β = 0
[Figs. 2(a) and 2(d)], the tracer shows normal diffusion, with
an MSD that is linear in time throughout the simulation. The
trajectory is erratic at both long and short times [Fig. 2(d) and
its inset, respectively].

It is useful to compare the diffusion coefficient of the tracer
in this system to that of a passive tracer in the absence of active
crowders. A general expression for the diffusion coefficient
of a single passive particle on an arbitrary isotropic lattice
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FIG. 3. Snapshots of the simulation for ρ = 0.1 and α = 0.0001: the active particles are shown in blue and the tracer particle in purple.
(a) The tracer (purple) is next to an active particle (blue), which pushes it. (b) The tracer is trapped in empty space. (c) The tracer is trapped by
active particles.

is D0 = (κ/2d )a2λ, where a is the lattice spacing (distance
between neighboring lattice sites), d is the spatial dimension,
κ is the coordination number (the number of neighbor sites
allowed for a jump), and λ is the stepping rate to the nearest
neighbor site [47]. In our model a = 1 (i.e., all lengths are
expressed in units of the lattice spacing), κ = 6, d = 2, and
λ = 1−β

6 , leading to

D0 = 1 − β

4
. (1)

Thus, for β = 0, we find D0 = 1/4. The corresponding MSD
of a particle on an otherwise empty lattice is shown as the
red line in Fig. 2(a). A comparison of the MSD without
active crowders (red line) and the MSD in their presence (blue
line) shows that the diffusion of our tracer particle is strongly
enhanced by the active crowders.

For β = 0.9 and β = 1, by contrast, we can identify sev-
eral diffusive regimes (indicated by the dashed lines, which
show the scaling in the different regimes with behavior ∼tγ

and γ obtained by fitting). A slow tracer with β = 0.9 ini-
tially undergoes superdiffusion [Fig. 2(b)] as it remains in
front of an active particle over an extended period of time
[see Fig. 3(a)]. The tracer inherits the direction of an individ-
ual active particle which drives it forward. This effect can also
be seen in the inset of Fig. 2(e), in which this directed motion
yields a straight line. The observed diffusion exponent γ at
short time is found to be 1.8, which is close to the ballistic
regime with γ = 2. After a longer time, diffusive motion is
recovered, with erratic trajectories similar to those for β = 0.
The data also suggest that there may be a subdiffusive regime
for very long times, see below.

Finally, Figs. 2(c) and 2(f) show the case where the passive
tracer does not move by itself and only moves when pushed
by an adjacent active particle. Initially, the tracer fully in-
herits the direction and the speed of the active particle that
pushes it [Fig. 2(f), inset]. Since there is only self-propulsion,
γ is exactly 2. For an intermediate time, diffusive behavior
is recovered. Then, after some time, the motion becomes
remarkably less random, exhibiting long directed paths and
pauses, as depicted in the trajectory in Fig. 2(f). Correspond-
ingly, the exponent of the MSD is reduced to γ ∼ 0.64,
indicating a subdiffusive behavior. Inspection of snapshots of

the lattice [Figs. 3(b) and 3(c)] show that during the pauses,
the tracer is either trapped in an empty region of the lattice
and thus cannot be moved or in a cluster of active particles,
within which it is also immobilized. This observation indi-
cates that, in this case, the environment in which the tracer
diffuses through changes from a homogeneous environment to
coexistence of a dilute phase and clusters of active particles.
Cluster formation will be discussed in more detail below.

2. Neighbor site occupation and trapping

To quantify the effect of trapping on the motion of a
tracer, we define a trapping parameter n, which character-
izes the occupation of the six nearest-neighbor sites of the
tracer [see Fig. 4(a)]. Thus, 0 � n � 6, with n = 0 indicating
that the tracer has no neighboring particle and n = 6 is the
fully trapped state. When n = 0, the tracer with β = 1 is es-
sentially trapped by the empty space and becomes immobile,
while tracers with β = 0 and β = 0.9 diffuse on their own.
In the fully occupied state (n = 6), the tracer is immobile for
all cases. n = 1 results in persistent directed motion of the
tracer if the neighboring active particle moves to the site of the
tracer and 1 − β < 1 − α, as the active particle then pushes
the tracer for multiple steps.

For the two cases β = 0 and β = 0.9, the histograms of
n do not vary significantly over time, with the probability of
having no neighbors being the largest [Figs. 4(b) and 4(c)]. As
expected, the probability of having a single neighbor (n = 1)
is higher for β = 0.9 than β = 0, in agreement with the ob-
served directed motion. For β = 1, n = 1 is the most probable
configuration at all times. However, the histogram remarkably
broadens over time and becomes bimodal at long times, with
n = 0 and n = 6 occurring (almost) equally frequently. This
means that the three most likely configurations are those that
lead to directed motion (n = 1), trapping in empty space
(n = 0) or trapping in a cluster (n = 6), which together ex-
plain the range of motion observed in Fig. 2(f). This trapping
appears to be the reason for the subdiffusion observed in this
case for the long-time regime. In contrast, no such trapping is
clearly seen for the case β = 0.9. We therefore hypothesize
that the apparent transition to subdiffusion at long times in
this case may be due to more transient trapping of the tracer,
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FIG. 4. Trapping analysis. (a) The sketch shows the tracer (red) surrounded by different number of active particles (blue). (b)–(d) show the
probability that n neighbor sites are occupied (for n = 0, . . . 6). The red arrows indicate the numbers of occupied neighbors most relevant for
the different regimes in the MSD plots in Fig. 2. The probabilities were determined by averaging over 1000 simulation steps (starting at time
0 for the early state, at time 1000 for the intermediate state, and 1000 steps before time 106 for the late state) as well as over 1000 realizations
of the simulation (with random initial conditions).

e.g., between just two active particles moving into opposite
directions.

3. Effective diffusion coefficient at large times

We have observed above that diffusion of the tracer is
enhanced in the bath of active particles compared to the tracer
on its own. To study this further, in Fig. 5, we plot the diffusion
coefficient at large times as a function of density, focusing
on the case β = 0.9. The simulation was performed for a
system with χA = 1 and different values of α. Remarkably,
the effective diffusion coefficient has a 50-fold increase when

FIG. 5. The relative diffusion coefficient of a tracer with β = 0.9,
normalized to the diffusion constant D0 of an isolated tracer.

in the active bath, compared to the diffusion coefficient of
an isolated tracer. Even at a low density (ρ ≈ 0.01) of active
crowders, the diffusion coefficient of the tracer is substantially
greater than in the absence of active crowders, implying a
strong effect of being pushed by active particles.

Since the diffusion coefficient of a single passive tracer is a
small constant in the absence of crowders and goes to zero in
the presence of a high density of crowders, the relative diffu-
sion coefficient is expected to be a nonmonotonic function of
the density. Furthermore, the form of this dependence should
also vary with the tumbling probability. The plots in Fig. 5
show a clear density dependence of the diffusion coefficient.
The diffusion coefficient is sharply enhanced when the den-
sity of active particles is increased from zero, then decreases
after a pronounced peak. Clearly, the density of the system
greatly affects the diffusion coefficient of the tracer. To further
investigate this effect, we come back to the observation of
cluster formation. Additional analysis for the case β = 1.0 is
provided in Appendix B.

4. Cluster formation

To analyze clustering, we define a cluster as a collection of
at least six particles sticking together, i.e., being connected via
mutual nearest neighbors. Particles without nearest neighbors
or connected to fewer particles are considered as belonging
to the gas phase. Clusters are identified with the data analy-
sis framework FREUD [48]. We measured the average cluster
size, Cs, as the average number of particles in a cluster over
1000 different realizations of the simulation. Figures 6(a) and
6(b) show the time evolution of Cs for different densities
and for α = 0.001 and 0.0001, respectively. As can be seen
in Figs. 6(a) and 6(b), cluster formation is accelerated by
increasing the density of crowders.
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FIG. 6. Cluster analysis: (a), (b) Average cluster size as a func-
tion of time (averaged over 1000 realizations) for different densities.
The numbers above the curves indicate the corresponding density.
(c), (d) Fraction of particles assembled in clusters in the last snapshot
of simulation for the same densities. The dashed lines mark the den-
sity in which the tracer exhibits the maximum diffusion coefficient.
Each column corresponds to the value of α indicated above it.

In Figs. 6(c) and 6(d), we plotted the fraction of particles
detected within clusters, φc, as seen in the last snapshot of
the simulation, which provides an estimate of the fraction of
particles assembled in the clusters. φc can be described by
(Nc × Cs)/N , where Nc is the average number of clusters. As a
function of the density, φc shows a clear transition from a state
in which a very small fraction of particles are in the clusters
to a state where almost all particles are in clusters.

To relate clustering to the tracer diffusion discussed before,
we indicate with the vertical dashed lines the density at which
the tracer’s diffusion coefficient for the given tumbling proba-
bility is maximal. These lines fall near or slightly above the
transition, suggesting an intimate relation of the decline in
diffusion to the onset of phase separation. When the active
crowders start to form clusters, there is coexistence of a dilute
gas phase and clusters of active particles and the probability of
active crowders being in the dilute phase decreases as long as
the cluster size increases. Consequently, the diffusion coeffi-
cient of the tracer decreases as there are fewer and fewer active
crowders in the dilute phase to push the tracer and enhance its
diffusion.

B. Binary mixture

Finally, we consider a binary mixture of active and pas-
sive crowders, with χA + χP = 1, where χP is the fraction of
passive particles. We tracked the effect of the three control
parameters χA, α, and ρ on the diffusion coefficient of a tracer
particle with β = 0.9. Adding passive particles into a purely
active system changes not only the directionality imposed by
collisions (due to pushing by the active particles), but also

FIG. 7. Cluster analysis for different fractions χA of active par-
ticles at fixed ρ = 0.05. Cluster size and fraction of particles in
clusters (inset) as in Fig. 6 for different χA in a binary mixture of
active and passive crowders. The numbers above each curve indicate
the fraction of active particles (χA).

alters the global dynamics in a subtle way, specifically the
dynamics of clustering. In the example shown in Fig. 7 with
a fixed low density of crowders, an increase of the fraction of
active crowders above 0.5 leads to a strong clustering signa-
ture both in the average cluster size Cs and in the fraction φc

of particles within clusters (inset). The cluster size Cs shows
biphasic growth for large fractions of active crowders with,
first, a rapid increase in the cluster size and then a much slower
second phase, which appears to be more pronounced and
slower for the largest active crowder fractions. Put differently,
replacing some of the active crowders with passive particles
delays the phase separation (compare the cases χA = 1 and
χA = 0.75 in Fig. 7), likely because, initially, the rapid direc-
tional change of the passive particles randomizes the motion
of the active particles. Eventually, however, clustering sets in.
While clustering sets in later for χA = 0.75 than for χA = 1,
it reaches its stationary state faster.

Above we have shown a correspondence between the onset
of clustering and a decrease of the enhanced diffusion of a pas-
sive tracer (Fig. 5). Since clustering is decreased by increasing
the fraction of passive particles in the system, we expect that
the decrease in diffusion of the tracer is less pronounced
when passive particles are present. This is indeed the case,
as shown in Fig. 8, where we plot the diffusion coefficient
as a function of the density for different combinations of the
tumbling probability α and the fraction of active crowders χA:
Decreasing the fraction of active crowders leads to a broader
peak in the diffusion coefficient as a function of density. We
interpret this observation as reflecting the fact that at low χA,
it is more likely to find many of the active particles (which
can push the tracer) in the gas phase compared to higher χA.
At the same time, however, the value of the maximal diffusion
coefficient is also decreased, reflecting the fact that the total
number of active particles is reduced. Nevertheless, even for
very low fractions of active particles (bottom row in Fig. 8),
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FIG. 8. The diffusion coefficient of a tracer with β = 0.9 as a function of the density ρ and of the fraction of active row χA in a binary
mixture.

the diffusion coefficient is still increased compared to the
case with only passive particles. For instance, for α = 0.1,
χA = 0.1, it is increased up to fivefold.

IV. CONCLUSION

In this paper, we have analyzed the diffusion of a tracer
particle in a crowded active system using a minimal lattice
model. We implemented the pushing of a passive tracer by
active crowder particles by a simple collision rule. A passive
tracer in an otherwise purely active system or in a binary mix-
ture of active and passive particles exhibits different motility
regimes, including significantly enhanced effective diffusion.
Enhanced diffusion of tracers in the presence of active par-
ticles has been observed in several different systems such as
in a bath of swimming microorganisms [22,25,33] and in a
suspension of actively diffusing enzymes [13]. The activity
mechanisms and the interaction in these systems are more

complicated than those studied in our model, but the results
shown here and related results of others [42] demonstrate that
simple interactions are sufficient to generate such enhanced
diffusion and can result in rich dynamic behavior. Our results
show that the extent to which diffusion is enhanced depends
on the activity of the crowder particles (modulated via their
hopping rate relative to the tracer’s hopping rate and via their
tumbling probability, i.e., via the persistence of their motion)
and on their density. The interplay of activity and density
depends on the dynamics of the particles directly, but also
indirectly via the phase separation of the crowders into low-
density (gas-phase) regions and dense clusters. The latter has
a negative effect on the mobility of the tracer, both when the
tracer becomes trapped in a cluster and when the tracer moves
in a low-density area, where it is not pushed by active parti-
cles. Our findings thus point to an intricate interplay between
the local dynamics of enhanced tracer diffusion and the global
dynamics of the system.
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One feature of active particle systems that we have not
considered here are hydrodynamic interactions, which are
typically present. On the one hand, studies like our present
one or Ref. [49] show that phenomena such as enhanced
tracer diffusion that are often observed experimentally in sys-
tems, where hydrodynamic interactions are present, are not
dependent on those hydrodynamic interactions but can also be
found in reduced models without them. However, in general,
one can expect that the quantitative results are modified by
the inclusion of hydrodynamic interactions, both between the
particles and with the surfaces that confine the particles to a
quasi-two-dimensional system [50–52]. We hypothesize that
the dominant effect of hydrodynamic interactions would be
due to the interactions of particles with the surface of rela-
tively rigid clusters of particles and results in a rotation of the
arriving particle, similar to the case of a rigid wall. Depending
on the extent of the resulting torque, such interactions could
enhance or reduce cluster formation. One way of including
such effects into a minimal lattice model would be via an
additional update rule that rotates particles near the surface
of a cluster.

Another aspect that could be of interest is whether the
underlying lattice type influences the dynamics of the tracer
particle. Phase separation as observed here has indeed been
studied in models of active particles on different lattices
[44,46]. Specifically, different lattices may allow different
interaction rules, particularly if, as in our case, lattice sites

beyond the nearest neighbor have an influence. For ex-
ample, one recent study showed clustering and a hexatic
phase in a system of passive particles on a hexagonal lattice
[45].

Given the simplicity of our model, one can also extend it
to other collision rules among the particles as well as use it
to study the impact of active crowding on physical processes
other than tracer diffusion.
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APPENDIX A: EFFECT OF SYSTEM SIZE

To check whether the size of the lattice affects the re-
sults presented here, we ran simulations with different system
sizes (L = 50, 100, 256, 512). Figure 9 shows the MSD of the
tracer particle for two different densities of active crowders

FIG. 9. MSD as a function of time plotted for different simulation box size (L = 50, 100, 256 and 512) for densities (a) ρ = 0.02 and
(b) ρ = 0.4, both with α = 0.0001 (c) ρ = 0.02 and (d) ρ = 0.4, both with β = 0.9 and α = 0.01. β = 0.9 in all cases. All the plots are
averaged over 1000 realizations for each box size.
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FIG. 10. The mean-square displacement of a tracer with β = 1.0 as a function of time for different densities and tumbling probabilities
(a) α = 0.0001, (b) α = 0.001, (c) α = 0.01, (d) α = 0.1.

(ρ = 0.02 and ρ = 0.40). The results for different system
sizes lie almost on top of each other, with only some devi-
ations at long times for the smallest system size [L = 100 in
Fig. 9(a) and L = 50 in Fig. 9(d)]. Importantly, while the small
values of α used in many of our simulations in principle allow
for persistent motion of the active particles over distances
exceeding the system size, due to the interactions between
the particles this is typically not the case except for very low
densities.

APPENDIX B: LONG-TIME DYNAMICS FOR β = 1.0

The observation of trapping of the tracer in either clusters
of active particles or in empty areas of the lattice in the case
where the tracer cannot move on its own (β = 1) suggests the
question whether such trapping and the subdiffusion resulting
from it exhibits a sensitive dependence on the density, as a

sufficient density may be required for trapping. We there-
fore simulated tracer mobility over a wide range of densities
for β = 1 and four different values of α. As one can ob-
serve in Fig. 10, the tracer shows purely normal diffusion for
the largest value of α, with nonmonotonic dependence of
the diffusion coefficient on density similar to Fig. 5. For the
smaller values of α, a subdiffusive regime appears for long
times, as the active particles start to form stable or transiently
stable clusters and trapping of the tracer starts to play a role.
The transition to subdiffusion appears to occur at a critical
density, which depends on the tumbling probability which
is ρ � 0.020 for α = 0.0001, ρ � 0.025 for α = 0.001, and
ρ � 0.060 for α = 0.01. In all cases, these values fall near to
the onset of phase separation as shown in Figs. 6(c) and 6(d).
There also appears to be a second transition, clearly visible for
α = 0.001 and α = 0.01, where for densities � 0.25 a plateau
at intermediate times develops, likely also due to trapping.
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