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Intervals between discrete events representing human activities, as well as other types of events, often
obey heavy-tailed distributions, and their impacts on collective dynamics on networks such as contagion
processes have been intensively studied. The literature supports that such heavy-tailed distributions are present
for interevent times associated with both individual nodes and individual edges in networks. However, the
simultaneous presence of heavy-tailed distributions of interevent times for nodes and edges is a nontrivial
phenomenon, and its origin has been elusive. In the present study, we propose a generative model and its variants
to explain this phenomenon. We assume that each node independently transits between a high-activity and
low-activity state according to a continuous-time two-state Markov process and that, for the main model, events
on an edge occur at a high rate if and only if both end nodes of the edge are in the high-activity state. In other
words, two nodes interact frequently only when both nodes prefer to interact with others. The model produces
distributions of interevent times for both individual nodes and edges that resemble heavy-tailed distributions
across some scales. It also produces positive correlation in consecutive interevent times, which is another stylized
observation for empirical data of human activity. We expect that our modeling framework provides a useful
benchmark for investigating dynamics on temporal networks driven by non-Poissonian event sequences.

DOI: 10.1103/PhysRevE.102.052303

I. INTRODUCTION

Dynamic contacts as well as the static structure of social
contact networks govern how humans or animals gather, com-
municate, and act. Many techniques from temporal networks
have been proven useful for describing and utilizing data of
time-varying networks [1–5]. The time between two consecu-
tive contacts, called the interevent time (IET), is a key quantity
to characterize temporal networks and dynamics on them.
Myriad human activities, such as online chats, email corre-
spondence, mobility, web browsing, and broker trading, have
heavy-tailed distributions of IETs [1,4,6,7]. This observation
implies that sequences of discrete events that an individual
node or edge in a network experiences obey non-Poissonian
statistics. By contrast, in most cases, stochastic processes on
static networks implicitly assume that events such as infec-
tion or broadcasting occur according to Poisson processes,
with which IETs obey an exponential distribution. Therefore,
the non-Poissonian nature of event sequences in empirical
data inevitably urges us to reconsider our understanding of
stochastic dynamical processes on networks. In fact, effects
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of heavy-tailed distributions of IETs on epidemic processes
[8–15], opinion dynamics [16–19], evolutionary game dy-
namics [20], cascade processes [21–24], and random walks
[25–28], to name a few, have been studied. There are also a
number of generative mechanisms and descriptive models for
heavy-tailed distributions of IETs including priority queuing
models [6,7,29–34], mixture of exponentials [35–37], those
supplied by circadian and weekly rhythms [38], and other
self-exciting processes [39,40].

Heavy-tailed distributions of IETs are commonly found for
single nodes [6,7,37,38,41–43] and single edges [1,4,9,44,45].
Such a distribution for a node implies that the sequence of
event times for the node, regardless of the identity of the
neighbor, obeys a non-Poissonian, heavy-tailed statistics. In
fact, the distribution of IETs for both nodes and edges in a
single data set is often heavy-tailed (see Sec. II for examples).
However, the presence of heavy-tailed IET distributions for
both edges and nodes in the same network is not trivial. Con-
sider a node, denoted by v, that interacts with its k neighbors,
and assume that the sequence of IETs on each edge incident
to v independently obeys a heavy-tailed distribution. The su-
perposition of the k event sequences yields the sequence of
v’s events. This situation is illustrated in Fig. 1. In Fig. 1(a),
node v has k = 5 neighbors. We have produced the sequence
of events on each of the five edges assuming a power-law
distribution of IETs, as shown in Fig. 1(b). The sequence of
events shown in the bottom of Fig. 1(b) is that for v, which
one obtains by superposing the sequences of events on the
k edges. In general, the distribution of IETs for v is less
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FIG. 1. Schematic illustration of the superposition of event sequences on edges. (a) Star network of six nodes. (b) Sequence of events
generated by a power-law distribution of IET on each edge of the star network and the sequence of events on node 1 in (a). The coefficient of
variation of IETs, which we calculate from the first approximately 106 events on each edge, is shown in (b) for the five edges and node 1. We
used the power-law distribution of IETs for edges given by p(τ ) = (α − 1)/(1 + τ )α , where α = 3.5. According to an equilibrium renewal
process [3,46], we draw the time to the first event on each edge from the distribution of waiting times given by pw(t ) = (α − 2)/(1 + t )α−1.

heavy tailed than that for a single edge. This is because the
superposition of independent point processes (more precisely,
renewal processes) obeying heavy-tailed distributions roughly
approaches, albeit not precisely, a Poisson process as one
increases k [47,48].

Recently, we proposed a model that generates heavy-tailed
distributions of IETs for both edges and nodes [49]. The
model assumes that each node is activated at discrete times
according to a renewal process that draws the interactiva-
tion time from a power-law distribution. Then, at each time
step, activated nodes are uniformly randomly selected to
communicate with simultaneously activated neighbors. By
construction, this model produces a heavy-tailed distribu-
tion of IETs for individual nodes. Although it is less trivial,
IETs for edges also obey approximately heavy-tailed distri-
butions. However, this model does not explain why we find
heavy-tailed distributions of IETs for both nodes and edges
in empirical data. Realistic mechanisms of the simultaneous
presence of heavy-tailed IET distributions for nodes and edges
are underexplored [4].

In the present study, we propose a model of time-stamped
event sequences on networks that is based on a latent state
dynamics of nodes. In our model, each node switches between
two states called the high-activity and low-activity states ac-
cording to a Markov process in continuous time. We assume
that if both nodes are in the high-activity state, events occur
according to a Poisson process at a higher rate, otherwise at
a lower rate. The rationale behind the model is that events
between two individuals may happen more frequently when
both individuals are motivated to interact with others than
otherwise. We show that our model produces distributions of
IETs with large dispersions for both single nodes and edges,
resembling empirical data.

II. SIMULTANEOUSLY LARGE VARIABILITY OF
INTEREVENT TIMES ON NODES AND EDGES IS

COMMON AND NONTRIVIAL

Before presenting and analyzing our model, in this section
we provide empirical evidence that heavy-tailed distributions
of IETs are simultaneously present for edges and nodes in
single data sets. We use data collected by the SocioPatterns

collaboration [50]. The survival function of the IETs (i.e.,
probability that the IET, τ , is larger than the specified value)
for individual edges and nodes for social contact data in a
primary school [50], which we refer to as PrimarySchool, is
shown in Figs. 2(a) and 2(b), respectively. (See Appendix A
for the results for the other data sets.) The relatively slow
decay in Fig. 2 suggests heavy-tailed distributions for both
edges and nodes across some scales of τ .

We quantified the dispersion of IET distributions by the
coefficient of variation (CV). The CV of a distribution is
defined as the standard deviation divided by the mean. For
an IET distribution, one can write

CV =
√

〈τ 2〉
〈τ 〉2

− 1, (1)

where 〈·〉 represents the average over edges or nodes. A Pois-
son process produces an exponential IET distribution, which
yields CV = 1. A periodic process yields CV = 0. A heavy-
tailed distribution yields a large value of CV. Table I shows the
mean and standard deviation of the CV of the IET distribution
for edges and nodes for each data set. Table I indicates that
all data sets yield CV values considerably larger than 1 for
both edges and nodes. Therefore, the simultaneous presence
of heterogeneous distributions (i.e., with a larger dispersion
than the Poisson case) of both edge and node IETs seems to
be common.

We hypothesize that the correlation of the IET between
different edges sharing a node contributes to large values of
the CV for individual nodes. Therefore, for each data set, we
uniformly randomly shuffled the IETs on each edge within
each day of recording, preserving the time of the first and last
events of each day on the edge. This shuffling method is equiv-
alent to the timeline interevent shuffling in an instant-event
temporal network (formally named P[πL(�τ ), t1]) described
in Ref. [56]. Because this shuffling procedure preserves the
distribution of IETs on each edge, the edge’s CV is un-
changed. However, it affects the IETs and hence the CV for
individual nodes. The node’s CV calculated from the shuf-
fled data and the relative deviation defined by � = 100% ×
(shuffled − original)/original are shown in Table I. For all
data sets, the CV for the nodes consistently decreases when
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FIG. 2. Survival function, P(τ ), of IETs on (a) edges and (b) nodes for the PrimarySchool data set (thin lines) and simulation of our model
(thick lines). In this and the following analyses of the empirical data, we treated the data with two steps. First, we aggregated consecutive events
with 20 s duration separately for each edge (a) or node (b); the temporal resolution of the original data set is 20 s; i.e., the social contacts are
measured every 20 s. We perform this first step because we are analyzing the IETs but not the duration of events. For instance, we aggregated
a sequence of event times {20, 40, 60, 100, 200, 220} (in s) between two given nodes into a sequence with three contact events as {20, 100,
200}. In other words, the first event on this edge occurs at t = 20 s and lasts for 60 s, the second event at t = 100 s lasts for 20 s, and the third
event at t = 200 s lasts for 40 s. Second, to circumvent the effects of the circadian rhythm, we removed IETs larger than 8 h. In both (a) and
(b), we only considered edges that had at least 100 events, after aggregating consecutive events with 20 s duration and removing IETs larger
than 8 h.

one shuffles the IETs in the majority of the data sets, although
the differences are statistically insignificant. Therefore, the
shuffling tends to destroy the heavy-tailed nature of the IET
sequences for individual nodes.

To further support that the simultaneous presence of heavy-
tailed distributions of IETs on edges and nodes is nontrivial,
we assess a common approach to generate event sequences on
each edge according to an independent renewal process with a
power-law distribution, p(τ ), of IETs. We call this model the
stochastic temporal network model [3]. Consider the power-
law distribution of IETs given by

p(τ ) = α − 1

(1 + τ )α
, (2)

where α is a parameter. The first and second moments of
p(τ ) are given by 〈τ 〉 = 1/(α − 2), where α > 2, and 〈τ 2〉 =
2/(α − 3)(α − 2), where α > 3, respectively. Therefore, the

CV of IETs is given by

CV =
√

α − 1

α − 3
, (3)

where α > 3. We ran simulations with α = 3 and α = 3.5 for
a node with k = 2, k = 5, and k = 10 neighbors, and calcu-
lated the CV for IETs on the node for each combination of α

and k. Equation (3) predicts an edge’s CV equal to 2.24 when
α = 3.5 and its divergence for α � 3, which is consistent with
the numerical results shown in Table II. By contrast, the CV
for the node is considerably smaller than that for edges and
decreases towards 1 as k increases. Therefore, the stochastic
temporal network model does not produce simultaneously
heavy-tailed distributions of IETs for edges and nodes.

III. MODEL

We propose a model of node behavior that aims to simulta-
neously produce large CVs for IETs on individual edges and

TABLE I. CV of IETs on edges and nodes for SocioPatterns data sets. “Node CV, shuffled” corresponds to the node’s CV calculated
after the timeline interevent shuffling. The data originate from a primary school (PrimarySchool) [51,52], a scientific conference (SFHH)
[50], a workplace (Office15) [50], a hospital (Hospital) [53], and a high school in two different years (HighSchool12 [54] and HighSchool13
[55]). The CV values shown are the average ± standard deviation. In this table and the following figures and tables using the same data sets,
we used the edges that have at least 100 events, after aggregating consecutive events with 20 s duration and removing IETs larger than 8 h; we
used nodes that have, among their incident edges, at least one edge with at least 100 events and all the other edges with at least 10 events.

PrimarySchool SFHH Office15 Hospital HighSchool12 HighSchool13

Edge CV, original 2.7 ± 0.6 2.0 ± 0.9 2.5 ± 0.8 1.6 ± 0.4 2.7 ± 0.6 2.5 ± 0.6
Node CV, original 3.2 ± 1.3 2.2 ± 1.2 2.8 ± 0.8 1.9 ± 0.9 2.8 ± 0.6 2.6 ± 0.6

Node CV, shuffled 1.7 ± 0.7 1.8 ± 1.1 2.8 ± 0.8 1.5 ± 0.6 2.7 ± 0.6 2.3 ± 0.5
� (i.e., relative deviation) −46% −17% −3% −20% −5% −11%
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TABLE II. CV of IETs on edges and nodes obtained from the
stochastic temporal network model. We assume an equilibrium re-
newal process, so we draw the time to the first event on each edge
from the distribution of waiting times, as in Fig. 1. We calculated
the mean and standard deviation of the CVs on the basis of 100
realizations of the simulation. We stop each realization when all
edges have obtained at least 106 events.

α k Edge CV Node CV

3 2 3.9 ± 1.3 1.7 ± 0.0
5 3.8 ± 0.6 1.2 ± 0.0

10 3.9 ± 0.6 1.1 ± 0.0

3.5 2 2.2 ± 0.2 1.4 ± 0.0
5 2.2 ± 0.1 1.1 ± 0.0

10 2.2 ± 0.1 1.1 ± 0.0

nodes. Consider a static network. The model is based on two
main assumptions. First, we assume that each node stochas-
tically switches between two states, called the high-activity
state (denoted by h) and the low-activity state (denoted by �).
The plausibility of this assumption is supported by various
empirical and modeling studies [35–39,41,57–59]. Second,
we assume that two nodes adjacent by an edge in the static net-
work have a contact event much more likely when both nodes
are in the high-activity state than otherwise. The intuition
behind this assumption is that a pairwise human contact event
may be much more likely to occur when both individuals are
motivated to interact than otherwise.

Each node switches between h and � according to a two-
state continuous-time Markov process. In other words, the
node switches to the opposite state according to a Poisson
process whose rate depends on the current state. We denote
by rh→� the rate at which a node in state h changes to state �,
and similar for r�→h. We assume that different nodes share the
same rh→� and r�→h values but are associated with indepen-
dent two-state Markovian processes.

If both adjacent nodes are in the h state, then events on
the edge are assumed to occur according to a Poisson process
at a higher rate denoted by λh. Otherwise, the edge produces
events according to a Poisson process at a lower rate denoted
by λ� (< λh). This process is schematically shown in Fig. 3.

FIG. 3. Schematic illustration of the model. The events between
two nodes occur at a higher rate λh if and only if both are in
the high-activity state (corresponding to the shaded time windows).
Otherwise, events occur at a lower rate λ� (corresponding to the
unshaded time windows).

The master equation for the probability that a node is in
state h, denoted by ph(t ), where t represents time, is given by

d ph(t )

dt
= r�→h[1 − ph(t )] − rh→� ph(t ). (4)

Therefore, the stationary probability of finding a node in state
h is given by

p∗
h = r�→h

rh→� + r�→h
. (5)

The stationary probability of finding a node in state � is p∗
� =

1 − p∗
h.

IV. RESULTS

A. The model produces simultaneously large variability of IETs
on edges and nodes

We numerically simulated the model to generate sequences
of IETs and computed the survival function and the CV
of IETs for individual edges and nodes. Apart from the
structure of the static network, our model has four param-
eters, rh→�, r�→h, λh, and λ�. Equation (5) yields r�→h =
rh→� p∗

h/(1 − p∗
h). We write λ� in terms of λh as

λ� = γ λh, (6)

where 0 < γ < 1. Simultaneously changing (rh→�, r�→h,

λh, λ�) to (crh→�, cr�→h, cλh, cλ�), where c > 0, is equiv-
alent to not changing these four parameters and changing
the time from t to ct . Therefore, without loss of generality,
we set λh = 1, unless we state otherwise. In the following
simulations, for fixed values of rh→�, we varied γ and p∗

h.
Using the Gillespie algorithm [60], we generated events on
the edges until all edges had at least 106 events.

We used a star network composed of a node v and
its k neighbors. Initially, each of the k + 1 nodes is inde-
pendently in state h or � with probability p∗

h or (1 − p∗
h),

respectively. Then, we ran a continuous-time Markov process
independently for each node. At each time, depending on
the state of each edge, we generated events on the edge at
rate λh or λ�.

It should be noted that a next event on an edge may not
be simply produced as a single Poisson process. For example,
suppose that the two nodes connected by an edge are both
in state h. Then, the time to the next event on this edge
obeys the exponential distribution p(τ ) = λhe−λhτ . However,
if either node switches to state � before the next event occurs,
then the distribution p(τ ) = λhe−λhτ is no longer relevant, and
the time to the next event now obeys p(τ ) = λ�e−λ�τ . Note
that the point process producing the events is Poissonian and
therefore memoryless if conditioned on the nodes’ states.
Therefore, if either node has switched to state � at time t̃ , then
the time to the next event that obeys p(τ ) = λ�e−λ�τ is added
to t̃ to set the next event time. The same applies to the case in
which one node is in state h and the other node is in state �

(therefore, the time to the next event obeys p(τ ) = λ�e−λ�τ ),
and then the latter node switches to state h such that the time
to the next event now obeys p(τ ) = λhe−λhτ .

We consider a star network composed of a node v

and its two neighbors as an example. We set rh→� = 2 ×
10−5, r�→h = 4.7 × 10−5, λh = 6 × 10−3, and λ� = 3.5 ×
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FIG. 4. CV values for IETs generated by our original model. We set (a–d) rh→� = 10−4, (e–h) rh→� = 10−3, and (i–l) rh→� = 10−2. We
simulated an edge [panels (a), (e), and (i)], a node with k = 2 neighbors [panels (b), (f), and (j)], a node with k = 5 neighbors [panels (c), (g),
and (k)], and a node with k = 10 neighbors [panels (d), (h), and (l)]. For each set of parameter values, we generated IETs on the edges until all
edges had at least 106 events.

10−4, which yields p∗
h ≈ 0.7 and γ ≈ 0.06. The survival

function of IETs produced by the model is shown by the thick
lines for the two edges and node v in Figs. 2(a) and 2(b),
respectively. The survival function for both the two edges and
v decays more slowly than exponentially, roughly consistent
with the non-Poissonian behavior observed in the empirical
data (thin lines in Fig. 2). For our model, the CV for the two
edges is equal to 2.8 and 3.0, and that for v is equal to 2.6.
These values of CV are statistically within the ranges of the
CV for the PrimarySchool data set (see Table I).

To examine different parameter values of the model, we
varied γ and p∗

h for each of three values of rh→� (i.e., rh→� =
10−4, rh→� = 10−3, and rh→� = 10−2) and three values of k
(i.e., k = 2, k = 5, and k = 10). We show the CV values in
Fig. 4. The figure indicates that the model produces large CV
values simultaneously for edges and nodes in a broad param-
eter region. In particular, the CV is large when γ (= λ�/λh) is
small and p∗

h is near 0.7, across the range of rh→� and k.

B. Analytical evaluation of the CV of interevent times

In this section, we provide an analytical account for the
CV values observed in Sec. IV A. The state of the edge is
specified by the states of two nodes forming the edge. We
denote by h2 when both nodes are in state h, and likewise for
h� and �2. The edge state obeys a three-state Markov process
in the state space S1 = {h2, h�, �2}, where we do not distin-
guish between h� and �h, and represent both by h�. In our
model, the IET distribution conditioned on the edge’s state is
given by g(τ |h2) = λhe−λhτ and g(τ |�2) = g(τ |h�) = λ�e−λ�τ ,

where g(τ |·) represents the distribution of IETs conditioned
on the edge’s state.

The Markov process of node activity is independent for
different nodes. Therefore, two nodes are simultaneously in
state h in the equilibrium with probability p∗2

h . The mean
number of events produced when both nodes are in state h
is given by λh p∗2

h T , where T is the observation time. The
mean number of events produced when either node is in state
� is given by λ�(1 − p∗2

h )T . Therefore, an IET is produced at
rate λh and λ� with probability λh p∗2

h /�1 and λ�(1 − p∗2
h )/�1,

respectively, where �1 = λh p∗2
h + λ�(1 − p∗2

h ). By combin-
ing these contributions and ignoring IETs during which the
edge’s state changes, we obtain the probability density func-
tion (PDF) of IETs for an edge as a mixture of two exponential
distributions as

fedge(τ ) = λh p∗2
h

�1
λhe−λhτ + λ�(1 − p∗2

h )

�1
λ�e−λ�τ . (7)

The first two moments of this PDF are given by

〈τ 〉edge ≡
∫ ∞

0
τ fedge(τ )dτ = 1

�1
(8)

and

〈τ 2〉edge ≡
∫ ∞

0
τ 2 fedge(τ )dτ = 2

�1

[
p∗2

h

λh
+ (1 − p∗2

h )

λ�

]
.

(9)
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By substituting Eqs. (8) and (9) into Eq. (1), we obtain

CVedge =
√

1 + 2p∗2
h (1 − p∗2

h )(1 − γ )2

γ
, (10)

where CVedge is the CV for the edge’s IETs.
Now we consider a node v with k neighbors. From

the viewpoint of node v, the sequence of events is a
superposition of the events over its k edges. Because
the k nodes are statistically the same for v, it is suf-
ficient to consider a 2(k + 1)-state Markov process with
state space Sk = {h, �} × {hk, hk−1�, . . . , h�k−1, �k}, where
the first set in the product of the two sets represents the
state of v, and the second set represents the states of v’s
neighbors.

First, if v is in state h, which happens with probability p∗
h

in the equilibrium, the IET distribution for v depends on the
states of v’s neighbors. The probability of finding exactly kh

neighbors in state h is given by
( k

kh

)
p∗kh

h (1 − p∗
h)k−kh , where( k

kh

)
is the binomial coefficient. In this situation, v experiences

events produced by a Poisson process at rate khλh + (k −
kh)λ� because the superposition of the k independent Poisson
processes on edges with rate λh or λ� is a Poisson process with
the summed rate. Second, if v is in state �, which happens with
probability 1 − p∗

h, all edges produce events at rate λ�. In this
situation, v experiences events produced by a Poisson process
at rate kλ�. Therefore, an event occurs when v is in state h and
it has kh neighbors in state h with probability p∗

h

( k
kh

)
p∗kh

h (1 −
p∗

h)k−kh [khλh + (k − kh)λ�]2e−[khλh+(k−kh )λ�]τ /�k and when v

is in state � with probability (1 − p∗
h)(kλ�)2e−kλ�τ /�k , where

�k = kλh p∗2
h + kλ�(1 − p∗2

h ).

By combining these contributions, we derive the PDF for IETs on a node with k neighbors as

fk (τ ) = p∗
h

�k

k∑
kh=0

(
k

kh

)
p∗kh

h (1 − p∗
h)k−kh [khλh + (k − kh)λ�]2e−[khλh+(k−kh )λ�]τ + 1 − p∗

h

�k
(kλ�)2e−kλ�τ

= e−kλ�τ

�k

{
p∗

h

[
1 − p∗

h(1 − e−(λh−λ� )τ )
]k

[
k(λh − λ�)p∗

he−(λh−λ� )τ (λh − λ� + 2)

1 − p∗
h(1 − e−(λh−λ� )τ )

+ k(k − 1)(λh − λ�)2 p∗2
h e−2(λh−λ� )τ

[1 − p∗
h(1 − e−(λh−λ� )τ )]2 + (kλ�)2

]
+ (1 − p∗

h)(kλ�)2

}
. (11)

The first two moments of the PDF are given by

〈τ 〉k ≡
∫ ∞

0
τ fk (τ )dτ = 1

�k
(12)

and

〈τ 2〉k ≡
∫ ∞

0
τ 2 fk (τ )dτ

= 2p∗
h

�k

k∑
kh=0

(
k

kh

)
p∗kh

h (1 − p∗
h)k−kh

khλh + (k − kh)λ�

+ 2(1 − p∗
h)

kλ��k
. (13)

By substituting Eqs. (12) and (13) into Eq. (1), we obtain the CV for node v as

CVk =
√√√√2k[p∗2

h + (1 − p∗2
h )γ ]

[
p∗

h

k∑
kh=0

(
k

kh

)
p∗kh

h (1 − p∗
h)k−kh

kh + (k − kh)γ
+ 1 − p∗

h

kγ

]
− 1. (14)

Equation (14) reduces to Eq. (10) when k = 1.

For any k, Eq. (14) yields lim
γ→0

CVk → ∞ and lim
γ→1

CVk =
1. In addition, the derivative of Eq. (14) with respect to γ is
negative for any 0 < γ < 1. Therefore, CVk monotonically
decreases towards 1 as γ → 1, which is consistent with Fig. 4.
Next, equating the derivative of the right-hand side of Eq. (10)
with respect to p∗

h to zero yields p∗
h = 1/

√
2 ≈ 0.71 for any γ .

The value of p∗
h at which the derivative of the right-hand side

of Eq. (14) with respect to p∗
h is equal to zero depends on k and

γ , but we numerically obtain p∗
h ≈ 0.7 regardless of k and γ .

Therefore, the CVk is large when γ is small and p∗
h ≈ 0.7,

which is consistent with Fig. 4.

To assess the accuracy of the theory, we calculated
the relative error defined by [(theoretical CV) -
(numerical CV)]/(numerical CV). Figures 5(a)–5(d)
show the relative error when rh→� = 10−4. In this
case, the relative error is small across the entirety
of our parameter region. When rh→� = 10−3 [see
Figs. 5(e)–5(h)], and rh→� = 10−4 [see Figs. 5(i)–5(l)],
the relative error is large when γ is small and p∗

h is large.
The relative error increases as rh→� increases for the fol-

lowing reason. A large value of rh→� and moderate value
of p∗

h (i.e., p∗
h that is not too close to 0 or 1) implies large
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FIG. 5. Relative error between the analytically and numerically evaluated CV. We set (a–d) rh→� = 10−4, (e–h) rh→� = 10−3, and (i–l)
rh→� = 10−2. The results are for an edge [panels (a), (e), and (i)], a node with k = 2 neighbors [panels (b), (f), and (j)], a node with k = 5
neighbors [panels (c), (g), and (k)], and a node with k = 10 neighbors [panels (d), (h), and (l)].

r�→h, because r�→h = rh→� p∗
h/(1 − p∗

h). When r�→h is large,
the mean IET for edges that are produced at event rate λ�,
which is equal to 1/λ�, is longer than the typical duration
of the low-activity state of the edge (i.e., either h� or �2),
which is proportional to 1/r�→h. Note that the low-activity
state of an edge finishes only when both of the two nodes have
transited from state � to h, which occurs at rate r�→h for each
node. Therefore, an edge is populated with sufficiently many
IETs produced in the low-activity state of the edge if and only
if 1/r�→h 
 1/λ�, which leads to r�→h � λ�. According to
our parametrization, we obtain r�→h = rh→� p∗

h/(1 − p∗
h) and

λ� = γ λh = γ , because we set λh = 1. Therefore, an edge is
populated with sufficiently many IETs produced in its low-
activity state if rh→� � (1 − p∗

h)γ /p∗
h. For example, when

γ = 0.01 and p∗
h = 0.9, we need rh→� � (1 − p∗

h)γ /p∗
h ≈

10−3. This condition is violated when rh→� = 10−3 or 10−2.
For these rh→� values, the probability that events occur in the
low-activity state of the edge is small. However, our analytical
derivation of the CV assumes that sufficiently many events
and hence IETs occur in the typical duration of both low-
activity and high-activity states of the edge at respective rates,
i.e., λ� and λh. This explains the discrepancy between the
theoretical and numerical results observed in Figs. 5(e)–5(l).

However, the model is still capable of producing large CV
values even if few IETs are produced in the low-activity state
of the edge. In this situation, the IET between the last event of
a high-activity period of the edge and the first event of the next
high-activity period would generate a long IET, contributing
to a relatively heterogeneous distribution of IETs. This regime
is not predicted by our analytical solution.

If rh→� ≈ λh, then few IETs are produced during the h2

state of the edge on average. Therefore, a large CV value

requires rh→� � λh, which is satisfied in Figs. 4 and 5 because
the largest value of rh→� that we use is 10−2 and we have set
λh = 1.

C. Correlation between consecutive interevent times

In human activities, IETs for both edges and nodes are
often positively correlated; i.e., long IETs tend to be followed
by long IETs and vice versa [1,4,41,61]. To examine this prop-
erty, we compute the memory coefficient, M, of a sequence of
IETs [61], defined as

M ≡ 1

n − 1

n−1∑
i=1

(τi − m1)(τi+1 − m2)

σ1σ2
, (15)

where n is the number of IETs in the sequence, m1 and σ1

are the average and standard deviation of {τ1, τ2, . . . , τn−1},
respectively, and m2 and σ2 are the average and standard
deviation of {τ2, τ3, . . . , τn}, respectively. The memory coeffi-
cient measures the correlation coefficient of consecutive IETs,
(τi, τi+1).

Figure 6 shows the memory coefficient for the empir-
ical data. In all data sets, the edges show predominantly
positive memory coefficients with values lying mostly be-
tween zero and 0.1 [see Fig. 6(a)]. The memory coefficient
for nodes is also predominantly positive and tends to be
larger than that for the edges [see Fig. 6(b)]. These values
are in accordance with previous results for various human
activities [61].

The memory coefficient for sequences of IETs generated
by our model is shown in Fig. 7. The figure indicates that the
model produces positive M for both edges and nodes, which
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FIG. 6. Box plots of the memory coefficient for (a) edges and
(b) nodes for the empirical data sets. The box shows the median
(dotted line), the first quartile (Q1), and the third quartile (Q3);
the whiskers show the minimum (Q1 − 1.5 × IQR), where IQR is
the interquartile range, and the maximum (Q3 + 1.5 × IQR) values
excluding outliers, where IQR = Q3 − Q1. The open circles are the
outliers. The triangles are the sample means.

is qualitatively consistent with the empirical data. However,
the memory coefficient values produced by the model are
substantially larger than the empirical values.

D. Variants of the model

In our original model, events occur on the edge at a higher
rate if and only if both nodes forming the edge are in state h.
In this section, we study two variants of the model. In the first
variant, we assume that events on an edge occur at the higher
rate, λh, if either node connected to the edge, not necessarily
both nodes, is in state h. Events on the edge occur at the lower
rate λ� if and only if both nodes are in state �. We call this
variant the OR model. An interpretation of the OR model is
that, if an individual wants to interact with a neighbor, he or
she can do so at the higher event rate regardless of whether or
not the neighbor wants to interact.

For the OR model, we calculated the CV for IETs on edges
and nodes by scanning the same values of p∗

h, γ , rh→�, and k
as those used in Fig. 4. The results are shown in Fig. 8. As in
the original model, the OR model produces large CV values
for both edges and nodes when γ is small. With respect to p∗

h,
the OR model produces large CV values when p∗

h ≈ 0.3 for
the edge and that p∗

h value that maximizes the CV decreases

as k increases. This behavior is consistent with the analytical
prediction (Appendix B). Unlike the original model, the re-
gion in which the OR model produces large CV values for the
node shrinks as k increases.

In the second variant of the model, we assume that the
node’s h and � states independently contribute λh and λ�,
respectively, to the event rate of the edge. In other words,
events occur on the edge at rate 2λh if both nodes are in the h
state, 2λ� if both nodes are in the � state, and λh + λ� if one
node is in the h state and the other node is in the � state. An
interpretation of this variant of the model, which we call the
IND model (named after “independent”), is that the state of
each individual independently contributes to the frequency of
events between two individuals.

The CV values for the IND model are shown in Fig. 9.
Similarly to the original and the OR models, the IND model
produces large CV values when γ is small. For any given γ ,
the IND model produces large values of CV when 0.3 � p∗

h �
0.4 for the edge. For the node, the p∗

h value that maximizes the
CV decreases as k increases. This behavior is consistent with
the analytical result shown in Appendix C. The IND model
behaves similarly to the OR model; i.e., it produces large CV
values when γ is small and p∗

h ≈ 0.3, and the parameter region
in which the node’s CV is large shrinks as k increases.

To quantitatively compare the three models, we calculated
two quantities. First, we compute the largest CV value pro-
duced by each model when we vary γ and p∗

h in the parameter
region used in Figs. 4, 8, and 9. The largest CV value is
compared among the three models in Fig. 10(a), where we set
rh→� = 10−4 and vary the node’s degree k. The figure indi-
cates that the original model consistently produces the largest
CV values as k increases, although the OR model produces
comparably large CV values up to k = 3. Unlike the original
model, the largest CV value produced by the OR and IND
models visibly decreases as k increases. Second, we compute
the fraction of the (γ , p∗

h) pairs for which the CV value is
larger than 2; a CV value larger than 2 is consistent with the
results for empirical data (see Sec. II). A large fraction value
implies that a CV value larger than 2 is robustly produced for
various parameter combinations. The result for this analysis
is shown in Fig. 10(b), where we again set rh→� = 10−4 and
vary k. The figure indicates that the original model has a
larger fraction of the parameter region with CV larger than 2
than the OR and IND models. The fraction remains roughly
constant as k increases for the original model, whereas it
rapidly decreases as k increases for the OR and the IND
models. Figures 10(a) and 10(b) altogether suggest that the
original model is more capable of producing large CVs of
IETs on both edges and nodes than the OR and IND models,
particularly when the node has a large degree. The results
are qualitatively the same for larger rh→� values, i.e., rh→� =
10−3 [Figs. 10(c) and 10(d)] and rh→� = 10−2 [Figs. 10(e)
and 10(f)].

V. DISCUSSION

We have started from the observation that heavy-tailed
distributions of IETs are simultaneously present for both in-
dividual nodes and edges in the same empirical data. We have
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FIG. 7. Memory coefficient for IETs generated by our original model. We set (a–d) rh→� = 10−4, (e–h) rh→� = 10−3, and (i–l) rh→� = 10−2.
The results are for an edge [panels (a), (e), and (i)], a node with k = 2 neighbors [panels (b), (f), and (j)], a node with k = 5 neighbors [panels
(c), (g), and (k)], and a node with k = 10 neighbors [panels (d), (h), and (�)]. For each set of parameter values, we generated IETs on the edges
until all edges had at least 106 events.

FIG. 8. CV values for IETs generated by the OR model. We set (a–d) rh→� = 10−4, (e–h) rh→� = 10−3, and (i–l) rh→� = 10−2. The results
are for an edge [panels (a), (e), and (i)], a node with k = 2 neighbors [panels (b), (f), and (j)], a node with k = 5 neighbors [panels (c), (g), and
(k)], and a node with k = 10 neighbors [panels (d), (h), and (l)]. For each set of parameter values, we generated IETs on the edges until all
edges had at least 106 events.
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FIG. 9. CV values for IETs generated by the IND model. We set (a–d) rh→� = 10−4, (e–h) rh→� = 10−3, and (i–l) rh→� = 10−2. The results
are for an edge [panels (a), (e), and (i)], a node with k = 2 neighbors [panels (b), (f), and (j)], a node with k = 5 neighbors [panels (c), (g), and
(k)], and a node with k = 10 neighbors [panels (d), (h), and (l)]. For each set of parameter values, we generated IETs on the edges until all
edges had at least 106 events.

proposed a continuous-time model and its variants for gener-
ating discrete events on edges that replicate this behavior to
different extents. Our main model crucially assumes that each
node alternates between high-activity and low-activity states
in a Markovian manner. We showed that the original model,
which requires that both nodes are in the high-activity state
for the edge to have frequent events, is capable of producing
large CV values for both individual nodes and edges in a
broad parameter region. The other two variants of the model
are also capable of producing reasonably large CV values
to some extent. The proposed models allow interpretations.
For example, in the original model, two nodes are likely to
interact if and only if both of them feel like interacting with
others.

We have derived analytical solutions for our models by
discarding the effects of IETs that contain state transitions of
the edge. The analytical solution was accurate when two con-
ditions were met. First, the ratio of the high- to low-activity
event rates (i.e., 1/γ ) should not be extremely large, such as
100. This condition is probably not unrealistic. Second, the
state transition rate of the node should be sufficiently small
compared to the event rates on edges. Under this condition, an
epoch of the high- or low-activity state of an edge is typically
long enough to host sufficiently many events at the constant
rate, which is either λh or λ�. This is the situation that the
theory in Sec. IV B assumes. Otherwise, a large fraction of
IETs contains transitions of the edge’s state, which cause a
systematic discrepancy of the analytical expression from the
numerical results.

In our models, each node switches between two states. A
possible extension of this assumption is to the case of more
than two states for each node. Then, depending on how such a
model translates the nodes’ states into the event rate, the dis-
tribution of IETs on edges may be approximately a mixture of
more than two exponential distributions, which may resemble
or actually produce heavy-tailed distributions [36,57,62,63].
In fact, a mixture of a small number of exponential distribu-
tions, including the case of just two exponential distributions,
is often sufficient for approximating many empirical heavy-
tailed distributions of IETs [36,37,57,62]. Therefore, one
should carefully assess trade-offs between the complexity of
extended models and the explanatory power of the model that
one gains by assuming more states for nodes.

The distribution of IETs affects how disease and informa-
tion spread across contact networks [8–15]. Because many
time-stamped event data probably have heavy-tailed distri-
butions of IETs for both individual nodes and edges, the
temporal network models proposed in the present study are
expected to be useful for modeling dynamical processes on
temporal networks including contagion processes. It seems
that model-based studies of contagion processes on temporal
networks have not paid much attention to the simultaneous
presence of heavy-tailed distributions of IETs on nodes and
edges [4]. How this property affects key indicators of con-
tagion processes such as the epidemic threshold, the final
epidemic size, and equilibrium fraction of infected nodes,
as well as indicators of other dynamical processes, warrants
future work.
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FIG. 10. Comparison of CV values obtained from the original,
OR, and IND models. Panels (a), (c), and (e) show the largest CV
value in the (γ , p∗

h) parameter region explored in Figs. 4–9. Panels
(b), (d), and (f) show the fraction of the (γ , p∗

h) pairs for which the
CV values is larger than 2. Because k represents the degree of the
node, k = 1 corresponds to the case of the single edge. We set (a, b)
rh→� = 10−4, (c, d) rh→� = 10−3, and (e, f) rh→� = 10−2.
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APPENDIX A: DISTRIBUTIONS OF INTEREVENT TIMES
FOR THE OTHER DATA SETS

Figure 11 shows the survival function of IETs for the
different data sets.

APPENDIX B: ANALYTICAL EVALUATION OF THE CV
OF INTEREVENT TIMES FOR THE OR MODEL

In this section, we analytically examine the CV of IETs for
the OR model. In the OR model, events occur at the lower rate
λ� if and only if the two nodes forming an edge are in state �.
Therefore, using the same reasoning as that for the original
model in Sec. IV B, one obtains the PDF of IETs for an edge
as follows:

f OR
edge(τ ) = λ� p∗

�

�OR
1

λ�e−λ�τ + λh(1 − p∗
� )

�OR
1

λhe−λhτ , (B1)

FIG. 11. Survival function, P(τ ), of IETs on edges and nodes for
the different data sets.

where �OR
1 = λ� p∗

� + λh(1 − p∗2
� ) and, for convenience, we

have used p∗
� = 1 − p∗

h.
The first two moments of this PDF are given by

〈τ 〉edge ≡
∫ ∞

0
τ f OR

edge(τ )dτ = 1

�OR
1

(B2)

and

〈τ 2〉edge ≡
∫ ∞

0
τ 2 f OR

edge(τ )dτ = 2

�OR
1

[
p∗2

�

λ�

+
(
1 − p∗2

�

)
λh

]
.

(B3)
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FIG. 12. Values of p∗
h that yield the maximum of (a) CVOR

k and
(b) CVIND

k for different values of γ and k.

By substituting Eqs. (B2) and (B3) into Eq. (1), we obtain

CVOR
edge =

√
1 + 2p∗2

�

(
1 − p∗2

�

)
(1 − γ )2

γ
, (B4)

where CVOR
edge is the CV for the edge’s IETs for the OR model.

We proceed with the same steps as those in Sec. IV B to
calculate the CV for a node with k neighbors as follows. The
PDF for a node with k neighbors is given by

f OR
k (τ ) = p∗

�

�OR
k

k∑
k�=0

(
k

k�

)
p∗k�

� (1 − p∗
� )k−k� [λ�k� + λh(k − k�)]2

× e−[λ�k�+λh (k−k� )]τ + 1 − p∗
�

�OR
k

(kλh)2e−kλhτ , (B5)

where k� is the number of neighbors in the � state, and �OR
k =

kλ� p∗2
� + kλh(1 − p∗2

� ).
The first two moments of f OR

k (τ ) are given by

〈τ 〉k ≡
∫ ∞

0
τ fk (τ )dτ = 1

�OR
k

(B6)

and

〈τ 2〉k ≡
∫ ∞

0
τ 2 fk (τ )dτ

= 2p∗
�

�OR
k

k∑
k�=0

(
k

k�

)
p∗k�

� (1 − p∗
� )k−k�

k�λ� + (k − k�)λh
+ 2(1 − p∗

� )

kλh�
OR
k

.

(B7)

By substituting Eqs. (B6) and (B7) into Eq. (1), we obtain the
CV for node v as

CVOR
k =

√√√√2k[p∗2
� + (1 − p∗2

� )γ ]

[
p∗

�

k∑
k�=0

(
k

k�

)
p∗k�

� (1 − p∗
� )k−k�

k� + (k − k�)γ
+ 1 − p∗

�

kγ

]
− 1, (B8)

which generalizes Eq. (B4).
The behavior of Eq. (B8) with respect to γ is qualitatively

the same as that of the original model [i.e., Eq. (14)]. In
other words, lim

γ→0
CVOR

k → ∞, limγ→1 CVOR
k = 1, and CVOR

k

monotonically decreases as γ increases, which is consistent
with Fig. 8. The extremum of Eq. (B4) with respect to p∗

�

occurs at p∗
� = 1/

√
2 ≈ 0.71, hence, p∗

h ≈ 0.29, for any γ .
Therefore, the CV for the edge is large when γ is small and
p∗

h ≈ 0.3. By contrast, the value of p∗
h that maximizes Eq. (B8)

for a given γ value strongly depends on k. In Fig. 12(a), we
numerically inspect this dependence. The value of p∗

h that
maximizes Eq. (B8) decreases as k increases, and, for a given
value of k, it monotonically increases as γ increases. These
results are consistent with Fig. 8.

APPENDIX C: ANALYTICAL EVALUATION OF THE CV
OF INTEREVENT TIMES FOR THE IND MODEL

In this section, we analytically examine the CV of IETs for
the IND model. In the IND model, events on an edge occur at

rate 2λh if both nodes are in state h, at rate λh + λ� if one node
is the h and the other node is in the � state, and at rate 2λ� if
both nodes are in the � state. Therefore, the PDF of IETs for
an edge is given by

f IND
edge(τ ) = 2λh p∗2

h

�IND
1

2λhe−2λhτ

+2(λh + λ�)p∗
h(1 − p∗

h)

�IND
1

(λh + λ�)e−(λh+λ� )τ

+2λ�(1 − p∗
h)2

�IND
1

2λ�e−2λ�τ , (C1)

where �IND
1 = 2λh p∗2

h + 2(λh + λ�)p∗
h(1 − p∗

h) + 2λ� p∗2
h .

The first two moments of f IND
edge(τ ) are given by

〈τ 〉edge ≡
∫ ∞

0
τ f IND

edgedτ = 1

�IND
1

(C2)
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and

〈τ 2〉edge ≡
∫ ∞

0
τ 2 f OR

edge(τ )dτ

= 2

�IND
1

[
p∗2

h

2λh
+ 2p∗

h(1 − p∗
h)

λh + λ�

+ (1 − p∗
h)2

2λ�

]
.

(C3)

By substituting Eqs. (C2) and (C3) into Eq. (1), we obtain

CVIND
edge =

√
1 + 2p∗

h

[
1 − (2 − γ )p∗

h + (1 − γ )p∗2
h

]
γ (1 + γ )

, (C4)

where CVIND
edge is the CV for the edge’s IETs for the IND

model.
The PDF for IETs on a node with k neighbors is given by

f IND
k (τ ) =

k∑
kh=0

(
k

kh

)
p∗kh

h (1 − p∗
h)k−kh

�IND
k

{p∗
h[λh(k + kh)

+ λ�(k − kh)]2e−[λh (k+kh )+λ�(k−kh )]τ +(1 − p∗
h)[λhkh

+ λ�(2k − kh)]2e−[λhkh+λ�(2k−kh )]τ }, (C5)

where �IND
k = 2k[λh p∗

h + λ�(1 − p∗
h)].

The first two moments of f IND
k (τ ) are given by

〈τ 〉k ≡
∫ ∞

0
τ fk (τ )dτ = 1

�IND
k

(C6)

and

〈τ 2〉k ≡
∫ ∞

0
τ 2 fk (τ )dτ

=
k∑

kh=0

(
k

kh

)
p∗kh

h (1 − p∗
h)k−kh

�IND
k

{
2p∗

h

λh(k + kh) + λ�(k − kh)
+ 2(1 − p∗

h)

λhkh + λ�(2k − kh)

}
. (C7)

By substituting Eqs. (C6) and (C7) into Eq. (1), we obtain the CV for node v as

CVIND
k =

√√√√4k[p∗
h + γ (1 − p∗

h)]
k∑

kh=0

(
k

kh

)
p∗kh

h (1 − p∗
h)k−kh

[
p∗

h

k + kh + γ (k − kh)
+ 1 − p∗

h

kh + γ (2k − kh)

]
− 1, (C8)

which generalizes Eq. (C4).
The behavior of Eq. (C8) with respect to γ is qualitatively the same as that of the original model. In other words, lim

γ→0

CVIND
k → ∞, lim

γ→1
CVIND

k = 1, and the CVIND
k monotonically decreases as γ increases, which are consistent with Fig. 9. The p∗

h

value that maximizes Eq. (C4) is given by

p∗
h = 2 − γ −

√
1 − γ + γ 2

3(1 − γ )
, (C9)

which is plotted as the solid line in Fig. 12(b). The numerically obtained p∗
h value that maximizes Eq. (C8) decreases as k

increases, and increases as γ increases [see Fig. 12(b)]. These results are consistent with Fig. 9.
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