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Statistics of relative velocity for particles settling under gravity in a turbulent flow
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We study the joint probability distributions of separation R and radial component of the relative velocity VR of
particles settling under gravity in a turbulent flow. We also obtain the moments of these distributions and analyze
their anisotropy using spherical harmonics. We find that the qualitative nature of the joint distributions remains
the same as no-gravity case. Distributions of VR for fixed values of R show a power-law dependence on VR for
a range of VR; the exponent of the power law depends on the gravity. Effects of gravity are also manifested in
the following ways: (a) Moments of the distributions are anisotropic; degree of anisotropy depends on particle’s
Stokes number, but does not depend on R for small values of R. (b) Mean velocity of collision between two
particles is decreased for particles having equal Stokes numbers but increased for particles having different
Stokes numbers. For the later, collision velocity is set by the difference in their settling velocities.
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I. INTRODUCTION

Small-sized heavy particles suspended in a turbulent flow
are found in many natural phenomena. Some of the examples
are dust storms, water droplets in clouds, and astrophysical
dust in the protoplanetary disk around a young star. Collisions
of these particles play an important role in many processes.
For instance, in clouds, small water droplets collide with each
other and may coalesce to form larger droplets. Understanding
this process of collision and coalescence is important to
understand the process of initiation of rain from warm clouds
[1–3]. The motion of these small droplets is determined by the
following two forces acting on them: (1) a hydrodynamic drag
force applied by the surrounding fluid; (2) an external force
such as gravity in the case of cloud droplets. If radius a of the
droplet is very small compared to the Kolmogorov dissipation
scale η of the flow and its density ρp is much larger than the
density ρ of underlying fluid, then the equation of motion of
such a droplet can be written as

d

dt
x = v ,

d

dt
v = 1

τp
[u(x, t ) − v] + gẑ. (1)

Here, x and v denote the position and velocity of a particle,
respectively. τp = (2ρp/9ρ)a2/ν is the characteristic response
time of the particle, here ν is the kinematic viscosity of the
fluid. g is the acceleration due to gravity and ẑ is the unit
vector along vertically downward direction. u(x, t ) is the flow
velocity at the position of particle. This model assumes that
fluid-inertia corrections are small and neglects the hydrody-

*akshayphy@gmail.com

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI. Funded
by Bibsam.

namic interaction between the particles. This model (1) also
neglects the history term present in the Maxey-Riley equation
[4]. Recent studies of Refs. [5,6] show that history term plays
an important role in the dynamics of heavy particles and its
effects depend on the density ratio ρp/ρ. This ratio is 1000
for water droplets in the air, for such a high value of density
ratio, the effects of history term are found to be very small
[6]. The inertia of the particle is measured in terms of Stokes
number St = τp/τη, where τη is the Kolmogorov timescale
of the turbulent flow. To measure the relative importance of
turbulence and gravity, we define Froude number Fr = uη

τηg ,
where uη = η/τη, zero gravity corresponds to Fr = ∞. For
cloud droplets, St and Fr depend on the mean rate of energy
dissipation per unit volume ε. Value of ε varies a lot in
clouds [7] and hence St and Fr can have different values
in different clouds. Typically, for 10 to 50 micrometer-sized
droplets St roughly lies between 0.1 to 2.5 and Fr may vary
from 0.05 to 0.3 [3,8]. Note that St and Fr appear by the
nondimensionalization of Eq. (1) by using η, τη, and uη.
Many studies use another dimensionless number called Rouse
number Ro = urms/(τpg) [9,10], where urms is the root-mean-
square (rms) speed of the flow. For a given value of Reynolds
number, Ro can be expressed in terms of St and Fr. In this
work, we keep the Reynolds number of the flow fixed and
vary St and Fr independently.

It is known that small particles cluster in turbulence due to
their inertia. Small scale clustering is measured in terms of the
probability P(R) of finding two particles within a separation
R. It is found that P(R) ∼ Rd2 as R → 0 [11], and d2 is called
the spatial correlation dimension. If d2 is smaller than the spa-
tial dimension d , more particles are found at small separation
compared to uniformly distributed particles. Inertial particles
can detach from the flow streamlines and nearby particles can
have high relative velocity; this is referred as sling effect [12].
This can be understood in terms of singularities in the velocity
field of the particles [13,14]. These singularities are called
caustics. Recently, it has been shown theoretically for smooth-
random flows [15,16] and in the direct numerical simulations
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(DNSs) of the turbulent flows [17,18] that the probability
distribution functions (PDFs) of the radial component of
relative velocity VR at small separation have a power-law tail.
The exponent of this power law is related to the phase-space
correlation dimension D2. It is also shown that there exists a
parameter z∗ such that the joint PDFs of separation R and VR

are independent of VR for VR � z∗R and are independent of R
for VR � z∗R [18]. Here, R and VR are nondimensionalized by
using η and uη, respectively. Parameter z∗ sets a velocity scale
for a given separation R and is often referred as the matching
scale [16]. References [15,16] give the following theoretical
expression for the joint PDF P (R,VR), for R < 1, obtained
for smooth random flows in the white noise limit:

P (R, |VR|) ∼ Rd−1

⎧⎨
⎩

RD2−d−1 for |VR| � z∗R,( |VR|
z∗

)D2−d−1
for z∗R < |VR| < z∗,

0 for |VR| > z∗.
(2)

Form of the joint distribution P (R, |VR|) agrees well with
the theoretical prediction (2) for particles suspended in a
turbulent flow [18]. Mean collision velocities of particles in
a polydisperse suspension are studied in [19]. It is found
that the collision velocities between different sized particles
can be much higher compared to collision velocities between
equal-sized particles.

Many studies have focused on clustering and relative ve-
locities of the particles in turbulent flows without gravity.
Relatively less is known about the effect of gravity on clus-
tering and statistics of the relative velocities of the particles.
For instance, it is not known how gravity affects the form
of the joint distribution P (R, |VR|) given in Eq. (2)? How
anisotropy of the system changes as a function of R and St?
How mean collision velocities of the particles are modified by
the gravity? This paper focuses on these questions.

Gravity and turbulence together can give rise to many
nontrivial phenomena in the dynamics of the heavy particles.
In the presence of turbulence, particles are found to settle with
a speed that is higher compared to their terminal speed in
still fluid [20–22]. Reduction of settling speed by turbulence
is also observed in the experiments [10]. Simulations with
nonlinear drag force on the particles show a similar reduction
in the settling speeds. This work considers only the linear
drag case (for which mostly enhancement is observed in
simulations), and does not address the issue of enhancement
vs hindering of settling by turbulence.

References [22–24] show that the presence of gravity
modifies the small scale clustering of heavy particles. This
modification depends on the values of St and Fr. For particles
having St < 1 clustering is reduced compared to no-gravity
case whereas for particles having St > 1 clustering is sig-
nificantly increased compared to no-gravity case. In a real
experiment, gravity is always present, hence, these results
can be used to understand the experimental observation of
particle clustering in turbulent flows [25–27]. It is argued that
modification of clustering happens because settling particles
sample the flow differently compared to particles advected
solely by turbulence.

Mean relative velocity of the particles having equal St is
found to be reduced by gravity [22,24]. References [24,28]

study the PDFs of relative velocity at small R in the presence
of gravity. These studies find that the PDFs remain non-
Gaussian, similar to the case when Fr = ∞ but, fluctuations
are reduced due to the presence of the gravity. Mean collision
rates of equal St particles are found to be reduced by gravity
[8,29,30]. This is due to the significant reduction of the
mean relative velocity. Anisotropy of the clustering and mean
relative velocity is analyzed in Ref. [24] by calculation of
the radial distribution function and mean relative velocity as
a function of R and angle θ between separation vector and
direction of gravity. Using spherical harmonic decomposition
of these quantities, it is shown that the anisotropy is significant
at small separation for large values of St. This analysis of
anisotropy is done for separations larger than η. Statistics
of relative velocities in bidisperse turbulent suspensions are
studied in Ref. [31]. It is found that gravity enhances the
relative velocities in vertical and horizontal directions. It is
shown that for small values of Fr, relative velocity is dom-
inated by differential settling but turbulence still plays an
important role.

As radii of droplets are always smaller than the dissipation
scale η, the separation between the droplets is also much
smaller than η when they collide. Therefore, we study the
relative velocities of particles for small values of separations.
In this paper, we focus on the joint PDF P (R, |VR|) and its
moments for different values of St and Fr. We use length scale
η and velocity scale uη to nondimensionalize separation R and
relative velocity VR, respectively. For separation, R < 1. We
show the following results:

(i) The joint PDF P (R, |VR|) is qualitatively similar to the
case of zero gravity; for both of these cases

(a) There exists a parameter z∗ such that at small R
the joint PDF is independent of VR for VR < z∗R, and is
independent of R for VR > z∗R.

(b) For a fixed R the PDF as a function of VR shows
a power-law range with exponent D2 − 4. Although, the
phase-space correlation dimension D2 itself is not the same
as the zero-gravity case.
(ii) The spatial clustering, described by the zeroth moment

of the joint PDF, is anisotropic, in a very special way. A
decomposition of the moment into spherical harmonics shows
that different order harmonics, for � = 0, 2, and 4, scale with
the same exponent d2 but the amplitudes depend on �.

(iii) Similar behavior is seen for the first moment of the
distribution, that determines the mean relative velocities.

(iv) We define collision velocities as the relative velocity
of two particles separated by the sum of their radii. The
mean and rms of collision velocities as a function of St1
and St2 change qualitatively from the zero-gravity case; in
particular the contours in the St1-St2 plane become parallel to
the diagonal as Fr decreases, i.e., the collision velocities are a
function of |St1-St2| alone.

(v) Furthermore, for particles with equal St, the mean
collision velocity decreases as Fr decreases, i.e., gravity in-
creases. This decrease is more pronounced at higher St than at
lower ones.

(vi) For St1 �= St2 the qualitative behavior is opposite: the
mean collision velocity increases as Fr decreases. In this case,
mean collision velocity is set by the difference in the settling
velocities.
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II. DIRECT NUMERICAL SIMULATION

The flow velocity u(x, t ) is determined by solving the
Navier-Stokes equation

∂

∂t
ρ + ∇ · (ρu) = 0, (3a)

ρ
D

Dt
u = −∇p + μ∇ · S + f . (3b)

Here D
Dt ≡ ∂t + u · ∇ is the Lagrangian derivative, p is

the pressure of the fluid, and ρ is its density as mentioned
above. The dynamic viscosity is denoted by μ ≡ ρν, and S is
the second-rank tensor with components Sk j ≡ ∂ku j + ∂ juk −
δ jk (2/3)∂kuk (Einstein summation convention). Here, ∂ku j are
the elements of the matrix A of fluid-velocity gradients. f
denotes the external force. To relate pressure p and density
ρ, we use the ideal gas equation of state with a constant speed
of sound cs.

To solve Eqs. (3) we use an open-source code called The
Pencil Code [32]. This code has been used earlier for the sim-
ilar studies of particle-laden turbulent flows in Refs. [18,33].
It uses a sixth-order finite-difference scheme to compute
space derivatives and a third-order Williamson-Runge-Kutta
[34] scheme for time evolution. We use periodic boundary
conditions in all three directions. A white-in-time, Gaussian,
forcing f is used that is concentrated on a shell of wave
number with radius kf in Fourier space [35]. Forcing term
is integrated by using the Euler-Marayuma scheme [36]. A
statistically stationary state is reached, where the average
energy injection by the external forcing f is balanced by the
average energy dissipation by viscous forces. The amplitude
of the external forcing is chosen such that the Mach number
Ma ≡ urms/cs is always less than 0.1, i.e., the flow is weakly
compressible, where urms =

√
〈u2〉 is the root-mean-squared

velocity of the flow. This weak compressibility has no im-
portant effect on our results; please see the discussion in
Ref. [18] (Sec. II and Appendix A) for further details. The
same code with similar setting has been used before to study
the scaling and intermittency in fluid and magnetohydrody-
namic turbulence [37–39]. Our simulations are performed in a
three-dimensional periodic box with sides Lx = Ly = 2π and
Lz = 4π , Lx, Ly, and Lz are the lengths of the box in x, y, and
z directions, respectively. This box is discretized in N equally
spaced grid points in each direction.

Settling particles going out of the domain from the bottom
of the box reenters from the top due to periodic boundary
condition. This can produce errors in the statistics measured
for the particles [24,28], if the time taken by the particle to
move a vertical distance Lz is smaller than the large eddy
turnover time of the flow Teddy. To avoid this, we should have
a box such that Lz/〈vz〉 > Teddy, where vz is the z component
of the particle’s velocity. In our simulations z is the direction
of gravity. Using the values of the parameters in Table I and
〈vz〉 from our simulations, we estimate that having Lz = 4π is
good enough for the values of St considered in this paper.

We introduce the particles into the simulation after the flow
has reached a statistically stationary state. Initially, particles
are uniformly distributed in the simulation domain with zero
initial velocities. To evolve positions and velocities of parti-
cles according to Eq. (1), we use a third-order Runge-Kutta

TABLE I. Parameters for our DNS runs with N3 collocation
points, Np is the number of particles. Further, ν is the kinematic
viscosity, ε is the mean rate of energy dissipation, η ≡ (ν3/ε)1/4

and τη = (ν/ε)1/4 are the Kolmogorov length scales and timescales.
These numbers are quoted in dimensionless units (see text). The
Reynolds number Reλ is based on the Taylor microscale λ, and Teddy

is large eddy turnover timescale of the flow (see text).

N ν Np Reλ ε η τη Teddy

512 5.0 × 10−4 107 90 3.25 × 10−3 1.4 × 10−2 0.39 0.86

scheme. To obtain the flow velocity at the positions of the
particles, we use a trilinear interpolation method.

Parameters of the simulations are given in Table I. ε ≡ 2ν

is the mean rate of energy dissipation per unit volume, where
the enstrophy  ≡ 〈|ω|2〉, and ω ≡ ∇ × u is the vorticity.
Taylor microscale Reynolds number is defined as Reλ ≡
(urmsλ)/ν, where urms is the root-mean-square velocity of the
flow averaged over the whole domain, λ ≡ √

(5u2
rms)/(2)

is the Taylor microscale of the flow, and ν is the kinematic
viscosity. The Kolmogorov length is defined as η ≡ (ν3/ε)1/4,
the characteristic timescale of dissipation is given by τη =
(ν/ε)1/2, and uη ≡ η/τη is the characteristic velocity scale at
the dissipation length scale. The large eddy turnover time is
given by Teddy ≡ 1/(kf urms). In the rest of this paper, unless
otherwise stated, we use η, τη, and uη to nondimensionalize
length, time, and velocity, respectively.

III. RESULTS

We compute the joint PDFs P (R, |VR|) and its pth moments
defined as

mp(R) =
∫

|VR|pP (R, |VR|)d|VR|. (4)

Here, R and VR are nondimensionalized by scales η and uη.
m0(R) measures the number of particle pairs having separation
between R and R + dR. If there is no clustering m0(R) ∼ R2 in
three dimensions. We define Vn as |VR| when two particles are
moving toward each other (VR < 0) and separation R between
their center of masses is equal to a1 + a2, where a1 and a2

are the radii of two particles nondimensionalized by η. Please
note that the actual parameters that characterize the particles
are St1 and St2. We fix the density ratio ρp/ρ = 103 (which
is the case for the water droplets in the air) to get the radii a1

and a2 from St1 and St2, respectively.1 We call Vn the collision
velocity and consider it as a proxy for actual collision velocity.
Mean of Vn is defined as

〈Vn〉 =
∫ 0
−∞ |VR|P (R, |VR|)dVR∫ 0

−∞ P (R, |VR|)dVR

|R=a1+a2 . (5)

A. Real space clustering

Figure 1(a) shows plots of m0(R)/R2 as a function of R
for St = 3.02 and three different values of Fr. We observe that

1Radius of the particles is given by a/η =
√

9
2

St
ρp/ρ

.
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FIG. 1. (a) m0(R)/R2 as a function of R for St = 3.02 and three
different values of Fr. (b) Real space correlation dimension d2 as a
function of St for three different values of Fr.

m0(R) has a power-law dependence on R with exponent equals
to d2 − 1. For Fr = ∞ data show no clustering as m0(R)/R2

is independent of R. We observe that for the same St but
Fr = 0.3, and 0.1 there is a significant amount of clustering.
In Fig. 1(b), we plot real space correlation dimension d2 as a
function of St for three different values of Fr. We find that for
Fr = 0.1 and 0.3 and St > 1, d2 is small compared to Fr = ∞.
This implies that the settling enhances the clustering for St >

1 for the values of Fr considered here. This is consistent with
the results of Ref. [22]. We also observe that for Fr = 0.1 and
0.3, d2 becomes constant for large values of St. This indicates
that the clustering does not depend on St for large values
of St; this is consistent with the experimental observation
of Refs. [25,26]. For the range of St and Fr studied here,
d2 remains less than d , hence, the phase-space correlation
dimension D2 = d2.

B. Joint distribution of R and VR

Figure 2(a) shows the joint distribution P (R, |VR|)/R2 for
St = 2.11 and Fr = 0.1. The dashed blue line shows |VR| =
z∗R, where z∗ � 0.1 is found by fitting a line to the data.
We find that the value of z∗ does not depend much on St;
this is consistent with the results of [33]. We also observe

FIG. 2. (a) Contour plots of log10 (P (R,VR )/R2) for St = 2.11
and Fr = 0.1. (b) P (R,VR)/R2 for R = 0.1, St = 2.11, plotted for
three different values of Fr. Solid lines in (b) have slopes equal to
D2 − 4.

that z∗ has a very weak dependence on Fr but, we do not
have many values of Fr to comment on this dependence. We
observe that for |VR| < z∗R, contour lines are vertical, which
implies that the distribution depends only on the separation
R. This part of the distribution is produced by those pairs
of particles whose relative velocity smoothly goes to zero
as R → 0 [16]. For |VR| > z∗R contour lines are horizontal,
implying that it depends only on |VR| in this regime. This
part of the distribution is produced when particles detach
from the flow and their relative velocity remains finite as
R → 0 [16]. Similar nature of the distributions P (R, |VR|) is
observed for the zero-gravity (Fr = ∞) case in Refs. [18,33].
In Fig. 2(b), we plot the distribution P (R,VR) for R = 0.1,
St = 2.4, and for three different values of Fr. We find that
same as no-gravity case distributions have a power-law tail
with scaling exponent D2 − 4. As D2 changes with Fr (see
Fig. 1), values of scaling exponents also change. Observe that
as we decrease Fr, power-law tails of the distributions become
steeper. This implies that the mean and rms values of |VR| also
decrease as gravity increases.

To understand collisions of particles, one would like to
know the distribution of VR at R = 2a, where a is the radius
of the particle. For a given value of St, the radius depends
on the density ratio ρp/ρ (as described at the beginning of

033102-4



STATISTICS OF RELATIVE VELOCITY FOR PARTICLES … PHYSICAL REVIEW E 101, 033102 (2020)

FIG. 3. (a) Zeroth moment as a function of cos (θ ) for R = 0.5 normalized by its average over cos (θ ) for Fr = 0.1 and four different values
of St. (b) m�

0 for � = 0, 2, and 4 plotted as a function of R for St = 3.02. (c) Measure of anisotropy m2
0/m0

0 plotted as function of R for Fr = 0.1
and four different values of St.

Sec. III). For example, for St = 2.11 and ρp/ρ = 103, value
of a/η is roughly 0.1, hence data for R < 0.1 in Fig. 2(a) are
irrelevant for this density ratio. For a different value of ρp/ρ

and the same value of St, one would need the distribution at a
different value of R, therefore, covering a range of R is useful
to know the statistics of VR(R = 2a) for a range of ρp/ρ.

C. Effect of anisotropy

The above calculations do not take into account the
anisotropy due to the presence of gravity. To compute the
anisotropic contributions, we can obtain the joint distribution
P (R, |VR|, cos(θ )), where θ is the angle between R and direc-
tion of gravity ẑ. We compute the moments mp(R, cos (θ )) of
this distribution and use spherical harmonics decomposition.
A function f (R, θ, φ) that depends on spherical coordinates R,
θ , and φ can be expressed as a linear combination of spherical
harmonics Y m

� ( cos(θ ), φ) as

f (R, θ, φ) =
∞∑

�=0

�∑
m=−�

f m
� (R)Y m

� (cos(θ ), φ). (6)

As there is no dependence on the azimuthal angle φ in our
system, only m = 0 modes are present. We can write

mp(R, cos(θ )) =
∑

�

m�
p(R)P�(cos (θ )), (7)

where P�(x) is the Legendre polynomial of order �. As
mp(R, cos(θ )) is a symmetric function of cos(θ ), all coeffi-
cients m�

p(R) for odd values of � vanish.

m0(R, cos(θ )) is plotted in Fig. 3(a) for Fr = 0.1 and four
different values of St, for R = 0.5. m0

0(R), m2
0(R), and m4

0(R)
are plotted in Fig. 3(b) for St = 3.02 and Fr = 0.1. We find
that m�

0(R) = C�Rζ� . Exponents ζ� are independent of � and
are equal to d2 whereas the coefficients C� are zero for odd �

and decrease with � for even �.
To measure the degree of anisotropy, we plot m2

0/m0
0 as

a function of R for different values of St in Fig. 3(c). We
observe that this ratio does not depend on R for the range of
R shown here. This is because both m2

0 and m0
0 scale with the

same power as a function of R. We also find that anisotropy
increases with increasing St.

In Fig. 4, we repeat this analysis for m1(R, cos(θ )).
Figure 4(b) shows plots for m0

1 and m2
1 as a function of R

for St = 3.03 and Fr = 0.1. Both of these coefficients show a
power-law behavior with roughly the same exponent. This is
more clear from the plots of m2

1/m0
1 as a function of R shown

in Fig. 4(c). It can be seen that the curves for higher values of
St are not constant as a function of R, but dependence is very
weak.

D. Mean collision velocity

The mean rate of collision depends on the relative veloc-
ity of particles when the separation between their center of
masses is equal to the sum of their radii. We define this as
collision velocity Vn [see Eq. (5) and text before it]. In Fig. 5
we plot the mean of Vn as a function of St1 and St2, for
Fr = 0.3, 0.1, and ∞. We observe that the qualitative nature
of these plots changes due to gravity. Along the diagonal

FIG. 4. (a) First moment as a function of cos (θ ) for R = 0.5 normalized by its average over cos (θ ) for Fr = 0.1 and four different values
of St. (b) m�

1 for � = 0 and 2 plotted as a function of R for St = 3.02. (c) Measure of anisotropy m2
1/m0

1 plotted as function of R for Fr = 0.1
and four different values of St.
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FIG. 5. Mean Vn plotted as a function of St1 and St2, for Fr = 0.1 (a), Fr = 0.3 (b), and Fr = ∞ (c).

St1 = St2, values for nonzero gravity are smaller compared
to no-gravity case. Away from diagonal for different sized
particles mean of Vn becomes a function of |St1-St2| for
the settling particles. We also notice that values for settling
particles away from the diagonal are much higher compared
to particles with Fr = ∞.

To analyze it more quantitatively, we plot 〈Vn〉 for St1 =
St2 = St in Fig. 6(a); here 〈. . .〉 denotes the mean. We observe
that as Fr decreases, 〈Vn〉 decreases. In Fig. 6(b) we plot 〈Vn〉
as a function of St2 for St1 = 0.1. In this case, we find that
〈Vn〉 increases significantly as Fr is decreased. Solid lines in
this plot show the 〈Vn〉 for particles settling under gravity in a
fluid at rest.

FIG. 6. Mean of Vn at R = a1 + a2 for St1 = St2 (top) and for
St1 = 0.1 as a function of St2 (bottom), for different values of Fr.

IV. CONCLUSIONS

We have studied the effect of gravity on the relative veloc-
ities of particles suspended in turbulent flow by using direct
numerical simulations. We explored a range of St and Fr that
is relevant for small droplets in clouds. Our results show that
joint PDFs of R and |VR| have a form that is qualitatively
similar to the one obtained without gravity. It is shown that
for separations smaller than the Kolmogorov scale η (R < 1
in nondimensional units), there exist a scale z∗ such that joint
PDF is independent of |VR| for |VR| < z∗R, and is independent
of R for |VR| > z∗R. We also show that PDFs of |VR| for a
fixed value of R scales as |VR|D2−d−1 for some range of |VR|.
The phase-space correlation dimension D2 that measures the
clustering of the particles in position-velocity phase space is
modified by the presence of gravity. For St > 1, D2 has a
smaller value for Fr = 0.3 and 0.1 compared to D2 for Fr =
∞. This implies that the position- and phase-space clustering
is increased by the gravity for St > 1.

We compute the moments of these joint PDFs of R and
|VR| as a function of R and angle θ between the separation
vector R and the direction of gravity. We showed that the
moments depend on the cos (θ ) for a constant value of R.
This indicates anisotropy in the system due to the presence
of gravity. To characterize this anisotropy, we use a spherical
harmonic decomposition and compute coefficients of order
� = 0, 2, and 4. We found that all these coefficients have a
power-law dependence on R. Exponents of the power law are
found to be the same for all values of � that can be obtained
for zeroth and first order moments. We define the degree of
anisotropy as the ratio of � = 2 and 0 coefficients. As both
the coefficients scale with the same exponent, the degree of
anisotropy is independent of R, for R < 1. A similar analysis
of anisotropy is done in Ref. [24] for R > 1. This study shows
that for larger R, the degree of anisotropy depends on R and
goes to 0 for very large values of R.

We define the velocity of collision Vn as the radial compo-
nent of the relative velocity of two particles separated by the
sum of their radii, when two particles are approaching each
other. We calculated the mean of Vn as a function of St1 and St2
and found that it changes qualitatively from the zero-gravity
case. Due to the presence of gravity, the mean of Vn becomes
a function of |St1-St2| alone. Furthermore, for particles with
equal St, mean Vn decreases as Fr decreases, i.e., gravity
increases. This decrease is more pronounced at higher St than
at lower ones. For particles having different values of St, the

033102-6



STATISTICS OF RELATIVE VELOCITY FOR PARTICLES … PHYSICAL REVIEW E 101, 033102 (2020)

qualitative behavior is opposite: the mean collision velocity
increases as Fr decreases. For St1 �= St2 collision velocity is
determined by the difference in the settling velocities of two
particles.

Joint PDFs of R and |VR| in the presence of gravity are
studied in this paper. References [24,28] have studied the
PDFs of VR for small values of R, but the power-law nature of
the PDFs is not shown. Real space correlation dimension d2

for settling particles is studied in Ref. [22]. This study does not
take into account the anisotropy due to the presence of gravity.
Our study shows that the scaling exponents d2 for anisotropic
contributions are the same, but the amplitudes are different.
Our results also show that gravity can have a significant effect
on the collision velocities of particles having St between 0.5

and 3 and hence should be taken into account in the studies
relevant for cloud droplets in this range of St.
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