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Semi-Lagrangian lattice Boltzmann model for compressible flows on unstructured meshes
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Compressible lattice Boltzmann model on standard lattices [M. H. Saadat, F. Bösch, and I. V. Karlin, Phys.
Rev. E 99, 013306 (2019).] is extended to deal with complex flows on unstructured grid. Semi-Lagrangian
propagation [A. Krämer et al., Phys. Rev. E 95, 023305 (2017).] is performed on an unstructured second-order
accurate finite-element mesh and a consistent wall boundary condition is implemented which makes it possible to
simulate compressible flows over complex geometries. The model is validated through simulation of Sod shock
tube, subsonic and supersonic flow over NACA0012 airfoil and shock-vortex interaction in Schardin’s problem.
Numerical results demonstrate that the present model on standard lattices is able to simulate compressible flows
involving shock waves on unstructured meshes with good accuracy and without using any artificial dissipation
or limiter.
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I. INTRODUCTION

Lattice Boltzmann method (LBM) [1,2] as a kinetic theory
approach to computational fluid dynamics (CFD) is now a
well-established tool for simulation of complex fluid flows
ranging from turbulence [3,4] and multiphase [5] and mul-
ticomponent flows [6] to rarefied gas flows [7], magnetohy-
drodynamics [8], relativistic hydrodynamics [9], and others.
In the LBM, populations fi(x, t ) associated with a set of
discrete velocities C = {ci, i = 0, . . . , Q − 1} are designed to
recover the governing equations of continuum mechanics in
the hydrodynamic limit. The evolution of populations is based
on simple rules of propagation along the discrete velocities
C and relaxation to a local equilibrium. This makes the
LBM a simple and efficient alternative for conventional CFD
solvers [10].

Despite these advantages, the most common LB models
used in the literature (i.e., standard lattices: the D2Q9 model
in two dimensions and D3Q27, D3Q19, and D3Q15 in three
dimensions) suffer from a limited Galilean invariance and lack
of isotropy at high-speed flows, which make their application
limited to low-speed incompressible flows. The number of
discrete velocities of the standard lattices is too low to repro-
duce all the moments required for obtaining the full compress-
ible Navier-Stokes-Fourier (NSF) equations [11]. Increasing
the number of discrete velocities and using high-order (multi-
speed) lattice models is a systematic approach to circumvent
these limitations and simulate high-speed compressible flows
[12–15]. However, apart from increased computational cost, a
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limited temperature range is another restriction of high-order
lattices [16]. Several models have also been proposed in the
literature based on standard lattices [17–21] for simulation of
compressible flows; however, to the best of our knowledge,
none of them were so far successful in simulating supersonic
flows involving shock waves.

Recently, we proposed an augmented LB model on stan-
dard lattices which can recover the full NSF equations with
adjustable Prandtl number and adiabatic exponent in the hy-
drodynamic limit [22]. This was achieved by incorporating
appropriate correction terms into the kinetic equations in
order to compensate the error terms associated with the low
symmetry of the standard lattices. It was shown that the
model is isotropic and Galilean invariant. The model was
further extended by the concept of the shifted lattices [23] and
successfully applied to subsonic and supersonic compressible
flows with shocks.

In this paper, we extend the model formulation to un-
structured finite-element mesh using a semi-Lagrangian prop-
agation scheme and introduce consistent wall boundary
conditions for the simulation of complex geometries. Simi-
larly to the standard LB, the semi-Lagrangian scheme follows
the characteristics curve of the LB equation backward in time
to find the departure point of each grid node. However, since
the propagation is performed on an arbitrary nonuniform grid,
interpolation is required to reconstruct the populations at the
departure points. Finite-element-based interpolation schemes
are good candidates as they allow to have body-conforming
meshes which give more flexibility in handling complex
geometries and are more efficient in capturing small scale
structure of the flow near the wall. Another advantage of the
semi-Lagrangian scheme is that the time step can be chosen
arbitrarily and it remains stable at large Courant-Friedrichs-
Lewy (CFL) numbers. This is at variance to many other
off-lattice schemes (such as finite-difference or finite-volume
LB schemes) which operate at restricted CFL number due
to explicit time integration, see e.g., Ref. [24]. Note that
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finite-element-based semi-Lagrangian scheme has success-
fully been applied to incompressible LB models [25,26]. Here
we apply the semi-Lagrangian scheme with second-order
accurate finite-element interpolation to the compressible LB
model [22] to test its capabilities for simulation of compress-
ible flows on unstructured grid.

The outline of the paper is as follows: The augmented LB
model is reviewed in Sec. II for the sake of completeness.
Detailed numerical implementation of the model on unstruc-
tured mesh and the consistent wall boundary conditions are
presented in Sec. III. In Sec. IV, the model is validated
through simulation of several benchmark test cases. Finally,
conclusions are drawn in Sec. V.

II. MODEL DESCRIPTION

The kinetic equations of the compressible LB model
with variable Prandtl number and adiabatic exponent are as
follows [22]:

fi(x, t ) − fi(x − viδt, t − δt ) = ω( f eq
i − fi ) + δtφi, (1)

gi(x, t ) − gi(x − viδt, t − δt ) = ω(geq
i − gi )

+ (ω1 − ω)(g∗
i − gi ), (2)

where φi are correction terms responsible for canceling out the
spurious terms in the momentum equation, resulting from lack
of isotropy of the standard lattices, g∗

i is a quasiequilibrium
population, and f eq

i , geq
i are local equilibria which satisfy the

local conservation laws for the density ρ, momentum ρu, and
total energy ρE ,

Q−1∑
i=0

{1, vi} fi =
Q−1∑
i=0

{1, vi} f eq
i = {ρ, ρu}, (3)

Q−1∑
i=0

gi =
Q−1∑
i=0

geq
i = 2ρE . (4)

The temperature is defined by

T = (1/Cv )(E − u2/2), (5)

where Cv is the specific heat of ideal gas at constant volume.
The relaxation parameters ω and ω1 are related to the dynamic
viscosity μ and thermal conductivity κ ,

μ =
(

1

ω
− 1

2

)
ρT δt, (6)

κ = Cp

(
1

ω1
− 1

2

)
ρT δt . (7)

Below a system of units is used where the universal gas
constant is set to one, R = 1. Consequently, Cp = Cv + 1 is
the specific heat at constant pressure and the Prandtl number
is Pr = Cpμ/κ; γ = Cp/Cv is the adiabatic exponent which
can be freely adjusted.

Using the concept of shifted lattices [23], the discrete
velocities vi are written in a reference frame moving with a
constant velocity U ,

vi = ci + U . (8)

Here, we use U = (U, 0) (moving reference frame in the x
direction). In this way, deviations in the pertinent higher-order
moments are minimized whenever the flow velocity is around

U [see Eq. (25) below] and that in turn can increase the
operating range of the model in terms of flow velocity. Further
details on shifted lattices can be found in Ref. [23].

For standard set of discrete velocities, Q = 9 in D = 2,

ci = (cix, ciy ), i = 0, . . . , Q − 1; ciα ∈ {−1, 0,+1},
(9)

the equilibrium f populations can be in a product form as

f eq
i = ρ	cix 	ciy , (10)

where

	−1 = −(uα − Uα ) + (uα − Uα )2 + T

2
, (11)

	0 = 1 − [(uα − Uα )2 + T ], (12)

	+1 = (uα − Uα ) + (uα − Uα )2 + T

2
, (13)

and α = x, y.
The populations geq

i , g∗
i are constructed using the following

general form:

G(0,0) = M0(1 − U 2 − T + 2T 2) + Mx2U (1 − T )

− Mxx
1

2
(1 + T ) + Myy

1

2
(2U 2 − 1 − T ), (14)

G(σ,0) = M0

(
U 2

2
−σ

U

2
+1

2
T − T 2

)
− Mx

(
U − σ

2

)
(1 − T )

+ Mxx
1

4
(1 + T ) + Myy

1

4
(−2U 2 + 2σU + T − 1),

(15)

G(0,λ) = M0

(
T

2
− T 2

)
+ Myλ

(
1

2
− U 2

2
− T

2

)
+ MxUT

− Mxx
1

4
(1 − T ) + Mxyλ(U )

+ Myy
1

2

(
1

2
− U 2 + T

2

)
, (16)

G(σ,λ) = M0

(
−T

4
+ T 2

2

)
+ MxT

(
−U

2
+ σ

1

4

)

+ My

[
λ

4
(U 2 + T − σU )

]
+ Mxx

1

8
(1 − T )

+ Mxy

(
σλ

1

4
− λ

U

2

)

+ Myy
1

2

(
U 2

2
− σ

U

2
+ 1 − T

4

)
, (17)

where σ, λ = {+1,−1} and the two indices are identified with
the components of the discrete velocity vectors G(cix,ciy ) and,
thus, enumerate all nine populations. The moments required
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TABLE I. Moments needed for the computation of geq
i and g∗

i

[see Eq. (9) for the nomenclature of discrete speeds].

Gi M0 Mα Mαβ

geq
i 2ρE qeq

α Req
αβ

g∗
i 2ρE q∗

α Req
αβ

for the computations are provided in Table I and defined as

qeq
α =

Q−1∑
i=0

viαgeq
i = 2ρuα (E + T ), (18)

Req
αβ =

Q−1∑
i=0

viαviβgeq
i = 2ρE (T δαβ + uαuβ )

+ 2ρT (T δαβ + 2uαuβ ), (19)

q∗
α =

Q−1∑
i=0

viαg∗
i = qeq

α + 2uβ

(
Pαβ − Peq

αβ

)
, (20)

Peq
αβ =

Q−1∑
i=0

viαviβ f eq
i = ρuαuβ + ρT δαβ. (21)

Finally, the correction terms φi can be computed as [22]

φi = AiαXα, (22)

where

Xα = −∂β

[(
μ

ρT

)
∂γ Q′

αβγ

]
, (23)

Aiα = ciα − 1
2 ciαc2

i , (24)

and Q′
αβγ is the deviation term in the third-order equilibrium

moment,

Q′
αβγ =

{
ρ(uα − Uα )(1 − 3T ) − ρ(uα − Uα )3, if α=β =γ ,

0, if α �= β, or α �= γ , or β �= γ .

(25)

In general, large magnitude of error terms (23) may re-
sult in numerical instability and therefore, it is necessary
to employ appropriate shifted velocity U , for the simulation
of supersonic flows. Thus, the presence of flow dependent
correction terms limits the robustness of the present model.
Finally, we note that while the two-dimensional D2Q9 lattice
is used for the sake of presentation, all the above can be
applied to the three-dimensional lattice D3Q27.

Hydrodynamic limit

Using the Chapman-Enskog analysis, it can be shown
that the kinetic equations (1) and (2) recover the full NSF
equations in the hydrodynamic limit [22],

∂tρ + ∂α (ρuα ) = 0, (26)

ρ∂t uα + ρuβ∂βuα = −∂α p − ∂β�αβ, (27)

ρCv∂t T + ρuα∂αT = − p∂αuα − �αβ∂αuβ

− ∂α (−κ∂αT ), (28)

FIG. 1. Schematic of a second-order finite-element mesh, the
semi-Lagrangian propagation along the discrete velocity vi and
mapping from the global coordinate (x, y) to local coordinate (ξ, η).

where p = ρT is the pressure, D is the dimension, and �αβ is
the viscous stress tensor defined as

�αβ = −μ

[
Sαβ − 2

D
∂γ uγ δαβ

]
+ ζ∂γ uγ δαβ, (29)

with the strain rate tensor,

Sαβ = ∂αuβ + ∂βuα, (30)

and the bulk viscosity given by

ζ =
(

1

Cv

− 2

D

)
μ. (31)

We shall now proceed with the numerical implementation
of the model.

III. NUMERICAL IMPLEMENTATION

A. Semi-Lagrangian propagation on an unstructured mesh

The semi-Lagrangian propagation is a practical generaliza-
tion of standard LB propagation, which removes the restric-
tion related to the regular lattice by performing interpolation
in order to find the solution at the departure points [25].
Here we employ the second-order finite-element interpolation
scheme to reconstruct solution at the departure points. An
example of a semi-Lagrangian propagation on a second-order
finite-element mesh with nine collocation points is presented
in Fig. 1. It has been shown that this type of reconstruction
is less dissipative compared to other off-lattice schemes [25]
and also it has been applied successfully to LB for simulation
of incompressible turbulent flows [26].

The semi-Lagrangian propagation at the departure point of
characteristic lines x − viδt is then written as

fi(x, t ) = fi(x − viδt, t − δt ) =
9∑

s=1

fi(ξs, t − δt )Ns(ξdp),

(32)

where Ns(ξdp) denotes the values of the shape functions, writ-
ten in the local coordinate system ξ = (ξ, η), (−1 � ξ, η �
1), at the departure point (red square in Fig. 1), and s = 9 is
number of collocation points. Here the second-order quadratic
shape functions are used as follows [27]:

N1 = 1
4ξη(ξ − 1)(η − 1), N2 = 1

4ξη(ξ + 1)(η − 1), (33)

N3 = 1
4ξη(ξ + 1)(η + 1), N4 = 1

4ξη(ξ − 1)(η + 1), (34)

N5 = 1
2η(1 − ξ 2)(η − 1), N6 = 1

2ξ (ξ + 1)(1 − η2), (35)
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N7 = 1
2η(1 − ξ 2)(η + 1), N8 = 1

2ξ (ξ − 1)(1 − η2), (36)

N9 = (1 − ξ 2)(1 − η2). (37)

Therefore, semi-Lagrangian propagation on unstructured
finite-element mesh requires two steps: First, computing the
local coordinates of the departure point ξdp (see Fig. 1)
which, for quadrilateral elements, involves solving a nonlinear
system of equations resulting from

xdp =
4∑

s=1

xsNs(ξdp), (38)

where in order to simplify the computation, four vertices are
used to define shape functions,

N1 = 1
4 (1 − ξ )(1 − η), N2 = 1

4 (1 + ξ )(1 − η), (39)

N3 = 1
4 (1 + ξ )(1 + η), N4 = 1

4 (1 − ξ )(1 + η). (40)

Second, the values of the populations at the departure point
are computed by means of the values of the populations at
collocation points (red circles) using Eq. (32).

After the propagation, the correction terms φi are obtained
using (22). However, the computation of correction terms
requires the knowledge of spatial gradients for deviation terms
(25). This is done using the finite-element formula for the
first-order derivative. For a generic variable Q, we can write

∂xQ = J−1
∑

s

Qs∂ξNs, (41)

where Qs are the values of Q at collocation points and
J−1 is the inverse of the Jacobian matrix of transformation
computed with

J−1 = 1

det J

[
∂ηy −∂ξ y

−∂ηx ∂ξ x

]
(42)

and

det J = ∂ξ x∂ηy − ∂ξ y∂ηx (43)

is the determinant of the Jacobian matrix. The metrics of trans-
formation ∂ξ x, ∂ηx, ∂ξ y, ∂ηy are computed with the following
formula:

∂ξx =
∑

s

xs∂ξNs. (44)

Note that the nodes on the element edges are assigned to the
element with the larger area.

Finally, the postcollision populations are computed in the
same way as in the standard LB method.

B. Wall boundary conditions

Semi-Lagrangian propagation on unstructured grid makes
it possible to employ body-fitted mesh and simulate complex
geometries. Therefore, an appropriate wall boundary condi-
tion (BC) is required. Here we follow the approach proposed
by Ref. [28,29] and replace the missing populations during
propagation, with the following expression:

f miss
i = f eq

i (ρtgt, utgt, Ttgt )

+ δt f (1)
i (ρtgt, utgt, Ttgt,∇utgt,∇Ttgt ), (45)

TABLE II. Moments needed for the computation of f (1)
i and g(1)

i .

Gi M0 Mα Mαβ

f (1)
i 0 0 P(1)

αβ

g(1)
i 0 q(1)

α R(1)
αβ

gmiss
i = geq

i (ρtgt, utgt, Ttgt )

+ δtg(1)
i (ρtgt, utgt, Ttgt,∇utgt,∇Ttgt ), (46)

where f eq
i , geq

i are equilibrium parts computed from (10) and
(14) to (17); f (1)

i , g(1)
i are nonequilibrium parts; and ρtgt,

utgt, and Ttgt are target values which need to be specified.
The nonequilibrium parts are obtained based on the Grad’s
approximation and using the general formula (14) to (17) with
the nonequilibrium moments given in Table II [14,30]

P(1)
αβ = − 1

ω
ρT

(
Sαβ − 1

Cv

∂γ uγ δαβ

)
, (47)

q(1)
α = − 2

ω1
ρCpT ∂αT + 2uβP(1)

αβ , (48)

R(1)
αβ = − 2

ω1
ρT [Sαβ (E + 2T ) + uα∂βE + uβ∂αE ], (49)

where Sαβ is the strain rate tensor.
For computing target values, if missing populations belong

to points on the wall (black circles in Fig. 2), target velocities
are zero, utgt = 0 and target density and temperature (for
adiabatic wall) are obtained by setting

∂ρ

∂n

∣∣∣∣
wall

= 0, (50)

∂T

∂n

∣∣∣∣
wall

= 0, (51)

where n is the normal direction to the wall boundary ∂�.
Given the normal direction n, its end point B and considering
the distance from A to B as ||n|| = δt , the values of density
and temperature at B can be evaluated using a finite-element
interpolation. For example for the density, we can write

ρB =
9∑

s=1

ρsNs, (52)

FIG. 2. Schematic representation of the wall boundary condition
implementation.
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TABLE III. Accuracy test for the propagation of density
perturbation.

Element size (�x/Lx) L∞ error Order

0.1 0.033958 —
0.05 0.010144 1.75
0.025 0.002953 1.78
0.0125 0.000841 1.82

where Ns are shape functions and ρs are the magnitude of
density at nine collocation points (circles in Fig. 2). Once ρB is
found, the first-order approximation for the normal derivative
is assumed,

∂ρ

∂n

∣∣∣∣
wall

= ρB − ρA

||n|| = 0. (53)

Therefore, the target value can be approximated as

ρtgt = ρA = ρB. (54)

It is important to note that if missing populations belong to
points which do not lie on the wall boundaries (red circles in
Fig. 2), the local quantities of the previous time step are used
as target values.

The evaluation of spatial gradients in nonequilibrium
moments is performed using (41). It was demonstrated in
Ref. [29] that the first-order accurate evaluation of spatial
derivatives is sufficient.

IV. RESULTS

In this section, the model presented above is validated
numerically through simulation of four benchmark cases. All
simulations are performed with γ = 1.4, Pr = 0.71, the D2Q9
lattice model, and adiabatic wall assumption. The time step
used in this study is δt = δxmin/1.5, which corresponds to the
CFL = max |vi|δt

δxmin
= 0.66, where δxmin is the minimum spacing

between any two points of the computational mesh.

A. Accuracy test

The smooth density propagation [31] is solved in order to
test the accuracy of the present model on unstructured mesh.
The initial condition of the flow field is given by

ρ = ρref + 0.2sin(2πx/Lx )sin(2πy/Ly),

u = Ma
√

γ Tref ,

v = 0,

T = ρref Tref/ρ,

with the domain size Lx = Ly = 8000, reference density
ρref = 1, reference temperature Tref = 0.2, and Ma = 0.2. We
compute the solution after two periods of propagation in
order to evaluate the convergence order of the scheme using
four different uniform grids and based on the L∞ error of
density. As shown in Table III, the accuracy in space is slightly
below second order. This is consistent with previous results on
semi-Lagrangian LB for incompressible flows as reported in
Refs. [25,26].

x/Lx

ρ

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1
Present
Exact

(a)

x/Lx

u*

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Present
Exact

(b)

FIG. 3. Sod shock tube simulation results at nondimensional
time t∗ = 0.2: (a) density and (b) reduced velocity. Symbols: present
model; line: exact solution.

B. Sod shock tube

The Sod shock tube problem [32] is a classical Riemann
problem to test the capability of the model when shock and
expansion waves are present in the flow field. The initial flow
field for this problem is given by

(ρ, ux, uy, p) =
{

(1.0, 0, 0, 0.2), x/Lx � 0.5,

(0.125, 0, 0, 0.02), x/Lx > 0.5,

where Lx = 20 is the domain length. A uniform grid with
400 × 5 elements is used with the viscosity μ = 0.0001.
Simulation results for the density and reduced velocity u∗ =
u/

√
TL (TL is temperature on the left side of tube) at nondi-

mensional time t∗ = t
√

TL/Lx = 0.2, are shown in Fig. 3. It is
observed that, apart from small oscillations, the results are in
excellent agreement with the exact solutions.
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FIG. 4. Second-order finite-element mesh (Mesh-1) used for the
simulation of subsonic flow over NACA0012 airfoil. Bottom is the
zoom near leading edge of the airfoil.

C. Subsonic flow over NACA0012 airfoil

This test case involves a subsonic flow over a NACA0012
airfoil at a Mach number Ma = u∞/

√
γ T∞ = 0.5, incoming

temperature T∞ = 0.2, an angle of attack of α = 0◦, and a
Reynolds number of Re = ρ∞u∞c/μ = 5000 based on the
chord length of the airfoil c. The simulation is performed
on an unstructured quadrilateral mesh with 43 235 elements
as shown in Fig. 4 (Mesh-1), where a layer of orthogonal
grid is used near the airfoil surface and anisotropic grid is
used elsewhere. The minimum size of the elements near the
airfoil surface δ/c ≈ 0.0015. In this case, the flow separation
occurs near the tailing edge, which causes the formation of
two small re circulation bubbles in the wake, as shown by
the Mach number contours in Fig. 5. Pressure coefficient
cp = (p − p∞)/(0.5ρ∞u2

∞) and skin friction coefficient c f =
τw/(0.5ρ∞u2

∞), where τw is the local wall shear stress, on the
airfoil surface are compared in Fig. 6 with the discontinuous
Galerkin (DG) solution of the compressible NS equations
[33]. Moreover, the comparison of the drag coefficient with
other numerical results is shown in Table IV. It can be
seen that the present results are in good agreement with all
reference data.

To further validate the solver, the numerical results com-
puted at angle of attack α = 2◦ are also compared in Fig. 7
with the reference solution reported in Ref. [34]. Note that in
this case the flow becomes unsteady in the wake.

Moreover, in order to investigate the effect of grid quality
on the solution, we repeat the simulation with another mesh,
but with irregular elements close to the airfoil surface, with

FIG. 5. Mach contour for subsonic flow over NACA0012 airfoil
at Ma = 0.5, Re = 5000, and α = 0◦. Bottom figure shows stream-
lines near trailing edge.

the same element size near the wall (δ/c ≈ 0.0015), as shown
in Fig. 8 (Mesh-2). The results obtained are shown in Fig. 7 in
comparison with the results of Mesh-1 and the reference solu-
tion [34]. It is observed that, the results are almost identical.
We can therefore conclude that in this case, the mesh quality
does not have significant effect on the results. However, the
effect of grid quality needs to be further investigated in prob-
lems with higher Reynolds number, as it might be necessary
to employ a high-quality orthogonal grid near the surface in
order to correctly capture the boundary layer.

D. Unsteady supersonic flow over NACA0012 airfoil

In order to test the capability of the present model in cap-
turing shock waves on unstructured mesh, the Mach number
of the previous setup was increased to Ma = 1.5 and the
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FIG. 6. Distribution of (a) pressure coefficient and (b) skin fric-
tion coefficient on the NACA0012 airfoil surface for subsonic flow
at Ma = 0.5, Re = 5000, and α = 0◦. Line: present model; symbols:
DG solver [33].

Reynolds number was set to Re = 10 000. As flow is super-
sonic, shifted lattice with Ux = 0.3 was used and unstructured
mesh with 143123 quadrilateral elements and minimum ele-
ment size of δ/c = 0.0015 was employed.

TABLE IV. Drag coefficient for subsonic flow over NACA0012
airfoil at Ma = 0.5, Re = 5000, and α = 0◦.

Method cd

Direct DG [33] 0.05543
Reconstructed DG [35] 0.05534
Spectral difference [36] 0.05476
Present 0.05568

FIG. 7. Distribution of (a) pressure coefficient and (b) skin fric-
tion coefficient on the NACA0012 airfoil surface for subsonic flow at
Ma = 0.5, Re = 5000, and α = 2◦. Lines: present model; symbols:
reference solution [34].

FIG. 8. Mesh-2 used for the simulation of subsonic flow over
NACA0012 airfoil.

023311-7



M. H. SAADAT, F. BÖSCH, AND I. V. KARLIN PHYSICAL REVIEW E 101, 023311 (2020)

FIG. 9. Temperature (top) and Mach number (bottom) contours
for supersonic flow over NACA0012 airfoil at Ma = 1.5, Re =
10 000.

Figure 9 shows the temperature and Mach contours. It is
observed that a bow shock is formed in front of the airfoil
and oblique shocks appear from the trailing edge. Moreover,
vortex shedding is started downstream, due to the shear layer
developing from the trailing edge boundary layer of the airfoil.
To quantify the results, in Fig. 10 the pressure coefficient
upstream, downstream, and on the airfoil surface is compared
to the numerical solution reported in Ref. [37] and also with
the solution of the entropic LBM (ELBM) with D2Q49 lattice
model [39]. Good agreement is observed and the present
method captures the pre- and postshock values and the shock
location with good accuracy.

E. Shock-vortex interaction in Schardin’s problem

Finally, the so called Schardin’s problem [38,40] is con-
sidered in which a planar shock wave impinges on a finite
wedge is reflected and diffracted. The impingement creates a
complex shock-shock and shock-vortex interaction [38]. This
test case shows the ability of the scheme in handling complex
geometries at high-speed flows. Here a shock Mach number
Mas = 1.34 is considered and the Reynolds number based on

FIG. 10. Pressure coefficient upstream, downstream and on the
NACA0012 airfoil surface for supersonic flow at Ma = 1.5, Re =
10 000. Line: present model with D2Q9 lattice; symbols: ELBM so-
lution with D2Q49 lattice; dashed line: results reported in Ref. [37].

wedge length L is set to Re = 2000. Further details on this
setup can be found in Ref. [38]. Moreover, shifted lattice with
Ux = 0.3 is used. Figure 11 shows the evolution of flow field
by plotting the density distribution over time. It is observed
that the traveling shock wave creates two vortices at the two
corners and then interacts with its mirrored counterpart and
refracts. Moreover, the time evolution of the position of the
triple points T1 and T2 (shown in Fig. 11), where the reflected
and the traveling shocks meet, is compared in Fig. 12 with the
experimental results [38] and numerical results of ELBM with
D2Q49 lattice model [14]. Once again, the results obtained
are in good agreement with those solutions, which shows the
accuracy of the present model.

V. CONCLUSIONS

We presented an extension of the compressible lattice
Boltzmann model on standard lattices [22] for the simulation
of compressible flows over complex geometries on unstruc-
tured mesh. The extension is based on the semi-Lagrangian
propagation on unstructured finite-element mesh and Grad’s
approximation for replacing missing populations near the
wall boundaries. The model was validated by simulating four
benchmark test cases, including Sod shock tube, subsonic or
supersonic flow over NACA0012 airfoil, and shock-vortex
interaction in Schardin’s problem. Some remarks about the
present study are as follows:

(i) It was shown that the results obtained with the present
model on standard lattice are in good agreement with the
available numerical and experimental results in the literature.

(ii) The present model with the help of shifted lattices can
successfully capture moderately supersonic shock waves on
anisotropic meshes without using any artificial dissipation or
limiters.

(iii) In this study, the simple BGK collision term was
used. It is, therefore, not surprising that in cases with strong
discontinuity or high Reynolds number, instability arises
at CFL = 1, i.e., dt = dxmin. Therefore, a CFL number of
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FIG. 11. Evolution of the density for the Schardin’s problem at
shock Mach number Mas = 1.34. T1 and T2 are triple points.

0.66 was chosen in order to increase the robustness of the
scheme. Nevertheless, this CFL number is still considerably
higher than those of many other off-lattice schemes (see, e.g.,

FIG. 12. Comparison of the position of triple points T1 and T2

for the Schardin’s problem. Squares: present model with D2Q9
lattice; dashed line: ELBM solution with D2Q49 lattice [14]; circles:
experiment [38].

Ref. [24]). Development of more advanced collision terms
for increasing the stability of the model is topic for future
research.

(iv) Employing a global constant time step based on the
minimum spacing in the whole domain is necessary for accu-
rate simulation of unsteady flows. However, it is not efficient
in coarse regions of domain and thus is not the best can-
didate for steady-state simulations. While numerous studies
have been done on application of local time stepping within
the framework of Eulerian methods, very limited number of
works can be found in the literature about adaptive time step-
ping in semi-Lagrangian scheme in general. Therefore, the
effect of using variable time-stepping scheme on the accuracy
and stability of the semi-Lagrangian scheme is not generally
known and needs to be further investigated. The application
of local adaptive time-stepping scheme for accelerating the
convergence rate of the steady-state solution will be the focus
of our future work.

(v) While the standard LB models with exact streaming
on regular space filling lattice have been shown to be highly
optimized in terms of computational efficiency, they face
with several drawbacks. Standard on-LB models need special
treatments such as grid refinement in order to reduce the
number of grid points needed in problems involving complex
geometries. On the other hand, the computational cost dra-
matically increases in the case of compressible flows, where
a higher-order lattice (like the D2Q25 or D2Q49 lattice mod-
els) along with a more sophisticated collision scheme (like
the entropic scheme) should be additionally employed for a
successful simulation [14]. Therefore, in general, we can say
that the computational overhead of performing interpolation
in the present model with the D2Q9 lattice model and the
BGK collision term is largely, if not fully, compensated by
the reduction in computational cost related to a smaller lattice
and a simpler collision term. Therefore, due to its relative
simplicity and efficiency compared to that of the standard LB
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with larger velocity sets, the present model can be useful to
simulate compressible flows involving moderate shock waves
on unstructured grids.

(vi) The present model is valid as long as correction
terms remain small, which can be achieved by choosing shift
velocity frame appropriately.

(vii) An extension to a moving mesh approach would
make the present model a suitable candidate for simula-
tion of flows with deformable moving bodies and fluid-solid
interaction applications. Extension of the model to three di-

mensions is, in principle, straightforward and the subject of
future effort.
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