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Concurrency and reachability in treelike temporal networks
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Network properties govern the rate and extent of various spreading processes, from simple contagions to
complex cascades. Recently, the analysis of spreading processes has been extended from static networks to
temporal networks, where nodes and links appear and disappear. We focus on the effects of accessibility, whether
there is a temporally consistent path from one node to another, and reachability, the density of the corresponding
accessibility graph representation of the temporal network. The level of reachability thus inherently limits the
possible extent of any spreading process on the temporal network. We study reachability in terms of the overall
levels of temporal concurrency between edges and the structural cohesion of the network agglomerating over all
edges. We use simulation results and develop heterogeneous mean-field model predictions for random networks
to better quantify how the properties of the underlying temporal network regulate reachability.
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I. INTRODUCTION

Social networks are woven together by temporal contacts
organized according to various structural details which to-
gether form the substrate of infectious dynamics, determining
the impacts of spreading diseases and viral information flows.
Compared to the extensive literature modeling spreading dy-
namics on static networks, we lack a thorough understanding
of the particular effects of the temporal properties of network
contacts. Meanwhile, recent studies have found that diverse
temporal contact features, such as distributions of intercontact
times, temporal correlation in intercontact times, and birth and
death of nodes and links, may have very different impacts on
the dynamics of spreading processes [1–8].

Concurrency, broadly defined as “relationships that overlap
in time” [9], is one of the key elements affecting the extent
and speed of disease spreading. Concurrency is a longstanding
concept in epidemiology and has been considered in diverse
contexts, including for understanding the epidemic potential
of HIV [9–12]. Some studies have applied the concept as
a property proportional to an average contact rate or an
average degree in unit time [11,12] or as a link density
of a reachable network converted from pair-to-pair contact
patterns [10]. In another recent study, concurrency was con-
sidered as the number of links of an individual in unit time
within a generative temporal activity model [13]. Whatever
the particular definition of concurrency, the general idea is that
increased concurrency increases the density of the effective
network structure over which an infection is transmitted,
resulting in a larger number of alternative paths between
nodes, thus increasing the potential for greater spread through
the population. As such, the general conclusion that higher
concurrency increases the potential for epidemic spread seems
to be trivial. However, the detailed mechanism of this in-
crease is important to understand and to quantify to assess

the impact of concurrency in a particular temporal network
setting.

Motivated by previous work [9], we consider the reachabil-
ity of the temporal contact network over which transmission
can occur. Reachability is the density of the accessibility
graph that includes an edge from node i to node j if and
only if there is a temporally consistent path originating at i
that can reach j in the underlying temporal contact network.
That is, reachability quantifies the maximum possible impact
of the infectious spreading by quantifying the fraction of
node pairs that can be accessible via temporally consistent
paths (see, e.g., [9,14–16]). Reachability is a useful metric not
only because it measures the maximal substrate of infectious
spreading, but also because it indicates how much temporal
continuity can be ignored when one uses an aggregated static
network to analyze infection dynamics [15]. The accessibility
of a directed node pair quantifies whether there is any path
along which a chain of edges can causally propagate the
infection. Notions of accessibility and reachability have been
suspected to be crucial elements for explaining the diversity of
possible epidemic outbreak sizes [17] and have been applied
to measure epidemic spreading potential of nodes in an animal
trade network [18]. Similarly, Williams and Musolesi [19]
applied a concept of reachability to measure the robustness of
spatiotemporal networks. By directly measuring the maximal
extent of temporally consistent paths, reachability controls the
maximal extent of any general spreading dynamics on the
temporal network, thus providing a benchmark for the overall
potential for infection.

To separate the influences of the temporal and structural
details, we focus as in [9] on two critical properties of the
temporal network: temporal concurrency and structural cohe-
sion. Temporal concurrency is defined here as the fraction
of pairs of links that overlap in time. Meanwhile, struc-
tural cohesion measures the effective connectedness in the
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underlying topology of the time-aggregated network, ignoring
the temporal details of the individual edges. A good measure
of structural cohesion should embody the notion that highly
cohesive networks should be difficult to separate, i.e., by
node or edge removal, into separate components. As such,
we employ the definition of structural cohesion as the average
number of node-independent paths between two nodes [20],
as applied to the network that includes all edges over the total
time period studied. We emphasize that structural cohesion
is more than a simple function of edge density; rather, it is
influenced by the organizational patterns of the connections.
In particular, one can observe different amounts of structural
cohesion even while keeping the total link density constant.

By deliberately separating the structural cohesion measure-
ment from that for temporal concurrency, we explore the role
of each and the interplay between them in affecting reachabil-
ity. Pairing numerical calculations with an approximate model
we develop here, we examine the roles of these temporal
network properties, observing in particular how structural
cohesion directly affects the description of the use of detours
to find temporally consistent paths between node pairs. Our
approximate model focuses on networks that are treelike in the
sense of having low structural cohesion, in an effort to develop
and assess the accuracy of model approximations for the level
of reachability in random temporal networks. (We refer the
interested reader to Ref. [21] for further discussion of what it
might mean for a network to be treelike in this sense.)

We start with detailed definitions of temporal concurrency
and structural cohesion in Sec. II A, continue to describe the
methods for constructing our synthetic and sampled empirical
networks in Secs. II B and II C, respectively, and provide
specific quantitative details for numerically computing reach-
ability in Sec. II D. We then develop our model approximation
for reachability in Sec. III. In Sec. IV we compare numerical
measurements and the approximation for reachability on syn-
thetic trees, Erdős-Rényi networks, and configuration model
realizations with exponential degree distributions, before con-
tinuing on to the empirical examples studied previously in
[9]. We conclude with a discussion in Sec. V about the effect
of temporal concurrency on the reachability and limits of
the presently developed approximation, along with possible
future directions for improvement.

II. METHOD

A. Structural cohesion and temporal concurrency

The ease with which disease spreads on a network is
typically increased in the presence of multiple diverse al-
ternative paths between nodes. In a temporal network with
many links overlapping in time, concurrency increases the
number of such paths that are temporally consistent, possibly
accelerating spread and increasing total outbreak size even
without increasing the number of contacts in the network. To
study the role of the structural and temporal connectedness,
we separately consider the impacts of the structural cohesion
and temporal concurrency, following the approach in [9]
(summarized above and presented in detail below).

We emphasize that throughout this study we distinguish
three related network representations describing the pattern of

FIG. 1. Schematics for establishing accessibility. (a) Contact net-
work: Each edge in the network of nodes {A, B,C, D} is denoted
by a start and end time, e.g., the contact between A and D starts at
t = 1 and continues for one time unit to t = 2. (b) Aggregated static
network: the static network representation aggregating temporal in-
formation. (c) Accessible network: the corresponding directed graph
of accessibility, demonstrating that asymmetric accessibilities (red
arrows) are possible. (d) Temporal contacts: the contacts represented
along a time axis. (e) Accessibility matrix: The accessibility matrix
between the four nodes, with the (i, j) element, indicates if j is
reachable from i.

interaction: (1) the full temporal contact network [Fig. 1(a)],
which we assume is undirected; (2) the static aggregated
network that includes all links that ever appear [Fig. 1(b)]; and
(3) the directed accessibility graph [Fig. 1(c)] that describes
the presence of temporally consistent paths between ordered
pairs of nodes.

To measure the structural cohesion 〈κ〉, we consider only
the static aggregated network representation including all
edges that are ever present in the specified temporal network.
Within the aggregated network, we seek the number of node-
independent paths κ (i, j) available between nodes i and j. We
employ the shortest path approximation of [22] to numerically
calculate κ (i, j) and then average over all pairs of nodes

〈κ〉 = 1

N (N − 1)

∑
i �= j

κ (i, j), (1)

where N is the size of the network.
To measure temporal concurrency C, we consider here the

single-interval case where the link between nodes i and j (if
present) has a single specified starting time s(i, j) and persists
for duration d (i, j). For simplicity, we will assume that start
times and durations are each independent and identically
distributed across the edges that ever appear in the aggregated
network during the selected total time period T . That is, in
particular, the timings of the edges emanating from a given
node are necessarily independent of each other. As such, the
temporal concurrency of edges associated with a given node,
measuring the probability that there are such edges overlap-
ping in time, becomes by this independent and identically
distributed assumption equivalent to the probability that any
randomly selected pair of links overlaps in time. We can
thus select two randomly selected links with start times and
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durations denoted by s1, s2 and d1, d2, respectively. Without
loss of generality, let s2 � s1. The probability that these two
edges overlap in time is then simply the probability that the
duration of the first edge is larger than the difference between
starting times d1 > s2 − s1. If we let p(d ) be the probability
distribution function of durations and I (s) be the probability
distribution function of start times, the concurrency under
these simplifying assumptions becomes

C = 2
∫ T

0
I (s1)

∫ T

s1

I (s2)
∫ ∞

s2−s1

p(d1)dd1ds2ds1. (2)

B. Simulated timings and temporal concurrency

For the simulated temporal network data studied here, we
further simplify the above expressions for temporal concur-
rency by assuming specific probability distribution functions
for the start times and durations of edges, inherently nondi-
mensionalizing the timescale of the two distributions so as
to work easily within a one-parameter model for modifying
temporal concurrency. In so doing, we emphasize that the tem-
poral concurrency and the subsequent calculation of reacha-
bility depends only on the orderings of start and end times,
not the total amounts of time involved in those overlaps. We
take a uniform distribution for edge start times I (s) = 1/T ,
s ∈ [0, T ], and draw durations from an exponential distribu-
tion p(d ) = e−d .

We emphasize that changing the decay rate of the exponen-
tial in p(d ) is unnecessary, since doing so is nondimensionally
equivalent to a change in T for calculating concurrency and
reachability. That is, the range T has inherently become
a nondimensional ratio of the underlying timescales of the
distributions of start times to that of edge durations.

The complementary cumulative distribution function of
edge durations, which we notate by D(t ), then simplifies to
D(t ) = ∫ ∞

t e−τ dτ = e−t and the concurrency of the temporal
network under these timings can be rewritten as

C = 2

T 2

∫ T

0

∫ T

s1

e−(s2−s1 )ds2ds1 = 2

T 2
(T − 1 + e−T ). (3)

We note that C ≈ 2/T for T � 1. Meanwhile, taking the
series expansion of the exponential, we obtain that the tem-
poral concurrency for T 	 1 approaches the value 1 like
C ≈ 1 − T/3. For comparison, (3) gives C(1)

.= 0.736.
Importantly, our structural cohesion definition depends

only on the topology of the aggregated time-independent
network, ignoring start and end times and including all edges
that ever exist during the time period. In contrast, the temporal
concurrency depends only on the distributions of start times
and edge durations, independent of the network topology.

C. Construction of synthetic temporal networks

To explore the effect of temporal concurrency and its in-
terplay with structural cohesion, we will examine reachability
with a model approximation based on the assumption that the
networks are locally treelike. We thus start by confirming the
analysis on balanced and unbalanced tree networks, which
have only one node independent path for each node pair. In
the balanced tree networks, each node has r successors except
the leaves that are at distance h from the root.

We generate unbalanced tree networks by rewiring the
balanced trees, ensuring that they maintain the same numbers
of nodes and edges. In our rewiring, we choose a random
edge (i, j) from the set of edges {E}. Removing this edge
separates the network into two components: One includes i
and the other includes j. We then choose a random node v

from the component containing node j and connect i to v.
In so doing, we ensure at each step that we maintain a tree
structure without cycles. We continue this process φ|E | times,
where the rewiring fraction used in our work here is φ = 0.1;
that is, we rewired 10% of the links.

We generated connected components from Erdős-Rényi
(ER) networks using the gnp_random_graph function in
the NetworkX PYTHON package [23], Generating 100 ER
networks initially from N = 120 nodes and connection prob-
ability p = 0.017 yielded the largest connected components
of size 〈N〉 = 93.92 ± 8.6 and average degree 〈k〉 ≈ 2. For
p = 0.025, with the same initial size, the largest connected
components have an average size of 〈N〉 = 113 ± 3.1 and
〈k〉 ≈ 3.

We further compare the reachability on the ER networks
with randomly generated graphs with exponential degree dis-
tributions, as described in the Appendix. In particular, we
observe that the average structural cohesion for an exponential
degree distribution graph is typically smaller than for an ER
network with the same mean degree. We then subsequently
rewire the ER and exponential degree networks to a desired
matched structural cohesion, to clarify the comparison being
considered (see the Appendix).

To connect our results to the previous work of [9], we used
the same sampled collaboration networks studied there, which
were extracted by four-step random walks from collaboration
networks [24]. In particular, we consider the same four exam-
ples that were highlighted in Fig. 3 and Appendix 2 of [9],
having similar sizes to one another but different structural co-
hesion. These selected networks capture low average numbers
of partners and skewed degree distributions, both of which
are typical in sexual contact patterns, making them useful for
testing the impact of temporal concurrency in the context of a
spreading infection [9].

For each of our four different classes of aggregated net-
work structure (trees, ER networks, exponential degree dis-
tributions, and empirical examples), we randomly generate
the temporal information for each edge, i.e., start times and
durations. We note that we treat all of our synthetic networks
as single-interval temporal networks, where each edge is
present for the entirety of the duration after its start time, as
drawn from the selected distributions. Given the start time s
and duration d of an edge, its end time is of course ε = s + d .
As described above, we consider start times drawn from a
uniform distribution s ∈ [0, T ], with durations following an
exponential distribution p(d ) = e−d . As such, T is effectively
a dimensionless time, which we vary in the range T ∈ [0, 20].

D. Numerical reachability by using the accessibility matrix

Given the specific temporal contact information of every
link in the temporal contact network, we directly evaluate the
average reachability as the density of the accessibility graph.
Direct contacts like (A, B) in Fig. 1(a) immediately carry over
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into the accessibility graph, along with additional ordered
pairs like (A,C) and (D,C) in Fig. 1(c). For example, an in-
fection starting from D at t = 1 can reach C either by directly
infecting B or by infecting A who then infects B, and then by
B infecting C during their (later in time) contact. However,
an infection seeded at C cannot reach A or D because of the
absence of temporally consistent paths, since the (B,C) link
does not appear until after all of the other edges have ended.

The role of concurrency as a potential enhancer of reacha-
bility is immediately apparent in this small toy example if we
vary the start time of the (B,C) edge: If that start time were
before t = 4, then the ordered pair (C, D) would also be in
the accessibility graph, so an infection seeded at C can spread
further than with the timings indicated in the figure. Similarly,
if that start time were before t = 3, the ordered pair (C, A)
would also be accessible.

We describe the unweighted accessibility graph through its
adjacency matrix R with elements Ri j = 1 when there is a
temporally consistent path from node i to node j; otherwise
Ri j = 0, as shown in Fig. 1(e). To quantify an average acces-
sibility across the whole network, we calculate the density R
of the accessibility graph

R = 1

N (N − 1)

∑
i �= j

Ri j, (4)

and we call this quantity R the reachability of the temporal
network.

To numerically evaluate the reachability from temporal
network data, we represent the essential temporal information
into layers of contacts corresponding to edge end times that
have been sorted in ascending order, as depicted in Fig. 2. The
process of generating the temporal layers is as follows.

(1) Sort edges in {E} by end time εw in ascending order,
where εw is the end time of edge lw, w ∈ [0, E − 1] is the
sorted index of edges, and E is the total number of edges
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FIG. 2. Temporal layered matrices as observed immediately be-
fore the end time of a link. Here T0 is the adjacency matrix immedi-
ately before the disappearance of the earliest ending link (A, D) from
Fig. 1. Similarly, T1 is the adjacency matrix immediately before the
end of the next ending link (A, B). That is, Tw includes all links in
Fig. 1 that overlap with the disappearance of the wth link (counting
from 0, T3 not shown). If multiple edges end at the same time, the
accessibility calculation proceeds equivalently with either a separate
but identical matrix for each edge ending at that time or a single
matrix corresponding to that time.

E = |E |. For example, l0 is the edge with the earliest end time,
whereas lE−1 is the last edge to end. (Breaking ties between
identical end times is unimportant for calculating reachability,
except insofar as it can be used to speed up the calculation by
indexing the smaller number of distinct end times, under an
appropriate change of notation.)

(2) Construct the wth temporal layer matrix Tw by in-
cluding edge lw and all other edges lw′ with w′ > w that are
present just before the end time εw. That is, Tw includes lw
and all lw′ satisfying both sw′ < εw and εw′ � εw.

(3) By repeating step 2, the full set of temporal layer
matrices T0, T1, . . . , TE−2, TE−1 may be prepared.

(4) Multiply the matrix exponentials of each temporal
matrix Tw to obtain R = ∏E−1

w=0 eTw .
(5) Binarize R: For all Ri j > 0 values, set Ri j = 1.
(6) Evaluate the average reachability R by Eq. (4).
For example, in Fig. 1, the earliest ending edge l0 = (A, D)

ends at time ε0 = 2. The edge (A, B) is the only other edge
present in the temporal layer T0 in Fig. 2, satisfying the
step 2 conditions above. One can similarly determine the
adjacency matrices corresponding to the end time of each
edge and multiply the matrix exponentials to evaluate the
accessibility matrix as described in step 4. Once we binarize
the accessibility matrix R, the reachability R is obtained by
averaging the off-diagonal elements of R. In the example in
Figs. 1 and 2, the reachability is R = 10

12
.= 0.83.

The matrix exponentials in step 4 above provide a sim-
ply expressed formula indicating the connected components
within each individual temporal layer. As such, multiplying
the matrix exponentials for any set of consecutive temporal
layers yields (after binarizing) the reachable network asso-
ciated with that combination of layers. However, in practice
for larger temporal networks, it is significantly more efficient
computationally to instead directly calculate the connected
components of Tw and replace the matrix exponential with the
binary indicator matrix whose elements specify whether the
corresponding pair of nodes is together in the same component
at that time. Similarly, to save memory overhead, steps 3 and
4 can be trivially combined to consider only one temporal
layer at a time. For even larger networks whose adjacency
matrices must be represented as sparse matrices to fit in
memory, the corresponding accessibility graph could instead
be constructed one row at a time, updating the running average
of the density R to calculate the overall reachability.

III. APPROXIMATE MODEL FOR REACHABILITY

We seek to approximate the reachability in terms of some
minimal temporal and structural information necessary to
accurately describe the essential relationships. Using simu-
lated timings on random graphs, we immediately observe that
the overall density and level of cohesion are insufficient for
describing the needed structural effects. Specifically, we con-
sider simulated timings on random networks with exponential
degree distributions and ER graphs that have been rewired to
target specific cohesion values as described in the Appendix.
The results in Fig. 10 show reachability versus concurrency
for rewired ER and exponential degree distribution graphs
both with 〈k〉 = 3 and 〈κ〉 = 1.7, demonstrating clear differ-
ences. As such, we desire to more accurately approximate
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the reachability versus concurrency relationship using more
structural information. Motivated by Fig. 10 and modeling
successes for other network problems (see, e.g., [21,25,26]
and citations therein), we consider approximations developed
in terms of the underlying degree distribution.

We develop a heterogeneous mean-field model for reach-
ability specified in terms of the degree distribution p(k),
temporal concurrency, and structural cohesion. In so doing,
we implicitly assume that the underlying aggregated network
is sufficiently locally treelike (see, e.g., [21]). Assuming that
the essential network structure is (at least largely) dictated by
the degree distribution p(k), we proceed to develop models for
the effects of the temporal concurrency of edges.

As above, let I (t ) be the probability of edge starting times
and D(t ) be the probability of an edge duration larger than t .
We seek the probability P(s, �) that a given chain of � edges
is temporally consistent given that the first edge has start time
s. By definition, P(s, 1) = 1, since any edge considered in
isolation is temporally consistent with itself. Assuming all
edge start times and durations are independent and identically
distributed, the recursive equation for P(s, �) is developed by
considering whether the start time of the next edge in the chain
is before or after s:

P(s, �) =
∫ s

0
I (t )D(s − t )P(s, � − 1)dt

+
∫ T

s
I (t )P(t, � − 1)dt . (5)

The first integral accounts for the possibility that the next edge
in the chain has a start time before the first edge, distributed
according to I (t ), but duration long enough to be concurrent
with the first edge, with probability D(s − t ). Importantly, we
then assess that this next edge is the first edge in a chain of
� − 1 edges that are temporally consistent with probability
P(s, � − 1), as opposed to P(t, � − 1), to account for the
requirement that all of the edges on the remaining chain still
need to be concurrent or appear after the original edge start
time s. In contrast, the second integral directly measures the
contribution from the next edge starting at time t > s, after the
start time of the first edge, along with the probability that an
edge starting at time t is part of a chain of � − 1 edges that are
temporally consistent. The second integral here ends at time
T since by our definition I (t ) = 0 for t > T .

Given P(s, �), we can then determine the probability W�(T )
that a randomly selected chain of edges of path length � is
temporally consistent, by averaging over the I (s) distribution
for the start time of the first edge,

W�(T ) =
∫ T

0
I (s)P(s, �)ds, (6)

where we have here explicitly noted the remaining depen-
dence on T for temporal consistency along path length �.
We note in particular that the initialization P(s, 1) = 1 yields
W1(T ) = 1 for all T ; that is, a path of length 1 is necessarily
temporally consistent.

A. Consideration of node-independent paths

Motivated by Moody and Benton [9], specifically, inspired
by their observations about the role of structural cohesion

as measured by the average number of node-independent
shortest paths, the development of our model approximation
proceeds by restricting attention to the node-independent
shortest paths between a node pair (i, j). This treatment,
taking the assumption of locally treelike structure to an ex-
treme, allows us to treat the probabilities along each node-
independent path independently. However, in doing so, we
recognize that we will undoubtedly fail to take into account
all potential detours around temporally inconsistent parts of
these paths. Nevertheless, as we will see below, this approach
appears to be relatively accurate for small enough structural
cohesion and particularly so at low levels of concurrency,
presumably because the probabilities W�(T ) drop off quickly
with increasing � under such conditions.

As above, we continue to denote the number of node-
independent shortest paths between nodes i and j by κ (i, j).
We index those paths by q ∈ {1, . . . , κ (i, j)} and identify the
length of path q by �(q). We then seek the probability that path
q is temporally consistent, which we write as W�(q)(T ). By the
definition of reachability, an ordered node pair is accessible if
there is at least one temporally consistent path from the one
node to the other; so we only need to exclude the case that
there are no temporally consistent paths between the nodes.
Continuing to assume that we can reasonably consider only
the node-independent paths, the probability ρ(i, j) that at least
one of these κ (i, j) node-independent shortest paths under
consideration between i and j is temporally consistent follows
simply by independence:

ρ(i, j) = 1 −
κ (i, j)∏
q=1

[1 − W�(q)(T )]. (7)

That is, given the computation [22] that separately identifies
the number and length of node-independent shortest paths
for each node pair (i, j) in the aggregated network, Eq. (7)
gives us the probability of accessibility between the pair, as
restricted along these node-independent paths. In other words,
the corresponding R(i, j) element of the accessibility matrix
becomes 1 with probability ρ(i, j). The expected density of
the accessibility graph (the off-diagonal parts of the accessi-
bility matrix) under our approximation thus becomes

R̄ = 1

N (N − 1)

∑
i �= j

ρ(i, j). (8)

By our construction, ρ(i, j) = ρ( j, i), though this does not
require corresponding similarity in the elements of R. We also
note that we would ideally consider edge-independent paths,
which are by definition at least as numerous as the node-
independent ones. However, given the observed relationship
between structural cohesion and the degrees of node pairs
in our random graph results in Fig. 9 in the Appendix, we
expect that the typical numbers of edge-independent shortest
paths should not on average be much greater than the node-
independent ones in these random cases.

B. Modeling in terms of the distribution of path lengths

The above calculation of R̄ requires detailed knowledge
of the number and lengths of the node-independent paths
between each (i, j) pair. That is, for all intents and purposes,
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we need the entire structure of the aggregated network upon
which to calculate these quantities. However, in many network
survey conditions, the available information is much more
tightly constrained. It can be particularly beneficial under
such settings to model outcomes at the level of heterogeneous
mean-field theories that use only the degree distribution of the
network (see, e.g., [26,27]). Since such models are typically
derived from locally treelike assumptions (see, e.g., [21]), we
find it reasonable to consider how we might similarly extend
our treelike assumptions above.

Given a distribution of path lengths p(�) to be considered
as independent candidate paths between a randomly selected
pair of nodes, the joint probability that a selected path has
length � and is temporally consistent is given by p(�)W�(T ).
Summing over possible path lengths, we compute the proba-
bility ρ̂ that a path from this set is temporally consistent,

ρ̂ =
L∑

�=1

p(�)W�(T ), (9)

where L is the largest path length in the distribution p(�). Then
the probability that at least one of κ (i, j) independent paths
between nodes i and j is temporally consistent simplifies to

ρ̃(i, j) = 1 − (1 − ρ̂ )κ (i, j). (10)

Notably, using the probability ρ̂ is this way decouples the
considered probabilities along each path from all other pos-
sible properties of importance of nodes i and j (e.g., their
degrees). Again, in making this calculation we have made the
(rather strong) assumption that we considered only indepen-
dent paths.

To model κ (i, j), we note that while an exact analytical
measure of the structural cohesion appears to be prohibitively
difficult, a trivial application of Menger’s theorem [28] re-
quires the maximum number of node-independent paths be-
tween nodes i and j to be bounded by the minimum degree
of the pair min(ki, k j ), where ki and k j indicate the degrees
of the two nodes. We observe that this upper bound yields
a good approximation for the average cohesion 〈κ〉 in our
random graphs, as observed in Fig. 9. That said, we note by
way of contrast that the four empirical networks from [9] that
we study have much lower cohesions (1.61, 1.34, 1.07, and
1.06) than bounded by this relationship to node degrees (3.18,
3.39, 2.10, and 2.01, respectively). Moreover, in a true tree we
require κ (i, j) = 1 for all node pairs by definition.

By assuming κ (i, j) ≈ min(ki, k j ) and substituting the ap-
proximation into Eq. (10), ρ̃(i, j) depends only on the node
degrees ki and k j , along with the path length distribution p(�)
under consideration. The resulting approximation of reacha-
bility, denoted by R̃ to distinguish it from the R̄ calculation of
the preceding section, then becomes

R̃ =
∑
ki,k j

p(ki )p(k j )ρ̃(i, j), (11)

where p(k) is the degree distribution and we have not bothered
to correct the O(1/N ) contribution in R̃ corresponding to
pairing a node with itself.

We again emphasize that we have assumed the structural
and temporal details of our temporal networks are indepen-
dent of one another. Therefore, for instance, there are no

correlations between node degrees and all of the temporal
details absorbed into the W�(T ) terms. The only remaining
structural contributions in the R̃ approximation are from (i) the
empirically observed p(k) degree distribution, (ii) the selected
model for κ (i, j) as discussed above, and (iii) the selected
distribution of path lengths p(�) to obtain ρ̂ in Eq. (9).

In theory, one could continue by way of approximating
p(�) in terms of the degree distributions [29,30]. In particular,
we note that in going in this direction one is more likely to
be able to employ some model for the distribution of geodesic
shortest path lengths, as opposed to that for node-independent
shortest paths. Similarly, if the path length distribution is to
be sampled by some manner, it may be more likely to get
a reasonable sample of the geodesic paths versus the node-
independent ones. To explore the effect of potentially using
the geodesic shortest path length distribution instead of the
node-independent path length distribution, we below consider
both possibilities by direct use of the empirically observed
path length distributions in each network, using R̃s to represent
the approximation obtained using the shortest path length
distribution and R̃n for the model using the node-independent
path length distribution.

IV. RESULTS

We numerically examine the relationship between tem-
poral concurrency and reachability on different families of
networks, comparing with our model approximations. The
reachability approximation R̄ from Sec. III A uses the spe-
cific structural information of numbers and lengths of node-
independent paths between each node pair. In contrast, the R̃s

and R̃n approximations from Sec. III B employ path length
distributions over the whole network, using the distributions
of shortest paths and of node-independent paths, respectively.
We confirm the results for trees (balanced and unbalanced).
We then test the calculation on Erdős-Rényi networks at two
different densities and on four empirical networks highlighted
in [9].

A. Reachability on synthetic tree networks

We numerically evaluate the reachability and our approx-
imation, varying the temporal concurrency C on balanced
and randomly unbalanced tree networks with two different
sizes (specified by the number of offspring m and the depth
h of the balanced tree): (i) m = 2 and h = 6, with N = 127
nodes, and (ii) m = 3 and h = 4, with N = 121 nodes. The
average degrees of these two types of trees are 〈k〉 .= 1.98.
We numerically evaluate the reachability R by the method in
Sec. II D and compare it with the R̄ [Eq. (8)] and R̃ [Eq. (11)]
approximations. Since, by definition, a tree provides only a
single node-independent path between a node pair, we accord-
ingly set κ (i, j) = 1 in Eqs. (7) and (10) in calculating R̄ and
R̃, respectively. Similarly, because the node-independent and
geodesic shortest path distributions are thus identical, we note
that R̃n = R̃s on a tree.

In Fig. 3 the approximations accurately describe the typical
increase in reachability with increasing temporal concurrency
for both the balanced and unbalanced trees. We specifically
note that the concurrency values plotted here are the expected
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FIG. 3. Simulated and approximated reachability on balanced
and unbalanced tree networks as a function of temporal concurrency
C. Two different sizes of trees are tested: (a) and (c) are for m = 2
and h = 6 (N = 127) for balanced and unbalanced tree networks,
respectively, and (b) and (d) are for m = 3 and h = 4 (N = 121)
for balanced and unbalanced tree networks, respectively. Navy lines
display the simulated reachability with 100 synthetic balanced and
unbalanced networks. Green dashed lines represent the approxima-
tion R̄ relying on the numbers and lengths of paths between each
node pair. The dashed red line shows the approximated reachability
with the node-independent path length distribution R̃n (which is
equivalent to R̃s on a tree). Error bars indicate standard deviations.

value given a specified time interval T . The results on the
unbalanced trees include different network realizations as
obtained by the rewiring described in Sec. II C. We observe
a very slight gap between the approximations R̄ and R̃n for
the unbalanced trees, compared to that of the balanced trees,
though the predictions are still well within the standard devia-
tion of the data. We hypothesize that the greater heterogeneity
in the path length distribution p(�) in the unbalanced tree
network may be a possible cause of this difference. The
result confirms that the approximations accurately estimate
the reachability for tree networks using only the path length
and degree distributions p(�) and p(k), which is of course
expected in this setting.

B. Reachability on Erdős-Rényi networks

We next consider the reachability on sparse Erdős-Rényi
networks with 〈k〉 ≈ 2 and 3, going in with the assumption
that these random graphs will typically have sufficiently lo-
cally treelike structure [31].

FIG. 4. Simulated and approximate reachability on sparse ER
networks as a function of temporal concurrency C. Largest connected
components for two different size networks are tested: (a) 〈k〉 ≈ 2,

〈N〉 = 94 and (b) 〈k〉 ≈ 3, 〈N〉 = 113. The solid line indicates the
numerically measured reachability simulated over 100 ER networks
for each size. Error bars indicate standard deviations. Dashed lines
indicate the different approximations for the reachability.

As shown in Fig. 4(a), the approximation R̄ that includes
the specific path length information between node pairs in
the network largely underestimates the reachability. If any-
thing, we should not be surprised that R̄ underestimates the
true value of R like this, since the calculation leading to
R̄ only considers reachability along node-independent paths.
As such, the increased error made by R̄ in increasing from
〈k〉 ≈ 2 to 3 is expected, though the size of the resulting
error emphasizes the apparent importance of available detours
around these paths even for these small mean degrees. We
note in particular that the R̄ approximation is quite good at
very low concurrency C, where the node-independent shortest
paths presumably have greater dominance because longer
paths along detours become even more unlikely to maintain
temporal consistency. However, the limiting behavior of the
approximation in the R → 1 approach as C → 1 is clearly
incorrect. We hypothesize that the behavior in this limit is
possibly controlled by temporal inconsistency of key edge-
to-edge transitions important along many paths, which is not
an effect considered in the approximation.

We also include the approximations R̃n and R̃s in Fig. 4.
We note that R̃n is very similar to R̄ here, indicating only
modest change in the jump in the approximation obtained
using full path length information for each node pair (R̄)
versus a single path length distribution p(�) across all node-
independent shortest paths (R̃n). The additional gap between
R̃n and R̃s is due to replacing the path length distribution
empirically obtained over all node-independent shortest paths
with the geodesic shortest path distribution, yielding shorter
paths which are slightly more likely to be temporally consis-
tent. Thus, R̃s slightly overestimates the reachability at very
low temporal concurrency.

We additionally investigate the effect of a heavy-tailed
duration distribution on ER networks with 〈k〉 = 2 and 3, as
well as on the balanced tree with r = 3 and h = 4 (see Fig. 5).
Supplementing our above results using exponentially decay-
ing duration distributions, we consider the power-law distri-
bution p(d ) ∝ d−α with α = 2.25 so that these distributions
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FIG. 5. Simulated reachability with edge durations distributed
according to a power-law distribution p(d ) ∝ d−α , α = 2.25 (solid
lines) and an exponential distribution p(d ) ∝ e−d (dashed lines) on
the balanced tree network with r = 3 and h = 4 (N = 121) and
ER networks (〈k〉 = 2 with 〈N〉 = 94, 〈k〉 = 3 with 〈N〉 = 113). We
run simulations for 100 different networks to obtain the standard
deviations of reachability indicated by error bars for the power-law
distributions results. Standard deviations for the results with the
exponential distribution, as indicated in the previous figures, appear
to be comparable in magnitude.

are heavy tailed with an exponent only a little larger in
magnitude than that needed to ensure existence of a theoretical
mean. Indeed, we note that the variance of this distribution is
infinite, though of course the edge durations of a given finite
synthetic temporal network do have an empirical variance.
Comparing results on these same synthetic networks, we
observe that neither the average nor the standard deviations of
the reachability appear to be significantly different between
the two duration distributions (exponential and power law).
That said, we acknowledge that these similarities may be in
part due to finite-size effects given these small networks or
could also be due to the absence of correlations in the edge
timings on these synthetic networks. Further investigation of
such effects might be valuable directions for future research.

To further understand the limitations of our approxima-
tions, we explore the reachability frequency of node pairs
according to their degrees in ER networks with 〈k〉 ≈ 2 (again
restricting attention to the exponentially decaying duration
distributions). We directly measure how many node pairs
with given degrees are reachable out of the total number of
reachable node pairs

f (k, k′) =
∑

i∈	k , j∈	k′ ,i �= j R(i, j)∑
i �= j R(i, j)

, (12)

where 	k and 	k′ represent the sets of nodes having degree
k and k′, respectively. We measure f across 100 ER networks
with 〈k〉 ≈ 2 for low [C

.= 0.1 in Fig. 6(a)] and high temporal

FIG. 6. Reachability frequency f (ki, k j ) and relative reachability
frequency f̂ (ki, k j ) for ER networks with 〈k〉 ≈ 2. The numbers of
reachable node pairs are counted from the accessibility matrix R
for the largest connected component of 100 ER networks. (a) and
(b) show the reachability frequency f (ki, k j ), the fraction of reach-
able node pairs that have the indicated degrees. (c) and (d) show rel-
ative connectivity frequency f̂ (ki, k j ), the fraction of node pairs with
the indicated degrees that are reachable. The temporal concurrency
is (a) and (c) C

.= 0.1 and (b) and (d) C
.= 0.97.

concurrency [C
.= 0.97 in Fig. 6(b)]. Perhaps remarkably,

we observe an only very small shift in f between these
two figures, but the shift in the distribution that is apparent
indicates that a larger fraction of the reachable pairs for high
concurrency involve the degree-one nodes. That this should
be the case makes intuitive sense in that the reachability
of the degree-one nodes should be more suppressed at low
concurrency than that for higher-degree nodes.

Noting that most node pairs are reachable at C
.= 0.97, we

make this observation more explicit by also computing the
relative reachability frequency f̂ (ki, k j ) between degree pairs,
defined as

f̂ (k, k′) =
∑

i∈	k , j∈	k′ ,i �= j R(i, j)∑
i∈	k , j∈	k′ ,i �= j H (i, j)

, (13)

where H is the reachable matrix of the corresponding static
network obtained by aggregating the temporal contacts. Be-
cause we only consider largest connected components in
our numerical experiments, H (i, j) = 1 and the sum in the
denominator merely counts the number of such pairs given
the selected degrees. Figures 6(c) and 6(d) show the relative
reachability frequency for low (C

.= 0.1) and high (C
.= 0.97)

temporal concurrency, respectively. In particular, we confirm
in Fig. 6(d) that almost all pairs are reachable, with f̂ ≈ 1 for
all degree values. In contrast, for C

.= 0.1, the low-low-degree
node pairs are much less likely to be reachable, as seen in
Fig. 6(c). Meanwhile, even at low concurrency, we see that
high-high-degree node pairs are already quite likely to be
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FIG. 7. Fit of κ for the reachability of ER network largest con-
nected components with 〈k〉 = 3. The circles with error bars and
the gray dashed line represent the numerical reachability and R̃s

approximation with the shortest path length distribution, respectively.
The dotted line shows R̃s recalculated with constant κ (i, j) = 1.5,
while the solid curve uses κ (i, j) = 3.5 as the exponent in Eq. (10)
for all node pairs.

reachable, with nearly 30% of (ki, k j ) = (5, 5) node pairs
being reachable in this setting. We note in looking at Fig. 6(c)
that there are very few degree-6 nodes in these networks, so
the apparent drop-off in f̂ for these cases is due to averaging
over a small number of such cases.

The increasing errors in our model predictions at higher
concurrency are directly because of the increasing importance
of the neglected detours around the node-independent shortest
paths. Recalling the explicit role of the number κ (i, j) of
such paths between nodes i and j in our approximations, we
ask whether the relationship between reachability and concur-

rency observed numerically might be captured by assuming
some other effective values for κ . In Fig. 7 we continue to
consider reachability on the 〈k〉 ≈ 3 ER networks. Focusing
for this figure only on R̃s approximations built from p(k)
degree distributions and p(�) distributions of geodesic shortest
paths, we reproduce here our regular R̃s approximation using
κ (i, j) = min(ki, k j ) from Fig. 4(b). This approximation over-
estimates the reachability at low concurrency because the p(�)
distribution of geodesic shortest paths are shorter on average
than the full set of node-independent shortest paths (the latter
used in our R̃n approximations). As seen in Fig. 7, this
overestimate at low concurrency can also be at least partially
corrected for by decreasing the effective cohesion used in
the approximation formulas to κ = 1.5. (For comparison, the
average structural cohesion of the underlying ER networks
is 〈κ〉 .= 2.08.) Of perhaps greater interest, we see in Fig. 7
that the underestimated reachability at large C appears to be
corrected for at this level of modeling by choosing an effective
cohesion value of κ = 3.5, yielding a good approximation
over the range 0.5 � C � 1. We believe that identifying such
effective cohesion values as modeled from other network fea-
tures (as opposed to curve fitting here) may be an interesting
direction for future work, as a means of extending the range
of validity of our tree-based approximations.

C. Reachability on empirical networks

We examined reachability versus concurrency on four sam-
pled empirical networks that were highlighted in the previous
work of [9]. Example networks (i) and (ii) have low structural
cohesion, 〈κ〉 .= 1.06 and 〈κ〉 .= 1.07, respectively, while ex-
ample networks (iii) and (iv) have relatively higher structural
cohesion, 〈κ〉 .= 1.34 and 〈κ〉 .= 1.61, respectively.

When the network structure is treelike in the sense of cohe-
sion 〈κ〉 being near 1, all three of our model approximations
plotted in Fig. 8 appear to be in relatively good agreement

FIG. 8. Simulated and approximate reachability as a function of the temporal concurrency for empirical networks with different levels
of structural cohesion: (a) sample network (i), 〈k〉 = 3.4, 〈κ〉 .= 1.06, and N = 128; (b) sample network (ii), 〈k〉 = 3.71, 〈κ〉 .= 1.07, and
N = 154; (c) sample network (iii), 〈k〉 = 5.27, 〈κ〉 .= 1.34, and N = 80; and (d) sample network (iv), 〈k〉 = 6.16, 〈κ〉 = 1.61, and N = 148.
Means of simulated results R are indicated by solid lines with error bars indicating standard deviations over 50 different simulated timings. The
green dashed line indicates the approximation R̄ obtained from the measured numbers and lengths of node-independent shortest paths between
each node pair, as in Eq. (8). The other dashed lines indicate the approximations R̃s and R̃n using path length distributions, as in Eq. (11). Each
network sample is visualized in the corresponding panel, with node shade indicating degree.

062305-9



LEE, EMMONS, GIBSON, MOODY, AND MUCHA PHYSICAL REVIEW E 100, 062305 (2019)

with the numerically calculated reachability. In accord with
our other results above, we see that our R̄ approximation
reasonably captures the low-concurrency limiting behavior in
Figs. 8(a) and 8(b), and while it necessarily underestimates
the level of reachability throughout, the deviation from the
true reachability curves at low structural cohesion [Figs. 8(a)
and 8(b)] are not as large as at higher cohesion [Figs. 8(c)
and 8(d)]. Moreover, we see that much of this underestimate
is effectively corrected in this case by the other modeling
steps introduced by the R̃n and R̃s approximations, again
particularly so at lower values of cohesion.

We also note here that the R̃n approximation overestimates
the reachability in the low-concurrency regime in Figs. 8(a)
and 8(b), unlike the above-observed behavior for ER graphs.
This occurs because the way we constructed the empirical
distribution p(�) of the node-independent shortest paths for
this calculation here counted multiple short paths between
nearby nodes. This counting yields on average shorter paths
that then overestimate the reachability at small concurrency.

V. CONCLUSION

We investigated the overall level of reachability in temporal
networks, considering the effects of temporal concurrency
and its interplay with network structure, including structural
cohesion. We developed a sequence of approximations for
reachability based on strong (and potentially inaccurate) as-
sumptions of locally treelike networks. We then compared
our approximations to numerical results for simulated edge
timings on a variety of types of networks. In networks that
are treelike in the sense of low structural cohesion, our
approximation agrees well with the numerically computed
reachability, particularly so for small concurrency. At larger
structural cohesion and/or larger concurrency, the importance
of having many possible nonindependent paths is not captured
by our existing approximations.

We further explored the effects in our different model
approximations using different levels of detailed network
information. Our R̄ model approximation uses the observed
number κ (i, j) and lengths of the node-independent shortest
paths between each node pair (i and j) to describe the empiri-
cal node-independent path length distribution p(�). That is, in
the R̄ model, these quantities are directly calculated from the
full network information.

In contrast, our R̃ model uses the estimated value κ (i, j) ≈
min(ki, k j ) as calculated from the observed p(k) degree dis-
tribution. That is, the minimum degree of two nodes i and
j bounds the maximum number of node-independent paths
between those nodes, and we observed that this bound often
appears to be relatively tight in our networks studied here.
Within this R̃ model framework, we then used R̃n to represent
results obtained using the measured distribution of node-
independent path lengths p(�), whereas R̄s represents results
using the measured geodesic shortest paths to approximate
the p(�) distribution. Comparing the R̄n and R̄s model results
indicates the potential level of sensitivity in the model from
the details of the path length distribution p(�). It would be in-
teresting in future work to assess this sensitivity under model
approximations for either of these path length distributions
(cf. the empirical distributions used here).

Whereas our present approximations are more accurate at
small temporal concurrency, productive future work might
focus on the limiting behavior as C → 1. Specifically, our ap-
proximation correctly captures R = 1 at C = 1, but the man-
ner of approach as C → 1 is noticeably incorrect compared
to the simulated temporal network measurements, unless we
artificially select an increased cohesion value as in Fig. 7.
Given the relatively simple shape of the reachability versus
concurrency curves, it is perhaps possible that a theory that
is only correct in capturing the limiting C → 1 behavior of
reachability might be matched or otherwise combined with
our present model to better approximate reachability over the
whole C ∈ [0, 1] interval.

The temporal networks studied here are inherently as-
sumed to have edges with a single start time and nonzero
duration. In contrast, there are other temporal network data
sets that are in the form of lists of contacts that are present
in each temporal snapshot, with the possibility that a given
pair of nodes might be in contact at one time, not connected
at a later instant, and then connected again at a still later
moment. In such settings, it may be useful to distinguish the
notion of instantaneous concurrency, counting concurrently
appearing links at a contact time, from an interval concurrency
calculated over all temporally interleaved links. That is, this
notion of interval concurrency is equivalent to that obtained
assuming that every edge is present for the full duration from
its first appearance to its last. We studied the differences
between instantaneous concurrency and interval concurrency,
and the effect of these representations on reachability, for
a variety of example networks in Ref. [32]. We found in
that study that the change between the contact and interval
representations barely affects the reachability of the sample
empirical networks studied there. We believe this result em-
phasizes the importance of the start and end times, with the
interevent contact time details being less important for setting
the level of reachability in these cases. It will be worthwhile to
further investigate the possible effects of substituting contact
data with interval duration representations, especially as it
impacts models for infection spread on temporal networks.

We believe the present study, focused on the role of
temporal concurrency and structural cohesion in determining
reachability, further emphasizes the need to better understand
the interplay between the temporal and topological aspects
in networks. We hope this study can give more insights
for the diversity and predictability of outbreak sizes [17],
measurements of the epidemic potential of nodes [18], and the
estimation of the robustness of temporal networks [19]. With
a more complete integrated picture of this interplay, it may
be possible in the future to identify different immunization
strategies for outbreaks on empirical temporal networks in
terms of their estimated structural and temporal properties.
For example, such models could then be used to help pre-
dict possible benefits obtainable from targeting hub nodes
in the underlying contact network versus individual-level or
population-level interventions to decrease concurrency.
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APPENDIX: CONSTRUCTION OF THE EXPONENTIAL
DEGREE DISTRIBUTION NETWORKS

To complement our tests on ER networks, we addition-
ally consider networks with exponential degree distributions
that have been rewired to match the structural cohesion of
ER networks having the same mean degree. We construct
a network with an exponential degree distribution using the
configuration_model function in the NetworkX package
in PYTHON, which follows steps described in [33]. A degree
sequence {ki} for nodes i = 1, . . . , N is generated by indepen-
dent draws from the given distribution p(k) = 〈k〉−1e−k/〈k〉,
where 〈k〉 is the desired mean degree. We used the largest con-
nected component from the generated network. We removed
self-loops and multiedges and only accepted the resulting
network if the mean degree was within 0.1 of the desired 〈k〉.
We note in particular that this procedure does not properly
sample the space of simple configuration model graphs with-
out self-loops and multiedges [34]. However, for our present
purpose of using these networks as random examples, we do
not rely on obtaining a proper sampling of the space. We
have not shown figures here exploring our approximations for
these exponential degree distribution networks, since they are
qualitatively similar to that discussed for ER networks in the
main text, in particular having better accuracy at small C.

We note that the exponential degree distribution networks
as generated to this point of the procedure have natural levels
of structural cohesion that are different from ER networks
with the same mean degree, as shown in Fig. 9. Because of
the important role of structural cohesion in the present work,
we seek to remove this difference between the exponential
degree and ER networks. In Fig. 9(a) we see that the observed
structural cohesion 〈κ〉 in these random graphs is very close
to their upper bounds given by averaging over min(ki, k j ),
except at small mean degrees 〈k〉. In Fig. 9(b) we see that
there is very little finite-size effect in the observed structural
cohesion values on these graphs. [As an aside, we note that
the empirical degree distributions in the largest connected
component are generally slightly right shifted from the im-
posed degree distribution before restriction to the largest
connected component. This shift thereby increases the upper
bound for structural cohesion obtained by averaging over
min(k, k′).]

To tune networks to a desired structural cohesion, specif-
ically, to make networks with ER and exponential degree
distributions but with the same structural cohesion, we rewire
the links as follows (see, e.g., [35,36]). We randomly choose
two links (i, j) and (i�c, j�c). If cutting these links does not
break the network up into multiple components, we cut these
links and then replace them with either (i, i�c) and ( j, j�c) or

FIG. 9. Approximated and numerically estimated structural co-
hesion of ER and exponential degree distribution networks (EXP)
as a function of average degree 〈k〉. (a) Dashed lines show the
approximated structural cohesion averaging κmax(i, j) = min(ki, k j )
over node pairs for ER (light blue) and EXP (light green) networks
with N = 200. (b) Solid lines are numerical estimations of the
structural cohesion for ER (blue shades, circles) and EXP (green
shades, triangles) networks of different network sizes (N = 100, 200,
and 400). Standard deviations are shown.

(i, j�c) and (i�c, j). In so doing, we reject new candidate edges
that generate multiedges or self-loops and then select the pair
of edges that make the new structural cohesion closest to the

FIG. 10. Reachability R versus temporal concurrency C for ran-
dom graphs with different degree distributions. The ER origin graphs
are Erdős-Rényi graphs with mean degree 〈k〉 = 3, yielding an em-
pirically expected cohesion 〈κ〉 = 2 (magenta line). The ER graphs
are with mean degree 〈k〉 = 3 rewired to obtain expected cohesion
〈κ〉 = 1.7 (red line). The EXP origin graphs here are exponential
degree distributions with the same 〈k〉 = 3, yielding an empirically
expected cohesion 〈κ〉 = 1.6 (green line). The EXP denotes rewired
graphs having exponential degree distribution, yielding expected
cohesion 〈κ〉 = 1.7 as described in the Appendix. The filled area
shows the standard deviation.
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desired value. If neither rewiring option successfully moves
the cohesion closer to the target value, the original cut edges
are restored. By this method, the degree distribution remains
constant while the degree-degree correlation and the structural
cohesion change. We repeat this rewiring process until either
the target value of structural cohesion is obtained (to within a
tolerance here of 0.025) or if the target is not achieved within
E rewires then the process is restarted with a new random
graph generated from the distribution.

Figure 10 demonstrates the reachability of rewired ER
and exponential degree distribution networks with the same
average degree (〈k〉 = 3) and structural cohesion (〈κ〉 = 1.7).
Even though the mean degree and structural cohesions of
these random graphs are the same, the relationship between
reachability and concurrency is noticeably different in the
figure. This observation further motivates the development
of our approximations in the main text in terms of degree
distributions and path lengths.
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