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Besides tunneling in static potential landscapes, for example, the Wentzel-Kramers-Brillouin (WKB)
approach is a powerful nonperturbative approximation tool to study particle creation due to time-dependent
background fields, such as cosmological particle production or the Sauter-Schwinger effect, i.e., electron-
positron pair creation in a strong electric field. However, our understanding of particle creation processes in
background fields depending on both space and time is rather incomplete. In order to venture into this
direction, we propose a generalization of the WKB method to truly spacetime-dependent fields and apply it

to the case of a spacetime-dependent mass.
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I. INTRODUCTION

Particle creation out of the vacuum due to extreme
external influences is an intriguing effect and a fundamental
prediction of quantum field theory. In the following, we
focus on electron-positron pair production in quantum
electrodynamics. There are several possibilities for pair-
producing external fields. For example, in the Sauter-
Schwinger effect [1-3], particles are created due to a
strong electric field. This is even possible for slowly
varying electric fields (as long as they are strong enough).
Note that this process is different from pair creation in the
(perturbative) multiphoton regime which requires suffi-
ciently fast varying electromagnetic fields; see, e.g., [4].
As another example, cosmological pair production [5,6]
occurs in an expanding or contracting universe.

So far, electron-positron pair production has been
verified experimentally only in the perturbative (multi-
photon) regime [4]. Nonperturbative pair production due to
an external field is far more difficult to observe in nature
and also not nearly as well understood on the theoretical
side. Although these effects were first considered more than
half a century ago, our understanding of these effects is still
far from complete. This is manifest in the fact that there
is still very limited knowledge about the influence of the
external field’s spacetime dependence. Besides numerical
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simulations (see, e.g., [7-15]), several analytical methods
have been used for computing the pair production prob-
ability, such as the Wentzel-Kramers-Brillouin (WKB)
method [16-19] or the worldline instanton method [20].
However, most of the studies so far were limited to fields
that depend on a single coordinate, e.g., time [16-24], a
spatial coordinate [20,22,25] or a light-cone coordinate
[26-30]; see also [31]. Via the worldline instanton method,
there have been a few works on truly spacetime-dependent
fields, but these were limited to special cases [32-34] or a
fully numerical treatment; see, e.g., [35] (see also [36] for a
work using the Wigner formalism). Regarding the WKB
approach, there have been even less studies for background
fields depending on both space and time.

In this article, we present a WKB method based on the
eikonal (or Hamilton-Jacobi) equation that promises to
overcome this fundamental restriction (see [37] for a
previous approach to electron propagation based on the
eikonal equation). For the sake of simplicity, we consider
the Dirac equation in 1+ 1 dimensions. However, we
believe that the method can be generalized to higher
dimensions in a straightforward way as long as the external
field only depends on time and a single spatial coordinate.
As an important example, we study electron-positron pair
creation due to a spacetime-dependent mass m(t, x) in the
Dirac equation. As one possible motivation, we note that a
curved spacetime metric such as in cosmological particle
production can be mapped to a spacetime-dependent mass
in the Dirac equation [38].

The article is organized as follows: We start by reviewing
the conventional WKB method for the time-dependent
Dirac equation and use a specific time-dependent mass as
an example in Sec. II. In Sec. III, we expand solutions of
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the Dirac equation using solutions of the eikonal (or
Hamilton-Jacobi) equation, giving two linear coupled
partial differential equations. In Sec. IV we show that
these equations reduce to known results if the electric field
(or mass) is either purely time dependent or purely space
dependent. Problems that occur while solving the eikonal
equation with a truly spacetime-dependent field are dis-
cussed in Sec. V. The case of a spacetime-dependent
mass is considered in Sec. VI. We calculate approximative
solutions to the equations mentioned above for a spacetime-
dependent mass with a weak space dependence in
Sec. VIL

II. WKB FORMALISM

Let us start by briefly reviewing the standard derivation
of the WKB formalism for purely time-dependent fields in
1 4 1 dimensions (see, e.g., [18,19] for comparison). As we
are interested in pair production due to a spacetime-
dependent mass (or scalar potential) later on, we consider
the case of a time-dependent mass and a time-dependent
electric field in 1 + 1 dimensions.

We start with the covariant Dirac equation (A =c = 1)

[i}'ﬂ(au + iqA”) - mh// =0, (1)
where A, are the components of the electromagnetic

potential and y# are the gamma matrices satisfying the
Clifford algebra’s anticommutation relation

{r'. v’y =20, (2)

Now consider the Hamiltonian form of the Dirac equation
in 1 4 1 dimensions in temporal gauge A, = 0, A; = A(¢),

0y (t,x) = {=iy’y' [0 + iqA(t)] + ¥'m(1) fw(r.x).  (3)

After expanding w(t, x) into Fourier modes (1), we get

10, (1) = {7’r'[p + qA(0)] + 'm(1) by, (1)
= H, (), (7). 4)

Because H2(t) = m*(1) + [p + qA(1)]* = Q2 (1), the self-
adjoint operator H ,(f) = Hj(f) has the instantaneous
eigenvectors u(p;t),

Hy(N)us(p;1) = £Q, (ux(ps 1), (5)

which are orthonormal, ie., ulu. =1 and ulqu = 0.
As usual, this normalization prescription still leaves the
phases of the spinors free to choose. Additionally, one can
show that

o

whu_ = (ulin,)* ulH,,u_, itlui =0. (6)

2Q,
We expand v, () in terms of these eigenvectors,

vy (1) = alp; uy (ps )™ + (p; hu_(p; 1)e?r )

(7)
with the time-dependent phase (eikonal)
t
@,(t) = / drQ, (7). (8)

This expansion (7) reflects the main idea of the WKB
approach, i.e., the separation of the rapid oscillation of
the phases exp{+ig,(t)} from the slow variation of the
background in u (p;t) as well as a(p;t) and B(p;1).

Upon inserting this expansion into (4) and projecting
onto u,(p;t), we get two coupled ordinary differential
equations for a(p; 1) and B(p;1),

. ﬁ 2ip, T L
a=——e"%u . H, u
+4pU_,
2Q,

. a . L.
f=———e20(ul Hou_)" 9)
2Q, P

We define R(t) = p(p;t)/a(p;t) and find a Riccati
equation

. R(ub H u_ 4 .

R = _(;Tpp) [e—2z¢p + R2ezl(ﬂp}
(T T
i5(ul H,u_ ) .
B e e (o)

Note that the exact form of the right-hand side depends on
the chosen representation and normalization of u, and u_
due to the factor u', H ,u_. Using y° = o, and y' = is, and
assuming vanishing phase difference between the spinors
u, and u_, we find

. E- A . .
R ="4 (p,j gA) i [e™20r 1+ R2e200]  (11)
202

which for i = 0 reduces to the well-known form

_ mgqE

R = E [6‘_2i¢” + RzeZi"’/’]. (12)

On the other hand, for A(7) = 0 we find

: P i
R:—@[e 2ipy +R2€2w/’}. (13)
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The number of created positrons (or electrons) with
momentum p can be calculated using (see the Appendix A)

|Rout |2

Bow(P)I* = T+ [RouP (14)

Ne*(p) &

where ﬁout(p) = /))(p;t - 00), Rout = R(t - OO) and we
have used the relation |a|> + ||*> = 1 in the last equality.
Under the assumption that few pairs are created, i.e.,
R <« 1, a linearized form of the Riccati equation (11) is
often used:

mgE — (p + qA)in _y,

(1) &
R 20

(15)

In that case we get N, (p) « |Roy/*. To obtain R, we
integrate the linearized Riccati equation (15) over all times,

e E - A)n 4
Reou z/ R (p2+ GA i, (16)
= 2Q2
For symmetric electric fields A(—7) = —A(t) with a con-

stant mass (i = 0), one expects the maximum number of
created pairs for p = 0, as the denominator of the integrand
is minimal in that case. On the other hand, in the case with
only a time-dependent mass [A(z) = 0] the right-hand side
of (13) immediately reveals that R(¢) vanishes for p =0
and so does the number of produced pairs.

Furthermore, upon deforming the integration contour
for the integral (16) in the complex plane, we see that the
integrand is exponentially suppressed in the lower half-
plane. Thus, the integral’s value is dominated by the value
of the exponential at the singularity closest to the real axis.
This singularity at ¢, could be a pole of the prefactor
Q,(t.) = 0 or a branch point or any other point where the
integrand is not analytic anymore, and thus we cannot
deform the integration contour further. Then, R, can be
approximated as

ROUI ~ e_Zi{ﬂ[)(t*). (17)

This estimate does not give the correct prefactor but only
the exponent. However, due to the linearization of the
Riccati equation, one cannot realistically expect to obtain
the prefactor from the integral (16) exactly anyway. If there
are multiple singularities that are comparably close to the
real axis, contributions from all singularities have to be
taken into account, which leads to interference effects in the
momentum spectrum [11,19,39].

A. Example: Time-dependent mass

As an example, we want to calculate the number of
produced pairs for a specific time-dependent mass as a toy
model. We use a similar functional dependence later in

Sec. VII as a spacetime-dependent mass where some of the
results derived here will be useful.
We use a mass of the form

(18)

with f(z) = sechr and a dimensionless parameter y that
controls the amplitude of the pulse. For large y, the relative
change of m(t) is small, and we may use perturbation
theory to estimate the pair-creation probability (see below).
For small y, however, the change is large, and we need
another method, such as the WKB approach.

This parameter y also controls the adiabaticity, i.e., the
applicability of the WKB approximation. A measure for the
adiabaticity is the rate of change m of the mass compared to
the mass itself, i.e., 7i7/m?, which scales with yaw/my. Thus,
the interesting region of small y can be treated via the WKB
approach provided that @ < m,.

The expression (18) is motivated by the fact that
typically the squares of mass (or potential) terms are added.
As an example, let us consider the Dirac equation in 2 + 1
dimensions where the second spatial dimension is com-
pactified, giving rise to a discrete Kaluza-Klein tower
of transversal momenta k. Then, the effective masses of
the 1 + 1-dimensional Dirac equations would be m3, =
k% 4+ m3p. As another example, let us consider a scalar
field (O + m?)¢p + V'(¢p) = 0 with the interaction poten-
tial V(¢). Then, linearization ¢p = ¢py + 5¢p around a given
background solution ¢, yields the effective mass m2; =
V"(¢o) + m? for the perturbation 5¢.

The parameter y plays a role very analogous to the
Keldysh parameter y = mw/(gE) for strong electric fields;
see, e.g., [40]. This analogy can be made even more
explicit by considering the form of the effective mass

Megp = m\/ 1-— (qAﬂA") /m? of an electron within a laser

pulse (see [41-43]), even though the resulting pair-creation
probability should be derived by using the vector potentials
A, directly.

We then can approximate R, using the linearized
Riccati equation (15),

T)f/ T)e _21(/7/7 )

(72
v

7?’out = (19)

1+

where

_%m[;df 1+[@T (20)
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and

7=r/1+ (ﬁ>2. (21)

mg

For f(z) = sechr the phase integral can be calculated
analytically, giving

op="0 11+ (£)2[¢<r>—¢<—oo>] (22)

w my

where

¢(r) = iarctan {ﬁ]

Y /1 + #*cosh’z

> sinh
+artanh[ 7SI e }

/1 + #*cosh’z

The integral for R, is dominated by the value of the
exponent at the pole where f(z,) = +i7,

(23)

|R0ut|2 ~ |e_2i(ﬁp(7*) 2 = 643(/)’7(T*>. (24)

For f(z) = sechr we find

i 1 1 T
7, =arcosh{ +— | =In|—+4 /1 + (~—> —i= 25
(+7)=ml ﬁ] 2 &

14

and thus

2
|Rout|> ~ exp l—Zﬂ@ 1+ (£> ] : (26)
w my
This result does not depend on y which at first is a bit
surprising. For example, in the limit y — oo, m(t) =
mq = const., and thus no pairs should be produced. This
apparent inconsistency can be resolved by the observation
that our WKB approach breaks down for large enough 7,
where we should use perturbation theory instead (see above).

To confirm our result we computed R, numerically
from the full Riccati equation (13). Due to the highly
oscillatory coefficients in the Riccati equation, we inte-
grated the equation using the TIDES library [44] in
conjunction with the arbitrary-precision library MPFR
[45]. To parallelize the computation, GNU Parallel
[46] has been used.

Figure 1 shows the analytical result from (26) and the
numerical result for | R, |* together for a specific choice of
y and w. Because the approximation in (26) does not
produce the correct prefactor, we assume it to be ap?.
This is motivated by the form of the integrand’s prefactor in
(16) which for £ =0 is proportional to the canonical

.10—29

T T T T

1

T T T
- 1 1

— [N
T T T T
T R N B |

1

T T T T
1 1 1 1

(R £ T T T T Y, T T A

06 —04 —02 0 02 04 06
p/mo

FIG. 1.  Plot of the density of produced pairs |Ro|? for the sech
mass in (18) where f(z) = sechr with @ = 0.1m and y = 0.1.
The squares are numerically calculated results, while the solid
line represents the analytical estimate from (26). We used ap? as
the prefactor of the analytical result with @ = 5/m3 chosen to fit
the height of the peaks in the numerical result; see (16).

momentum p. The constant a is then chosen to fit the
numerical data.

We find very good agreement between the analytical
estimate and the numerical calculation. Even without the
heuristically determined factor a, the analytic approxima-
tion lies within an order of magnitude of the numerical
result.

Indeed, if one plots the values of the numerical results’
peaks over different values of w, the points fall nicely on
the curve predicted by the maximum of the exponential in
(26) (see Fig. 2). On the other hand, if we fix @ and vary y,
the maximum of the numerical data behaves as in Fig. 3.
For small y <« 1 the maximum remains constant, while for
large y > 1 the maximum seems to go like y~*. This
behavior is due to the prefactor in (19) which goes like y >

T T T T T T [ T T T T [ T T T T ] T T_T_T
i |
& ool u
¥ = |
o L J

4]

g r ]
2 600 | .
. numerical data i
—— analytical approximation ]

7800 [ R B ) N S S S S S S S ———— ——
0.02 0.04 0.06 0.08 0.1

w/mg

FIG. 2. Plot of the logarithm of the maximum of |R|? for
different values of @ and y = 0.1. The plot shows both the
numerical results and the analytical approximation from (26).
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FIG. 3. Log-log plot of the maximum of |R,|* for different

values of y and @ = 0.1my. The plot shows both the numerical
results and a fit of the numerical data for large y. The slope of the
fitted line is —3.91. We see the crossover from the nonperturba-
tive WKB regime (26) for small y to the perturbative regime ~y~*
for large y.

for large y > 1. In between these two regions the value of
the maximum fluctuates. This can be attributed to the
prefactor as well because the order of magnitude does not
change as one would expect if this behavior came from the
exponent.

III. EIKONAL FORMALISM

We now want to develop a more general procedure for
calculating the pair production probability that, in principle,
also works for spacetime-dependent fields. The main idea
of the WKB formalism as presented in the last section is to
separate fast and slow oscillations in the wave function:
The factor of exp[+ig,()] contains the fast oscillations,
while the prefactors a and f contain the slow oscillations.
We try a similar approach for spacetime-dependent fields.

First, we define two operators

M. = _y”(a/AS:t + qA[l) = _yﬂniv (27)

with S, being the two independent solutions of the
relativistic eikonal (or Hamilton-Jacobi) equation,

(0,8« + qA,)(0,5+ + qA,) = T IE = m?. (28)

The eikonal equation above can be obtained from classical
electrodynamics. Thus, it could be derived from the Dirac
equation (1) via inserting the WKB ansatz y ~ exp(iS.. /)
and only keeping the lowest-order terms in /4. However,
here we motivate the WKB expansion by assuming that the
mass m is the largest relevant scale in our problem, leading
to rapid oscillations of exp(iS./h).

We use the convention that S, and S_ correspond to
solutions with positive and negative energy, respectively,

I = 0,5, + qAy =F \/m2 + (V8L +qA)?  (29)

Note that this eikonal equation is an immediate generali-

zation of (8). When A, and m are constant, the solutions S

correspond to plane wave solutions, that is, S, =F p,x*.
Squaring the operators M., we get

M3 = y"yTIETTE = g TIETTE = mP. (30)

Thus, the operators M, both have the two distinct
eigenvalues +m. Let u,. and v, be their respective
eigenvectors defined as follows:

M_ u, = tmuy, M_vy =+mv,. (31)

Because the operators M, are self-adjoint in the sense that
My =y°My° = M, their eigenvectors are orthogonal,

dju_=u_u, =v,v_=7v_v,=0, (32)

where ., = ulyo and analogously for ;. We normalize
the eigenvectors as follows:

dyu, =—-i_u_=-v,v, =v_v_=1 (33)

Although parts of the following derivation can be carried
out in a general manner, we want to focus on the case of
a 1 4 1-dimensional spacetime. Then it is sufficient to use
2 x 2 matrices for the gamma matrices, and the M,
will only have one eigenvector each for every eigenvalue.
We expand the spinor i in terms of these eigenvectors,

w=au e + pu, e, (34)

which is motivated by the expansion (7) of the spinor in
the time-dependent case. There, the functions a and f are
the Bogoliubov coefficients of the transformation between
in- and out-states (see Appendix A), and therefore we
sometimes refer to them as Bogoliubov coefficients here as
well. Using the expansion (34), the Dirac equation (1)
reduces to

ir*0,(au)e™+ + iy*d, (v, )e’- = 0. (35)

In terms of the large-m or small-7 expansion mentioned
after the eikonal equation (28), the leading-order contri-
bution gives Eq. (28) for the exponent S., while the
subleading order determines the above equation for the
Bogoliubov coefficients, compare Eq. (2) in [47].

Multiplying (35) by i, or ©, from the left, we get two
coupled partial differential equations

iy Oy, = =i y* (9, v, )e S5,

U0, Bvy = =, p*(Dyau )55, (36)
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Analogous to the Dirac convention, we choose

10 0 i
0: = 1:. = 37
y'=o, (0 _1), y' = ioy (l. 0) (37)

for the gamma matrices. Thus,

M, = <_H?
o\

—illf
N 38
+ITF ) (38)

and the eigenvectors u and v, can be written as

N (m—H;L) N ( it ) o1
u, — s U_ = =1 u.,,
+ + iTT S\m—rr vy
—iII; m+1I17
v+=N-< . > v_zN_< . t>=i1/°7‘v+,
m+1I17 iTI;
(39)

with the normalization constants

1

V2m(m FIE)

After calculating all the inner products that appear in (36),
we get the following equations for a and f:

1Ly 0,0 — — (" n* — IS (9,11, )

2m?

. 1
= ime™i(5+=5-) [Kﬂaﬂﬂ + Fe“gpﬂ,@]‘[;(é‘ﬂ]‘[;)ﬂ] )
m
1
IO =5 (o = I (0,107)
. 1
= ime’(s+_s—) [Kﬂaﬂa —_ FE‘ADEP}IK'sz_(aﬂH;)a] )
m
(41)

where
I} (m + I0;7) = O (m — 11,
Kﬂ:N+N_< (m + I07) = IT; (m ’)). (42)
(m = T1") (m +T0I7) — T TT;

Equations (41) are completely equivalent to the Dirac
equation (1) but might offer advantages for numerical
simulations and for analytical approximations (see below).
For the purely time-dependent case, it is known that solving
the quantum kinetic equations (see, e.g., [10,36]) or the
Riccati equation (see, e.g., [16—-19]) can be more efficient
numerically than the original Dirac equation. Thus, we
expect that similar advantages could apply here, especially
in cases where the functions S, are available analytically
(e.g., within suitable approximations) or can be efficiently
implemented numerically.

IV. KNOWN LIMITING CASES

We now want to show that Eqgs. (41) reproduce the
correct results for both a time-dependent electric field with
a time-dependent mass and a space-dependent electric
field.

A. Time-dependent electric field and mass

We use the temporal gauge where
A =A®), E=A®t). (43)

Then the two independent solutions of the eikonal equa-
tion (28) are given by

Si=Fo,(1) + px (44)
with ¢, (1) as in Sec. II. We thus find
7 =FQ,(1). Iy =p+qA(r). (45

1 0
BN TOICOET RO N :<1>' (46)

Ny

None of the coefficients in (41) depends on x in this case.
Thus, if we impose boundary conditions such that a and j
are constant initially (i.e., for t > —o0) then 0, = 9, =0
for all times. Equations (41) for a and f then simplify to

1. imgE — (p + gA)m .
Qpata+§QPa:_§ ! (fl; 24) pe*ior,
P
1. imgE — + gA)m .
P

We define the ratio R(t) = p(¢)/a(t) and, using (47),
calculate its time derivative

3;73 — % _ RZ%
a p
E— A)n ) .
_ imq (pz+ q )m [6—21(/;[, + RZeZZ(/),)]’ (48)
202

which is a Riccati equation that is up to a factor of i (that can
be attributed to a different normalization for the spinors u
and v, used here than for the spinors u. in Sec. II) identical
to the one in ordinary time-dependent WKB [compare (11)].

B. Space-dependent electric field

For a purely space-dependent electric field (compare
[22,25,48]) we use the gauge

A=0, E=—¢(x). (49)

125014-6
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In complete analogy to the time-dependent case, we find

Sy =-wt £ (/)w(x)’ (50)
with
vl = [ avp, ().
Po(x) = \/l0 — ()2 — m. (51)
Thus

0 = -0+ qp(x). Ty =+£P,(x). (52)

- T v=(o) o

Again, the coefficients in the equations for @ and f in (41)
are solely space dependent, and by requiring that a and S
are constant left of the barrier, i.e., for x - —oo, we find
that 9,0 = 0, = 0 for all values of x. Then, after intro-
ducing the ratio R = f//a we again find a Riccati equation,

Ny

mqE(x)

OR == ()

[ezi(/’(u(x) _|_ Rze—Zi%(X)]. (54)

This case is related to the one-dimensional Schrodinger
scattering problem from nonrelativistic quantum mechan-
ics. Again the WKB expansion (34) is motivated by the
separation of the rapidly oscillating phase exp{iS.} from
the rest, which is slowly varying. This assumes that the
local momentum scale P, (x) is much larger than all other
relevant scales, such as P2 (x) > |P.,(x)| or equivalently
(0,S.)?> > |02S,|. Of course, this assumption breaks
down at the classical turning points where P, (x) = 0.
Even though the above Riccati equation is, in principle,
exact, integrating it becomes problematic at those points.
Note that, in contrast to the purely time-dependent case,
these classical turning points x can be real for sub-barrier
tunneling problems. For quantum reflection above the
barrier, they are again complex.

V. CAUSTICS

If we consider a truly spacetime-dependent problem,
difficulties in solving the eikonal equation (28) may occur.
Due to the nonlinear nature of the eikonal equation, it may
not be possible to find global solutions in a classical sense;
i.e., a solution might not be differentiable everywhere. Note
that these singularities of the eikonal equation (28) do not
(necessarily) imply that the solutions of the original Dirac
equation (1) become singular. They just indicate that the
lowest-order WKB approach (34) employed here breaks
down. This is very similar to caustics in geometric (ray)
optics—e.g., the rainbow effect—where the density of light

N e e e e B By
= -
/§ -
L0
~
g -
-5 —
v b e b e b by b1
-10 -5 0 5 10 15 20
t/w
1.2 14 1.6 1.8 2.

FIG. 4. Projected characteristic curves (dotted) for the
m(t,x) from (84) together with m(z,x) itself (contour) using
f(z) = sechr, g(y) = sechy,my =1, p =0, w = 0.8, ¢ = 0.375
and y = 0.5.

rays shows a singularity while the full solution of the wave
equation remains perfectly regular. Another example is the
one-dimensional stationary Schrédinger scattering problem
(discussed above) where the WKB approach breaks down at
the classical turning points (indicating the onset of tunneling)
while the solutions to the original Schrddinger equation
remain perfectly regular.

We use the method of characteristics to visualize such
situations (see, e.g., [49] or many other standard textbooks
on partial differential equations for more details). Using
this method any first-order partial differential equation can
be cast as a system of ordinary differential equations by
finding certain characteristic curves along which the
solution of the partial differential equation can be integrated
easily. Afterwards, the solutions along many of those curves
can be combined into a solution surface. This essentially
amounts to going over to another set of coordinates where
one coordinate is the parameter to move along the curve and
the other coordinates number the curves.

Difficulties appear where two characteristic curves inter-
sect. At such a point the solution is not uniquely defined as
we might use the value on either one of the intersecting
characteristic curves. Many of these points form a caustic
surface.

For example, Fig. 4 shows the spacetime-dependent mass
given in (84) together with the (numerically calculated)
characteristic curves. We see that such a spacetime-
dependent mass has a focusing or defocusing effect on
the characteristic curves similar to optical lenses on light
rays. Indeed we can estimate that the onset of the caustic
surface is at time

7o

tr~5—.
S 20?2

(55)
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for p=0 and m only weakly space dependent; see
Appendix B for details.

Diagrams like Fig. 4 are well known from geometrical
optics. In fact, geometrical optics is just an approximation
to wave optics based on the eikonal equation (for optics).
That is why it is not too surprising that the above
formula (55) for p = 0 is strikingly similar to the formula
for the focal length of a thin, biconvex spherical lens [50],

L2

focD(nz—nl)’

(56)
where L ~ 1/(ew), D ~1/w and n, —n; ~ 1/y*. We see
that when the spatial inhomogeneity is weak (i.e., € is
small), the caustics occur far away from the spacetime
region in which the mass is nonconstant, i.e., where pairs
are produced. Thus, in the case of a purely time-dependent
problem no caustics occur and our solution is differentiable
everywhere [compare (44)].

In conclusion, assuming that the spacetime region of
particle creation is sufficiently localized and that the spatial
dependence is weak enough (compared to the temporal
variation), the potential problem of caustics (indicating
singular solutions of the eikonal equation) occurs far away
from the spacetime region where the particles are created
and thus does not invalidate our analysis. To cast this
statement in a more formal form, there are two options: One
option is to choose a finite final time ?,, which is large
enough such that it occurs after all pair-creation processes
have taken place, but small enough such that it still occurs
before any caustics appear. As another option, one could
apply a mild deformation of the mass function m(z, x) in
this time window which is so slow that the generated pair
creation (i.e., mixing of positive and negative frequencies)
can be neglected, but it undoes the focusing or defocusing
effects and thus avoids caustics.

VI. SPACETIME-DEPENDENT MASS

We now turn to a truly spacetime-dependent problem,
namely that of a spacetime-dependent mass m(¢, x) with no
electromagnetic potential, i.e., A, = 0. This case occurs in
a 1+ 1-dimensional spacetime with curvature: Every
1 4+ 1-dimensional spacetime is conformally flat; i.e., its
metric can be written as

ds? = O (1, x)(df? — dx?). (57)

Writing down the Dirac equation in such a spacetime
reveals that it is equivalent to the Dirac equation in flat
spacetime but with a spacetime-dependent mass m(z, x) =
O(1,x)my (see, e.g., [38] for details).

In that case, the eikonal equation (28) is considerably
simpler:

nﬂy<aﬂsi)(absi) = mz(t, x). (58)

We may write the two independent solutions S, and S_
using two different functions R and S by splitting S, into a
symmetric and an antisymmetric part,

S, =R%£S. (59)

The inverse transformation is given by

R:%(S++S_), S—1(s,-S). (60)

N —

When the mass is constant, the solutions S, = Fe,t + px
correspond to plane-wave solutions. In that case, R = px
and § = —e, 1. Thus, the case p = 0 is singular in the sense
that R vanishes identically. We avoid this case as this leads
to problems when using R and S as coordinate trans-
formations (see following subsection).

Using the above definition (60) of R and S in the eikonal
equation and computing the sum and difference of the two
equations, we find

m? = (O,R)? = (0:R)* + (9,5)* = (0:5)*,
0 = (0iR)(0:S) = (0:R)(0S). (61)
We solve the latter equation for d,R and obtain

0,5 O.R

IR =0ORZ =53
t t

0.8 =10.5,  (62)

where we have introduced the abbreviation A which will be
more convenient later on.
Inserting this into the first equation in (61) we get

m2

X XIER

(63)

Finally, the coefficients in the equations for @ and S are

¥ = 9,R + 9,5,
1

N - )
- \/2m(m F O,R - 9,5)
Neuy)
=18 g s (64)

m

A. Coordinate transformation

Somewhat similar to the method of characteristics
mentioned in the previous section, we want to introduce
new coordinates which simplify the evolution equa-
tions (41) for the Bogoliubov coefficients. The rapidly
oscillating exponential contains the difference of the phases
S = (S, —S_)/2, and hence we choose one coordinate
(the new time coordinate) in this direction. In order to
have the same dimension as time, we define the new time
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coordinate s via s = S(t, x)/mg where my = lim,_,_,,m is
the asymptotic value of the mass. To simplify scalar products,
the new spatial coordinate r should be locally orthogonal to s.
Inspecting the equations above, we find that this is auto-
matically satisfied if we define r = R(z, x)/my.

Then we have

aSS = my, 8,5 = 0, GSR = O, 8,R = my
(65)
and thus
H?: = :|:m0, H,j.: = my. (66)

The components of the inverse metric tensor in r —s
coordinates are then given by

_ L (my
1 -2 \my)
rr 12 m 2
g _(5%7)2—(3%)2_—1_—/12("1—0)’

9" =9" = (0,5)(0,r) = (0xs5)(9yr) =0, (67)

g = (05)* = (0.5)?

where we see explicitly that the coordinates r and s are
indeed locally orthogonal.
Finally, the components of the Levi-Civita tensor are

2
e = gl = 0’ & = —gls = /1 (ﬂ) . (68)

Additionally, we need to introduce the covariant derivative
V,v, =9,v, —T}v, where I}, are the Christoffel sym-
bols of the second kind. The relevant derivatives that are
needed in Eqs. (41) for a and f are

Vﬂl_[_‘,i = 8ﬂl—Isi - FZSHUi = —mo(:I:Ff” —|—Flr”),
——
=%0,my=0
VI = 8,11 —T% 00 = —mg (£, +T7,). (69)
——"

=0,my=0
Furthermore, we rescale a and f according to

a=avim,  p=pim. (70)

Again, we assume nonvanishing p # 0 as this would be
singular for p = 0 because A « p. Finally, after several
manipulations and simplifications, we get, as equations for
a and S,

0,8 — 220,& — 2’0, In A
= —ie 251/ 1 - 22 <a,B - % B;(ﬁ> ,
OsB + 220, + 22p0,In

. 1
= ie”S)V 1 =12 (a,a -3 a;g) (71)

with the abbreviations

1 1
)(/j :1_—/128S1n/1—28r1nm—1_—128rhl/1,
1 1-22?
Xe=1"p (’)sln/l—il — 9,InA. (72)

Equations (71) are still exact, but they have several
advantages in comparison to the original Dirac equation (1).
First, as in the purely time-dependent case, the rapidly
oscillating phase e*?S is a function of the new time
coordinate s only. Thus, they might also be advantageous
for numerical simulations, especially when the transforma-
tion from (x, ) to (r,s) coordinates can be implemented
efficiently. Second, if 4 is small enough (see below) such
that we may neglect terms of order A2, Egs. (71) can be
approximated by

0,& = —ie™2i5) <8,ﬁ - %ﬁ){[)’) +O(2),
OB = ie¥S) (c‘)r& - %ax) +0(2). (73)

Third, in the relevant case of a > f, we see that & does not
evolve with time s but stays nearly constant, @ = &(r),
which fits the picture of the characteristics. This suggests a
wave packet a(r)e™o"+ms moving along curves of con-
stant  (i.e., in the s direction) whose shape is given by a(r).
Going back to Cartesian coordinates ¢ and x, this corre-
sponds to a wave packet traveling at varying speeds, with
the form of the wave packet changing over time (i.e.,
becoming wider or narrower). Then, we may solve the
evolution equation for f by integrating over s for fixed
values of r. For each value of r, we then have the same
situation as in the purely time-dependent case; i.e., the pair-
creation exponent will be determined by the complex value
of S at the first relevant singularity in the complex s plane.

Note that this requires rewriting all functions of # and x as
functions of s and r. Then, for all fixed (real) values of r,
one should analytically continue in s and find the singu-
larities in the complex s plane. Since this procedure can
only be applied fully analytically to special cases, we
develop a suitable approximation scheme based on weak
spatial dependencies in the following.

Another approach that could be considered is an inverse
one (see also [51]): If solutions R and S are given, one can
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calculate the associated mass m from Egs. (61). These
solutions could be obtained by choosing S such that R can
be calculated easily from (61).

VII. WEAKLY SPACE-DEPENDENT MASS

Consider a spacetime-dependent mass where the space
dependence is much weaker than the time dependence, i.e.,
m = m(t,ex) = m(t, &) with e < 1. As before, we use the
initial condition S, (#;, > —o0,x) = px = p&/e. We can
then expand the solutions of the eikonal equation (61) in a
power series for small &,

1
R:—R0+R1+€R2+82R3+"',
£
S:S0+8S1+€2S2+"' (74)

where R, and S,, n =0,1,2, ..., are functions of ¢ and &.
Because only squares of the derivatives of R and S appear
in (61), every second term in the expansions of R and S
vanishes, i.e., Ry, 1 = 85,1 =0,n=0,1,2,.... To low-
est order, we find

Ry = pé, So =

—/dt\/m2 + p*. (75)

These are exactly the same expressions as in the purely
time-dependent case, with the only change being that the
mass m now also depends on x (or &£). The next non-
vanishing terms are given by

(0¢R0)(0:S)
R, — ¢ 0/AER0)
at : atSO ’
1(9:80)*  (9:Ro) 1 O:Ry
=_ Ry—- G
05 =305 T 0% 205y 7

To simplify this further we assume that p = O(&?), i.e.,
p = €?p where p = O(1). Note that our WKB approxi-
mation is based on the assumption that the temporal
oscillations of exp{iS.} are fast (of order m), and the
spatial variation (and thus the momentum p) can be small.
In fact, pair creation is expected to be suppressed for large
momenta p. Inserting p = O(&?), we obtain

R, = O(&%),
1 (0:80)? 5

Using this approximation in (74) we get

R =epé+ O(&%),

5= [anfw s 3o [u B0 0w,

(78)

It should be noted that in the strict sense the square root

\/m? + p? should be expanded in a power series in & as
well. However, we assume that keeping this expression as it
is will only enhance the accuracy of our approximation.
Inserting these expansions into the definition of 4, we find

OR  O:R D

TS ST T Uma

Hence, if we only keep terms up to order &> in (71), the
equations for a and f are

+ 0@, (79)

5“,5{ = —le_ZiS)«(){ rﬁ - —ﬂ[a 11’1)«0 8;‘ ln(/lomz)] },

~ . 1
asﬁ = ie2’5/10{6,5!—§~[8s lnlo - 8r lnio]} (80)
where 1y = —p/+/m?* + p? is the leading-order term of 1.

Again assuming the dominance of the positive frequency
part a > f (i.e., that only a few pairs are created), we find
a~a(r). Then f,, can be obtained from the second
equation in (80) by integrating over all s. While performing
that integral the other coordinate r = px/mg + O(&) has
to be held constant. Fortunately, if we only keep terms up
to order &2, holding r constant is the same as holding x
constant.

The integral is dominated by the singularity closest to the
imaginary axis at s, = S(z,,x). Typically, this will occur
where 4, diverges, i.e., where

m?(t,,x) + p*> = 0. (81)

Here we assume that the function m?(t,, x) itself does not
possess singularities which are even closer to the real axis.
(This could be the case for dynamically assisted pair
creation; see, e.g., [18,39,52].) In this case, they would
determine z,.

Thus, we expect S, to behave like

ﬁout(x) & eZiS(t*,x). (82)

The density of produced pairs will then be [see (A18)]

|ﬁ0ut(x)|2 & e_ZSS(t*JO‘ (83)
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In complete analogy to the purely time-dependent case, we
do not expect this method to yield the correct prefactor due
to the approximations made.

A. Example: Hyperbolic secant pulse

As an example, for an only weakly space-dependent
mass, we consider

m(t,&) = mo\/ 1+ [JMT (84)

which is similar to (18) but with an additional space-
dependent function g(y). In complete analogy to Eq. (18),
we assume @ < m and sufficiently small y in order to be
in the WKB regime; the limit of large y corresponds to the
perturbative regime.

We again use f(7) = sechz. Solutions to (81) here are the
same as in the time-dependent case (25),

i 1 1 T
7, =arcosh| = | =In|—+ 1+(~—> —i= 85
< 7) 7] 7 1 2 ®

with the only difference being that now

cos(zu/2)—in/ 147 sin(zu/2)

i

depends on & (or, equivalently, x). Comparing S, from (75)
with ¢, from the time-dependent case (20), we see that they
are equal up to an overall sign, i.e., Sy = —¢,,, and thus the
lowest-order contribution to the exponent of the number of
produced pairs

_271-_

p 2
~438y 1. x) = ~2n— 1+<m0> (87)

is exactly the same as in the time-dependent case. For the
next-order contributions we have to calculate

—438,(t,,x) = =23 / ar L% aSO)Z
 molfean)P1,
= lglean) 7" (B8)

with the dimensionless function / depending on 7 only,

arctan |-
{ |:|7| \/(1+72/2)[l+cos(7ru)]—i\/ 172 sin(zu)

} + arctan(ﬁ)}2

h(;”/):f)t/oldu

1 (59)

Note that because 7 = 7(&, p) this still depends on the
momentum p and the spatial coordinate £. This integral
cannot be solved exactly in terms of elementary functions,
but we may obtain the asymptotics. If we expand A(¥) in a
series for small 7, we find

W) = % =+ O] (90)

For large 7 > 1, the integrand (89) decays with 4/773
Note, however, that this limit corresponds to the perturba-
tive regime, where the WKB eventually breaks down.
To test this behavior, we calculate the function h(7)
numerically (see Fig. 5).

Because h(7) > 0 for all values of 7, the next-order
contribution always decreases the pair-creation exponent;
i.e., its absolute value increases, thus reducing the number
of produced pairs. This is qualitatively consistent with the
numerical results from [7] using the worldline formalism.
There it was found that the locally constant field approxi-
mation overestimates the true pair production probability, at
least in the case of a Sauter potential.

7. /1
|7‘ \/ + cos(zu)+72[1+cos(zu)]/2—ir/ 1+7 sin(zu)

|

Consequently, we see that, to this order of approxima-
tion, the density of produced pairs will be at its maximum
where ¢ (@&) vanishes. Thus, both minima and maxima of
the pulse may give significant contributions to the number

10°

10-2 A
©
<

1077 : . 1

= numerical data L
— w3
4 =3 .I
10716 I I /’y I 1 1 —
10-%t 1072 10° 102 104
,'?
FIG.5. Log-log plot of the numerically calculated function 4(7)

as given in (89). For small y < 1, h(7) approaches z?/7, whereas
for large y > 1 it behaves like 4/73.
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of produced pairs (compare [7]) as both are saddle points of
the spatial integral in (A18). However, the exact contribu-
tion depends on the prefactor in f3,,(x) which we have not
calculated here.

Qualitatively, the momentum dependence of the total
number N(p) of produced pairs will be the same as in the
purely time-dependent case, i.e., quadratically N(p) ~ p?
for small p and exponentially suppressed for large p. The
main effect of the spatial dependence of m(¢, x) will be an
overall reduction of the total amount of N(p), due to the
reduced pair-creation volume or length and the correction
(88) to the exponent.

B. Higher momenta

After Eq. (76), we used the low-momentum approxima-
tion p = O(&?) in order to simplify the subsequent
expressions. This was sufficient for calculating the low-
est-order correction (88) to the pair-creation exponent
which shows that the spatial dependence tends to decrease
the pair-creation probability. However, as the mass varies
on length scales on the order O(1/¢), one might expect that
further interesting effects occur on momentum scales of the
order p = O(g). Thus, let us briefly discuss this case.
According to Eq. (76), R, can no longer be neglected,

p O:m
= dr .
/m? + p? /m? + p?

which implies that the coordinates R and x are no longer
equivalent. This complicates the analytical continuation
because fixed and real values of R do not correspond to
fixed and real values of x (for complex f).

Furthermore, 4 is now less suppressed, 4 = O(¢), which
implies that reaching the desired accuracy of O(e?), one
should keep the quadratic terms O(4%) in the evolution
equations (71), which adds further complications. Of
course, these more complicated equations can also be
solved within a consistent expansion in ¢, but the resulting
expressions will be much more involved than those
presented here.

For very large momenta p, on the other hand, one would
expect that the results simplify again because the locally
homogeneous field approximation along the particle’s
worldline should become a good approximation.

IR,

(o1)

VIII. CONCLUSIONS & OUTLOOK

Calculating the creation of particle pairs by truly
spacetime-dependent external fields (such as gravitational
or electromagnetic fields) in the nonperturbative regime is a
very challenging task. For purely time-dependent fields, a
very powerful method to estimate the pair-creation expo-
nent is the WKB approximation. In this work, we propose
a generalization of this approach to truly spacetime-
dependent background fields, which is based on solutions

of the relativistic eikonal equation (28). For fields that only
depend on either time or a spatial coordinate, our method
reproduces the known results (see Sec. IV).

One of the first obstacles we encounter is the problem of
caustics. They indicate that the eikonal equation (28) in
truly spacetime-dependent background fields does not have
globally differentiable solutions in general, in contrast to
the purely time-dependent case. However, if the spatial
dependence is sufficiently weak compared to the temporal
variation of the background, these caustics are well
separated from the spacetime region of particle creation
and thus do not spoil our approach (see Sec. V).

Then, via a transformation to adapted coordinates » and
s, the Dirac equation in the presence of a spacetime-
dependent mass m(¢, x) can be mapped exactly to Egs. (71)
for the Bogoliubov coefficients. These equations have
several advantages and could also be suitable for improved
numerical simulation schemes. In the low-momentum
approximation A < 1, they simplify to (73). Then, via
the usual assumption that the positive frequency part
dominates, a> §, we may estimate the Bogoliubov
coefficient f associated with pair creation via a simple
integral over the new time coordinate s in complete analogy
to the purely time-dependent case. Thus, as in the purely
time-dependent case, the pair-creation exponent is deter-
mined by the first singularity in the complex s plane.

Finally, consistent with our assumption to avoid caustics,
we consider the case in which the spatial dependence is
much weaker than the temporal variation and employ an
expansion in terms of the relative strength ¢ of the spatial
dependence in Sec. VII. To leading order, we obtain a result
which is analogous to the locally constant field approxi-
mation: At each point x in space, we simply have to
integrate the evolution equation for f(z,x) over time—in
complete analogy to the purely time-dependent case (as if
we had a spatially homogeneous background). In analogy
to the locally constant field approximation, this leading
order could be referred to as a locally homogeneous field
approximation.

Calculating the next-to-leading order correction (88) to
the pair-creation exponent (for our example), we find that
the spatial dependence tends to decrease the pair-creation
probability—which is qualitatively consistent with the
behavior for the Sauter-Schwinger effect in an inhomo-
geneous electric field (see, e.g., [20]). Note that this next-
to-leading order correction vanishes at maxima and minima
of the pulse, where ¢'(Q¢&) is zero.

We expect that other field configurations, where the
dependence on one spacetime coordinate is weak, can be
treated similarly (e.g., tunneling through a weakly time-
dependent barrier or a light-front field pulse depending on
x, plus a pulse only weakly dependent on x_). In the
presence of an electromagnetic field A,, one formally
obtains the same equations (41) for a and S, but the
subsequent steps such as the transformation to new
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coordinates r and s are more involved. It is still possible to
use S/mg and R/my as coordinates, but they are not locally
orthogonal anymore. Alternatively, one can obtain the
coordinate s = S/my in a similar way as before and then
construct another locally orthogonal coordinate, but the
equations for the Bogoliubov coefficients @ and # become
more sophisticated nevertheless [53]. However, the main
strategy should also be applicable in this case.
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APPENDIX A: PAIR PRODUCTION

We give the relevant expressions for calculating the
number of produced pairs from the solutions of (41); see
also [54,55]. Assuming that any field is switched off
initially (i.e., for t > —o0) and finally (i.e., for t — ),
the fermionic field operator ¥ can be expanded in terms of
one of two basis systems {w(p;t,x)} or {w(p;t,x)},

f Mmip . ~ _
o - / dp, [ o (o)t (pit.x) + B (P (pi 1. )]
27r€p

Moyt A +
[a 1<p)l// t(p;t,x)
2”6?7“{ oul ou
+ b (P wou(pit. X)), (A1)
where
e = \/mh + (p+ gAT),
et = \fmi + (p+ gAY (82

and @y, (7), bin(j) and oy () bow(j) are the initial and final
electron and positron annihilation operators, respectively.
The quantities m;, and mg, are the values of the initial
and final mass, respectively, and similarly for A" and AS™.
The functions {wi:(p;t,x)} correspond to plane-wave
solutions for ¢ — —co, while the functions {wZ,(p;t,x)}
correspond to plane-wave solutions for ¢+ — oo; the super-
scripts + and — denote positive and negative energy,
respectively. These functions are complete,

> / B (E )W) (7 1.) = 35 =),
Z / e Vou(pi 6. x) (W) T (pi 1)) = 6(x = x),
(A3)

and orthonormal,
in

(). () = 27

in

5K16(p - pl)’

out

(Wsu(P) whu(p')) = 22—"=646(p = p'), (A4)
out
where (-,-) is the usual inner product defined as
ov) = [ e (0w ), (A5)
Observe that
A My T
ain(p) - 2 m(l//l_;(p> 111)
ey,
N min _ A
W) =\ [ (). ).
ey,
A~ Moyt 1
=, |—— vy
Aout (p) 2”6(;)11[ (l//out (p) )’
A m A
b! =, [ v A6
out(p) 2”6(]))ut(wom< ) ) ( )

Then by using the other respective expansion of the field
operator, one finds the Bogoliubov transformation between
the in- and out-operators,

n(p) = [ 4P B3 0ulp") + Bl Blu(s)

blup) = [ DB i) + BBl

Gou(P) = / AP [(BEE) aun(p') + (B B ()]

Blu(p) = / AP (B12) an(p') + (B BL(p) (A7)
with the Bogoliubov coefficients

KA 1 ”lin”lout
/
Y RV eg',“

i (p).whu(p)).  (A8)

Thus, the number of produced positrons with momentum
pis

Ne*(p) = <0in|l;2;ut(p)gout(p)|0in> = /dpllB;—r;F
mi,m _
A Gy | Ve v PP (A9)
pep

Let us assume that we calculated a solution to (41) with the
boundary conditions lim,_,a =1 and lim,_,f =0,
ie., only positive energy initially. Additionally,
lim,,_S;+ = px. Then we can actually use the wave
function in (34) as y;,. Asymptotically, we thus find
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W;(P;t, )C) = aout(p x)ug_ut(p'x)eiS‘j:“(p;x)

+ Pou(p3 x) 0 (ps )€™ P (A10)
where the quantities designated with “out” are the values of
their respective time-dependent quantities at t — oo.
Similarly we have

Woulpit.x) =5 1 (p)e™. (A11)
The spinor 79" (p) is obtained from a spinor v, at t — oo
where solutions S, with the boundary condition
lim,,.,S, = px have been used.

Because the inner product (AS5) is time independent, we
may evaluate the one in (A9) at any time; e.g., for t - oo
we find

Wi (P wou(p))
/dx{aout pix)(u OUt) (p'ix)¥ out(p)e—i[5$“(P’;x)—px]

4 Bout (03 X) (1) (' x) D9 (p) e~ 82 (P)=pa],
(A12)

In the time-dependent case, 0, =0,/ =0 and the
canonical momentum p is conserved, i.e., S (p;x) =
px F ¢(p) where ¢(p) is independent of x. Thus, 23" =
v is independent of x, too, and using the 1dent1tles

€
@) (p)v(p) =0, (W) (p)o3(p) = ",
Moyt
(A13)
we find
TN 2mep" /
Wi (P").wou(p)) = ——Pou(P)6(p' = p) ~ (A14)
out
and therefore
n m out
B~ = "—p). Al5
o p— 1;/%m( p)3(p' = p) (A15)
Similarly we can calculate
++ min ecp)m * /
By, = Mo €0 u(P)o(p" = p). (A16)

Thus, in the purely time-dependent case the coefficients
oy, and p,, essentially are the Bogoliubov coefficients,
and we get, for the number of produced pairs,

Min € L Bou(p) P5(0)

)4

Noo(p) = (A17)

Moy €

where the divergent factor §(0) is due to the infinite extent
of the field.

In the spacetime-dependent case, the integral in (A12) is
far more difficult to solve, as most factors depend on x.
Still, for only weakly space-dependent fields as in Sec. VII,
we assume that the dominant contribution comes from a
term similar to the one in the time-dependent case,

mln €0ut
N, (p) w2 0 / Wilfou(p)f (AIS)

Moyt €p

which essentially is just the same expression as in the time-
dependent case but with §(0) replaced with a spatial
integral. This is only a good approximation if scattering
to other modes is low.

APPENDIX B: ESTIMATION OF CAUSTICS

Using the method of characteristics, a first-order partial
differential equation may be turned into a set of first-order
ordinary differential equations (see, e.g., [49] for a math-
ematical derivation of the method). In our case, we can also
use the following equivalent set of ordinary differential
equations:

2
i(t) = —0m?,
0
2
X(T) = ——28me,
0
Hr) = 22 =02 _ 52 (B1)
my 2 ’
where z(7) = S(#(r), x(r)). We use the boundary condition

that at # = f, the solution § is a plane wave with positive
energy which translates to the initial conditions

. €
1(zg) = 1o, t(zg) = 22,
(7o) 0 (7o) "o
x(zg) =x.  l(rg) = —21-
mg

Z(T()) = —C()to + DPXo- (B2)
These equations were solved numerically to obtain the
characteristic curves in Fig. 4. The parameter 7 labels the
points along a particular characteristic curve that is speci-
fied by the starting position x.

We estimate the position of the intersection of two
neighboring curves analytically for p = 0. For times prior
to the pulse in the mass (where the mass is constant), the
(projected) characteristic curves are parallel to each other,
and their parametrization is given by
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€
t:t0—2—pr, x:xo—Zir.
my my

(B3)
The curves are deflected when they reach the region of the
pulse. This deflection is manifest in a change of a curve’s
slope dx/dt after passing the region of nonconstant mass.
The above equations imply that the change of the slope with
the parameter 7 is

ddx dx _%axm2 _2_5c8,m2

dedt  det &t omd P omd

(B4)

To approximate the change in the slope, we use the initial
form of the characteristic curves (B3) in (B4). We expect
this to be a good approximation if m is only weakly space
dependent; i.e., the timescale on which the value of the
mass changes is much smaller than its length scale. For
p = 0 this approximation yields

ddx 1
~ —zﬁxmz(z‘o - 21', )C()). (BS)

arar S

Thus, the slope after passing the region of nonconstant
mass is approximately

dx

& (B6)

1 0
A —2—”%/_00 dtd,m?(t, xp).

t—o00
Hence, a characteristic starting at x = x, will have the form

t [
xafter(xo; t) RX)— 75 dt&xm2(t, )CO)

B7
2m% oo ( )

after passing the pulse. The intersection of this character-
istic and the one starting at x, + 0 is at

. 2m3s
o[ dt[0,m?(t, xo + 8) — O.m>(t, )]

(B8)

For 6 — 0 this gives the intersection of two neighboring
curves

. 2m(2)
N [, dtdZm? (1, xo)

(B9)

Consequently, the focal point or onset of the caustic surface
is where this is at its minimum with respect to x,. For a
weakly space-dependent mass of the form (84), we get

1 o
/ dt92m?(t, x,)

2
2my J-oo
e’

= S Aateon) cos) + [ (wxy)) [ dslf (o)

(B10)

which immediately leads to the proportionality given
in (55). For f(z) = sechr and g(y) = sechy we find the
minimum to be
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