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Pure R2 gravity has been shown to be equivalent to Einstein gravity with nonzero cosmological constant
and a massless scalar field when restricted Weyl symmetry is spontaneously broken. We show that the
Palatini formulation of pure R2 gravity is equivalent to Einstein gravity with a nonzero cosmological
constant as before but with no massless scalar field when the Weyl symmetry is spontaneously broken. This
is an important new development because the massless scalar field is not readily identifiable with any
known particle in nature or unknown particles like cold dark matter which are expected to be massive. We
then include a nonminimally coupled Higgs field as well as fermions to discuss how the rest of the standard
model fields fit into this paradigm. With Higgs field, Weyl invariance is maintained by using a hybrid
formalism that includes both the Palatini curvature scalar R and the usual Ricci scalar R.
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I. INTRODUCTION

Pure R2 gravity (i.e., R2 gravity with no extra R term)
possesses a symmetry that is larger than scale symmetry
and smaller than full Weyl symmetry. This was dubbed
restricted Weyl symmetry [1] as the action is invariant
under gμν → Ω2ðxÞgμν with the condition that □Ω ¼ 0.
This theory was shown to be equivalent to Einstein gravity
with nonzero cosmological constant and a massless scalar
field [2–6] (see also [7] for a Weyl geometry approach.)
The massless scalar is identified as the Nambu-Goldstone
boson of the spontaneously broken restricted Weyl
symmetry [6].
The Palatini formulation [8,9]1 of pure R2 gravity is

Weyl invariant [39] and we show in this paper that when the
Weyl symmetry is spontaneously broken it is equivalent to
Einstein gravity with nonzero cosmological constant as
before but no massless scalar field appears in contrast to the
metric formulation. This is an important and positive
development; the presence of a massless scalar is not an
issue theoretically but as far as we know, there is no
evidence for such a particle in nature. In particular, it cannot

act as a cold dark matter candidate which is expected to be
massive.
We then introduce into the action a nonminimally coupled

massless Higgs field. To maintain Weyl invariance, we use a
hybrid formalism where the action includes both the Palatini
curvature scalarR and the usual Ricci scalarR.We show that
this action is equivalent toEinstein gravitywith cosmological
constant and a nonminimally coupled massive Higgs field.
Again, no massless scalar field appears. The original mass-
less Higgs becomes massive and can now be taken to be the
doublet of the standardmodel. The rest of the standardmodel
fields can be readily included into this paradigm. In particular
fermions can be includedvia the torsion-freeLevi-Civita spin
connection ωab

μ constructed from the vielbein. A separate
Palatini spin connectionΩab

μ is also introduced and applied to
the gravity sector. The main difference between the two is
that the Levi-Civita spin connection changes under a Weyl
transformation while the Palatini spin connection remains
unchanged. The use of these two connections in the action is
prescribed by the principle that the action is Weyl invariant.

II. PALATINI FORMULATION
OF PURE R2 GRAVITY

We show that the Palatini formulation of pure R2 gravity,
upon regarding the Weyl symmetry as a gauge symmetry, is
equivalent to Einstein gravity with nonzero cosmological
constant. First note that pure R2 gravity in the Palatini
formulation in four dimensions is Weyl invariant [39]
unlike in the metric formulation, which has only restricted
Weyl symmetry [1,4]. The Palatini action is given by
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S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
αR2: ð1Þ

Here, the Palatini scalar curvature R is given by

R ¼ gμσð∂νΓν
μσ − ∂σΓν

μν þ Γν
ανΓα

μσ − Γν
ασΓα

μνÞ; ð2Þ

where we treat gμν and Γσ
μν as independent variables (i.e.,

Γσ
μν is not the Christoffel connection at this point). We

assume that the Palatini connection is symmetric
Γσ
μν ¼ Γσ

νμ.
2 The above action is invariant under the Weyl

transformation

gμν → Ω2ðxÞgμν
Γμ
νρ → Γμ

νρ: ð3Þ

Note that in contrast to the metric formulation, the con-
nection is chosen to be unchanged under a Weyl trans-
formation. Thus the scalar curvature transforms as

R → Ω−2ðxÞR ð4Þ

while the metric Ricci scalar, denoted by R, transforms as

R → Ω−2R − 6Ω−3
□Ω ð5Þ

in four dimensions. It is now obvious that the pure R2

action is Weyl invariant in the Palatini formulation because
we use R instead of R.
While the equations of motion of the model were studied

e.g., in [43] (as reviewed in [44]), we do not follow their
approach. Instead we would like to find an equivalent
expression at the action level. Let us rewrite the Palatini R2

action by introducing an auxiliary field φðxÞ as

S1 ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ð−αðc1φþRÞ2 þ αR2Þ

¼
Z

d4x
ffiffiffiffiffiffi
−g

p ð−c21αφ2 − 2αc1φRÞ; ð6Þ

where c1 is an arbitrary (nonzero) number. The above
action is still Weyl invariant if φ transforms as φ → φ=Ω2

when gμν → Ω2ðxÞgμν.
We now perform the following field redefinition to go to

the Einstein frame:

gμν ¼ φ−1gðEÞμν

ffiffiffiffiffiffi
−g

p ¼ φ−2
ffiffiffiffiffiffiffiffiffiffiffi
−gðEÞ

q

R ¼ φRðEÞ: ð7Þ

This is not the Weyl transformation we introduced in the
last paragraph, which involves the change of φ. The
transformation here acts only on the metric and it changes
the appearance of the action.
After the change of the field variables, the resulting

action is

SE ¼
Z

d4x
ffiffiffiffiffiffiffiffiffiffiffi
−gðEÞ

q
ð−c21α − 2αc1RðEÞÞ: ð8Þ

This is nothing but Einstein gravity with nonzero cosmo-
logical constant in the Palatini formulation in the Einstein
frame. Varying the action with respect to Γμ

ρσ gives the
metric compatibility condition

Dρg
ðEÞ
μν ¼ 0; ð9Þ

which now identifies Γμ
ρσ with the Christoffel connection

(with the assumption of the symmetric connection)

Γμ
ρσ ¼ 1

2
gμνðEÞð∂ρg

ðEÞ
σν þ ∂σg

ðEÞ
ρν − ∂νg

ðEÞ
ρσ Þ: ð10Þ

Varying the action with respect to gðEÞμν then gives the
Einstein equations with cosmological constant.
At this point, we would like to discuss the fate of the

Weyl symmetry. The Einstein action (8) is clearly not Weyl

invariant in the conventional sense of gðEÞμν → Ω2ðxÞgðEÞμν .
The original Weyl symmetry, after the change of field
variables (7), does not act on the Einstein-frame metric

gðEÞμν ðxÞ in (8). The original Weyl symmetry, now acting
only on the scalar φ as

φ → Ω−2φ; ð11Þ

is still a symmetry but it is trivial because φðxÞ does not
appear in the action.
Note that in order to make sense of the field redefinition

(7), φ cannot be zero. With nonzero φ, the original Weyl
symmetry is spontaneously broken because φ ≠ 0 has a
scale dimension [which is equivalent to R ≠ 0 in the
original action (1)].3 In the Einstein metric R2 gravity,

2Alternatively one may impose the projective (gauge) sym-
metry Γσ

μν → Γσ
μν þ δσμUν and make it torsion-free (i.e., symmetric

in μ and ν) by fixing the gauge (see e.g., [40–42]). Without
matter, there is no inconsistency about this torsion-free
assumption. We will later show that our hybrid theory coupled
with Higgs and fermions does not couple to the torsion unlike
the conventional Einstein-Palatini theory thanks to the Weyl
invariance we impose as our guiding principle.

3The notion of “spontaneous symmetry breaking” is slightly
different from “dynamical symmetry breaking.” We do not claim
our vacuum is dynamically favored over the unbroken vacuum
solution φ ¼ 0 (or R ¼ 0). However, once we choose our
spontaneously broken vacuum solution, the unbroken solution
is infinite distance away in the field theory space and we cannot
restore the symmetry with finite time and energy.
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such spontaneous breaking of the (restricted) Weyl sym-
metry led to the emergence of the Nambu-Goldston boson
[4]. The distinct point here is that the auxiliary scalar φ
disappears completely due to the Weyl invariance.4 We
should regard φ as a would-be Nambu-Goldstone boson for
the spontaneous breaking of the Weyl symmetry [6].
However, because of the Weyl invariance, it does not
appear in the final action.
Since it does not appear in the action, we may just leave

it as it is and forget the field φ, but theoretically a more
satisfactory treatment is to declare that the Weyl symmetry
is a gauge symmetry (as first advocated by Weyl himself).
Then we can get rid of φ completely by fixing the gauge
(say φ ¼ 1), and there is no Nambu-Goldstone boson for
spontaneously broken gauge symmetry. Thus, the R2

gravity in the Palatini formulation is completely equivalent
to the Einstein gravity with (arbitrary but nonzero) cos-
mological constant once we regard the Weyl symmetry as a
gauge symmetry.
To complete our analysis, we would like to discuss the

case with unbroken Weyl symmetry with φ ¼ 0 or R ¼ 0

in the original action (1). In the Einstein R2 gravity, it is
known that when the restricted Weyl symmetry is not
spontaneously broken in the Minkowski vacuum (i.e.,
R ¼ 0), the theory does not gravitate and the theory is
uninteresting [5]. In the PalatiniR2 gravity, when the Weyl
symmetry is not spontaneously broken the Palatini con-
nection is undetermined [43] and the theory is pathological
and again uninteresting. In this paper, we only focus on the
physically relevant solutions of R2 gravity that are equiv-
alent to the Einstein gravity with nonzero cosmological
constant.

III. INCLUSION OF HIGGS FIELD
AND FERMIONS

We may generalize the construction by introducing the
Higgs field as we did in our previous papers [4,6]. Given
the mechanism of decoupling of φ in the pure R2 case, the
crucial assumption here is we impose the Weyl invariance
and regard it as a gauge symmetry. For our purpose of
reproducing the standard model of particle physics coupled
with Einstein gravity, we focus on the following Weyl
invariant action:

S1 ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
αR2 − ξRjΦj2 − 1

6
RjΦj2

− ð∂μΦ̄∂μΦÞ − λjΦj4
�
: ð12Þ

We stress that R is the Palatini scalar curvature while R is
the Ricci scalar constructed out of the metric tensor (and its
derivatives) and they are different (at this point). The
nonminimal coupling of the Higgs field to R is fixed
(i.e., 1=6) by the Weyl invariance while the nonminimal
coupling constant ξ, which couples to the Palatini curvature
R, is arbitrary.
At this point, we should stress that we depart slightly

from the original philosophy of Palatini that avoids the use
of the (Riemann) curvature in the action. Our philosophy
rather is to impose the Weyl invariance, and with the
Palatini curvature, we claim (12) is Weyl invariant and
ghost-free.5 In particular, it is impossible to introduce the
Weyl invariant kinetic term for scalar fields with only the
Palatini curvature.
We introduce the auxiliary field φ to rewrite the action as

S1 ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−α

�
c1φþRþ c2

α
jΦj2

�
2

þ αR2

− ξRjΦj2 − 1

6
RjΦj2 − ð∂μΦ̄∂μΦÞ − λjΦj4

�
ð13Þ

with arbitrary constants c1 and c2. After the field redefinition,

gμν → φ−1gμνffiffiffiffiffiffi
−g

p
→ φ−2 ffiffiffiffiffiffi

−g
p

R → φR

Φ → φ1=2Φ

R → φR − 6φ3=2
□φ−1=2; ð14Þ

the action becomes6

S¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−αc21−2αc1R−∂μΦ̄∂μΦ−2c1c2jΦj2

− ðα−1c22þλÞjΦj4− ðξþ2c2ÞRjΦj2−1

6
RjΦj2

�
: ð15Þ

4When we break the Weyl invariance e.g., by adding the linear
R term in the action, φ does not disappear [45]. The matter sector
also has to respect the Weyl symmetry to make φ disappear as we
will do in the following section.

5TheWeyl invariance allows other terms such as Weyl squared,
but generally it predicts propagating ghost modes. See e.g.,
[42,46] for a recent study of such propagating ghost modes in the
Palatini formulations. The full analysis of all the possible Weyl
invariant terms is not yet completed and there is a chance that
specific linear combinations of Palatini/Ricci curvature terms
(e.g., difference of Palatini Weyl squared and Riemann Weyl
squared) may result in unitary theories, but this is beyond the
scope of our paper. We also note that there are further Weyl
invariant terms if we abandon the torsion-free condition
or nonmetricity. The Weyl invariant terms constructed out of
torsion or nonmetricity result in propagating extra degrees of
freedom and typically cause a ghost. See e.g., [41,42] for a recent
study.

6While we have put the subscript (E) to the Einstein frame
fields in the last section, we hereafter omit the subscript after the
field redefinition.
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Note that φ does not appear in the final action thanks to
the Weyl invariance of the original action. Now, we declare
that we regard the Weyl symmetry as a gauge symmetry
and discard φ. To make the action simpler, we choose ξ ¼
−2c2 so that the Palatini scalar curvatureR does not couple
to jΦj2. Since c2 is arbitrary we can always make this
happen, but this choice is particularly useful because then
the variation of the Palatini connection Γμ

ρσ just gives the
condition that the Palatini connection is identified with the
Christoffel connection. With this choice, R ¼ R as a
consequence of the equations of motion and we recover
the Einstein action with cosmological constant coupled
with the Higgs field jΦj2.7
This formulation of the standard model may be of

aesthetic interest because the starting point of the action
is completely dimension free. In addition, our formulation
has a property that the nonminimal gravitational coupling
of the Higgs field is classically fixed to be 1=6.
In order to obtain the full standard model of the particle

physics within our setup, we need to introduce gauge fields
and fermion fields. The introduction of fermion fields
requires a little bit of care because (1) it uses a spin
connection and (2) we probably cannot introduce the mass
for the fermions. With the fermion fields Ψ and the gauge
fields, the action of the matter is schematically given by

Z
d4x

ffiffiffiffiffiffi
−g

p �
1

2g2YM
TrFμνFμνþ θTrϵμνρσFμνFρσ þ Ψ̄Dμγ

μΨ

þ yðΨΨΦÞþ ȳðΨ̄ Ψ̄ Φ̄ÞþHiggs
�
: ð16Þ

The Higgs sector is essentially given in (12) by replacing
the derivative ∂μ with the gauge covariant one. Without
violating the Weyl symmetry, one may use the standard
spin connection constructed out of the vielbein eaμ for
fermion kinetic terms. More precisely, we introduce the
torsion-free Levi-Civita spin connection constructed out of
the vielbein:

ωab
μ ¼ 1

2
eνað∂μebν − ∂νebμÞ −

1

2
eνbð∂μeaν − ∂νeaμÞ

−
1

2
eρaeσbð∂ρeσc − ∂σeρcÞecμ: ð17Þ

We also introduce the Palatini spin connection Ωab
μ and we

treat it as an independent variable.
Under the Weyl transformation, the vielbein transforms

as eaμ → ΩðxÞeaμ so that gμν ¼ eaμeνa → Ω2ðxÞgμν. Then the
Levi-Civita spin connection transforms as

ωab
μ → ωab

μ − eνaebμ∂νðlnΩÞ þ eνbeaμ∂νðlnΩÞ ð18Þ

while the Palatini spin connection transforms as

Ωab
μ → Ωab

μ : ð19Þ

In the gravitational part of the action, the Weyl invariant
curvature term, i.e., R2, is now constructed out of the
Palatini spin connection Ωab

μ :

R ¼ eμaeνbð∂μΩab
ν − ∂νΩab

μ þ Ωac
μ Ωνc

b −Ωac
ν Ωμc

bÞ: ð20Þ

The nonminimal coupling to the Higgs field contains both
the Palatini curvature and the Ricci scalar as in (12). On the
other hand, in the fermionic kinetic term, we exclusively
use the Levi-Civita spin connection ωab

μ (in addition to the
Yang-Mills gauge field Aμ) as

DμΨ ¼ ð∂μ þ iAμÞΨþ 1

2
ωab
μ ΣabΨ; ð21Þ

where Σab ¼ 1
2
½γa; γb�. In (21) we use ωab

μ rather than the
Palatini spin connection Ωab

μ in order to preserve the Weyl
invariance because we assume the Palatini spin connection
does not transform under the Weyl transformation (like the
Palatini connection Γμ

ρσ) so the Weyl transformation of the
fermionmust be canceled by theLevi-Civita spin connection.
Phenomenologically this is very appealing because if we

used the Palatini spin connection in the fermionic kinetic
terms (as we usually do in the conventional Palatini
formulation), the equations of motion for the Palatini spin
connection Ωab

μ would dictate that it has an additional
torsional contribution from the fermionic spin currents,
resulting in a spin-spin interaction in the final matter action
as in the Einstein-Cartan theory. In our case, after rewriting
the action in the equivalent Einstein form, the variation of
the Palatini spin connection makes it identified with the
Levi-Civita spin connection and hence we do not generate
such (so-far) unobserved four-Fermi interactions.
Note also that theWeyl invariance does not allow fermion

mass terms or cubic self-interaction terms for scalar fields
(even if they were allowed by gauge symmetry in the more
general matter action). In this sense, it is remarkable that our
standard model of particle physics as well as all the
gravitational physics we observe in the Universe is compat-
ible with our formulation of Weyl invariant Palatini gravity.8

7When the Palatini curvature has nonminimal couplings to the
matter, the Palatini connection is not necessarily equal to the
Christoffel connection [47].

8While it is beyond the scope of our paper which focuses on
classical physics, quantum effects including renormalizations can
be taken care of in our formulation possibly except for the
quantum gravity sector. For example, we may employ the Pauli-
Villars regularization because all the Pauli-Villars fields (in the
Einstein frame) can be embedded in our setup in the Weyl
invariant way. With the quantum corrections, the classical
property of our theory that the coupling between Higgs and
the Ricci scalar is 1=6 will be modified.
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IV. CONCLUSION

In this work, we showed that the Palatini formulation of
pureR2 gravity is equivalent to Einstein gravitywith nonzero
cosmological constant. No massless scalar field appears in
contrast to the metric formalism where it appears as a
Nambu-Goldstone boson [6]. We regarded the Weyl sym-
metry as a gauge symmetry and the gauge symmetry is
spontaneously broken. There is no Nambu-Goldstone boson
for spontaneously broken gauge symmetry. This is a positive
development because there is no evidence of such a massless
scalar in nature (including cold darkmatterwhich is expected
to be massive). The equivalence is of aesthetic appeal
because the original action isWeyl invariant and has no scale.
We then construct a Weyl invariant unitary action where

we include a nonminimally coupled massless Higgs field.
The Weyl invariance requires a hybrid action that includes
both the Palatini curvature scalar R and the usual Ricci
scalar R. We show that this action is equivalent to Einstein
gravity with cosmological constant and a nonminimally
coupled massive Higgs with coefficient fixed to be 1=6 at
the classical level. So the theory, besides its aesthetic
appeal, has a classical property that the coupling of the
Higgs to the Ricci scalar comes with a coupling constant of
1=6. In other words, the original Weyl invariance which is

subsequently spontaneously broken, leaves an imprint on
the final action and determines one of the coupling
constants. This is pertinent for work on inflationary models
which couple the Higgs boson to curvature in Einstein
gravity (as a recent example see [48]). Typically, in such
work, one considers the coupling to be an arbitrary constant
ξ instead of 1=6.
Remarkably, one can incorporate into this paradigm all

the other standard model fields, including fermions. We
showed that this can be accomplished by working with two
spin connections instead of only one: the torsion-free Levi-
Civita connection ωab

μ constructed out of the vielbein and
the Palatini spin connection Ωab

μ as an independent vari-
able. The former is used for the fermions and the latter for
the R2 gravitational action. Therefore our final action
reproduces the standard model as we know it (with the
added benefit of fixing the coupling constant between the
Higgs and the Ricci scalar to be 1=6 at the classical level).

ACKNOWLEDGMENTS

Y. N. is in part supported by JSPS KAKENHI Grant
No. 17K14301. A. E. is supported by an NSERC discovery
grant.

[1] A. Edery and Y. Nakayama, Phys. Rev. D 90, 043007
(2014).

[2] C. Kounnas, D. Lüst, and N. Toumbas, Fortschr. Phys. 63,
12 (2015).

[3] A. Kehagias, C. Kounnas, D. Lüst, and A. Riotto, J. High
Energy Phys. 05 (2015) 143.

[4] A. Edery and Y. Nakayama, Mod. Phys. Lett. A 30,
1550152 (2015).

[5] L. Alvarez-Gaume, A. Kehagias, C. Kounnas, D. Lüst, and
A. Riotto, Fortschr. Phys. 64, 176 (2016).

[6] A. Edery and Y. Nakayama, Phys. Rev. D 98, 064011
(2018).

[7] D. M. Ghilencea, J. High Energy Phys. 03 (2019) 049.
[8] A. Einstein, Sitzungber. Preuss. Akad. Wiss. 22, 414 (1925).
[9] R. L. Arnowitt, S. Deser, and C.W. Misner, Gen. Relativ.

Gravit. 40, 1997 (2008).
[10] F. Bauer and D. A. Demir, Phys. Lett. B 665, 222 (2008).
[11] M. Borunda, B. Janssen, and M. Bastero-Gil, J. Cosmol.

Astropart. Phys. 11 (2008) 008.
[12] G. J. Olmo, Int. J. Mod. Phys. D 20, 413 (2011).
[13] F. Bauer and D. A. Demir, Phys. Lett. B 698, 425 (2011).
[14] N. Tamanini and C. R. Contaldi, Phys. Rev. D 83, 044018

(2011).
[15] K. Enqvist, T. Koivisto, and G. Rigopoulos, J. Cosmol.

Astropart. Phys. 05 (2012) 023.
[16] A. Borowiec, M. Kamionka, A. Kurek, and M. Szydlowski,

J. Cosmol. Astropart. Phys. 02 (2012) 027.

[17] A. Racioppi, J. Cosmol. Astropart. Phys. 12 (2017) 041.
[18] S. Rasanen and P. Wahlman, J. Cosmol. Astropart. Phys. 11

(2017) 047.
[19] C. Fu, P. Wu, and H. Yu, Phys. Rev. D 96, 103542 (2017).
[20] A. Stachowski, M. Szydowski, and A. Borowiec, Eur. Phys.

J. C 77, 406 (2017).
[21] M. Szydowski, A. Stachowski, and A. Borowiec, Eur. Phys.

J. C 77, 603 (2017).
[22] T. Tenkanen, J. Cosmol. Astropart. Phys. 12 (2017) 001.
[23] T. Markkanen, T. Tenkanen, V. Vaskonen, and H. Veerme,

J. Cosmol. Astropart. Phys. 03 (2018) 029.
[24] P. Carrilho, D. Mulryne, J. Ronayne, and T. Tenkanen,

J. Cosmol. Astropart. Phys. 06 (2018) 032.
[25] V.-M. Enckell, K. Enqvist, S. Rasanen, and E. Tomberg,

J. Cosmol. Astropart. Phys. 06 (2018) 005.
[26] F. Bombacigno and G. Montani, Phys. Rev. D 99, 064016

(2019).
[27] V.-M. Enckell, K. Enqvist, S. Rasanen, and L.-P. Wahlman,

J. Cosmol. Astropart. Phys. 02 (2019) 022.
[28] A. Kozak and A. Borowiec, Eur. Phys. J. C 79, 335

(2019).
[29] L. Järv, A. Racioppi, and T. Tenkanen, Phys. Rev. D 97,

083513 (2018).
[30] Z. Wang, P. Wu, and H. Yu, Astrophys. Space Sci. 363, 120

(2018).
[31] J. Wu, G. Li, T. Harko, and S.-D. Liang, Eur. Phys. J. C 78,

430 (2018).

PALATINI FORMULATION OF PURE R2 GRAVITY YIELDS … PHYS. REV. D 99, 124018 (2019)

124018-5

https://doi.org/10.1103/PhysRevD.90.043007
https://doi.org/10.1103/PhysRevD.90.043007
https://doi.org/10.1002/prop.201400073
https://doi.org/10.1002/prop.201400073
https://doi.org/10.1007/JHEP05(2015)143
https://doi.org/10.1007/JHEP05(2015)143
https://doi.org/10.1142/S0217732315501527
https://doi.org/10.1142/S0217732315501527
https://doi.org/10.1002/prop.201500100
https://doi.org/10.1103/PhysRevD.98.064011
https://doi.org/10.1103/PhysRevD.98.064011
https://doi.org/10.1007/JHEP03(2019)049
https://doi.org/10.1007/s10714-008-0661-1
https://doi.org/10.1007/s10714-008-0661-1
https://doi.org/10.1016/j.physletb.2008.06.014
https://doi.org/10.1088/1475-7516/2008/11/008
https://doi.org/10.1088/1475-7516/2008/11/008
https://doi.org/10.1142/S0218271811018925
https://doi.org/10.1016/j.physletb.2011.03.042
https://doi.org/10.1103/PhysRevD.83.044018
https://doi.org/10.1103/PhysRevD.83.044018
https://doi.org/10.1088/1475-7516/2012/05/023
https://doi.org/10.1088/1475-7516/2012/05/023
https://doi.org/10.1088/1475-7516/2012/02/027
https://doi.org/10.1088/1475-7516/2017/12/041
https://doi.org/10.1088/1475-7516/2017/11/047
https://doi.org/10.1088/1475-7516/2017/11/047
https://doi.org/10.1103/PhysRevD.96.103542
https://doi.org/10.1140/epjc/s10052-017-4981-8
https://doi.org/10.1140/epjc/s10052-017-4981-8
https://doi.org/10.1140/epjc/s10052-017-5181-2
https://doi.org/10.1140/epjc/s10052-017-5181-2
https://doi.org/10.1088/1475-7516/2017/12/001
https://doi.org/10.1088/1475-7516/2018/03/029
https://doi.org/10.1088/1475-7516/2018/06/032
https://doi.org/10.1088/1475-7516/2018/06/005
https://doi.org/10.1103/PhysRevD.99.064016
https://doi.org/10.1103/PhysRevD.99.064016
https://doi.org/10.1088/1475-7516/2019/02/022
https://doi.org/10.1140/epjc/s10052-019-6836-y
https://doi.org/10.1140/epjc/s10052-019-6836-y
https://doi.org/10.1103/PhysRevD.97.083513
https://doi.org/10.1103/PhysRevD.97.083513
https://doi.org/10.1007/s10509-018-3339-5
https://doi.org/10.1007/s10509-018-3339-5
https://doi.org/10.1140/epjc/s10052-018-5923-9
https://doi.org/10.1140/epjc/s10052-018-5923-9


[32] D. Iosifidis, A. C. Petkou, and C. G. Tsagas, Gen. Relativ.
Gravit. 51, 66 (2019).

[33] M. Szydowski and A. Stachowski, Phys. Rev. D 97, 103524
(2018).

[34] T. Tenkanen, Phys. Rev. D 99, 063528 (2019).
[35] B. Janssen, A. Jimenez-Cano, J. A. Orejuela, and P.

Sanchez-Moreno, arXiv:1901.02326.
[36] S. Yoon, arXiv:1901.01416.
[37] R. Jinno, K. Kaneta, K. Oda, and S. C. Park, Phys. Lett. B

791, 396 (2019).
[38] I. Antoniadis, A. Karam, A. Lykkas, T. Pappas, and K.

Tamvakis, J. Cosmol. Astropart. Phys. 03 (2019) 005.
[39] A. Borowiec, M. Ferraris, M. Francaviglia, and I. Volovich,

Classical Quantum Gravity 15, 43 (1998).

[40] T. P. Sotiriou, Classical Quantum Gravity 26, 152001
(2009).

[41] D. Iosifidis and T. Koivisto, arXiv:1810.12276.
[42] J. Beltrrn Jimenez and A. Delhom, arXiv:1901.08988.
[43] G. Stephenson, Colloq. Int. CNRS 91, 225 (1962).
[44] L. Querella, arXiv:gr-qc/9902044.
[45] I. Antoniadis, A. Karam, A. Lykkas, and K. Tamvakis,

J. Cosmol. Astropart. Phys. 11 (2018) 028.
[46] E. Alvarez, J. Anero, S. Gonzalez-Martin, and R. Santos-

Garcia, Eur. Phys. J. C 78, 794 (2018).
[47] A. Iglesias, N. Kaloper, A. Padilla, and M. Park, Phys. Rev.

D 76, 104001 (2007).
[48] X. Calmet, I. Kuntz, and I. G. Moss, Found. Phys. 48, 110

(2018).

ARIEL EDERY and YU NAKAYAMA PHYS. REV. D 99, 124018 (2019)

124018-6

https://doi.org/10.1007/s10714-019-2539-9
https://doi.org/10.1007/s10714-019-2539-9
https://doi.org/10.1103/PhysRevD.97.103524
https://doi.org/10.1103/PhysRevD.97.103524
https://doi.org/10.1103/PhysRevD.99.063528
http://arXiv.org/abs/1901.02326
http://arXiv.org/abs/1901.01416
https://doi.org/10.1016/j.physletb.2019.03.012
https://doi.org/10.1016/j.physletb.2019.03.012
https://doi.org/10.1088/1475-7516/2019/03/005
https://doi.org/10.1088/0264-9381/15/1/005
https://doi.org/10.1088/0264-9381/26/15/152001
https://doi.org/10.1088/0264-9381/26/15/152001
http://arXiv.org/abs/1810.12276
http://arXiv.org/abs/1901.08988
http://arXiv.org/abs/gr-qc/9902044
https://doi.org/10.1088/1475-7516/2018/11/028
https://doi.org/10.1140/epjc/s10052-018-6250-x
https://doi.org/10.1103/PhysRevD.76.104001
https://doi.org/10.1103/PhysRevD.76.104001
https://doi.org/10.1007/s10701-017-0131-2
https://doi.org/10.1007/s10701-017-0131-2

