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In relativistic kinetic theory, the one-particle distribution function is approximated by an asymptotic
perturbative power series in the Knudsen number which is divergent. For the Bjorken flow, we expand the
distribution function in terms of its moments and study their nonlinear evolution equations. The resulting
coupled dynamical system can be solved for each moment consistently using a multiparameter transseries
which makes the constitutive relations inherit the same structure. A new nonperturbative dynamical
renormalization scheme is born out of this formalism that goes beyond the linear response theory. We show
that there is a Lyapunov function, also known as dynamical potential, which is, in general, a function of the
moments and time satisfying Lyapunov stability conditions along renormalization group flows connected
to the asymptotic hydrodynamic fixed point. As a result, the transport coefficients get dynamically
renormalized at every order in the time-dependent perturbative expansion by receiving nonperturbative
corrections present in the transseries. The connection between the integration constants and the UV data is
discussed using the language of dynamical systems. Furthermore, we show that the first dissipative
correction in the Knudsen number to the distribution function is not only determined by the known effective
shear viscous term but also a new high-energy nonhydrodynamic mode. It is demonstrated that the survival
of this new mode is intrinsically related to the nonlinear mode-to-mode coupling with the shear viscous
term. Finally, we comment on some possible phenomenological applications of the proposed non-
hydrodynamic transport theory.

DOI: 10.1103/PhysRevD.99.116012

I. INTRODUCTION

Recent measurements of multiparticle cumulants in
dþ Au, pþ Pb, pþ Au, and 3Heþ Au systems have
provided a compelling evidence for collective flow in
heavy-light ion collisions [1–5]. Similar observations
had been made previously in nucleus-nucleus collisions
(cf. Refs. [6,7], and references therein). Altogether, these
measurements seem to imply that the collective evolution
of a nuclear fireball created in these experiments can be
understood in terms of hydrodynamics.
The phenomenological success of hydrodynamic models

in producing an accurate description of these extreme
experimental situations has raised some questions as
per the validity of the assumptions that hydrodynamics

relies on. For instance, the local thermal equilibrium
hypothesis has been usually thought of as a necessary
and sufficient criterion for the applicability of the fluid-
dynamical equations of motion. Different theoretical stud-
ies [8–20] have shown that the equilibrium condition seems
to be too restrictive and that surprisingly no inconsistency
arises when hydrodynamics is used for interpreting a
system sitting far from equilibrium. These findings have
repeatedly pointed out to the possibility of generalizing
relativistic hydrodynamic theories for systems with the
local thermal equilibrium removed [21–23]. Although the
idea of employing fluid dynamics in nonthermal equilib-
rium physics is not entirely new [24,25], little progress has
been made to formulate it from first principles.
In recent years we have learned more about certain

generic properties of far-from-equilibrium hydrodynamics
that follows suitably from the nonlinear nature of fluid
dynamics. The breakdown of the naive perturbative asymp-
totic expansion is, therefore, imminent, meaning that a
series ansatz fails to converge and accordingly it cannot be
a full-blown solution to the underlying nonlinear differ-
ential equations. This has been long known in mathematics
[26]. An example of this fact in hydrodynamics was given
in [27], where the gradient expansion of the energy-
momentum tensor of a conformal fluid was shown to be

*abehtas@ncsu.edu
†skamata@ncsu.edu
‡mmarti11@ncsu.edu
§hshi3@ncsu.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 99, 116012 (2019)
Editors' Suggestion

2470-0010=2019=99(11)=116012(40) 116012-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.99.116012&domain=pdf&date_stamp=2019-06-14
https://doi.org/10.1103/PhysRevD.99.116012
https://doi.org/10.1103/PhysRevD.99.116012
https://doi.org/10.1103/PhysRevD.99.116012
https://doi.org/10.1103/PhysRevD.99.116012
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


divergent. The divergences of the energy-momentum tensor
ought to beg for the existence of additional degrees of
freedom called nonhydrodynamic modes. Since then, more
examples have appeared in generic setups in both strong
and weakly coupled regimes [21,27–40].
A more relevant and important question to ask in this

context has to do with how nonhydrodynamic modes can
affect the transport properties of the system and what their
possible phenomenological significance is. We addressed
this question in our previous work [41] by investigating the
nonlinear dynamics of a far-from-equilibrium weakly
coupled plasma undergoing Bjorken expansion. Our work
first treated the equations governing the time evolution of
momentum moments of the one-particle distribution func-
tion as a coupled nonlinear dynamical system, the solutions
of which are found to be multiparameter transseries with
real integration constants σ. These transseries carry expo-
nentially small (nonperturbative) information in terms of
the Knudsen (Kn) and inverse Reynolds (Re−1) numbers
which both play the role of expansion parameters in the
transseries, whereas the relaxation time τr characterizes the
size of exponential corrections. A linear combination of
these moments defines the constitutive relations at every
order in the perturbative expansion whose coefficients are
indeed related to the transport coefficients. Then summing
over all exponentially small factors and other monomials of
the expansion parameters in the transseries renders an
effective dynamical renormalization of the transport coef-
ficients away from the values obtained at equilibrium using
linear response theory. It should be noted that in this
approach, “dynamical renormalization” means that there
exists a positive-definite monotonically decreasing func-
tional also known as the Lyapunov functional in the
stability theory, along every flow line in the space of
moments, that can be easily derived from our dynamical
system.
One advantage that comes with studying dynamical

systems is the ability to have full control over the late-
time (or IR) as well as early-time (or UV) behavior of the
flow lines. We should keep in mind that the alternative
techniques such as Borel resummation heavily rely on the
asymptotics of the divergent series. However, in a dynami-
cal system of evolving moments, the resurgent multi-
parameter transseries is directly found as a formal
solution without the need for going to the Borel plane
where UV information is completely lost. The Borel
singularities in this sense only encode IR data such as
the size of exponential corrections which in our approach
corresponds to the eigenvalues of the linearization matrix
commonly known as Lyapunov exponents around the
asymptotic hydrodynamic fixed point. Therefore, the
theory after Borel resummation is only asymptotically
equivalent to the original theory and drawing any con-
clusions on the fate of solutions of the original theory in the
UV from a resumed series is not in general possible.

The organization of this paper is as follows. We extend
and generalize our previous findings [41] to include higher
nonhydrodynamic modes in Secs. II and III while providing
technical details of our derivations in the Appendixes. In
Sec. IV, we explain further the deep relationship between
dynamical systems and the resurgence theory in the time-
dependent (nonautonomous) system at hand, which was
first discussed in the context of relativistic hydrodynamics
in Ref. [42]. Finally, in Sec. V it will be reported that a new
high-energy nonhydrodynamic mode exists whose first-
order perturbative asymptotic term goes like ∼ðτTÞ−1,
which obviously displays the same decay as the Navier-
Stokes (NS) shear viscous tensor component. The survival
of this new nonhydrodynamic mode is due to the nonlinear
mode-to-mode coupling with the effective shear viscous
tensor. Some of the quantitative and qualitative properties
of this new mode will also be discussed. As a last couple of
remarks, we should remind the readers that for the sake of
keeping the paper self-contained, we have included a small
number of mathematical definitions from dynamical sys-
tems in Appendix B that will make the read easier. Also, as
mentioned above, we will adopt the field theory language
when talking about the early-time and late-time regimes,
which then can be interchangeable with UV and IR,
respectively.

II. KINETIC MODEL

The statistical and transport properties of weakly
coupled systems are usually described by the kinetic theory.
Within this approach, it becomes important to understand
the evolution of the one-particle distribution function from
the Boltzmann equation [43–45]. Fluid-dynamical equa-
tions of motion arise as a coarse-graining process of the
distribution function where the fastest degrees of freedom
are integrated out. The approximations made in the coarse-
graining procedure do not necessarily lead to the same
macroscopic evolution equations [46,47], and nor do they
in general draw an accurate picture of the physics when
compared against exact numerical solutions [10–13,48,49].
The common approaches to finding approximate solutions
of the Boltzmann equation are the Chapman-Enskog
approximation [50] and Grad’s moment method [43,51].
In the Chapman-Enskog method, the distribution function
is expanded as a power series in the Knudsen number
around its equilibrium value, which eventually leads to a
divergent series [52,53]. In Grad’s moment method, the
distribution function is expanded about the equilibrium
state in terms of an orthogonal set of polynomials, and the
coefficients of such expansion are average momentum
moments [51]. The second approach, however, turns out
to be more convenient when dealing with far-from-
equilibrium backgrounds [20,54–57].
In this work, we also adopt the latter method and study

the full nonlinear aspects of the moments’ evolution
equations. We carry out our research plan by considering
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a weakly coupled relativistic system of massless particles
which undergoes Bjorken expansion [58] with a vanishing
chemical potential. We simplify our problem by assuming
the Boltzmann equation within the relaxation time approxi-
mation (RTA BE).
For the Bjorken flow we use the Milne coordinates xμ ¼

ðτ; x; y; ςÞ [with the longitudinal proper time τ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − z2

p
and pseudorapidity ς ¼ arctanhðz=tÞ], and the metric is
gμν ¼ diagð−1; 1; 1; τ2Þ. The timelike normal vector iden-
tified with the fluid velocity is taken to be uμ ¼ ð1; 0; 0; 0Þ
(with uμuμ ¼ −1) and the spatial-like normal vector point-
ing along the ς direction is lμ ¼ ð0; 0; 0; 1Þ (with lμlμ ¼ 1).
The Bjorken flow symmetries reduce the RTA BE to the
following relaxation-type equation [59]:

∂τfðτ; pT; pςÞ ¼ −
1

τrðτÞ
½fðτ; pT; pςÞ − feqð−u · p=TÞ�;

ð1Þ

where pT is the transverse momentum, pς denotes the
momentum component along the ς direction, and τr
represents the relaxation timescale. Also, feq is the local
equilibrium Jüttner distribution which without loss of
generality is chosen to be of Maxwell-Boltzmann type,
i.e., feqðxÞ ¼ e−x. We recall that τr sets the timescale at
which the system relaxes to its thermal equilibrium. We
shall consider models whose relaxation time is a power law
in the effective temperature, namely

τr ¼
θ0

T1−Δ : ð2Þ

For Δ ¼ 1 means that the constant θ0 is dimensionful,
while for Δ ¼ 0 the theory is conformally invariant.1 For
pedagogical purposes we perform explicit calculations for
the case of Δ ¼ 0 in the main body of the paper, while the
gist of results for the general case are discussed in
Appendixes D–F.
The RTA BE (1) can be solved exactly [59]. In what

follows, we will take a distinct approach in which the
mathematical problem of solving the Boltzmann equation
is recast into seeking solutions to a set of nonlinear ordinary
differential equations (ODEs) for the moments. For the
Bjorken flow we propose the following ansatz for the
single-particle distribution function [41]:

fðτ; pT; pςÞ

¼ feq

�
pτ

T

��XNn

n¼0

XNl

l¼0

cnlðτÞP2l

�
pς

τpτ

�
Lð3Þ
n

�
pτ

T

��
; ð3Þ

where pτ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
T þ ðpς=τÞ2

q
is the energy of the particle in

the comoving frame and Lð3Þ
n and P2l denote the general-

ized Laguerre and the Legendre polynomials, respectively.
The ansatz (3) allows us to study hydrodynamization
processes [41]. Furthermore, the nonlinear relaxation of
the low-energy (n ¼ 0) as well as the high-energy tails
(n > 0) of the distribution function are better understood
when fðτ; pT; pςÞ is expanded in terms of orthogonal
polynomials [61,62].
The moments cnl are read directly from Eq. (3) as

follows2:

cnlðτÞ ¼ 2π2
ð4lþ 1Þ
T4ðτÞ

Γðnþ 1Þ
Γðnþ 4Þ

×

�
ðpτÞ2P2l

�
pς

τpτ

�
Lð3Þ
n

�
pτ

T

��
; ð4Þ

where ΓðnÞ is the Gamma function and the momentum
average of any observable Oðxμ; pμÞ weighted by an
arbitrary distribution function fX is denoted as hOiX ≡R
p Oðxμ; pμÞfXðxμ; piÞ with

R
p ≡

R
d2pTdpς=½ð2πÞ3τpτ�.

If feqðxÞ ¼ e−x, then have that the hydrodynamic equilib-
rium (asymptotic IR fixed point) is given by ceqnl ¼ δn0δl0.
For the Bjorken flow the energy-momentum tensor

Tμν ¼ hpμpνi is3 [55,65–69]

Tμν ¼ εuμuν þ PLlμlμ þ PTΞμν; ð5Þ

with the projector operator Ξμν ¼ gμν þ uμuν − lμlν which
is orthogonal to both uμ and lμ. The energy density ε and
the transverse and longitudinal pressures (PL and PT ,
respectively) can be written in terms of the moments
cnl [41]:

ε ¼ hð−u · pÞ2i ¼ 3

π2
c00T4; ð6aÞ

1A slightly more general class of models for the relaxation time
approximation has been studied in Ref. [60].

2Blaizot and Li studied the time evolution of similar moments
for a constant relaxation time [63] and a more general nonlinear
collisional kernel in the small angle approximation [64]. In their
case, the authors were interested in the details of the longitudinal
momentum anisotropy which in our notation corresponds to those
moments with n ¼ 0. Up to some normalization factor, the main
difference between the moments Ll [see Eq. (2.8) in Ref. [63] ]
and our moments c0l is that the former are dimensionful.

3It is customary to use the following tensor decomposition of
the energy-momentum tensor:

Tμν ¼ ðεþ P0Þuμuν þ gμνP0 þ πμν;

where P0 is the equilibrium pressure and πμν is the shear viscous
tensor. Nonetheless, for highly anisotropic systems, Molnár et al.
[55,65] showed that using Tμν (5) is convenient. It should be
noted that both formulations are equivalent [55] and explicit
examples for the Bjorken [65] and Gubser flows [42,49] have
already been discussed in the literature.
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PT ¼
�
1

2
Ξμνpμpν

�
¼ ε

�
1

3
−

1

15
c01

�
; ð6bÞ

PL ¼ hðl · pÞ2i ¼ ε

�
1

3
þ 2

15
c01

�
: ð6cÞ

It follows that ε ¼ 2PT þ PL from these expressions. We
also mention the non-negativity of pressure components,
PT; PL ≥ 0, sets the physical range for c01 as

−2.5 ≤ c01 ≤ 5: ð7Þ

These bounds are satisfied by the exact solution of the RTA
BE (1) but it is not expected to be satisfied by a particular
truncation scheme for the distribution function.
The energy-momentum conservation together with the

Landau matching condition for the energy density imply
c00 ≡ 1. The only independent (normalized) shear viscous
component π̄ ≡ τ2πςς=ε for the Bjorken flow is propor-
tional to the moment c01 [41]:

π̄ ¼ 2

3

�
PL − PT

ε

�
¼ 2

15
c01: ð8Þ

In a previous work of some of us [41], it was shown that
the time evolution of the temperature T and the moments
cnl with n ≥ 0 and l ≥ 1 is described by an infinite number
of coupled nonlinear ODEs as follows:

1

T
dT
dτ

þ 1

3τ
¼ −

c01
30τ

; ð9aÞ

dcnl
dτ

þ 1

τ
½αnlcnlþ1 þ βnlcnl þ γnlcnl−1

− nðρlcn−1lþ1 þ ψ lcn−1l þ ϕlcn−1l−1Þ�

þ 1

τrðτÞ
ðcnl − δn;0δl;0Þ ¼ 0; ð9bÞ

where the coefficients are given by

αnl ¼
ð2þ 2lÞð1þ 2lÞðnþ 1 − 2lÞ

ð4lþ 3Þð4lþ 5Þ ;

βnl ¼
2lð2lþ 1Þð5þ 2nÞ
3ð4lþ 3Þð4l − 1Þ −

ð4þ nÞ
30

c01;

ϕl ¼
ð2lÞð2l − 1Þ

ð4l − 3Þð4l − 1Þ ;

γnl ¼ ð2lþ 2þ nÞ ð2lÞð2l − 1Þ
ð4l − 3Þð4l − 1Þ ;

ψ l ¼
1

3

�
4lð2lþ 1Þ

ð4lþ 3Þð4l − 1Þ
�
−
c01
30

;

ρl ¼
ð2lþ 1Þð2lþ 2Þ
ð4lþ 3Þð4lþ 5Þ : ð10Þ

The hierarchy of equations in (9) constitutes a dynamical
system where moments of different degree n and l mix
among themselves in a nontrivial way. The nonlinear nature
of the RTA BE is manifest in the set of ODEs (9b) by the
mode-to-mode coupling term ∼cnlc01. Nonetheless, one
observes that the low-energy modes c0l decouple entirely
from the high-energy ones cnl with n > 0. As a result, the
time evolution of the energy-momentum tensor is fully
reconstructed from the solutions of the temperature and
the modes c0l. Notice that one cannot deduce the same
thing about the high-energy modes whose evolution
receives a major contribution from the lower-energy modes.
Furthermore, the high-energy moments shall play a role in
the stability of the system and its convergence to its
asymptotic thermal state, which is the subject of discussion
in Sec. V.

III. TRANSSERIES SOLUTIONS
AND COSTIN’S FORMULA

In this section, we construct the transseries solution to
the dynamical system in (9). Once one reduces to the
Boltzmann equation to a dynamical system, the next
immediate step would be to construct an exact form of
the transseries around each asymptotic fixed point and
obtain all the coefficients recursively from the evolution
equations. In what follows, we will attempt to build the
general form of the exact transseries solution by slightly
modifying the original set of ODEs. For technical reasons,
we also start with a truncation of the dynamical system at
0 ≤ l ≤ L and 0 ≤ n ≤ N; hence, the original Boltzmann
distribution will be reproduced by taking the limit
N;L → ∞. Since we are interested in building the solutions
starting at late times, we will assume the convergence at
infinity, i.e., cðτÞ → 0 for τ → ∞.
Let us prepare the set of ODEs in the dynamical system

(9) in the following asymptotically linearized form:

dc
dw

¼ fðw; cÞ;

fðw; cÞ ¼ −
�
Λ̂cþ 1

w
ðBcþAÞ

�
þOðc2; c=w2Þ ðw → ∞; c → 0Þ; ð11Þ

where Λ̂ and B are constant matrices, c is an
ððN þ 1Þ × ðLþ 1Þ − 1Þ-dimensional vector given by

c ¼ ðc01;…; c0L; c10; c11;…; c1L;…; cN0;…; cNLÞ; ð12Þ

and A is a constant vector. Here, we have defined a new
time coordinate as w ¼ τTðτÞ which behaves asymptoti-
cally like w ∼ τ2=3 at late times. We remind that rankðΛ̂Þ ¼
rankðBÞ ¼ ðN þ 1Þ × ðLþ 1Þ − 1 ¼ ∶I. Furthermore, we
assume Λ̂ is a diagonal matrix proportional to the unit
matrix. To construct the transseries solution, we suitably

BEHTASH, KAMATA, MARTINEZ, and SHI PHYS. REV. D 99, 116012 (2019)

116012-4



diagonalize B by defining an invertible matrix U such
that

c̃ðwÞ ¼ UcðwÞ;
B̂ ¼ UBU−1 ¼ diagðb1;…; bLÞ ∈ CL;

Ã ¼ UA;

Λ̂ ¼ UΛ̂U−1: ð13Þ

These transformations cast Eqs. (11) in the following form:

dc̃
dw

¼ f̃ðw; c̃Þ;

f̃ðw; cÞ ¼ −
�
Λ̂ c̃þ 1

w
ðB̂cþ ÃÞ

�
þOðc̃2; c̃=w2Þ ðw → ∞; c̃ → 0Þ: ð14Þ

We hereby call the components of the vectors c̃ pseudom-
odes due to being generally complex valued and, thus, not
physical. This makes the components of the matrix U
complex valued as well. But the inverse transformations of
c̃ achieved by the action of U−1 always yield real vectors
that eventually contribute to the observables in our theory.
The classical asymptotics beyond naive asymptotic

power series expansion can be carried out with the help
of a transseries ansatz first put forward by Costin in
Ref. [26]. In that seminal work, the author proves that
the set of ODEs written in the prepared form (14) has the
exact transseries solution

c̃iðwÞ ¼
X∞
jmj≥0

X∞
k¼0

ũðmÞ
i;k EðmÞ

k ðwÞ; ð15Þ

EðmÞ
k ðwÞ ¼ σmζmðwÞw−k; ð16Þ

ζmðwÞ ¼ e−ðm·SÞwwm·b̃ ¼
YI
i¼1

½ζiðwÞ�mi ; ð17Þ

ζiðwÞ ¼ e−Siwwb̃i ; ð18Þ

σm ¼
YI
i¼1

σmi
i ; ð19Þ

where I ¼ dimðcÞ,m ∈ NI
0 is an integer vector, and the dot

denotes the inner product between any two vectors. The
real numbers σi are going be referred to as “integration
constants” throughout this work as they would really
symbolize the constants to be obtained if we were to
integrate the ODEs in Eqs. (14). Here, for simplicity we

have defined EðmÞ
k ðwÞ that stand for the basis of trans-

monomials (i.e., the exponential factors and the fractional
powers w−1).

The transseries data such as the coefficients ũðnÞi;k , the
Lyapunov exponents Si and the anomalous dimensions b̃i
can be recursively determined by the evolution equations
up to normalization of σi. Without loss of generality, we

pick the normalization fixed by uðmÞ
j;0 ¼ δij for mj ¼ δij.

This leaves no room for ambiguity in determining the

coefficients ũðmÞ
i;k . It is noteworthy that the transseries

solution of ciðwÞ can be reproduced by the inverse trans-
formations of (13), and one can find that ciðwÞ has
essentially the same transseries as c̃iðwÞ due to the fact
that the matrix U acts on the index i (mode number) in

ũðmÞ
i;k only.
Although the transseries of c̃iðwÞ given by (15) is

generally complex valued due to b̃i and ũð0Þik taking values
in complex numbers, we can still recover a real transseries
solution for the moments ciðwÞ. The important fact is that if
b̃i for some i is complex, it is always accompanied by its
complex conjugate counterpart, i.e., b̃i ¼ b̃�j for some j,

where the associated coefficients satisfy ũðmÞ
i;k ¼ ũðmÞ�

j;k

under a certain normalization of the eigenvectors of B̂
in such a way that U−1

Ii ¼ 1 for every i where again I is the
rank of matrix B̂. Therefore, the reality of ciðwÞ is
guaranteed if the following conditions are satisfied:

σi ¼ σ�j ; if b̃i ¼ b̃�j ; ð20Þ

σi ∈ R; if b̃i ∈ R: ð21Þ

A. Evolution equations: N = 0 case

In terms of w, Eqs. (9) can be reduced to the following
nonautonomous dynamical system:

d logT
d log τ

¼ −
1

3

�
c01
10

þ 1

�
; ð22aÞ

dc0l
dw

¼−
1

1− 1
20
c01

×

�
3

2w
ðα0lc0lþ1þβ0lc0lþγ0lc0l−1Þþ

3c0l
2θ0

�
: ð22bÞ

The second equation is valid for any l > 0. Since
temperature T is now sort of washed away from
Eq. (22b), we shall solve these ODEs for cnl by the
mathematical techniques discussed in Refs. [26,70].
These tools are well known in the context of resurgence
theory. A curious reader is invited to check, e.g., Ref. [71]
for technical details, Ref. [72] for a nice introduction to the
subject, and Ref. [73] for the summary of its applications to
quantum mechanics and quantum field theories. We will
afterwards substitute c01 in Eq. (22a) to solve for T.
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It is convenient to cast Eqs. (22a) and (22b) in the
following familiar form:

dc
dw

¼ fðw; cÞ; ð23Þ

fðw; cÞ ¼ −
1

1 − c1
20

�
Λ̂cþ 1

w

�
Bc −

c1
5
cþA

��
; ð24Þ

where

c ¼ ðc01; c02;…; c0L−1; c0LÞ⊤; ð25Þ

A ¼ 3

2
ðγ01; 0;…; 0Þ⊤; ð26Þ

Λ̂ ¼ diag

�
3

2θ0
;…;

3

2θ0

�
; ð27Þ

B¼3

2

0
BBBBBBBBBB@

2
3
Ω1 α01

γ02
2
3
Ω2 α02

γ03
2
3
Ω3 α03

. .
. . .

. . .
.

γ0L−1
2
3
ΩL−1 α0L−1

γ0L
2
3
ΩL

1
CCCCCCCCCCA
; ð28Þ

Ωl ¼
5lð2lþ 1Þ

ð4lþ 3Þð4l − 1Þ : ð29Þ

Here, the index of vectors and matrices runs over
i ¼ 1;…; L. To directly apply Costin’s formula, one has
to diagonalize B in Eq. (23) using the transformations in
(13) to get the equation

dc̃
dw

¼ f̃ðw; c̃Þ; ð30Þ

f̃ðw; c̃Þ ¼ −
1

1 − c1
20

�
Λ̂ c̃þ 1

w

�
B̂ c̃−

c1
5
c̃þ Ã

��
: ð31Þ

We can easily see that c0i can be reproduced by c̃ and U as

ci ¼
XL
l0¼1

U−1
ii0 c̃i0 : ð32Þ

As is seen in Eq. (31), from now on whenever N ¼ 0, we
may drop the index 0 in c0l for ease of notation. Notice that
the asymptotic expansions of c̃i; ci both start at order

Oðw−1Þ asymptotically, and due to this we have ũð0Þi;0 ¼ 0.
Before trying to solve the dynamical system in (23), it

would be instructive to first linearize the rhs of it to obtain
the so-called IR data Si, b̃i in Eq. (18) of the transseries

ansatz. These are going to be the input data obtained
uniquely from the profile of the solution of the linearized
equation around the asymptotic fixed point of the dynami-
cal system at w → ∞. To do so, we expand the factor 1

1−c1=20
to get

fðw; cÞ ¼ −
X∞
n¼0

�
c1
20

�
n
�
Λ̂cþ 1

w

�
Bc −

c1
5
cþA

��

¼ −
1

w
A −

�
Λ̂cþ

�
1

w
Bþ c1

20
Λ̂
�
cþ 3γ01

40w
c1

�
þOðc2i w−1; c3i Þ; ð33Þ

where c1ðwÞ ¼ ðc1ðwÞ; 0;…; 0Þ⊤. The coefficients of the

lowest power of w−1, i.e., uð0Þi;k , can be found from this
equation, and one can readily see that ci¼l ¼ Oðw−lÞ. In
particular,

uð0Þ11 ¼ −γ01θ0 ¼ −
8θ0
3

: ð34Þ

Now, we may proceed to linearize Eq. (33) by substituting

ci → c̄i þ δci with c̄i ¼
P

ku
ð0Þ
i;k w

−k and expanding to first
order in δci:

dδci
dw

¼
XL
i0¼1

∂fiðw; cÞ
∂ci0

				
c→c̄

δci0

⇒
dδc
dw

¼ −
�
Λ̂þ 1

w

�
B −

1

5
1L

��
δcþOðw−2δciÞ:

ð35Þ

Using the matrix U, the solution to the linearized equation
is found to be given by

δc̃iðwÞ ¼ σi
e−ð3=2θ0Þw

wbi−1=5
; ð36Þ

where σi is the integration constant and δc̃ ¼ Uδc.
Therefore, we have the IR data (Lyapunov exponent and
anomalous dimension) as

Si ¼
3

2θ0
; b̃i ¼ −

�
bi −

1

5

�
: ð37Þ

Finally, we substitute the ansatz (15) in Eq. (32) and then
insert the resulting transseries for c in Eqs. (30) and (31) to
find the recursive relation for the transseries coefficients as
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20

�
ðm · b̃þbi−kÞũðmÞ

i;k þ
�

3

2θ0
−m ·S

�
ũðmÞ
i;kþ1

�

þ20Ãiδk;0δm;0−
Xm
jm0j≥0

�Xk
k0¼0

ðm0 · b̃þ4−k0Þuðm−m0Þ
1;k−k0 ũðm

0Þ
i;k0

−m0 ·S
Xkþ1

k0¼0

uðm−m0Þ
1;k−k0þ1

ũðm
0Þ

i;k0

�
¼0; ð38Þ

where uðm
0Þ

1;k0 ¼PL
i¼1 U

−1
1i ũ

ðn0Þ
i;k0 . Fixing ũðmÞ

i;0 ¼ 1 for
mi0 ¼ δi;i0 , we can solve this equation order by order to

get the transseries data uðnÞ1;k , Si and b̃i without any
(imaginary) ambiguity. Note that the IR data should match
the numbers found using linearization around the asymp-
totic fixed point in Eq. (37).

B. Evolution equation: N ≠ 0 case

The technique advocated in the N ¼ 0 case above can be
extended to include higher-order moments cnl. The energy
dependence of hydrodynamization is only materialized by
cnl ðn ¼ 1;…; NÞ even if c0l have been for the most part
sidelined in the literature. To get a complete and correct
picture, however, all the moments ought to be taken into
consideration. In principle, this means that one has to
eventually solve an infinite-dimensional dynamical system
for getting the full hydrodynamization process in both IR
and UV regimes, which is obviously ambitious. As a result,
a practical approach is to consider a truncated dynamical
system whose proposed transseries solution has of course
the ability to be generalized to the exact result. So our

starting point in this section will be Eq. (22b):

dcnl
dw

¼ −
1

1 − c01
20

�
3

2w

�
αnlcnlþ1 þ βnlcnl þ γnlcnl−1

− nðρlcn−1lþ1 þ ψ lcn−1l þ ϕlcn−1l−1Þ þ
3cnl
2θ0

��
:

ð39Þ

Equation (39) can be written in a concise matrix form:

dc
dw

¼ fðw; cÞ; ð40Þ

fðw; cÞ ¼ −
1

1 − c01
20

�
Λ̂cþ 1

w
ðBcþ c01DcþAÞ

�
; ð41Þ

where the quantities c, Λ̂, and A are explicitly given by

c ¼ ðc01;…; c0L|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
L

; c10; c11;…; c1L|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Lþ1

;…; cN0;…; cNLÞ⊤;

ð42Þ

Λ̂ ¼ diag

�
3

2θ0
;…;

3

2θ0

�
; ð43Þ

A ¼ 3

2
ðγ01; 0;…; 0|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

L

; 0;ϕ1; 0;…; 0Þ⊤; ð44Þ

and we have defined the block matrices B and D as

B ¼ 3

2

0
BBBBBBBBBB@

B̄00

B̄10 B̄11

B̄21 B̄22

. .
. . .

.

B̄NN−1 B̄NN

1
CCCCCCCCCCA
; D ¼

0
BBBBBBBBBB@

D̄00

D̄10 D̄11

D̄21 D̄22

. .
. . .

.

D̄NN−1 D̄NN

1
CCCCCCCCCCA
; ð45Þ

respectively, with

B̄00 ¼

0
BBBBBBBBBB@

2
3
Ω01 α01

γ02
2
3
Ω02 α02

. .
. . .

. . .
.

γ0L−1
2
3
Ω0L−1 α0L−1

γ0L
2
3
Ω0L

1
CCCCCCCCCCA
; B̄nnðn>0Þ ¼

0
BBBBBBBBBB@

2
3
Ωn0 αn0

γn1
2
3
Ωn1 αn1

. .
. . .

. . .
.

γnL−1
2
3
ΩnL−1 αnL−1

γnL
2
3
ΩnL

1
CCCCCCCCCCA
;
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B̄10 ¼ −

0
BBBBBBBBBB@

ρ0 − 1
30

Ψ1 ρ1
ϕ2 Ψ2 ρ2

. .
. . .

. . .
.

ϕL−1 ΨL−1 ρL−1
ϕL ΨL

1
CCCCCCCCCCA
; B̄nn−1ðn>1Þ ¼ −n

0
BBBBBBBBBB@

Ψ0 ρ0
ϕ1 Ψ1 ρ1

. .
. . .

. . .
.

ϕL−1 ΨL−1 ρL−1
ϕL ΨL

1
CCCCCCCCCCA
; ð46Þ

D̄nn ¼ −diag
�
4þ n
20

;…;
4þ n
20

�
;

D̄10 ¼
1

20

0
BBB@ 1

. .
.

1

1
CCCA;

D̄nn−1ðn>1Þ ¼ diag

�
n
20

;…;
n
20

�
; ð47Þ

Ωnl¼
lð2lþ1Þð5þ2nÞ
ð4lþ3Þð4l−1Þ ; Ψl¼

4lð2lþ1Þ
3ð4lþ3Þð4l−1Þ: ð48Þ

Here, the blocks B̄00 and D̄00 are both L × Lmatrices, B̄10

and D̄10 are ðLþ 1Þ × L matrices, and the remaining
blocks are ðLþ 1Þ × ðLþ 1Þ matrices. As in the N ¼ 0
case, we will be defining the matrix U to diagonalize B:

c̃ ¼ Uc; Ã ¼ UA; ð49Þ

B̂ ¼ UBU−1 ¼ diagðb1;…; bIÞ ∈ CI: ð50Þ

We finally employ the transseries ansatz in the diagonalized
form of Eqs. (40) and (41) as before to obtain the recursive
relations involving the transseries data, namely

20

�
ðm · b̃þ bi − kÞũðmÞ

i;k þ
�

3

2θ0
−m · S

�
ũðmÞ
i;kþ1

�

þ 20Ãiδk;0δm;0 −
Xm
jm0j≥0

�Xk
k0¼0

ðm0 · b̃ − k0Þuðm−m0Þ
1;k−k0 ũðm

0Þ
i;k0

− 20
XI
i0¼1

Xk
k0¼0

uðm−m0Þ
1;k−k0 D̃ii0 ũ

ðm0Þ
i0;k0

−m0 · S
Xkþ1

k0¼0

uðm−m0Þ
1;k−k0þ1

ũðm
0Þ

i;k0

�
¼ 0; ð51Þ

where D̃ ¼ UDU−1, c̃iðwÞ ¼
P∞

jmj≥0
P∞

k¼0 ũ
ðmÞ
i;k EðmÞ

k ðwÞ,
and m is the index of each nonperturbative sector of the

pseudomodes, c̃iðwÞ. Equation (51) can be solved re-
cursively. The higher nonperturbative sectors are con-
nected to the lower ones through mode-to-mode
couplings of the form c01cnl, whereas operations in
charge of promoting the asymptotic order are differ-
entiation and multiplication by a 1=w factor. Once the
perturbative order is fixed, the first-order nonperturbative
sector can be constructed explicitly.
For pedagogic purposes, we show how to compute the

leading-order contribution in the perturbative sector of
the transseries corresponding to m ¼ 0 (also known as
the leading order in the asymptotic expansion). As an
example, first, we determine which moments behave like
Oð1=wÞ. This is effectively done by taking k ¼ 0 in (51).
Since the asymptotic fixed point has all the moments other
than c00 go to 0 at w → ∞, the coefficients ũ0i;0 have to
vanish. By default, all the other coefficients promoting the
asymptotic order also vanish. For the lowest asymptotic
behavior for each n and l, Eq. (40) gives

dcnl
dw

þ 3

2θ0
cnl þ

3c01
40θ0

cnl þ
1

w
½ðBcÞnl þ Anl�

þOðc201c; c01c=w; c01A=wÞ ¼ 0: ð52Þ

Here, we relabeled the index i by n, l for convenience.
Since cnl ∼Oð1=wÞ and Anl ≠ 0 only when ðn; lÞ ∈
fð0; 1Þ; ð1; 1Þg, we find that both c01 and c11 have a
nonzero coefficient for the first-order asymptotics
given by

cnl þ
2θ0
3w

Anl þOð1=w2Þ ¼ 0 for ðn; lÞ ∈ fð0;1Þ; ð1;1Þg:
ð53Þ

Since A is constructed by γ01 and ϕ1, only these two
moments survive at the first asymptotic order, that is,
c01 [cf. Eq. (34) also known as Navier-Stokes] and
c11 ∼ −ϕ1θ0=w. For the other moments, the leading asymp-
totic order is dictated by their neighbors cn0l0 alongside
mode-to-mode coupling. The equation responsible for
identifying the leading order of cnl ∼Oð1=wkÞðk > 1Þ
reads
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cnl þ
c01
20

cnl þ
2θ0
3w

ðBcÞnl þOðc201c; c01c=wÞ ¼ 0

for ðn; lÞ ∉ fð0; 1Þ; ð1; 1Þg: ð54Þ

All the other operations promoting the asymptotic order
vanish, such as differentiation. For example, the moments
carrying the next leading order Oðw−2Þ are identified as

c10 ∼ −
θ0
w

�
α10c11 − ρ0c01 þ

c01
30

�
∼Oð1=w2Þ; ð55Þ

c20 ∼
2θ0
w

ρ0c11 ∼Oð1=w2Þ; ð56Þ

c21 ∼
2θ0
w

Ψ1c11 ∼Oð1=w2Þ; ð57Þ

c22 ∼
2θ0
w

ϕ2c11 ∼Oð1=w2Þ: ð58Þ

As can be seen, they both have the lowest asymptotic order
1=w2 because of c11. By virtue of Eq. (51), the leading-
order asymptotics of higher moments is determined to be
cnl ∼Oð1=wkÞ, where k ¼ maxðn; lÞ for n; l ≥ 2. The
higher modes, therefore, decay faster in general as all
the Lyapunov exponents are equal due to the RTA BE
having a single scale, which in this case is θ0, and the
suppression in the IR is just determined by the leading
asymptotic order. All the modes satisfying n; l ≤ 1, how-
ever, are exempt from this rule as c10 ∼ 1=w2, and as
mentioned earlier, the two remaining lower modes c01 and
c11 are the slowest modes of all in the IR.
Once the coefficients of the bare asymptotic series for

each cnl are obtained, the transseries coefficients can be
achieved by solving the equation including higher m > 0
nonperturbative sectors. As an example, we show
the transseries and leading-order bare asymptotics of
five moments c01;…; c21 of the truncated dynamical
system N ¼ 2; L ¼ 1 in Fig. 1.4 Each moment is
renormalized by the inclusion of nonperturbative or per-
turbative sectors available using the transasymptotics as
Cnl;k=wk þOð1=wkÞ, where the transasymptotic matching

is approximated up to 15th-order transmonomials. On the
numerical front, the integration constants σ are determined
by employing simultaneous least-squares method, which
aims to minimize the difference of the exact and transseries
solutions of all the moments involved in a given truncated
dynamical system simultaneously. So the overall average
error will be reduced across all the moments. In this figure,
five integration constants σ1;…; σ5 are given by their
optimized values along with individual standard deviations
reported in the plots. Also, the light blue dashed lines stand
for the transseries solution with the best optimized σi while
the blue shaded areas highlighting the possible variation of
transseries due to standard deviation. Furthermore, bare
asymptotic expansion at 1=w, 1=w2, and 1=w3 orders for
each moment is plotted as a comparison. These plots show
that continuing to a higher asymptotic order will not
necessarily lead to a better result, as opposed to adding
more transmonomials at each order, which results in a
better approximation of the transasymptotic matching
overall (see the next section).

C. Transasymptotic matching

In this section, we construct the transasymptotic match-
ing condition responsible for the full-blown form of the
time evolution of the transport coefficients including all the
effects of nonperturbative sectors, which is a first-order
partial differential equation (PDE). In doing so, we first
redefine c̃i;kðwÞ as

c̃iðwÞ ¼
X∞
k≥0

C̃i;kðσζðwÞÞw−k ð59Þ

and sum over m in Eq. (51). Then the transasymptotic
matching condition turns out to have the following formal
form:

20

�
ððb̃ · ζ̂ − kÞ þ biÞC̃i;k − S · ζ̂C̃i;kþ1 þ

3

2θ0
C̃i;kþ1

�

þ 20Ãiδk;0 −
Xk
k0¼0

C1;k−k0 ðb̃ · ζ̂ − k0ÞC̃i;k0

þ 20
XI
i0¼1

Xk
k0¼0

C1;k−k0D̃ii0C̃i0;k0

þ
Xkþ1

k0¼0

C1;k−k0þ1S · ζ̂C̃i;k0 ¼ 0; ð60Þ

where ζ̂i ≔ ∂=∂ logðσiζiÞ. Here, C̃i;k is supposed to be
only a function of σiζi. We again note that Eq. (60) is a
first-order PDE, whose solution yields the time evolution of
the transport coefficients with all the σiζiðwÞ included.
Moreover, the integration constants may be determined

from the transseries coefficients ũðmÞ
i;k .

4In this work the initial condition for the distribution function
is given by the Romatschke-Strickland (RS) ansatz of the
distribution function [74], i.e.,

f0ðτ; pT; pςÞ ¼ exp

"
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
T þ ð1þ ξ0Þðpς

τ Þ2
q

Λ0

#
;

where Λ0 and −1 < ξ0 < ∞ are the initial effective temperature
and momentum anisotropy along the ς direction, respectively.
Thus the set of initial conditions for the moments cnl depends on
the initial time τ0 and initial anisotropy parameter ξ0. See
Appendix E for further details.
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Due to its partial differential nature, it is technically not easy to solve (60) for the general case even though for
L ¼ 1; N ¼ 0, it can be exactly solved. For instance, the first three coefficients are given by solving (60) in this case as [41]

C1;0ðσζÞ ¼ −20Wζ; ð61Þ

C1;1ðσζÞ ¼ −
8θ0ð50W3

ζ þ 105W2
ζ þ 36Wζ þ 5Þ

15ðWζ þ 1Þ ; ð62Þ

C1;2ðσζÞ ¼ −
8θ20

7875ðWζ þ 1Þ
�
25ð700W4

ζ þ 2195W3
ζ þ 966W2

ζ þ 20Þ
Wζ

þ 4032

ðWζ þ 1Þ2 þ 3685

�
; ð63Þ

where Wζ ≔ Wð−σζ=20Þ is a Lambert W function.

FIG. 1. Five lowest nonhydrodynamic modes computed by transseries, leading bare asymptotic expansion and exact numerics.
The blue shaded area depicts the variation in the transseries solution due to the standard deviation of σi. For each moment, the transseries
is truncated and renormalized by transasymptotic matching including all the transmonomials up to 15th order. For example
cRenorm01 ¼ C01;1=w, where C01;1 is constructed by including up to 15th-order transmonomials.
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For a system consisting of a larger number of moments,
the above equation becomes a PDE, which renders the
matching condition hard to solve. However, the trans-
asymptotic matching, in this case, is at least effectively
consolidated by summing over a large number of trans-
monomials just in the same manner as in the renormaliza-
tion group equation for a running coupling constant, where
loop diagram contributions are added to the rhs in order to
capture a more realistic renormalization group (RG) flow.
As a special example, we guide the readers to take a look at
Appendix D 1 in which the transasymptotic matching for
the N ¼ 0, L ¼ 1, Δ ¼ 1 system yields polynomials of
finite degree, which are the exact solutions to the dynamical
system. In Fig. 1, the transmonomials are taken up to 15th
order to get as close as possible to the exact solution of the
truncated system. We again mention that the renormalized
moment is meant to be a solution compatible with the full-
fledged transasymptotics at its leading asymptotic order.

D. Comment on resurgence and cancellation of the
imaginary ambiguities

Once one has an ODE of the form (11), we can realize
imaginary ambiguity cancellation in a systematic way. In
general cases, it is hard to prove the cancellation of
imaginary ambiguities. However, for ODEs of the type
(11) there are mathematically rigorous proofs for the
ambiguity cancellations due to Costin (cf. [26] and refer-
ences within for more technical details). In this section, we
consider an easy example involving only one mode i ¼ 1,
and therefore we omit the index for simplicity.
Let us begin with a formal transseries ansatz given by

Fðw; σÞ ¼
X∞
n¼0

σnFðnÞðwÞ;

FðnÞðwÞ ¼ e−nSwwnβΦ̂ðwÞ;

Φ̂ðnÞðwÞ ¼
X∞
k¼0

aðnÞk w−k: ð64Þ

Suppose that FðwÞ solves (11) and let us only focus on the

zeroth nonperturbative sector að0Þk . By calculating the radius
of convergence one can see that the power series (64) is
divergent. The approximate form of the growing upper
bound is

jað0Þk j ≤ MS−kk! as k → ∞; ð65Þ

with some positive real constants,M and S. This means that
Φ̂ð0ÞðwÞ is asymptotically of Gevrey-1 class5; hence, the

Borel transform is just enough for convergence purposes,
defined by

B½w−ðkþ1Þ� ≔ ξk

Γðkþ 1Þ ; ð66Þ

Φð0ÞðξÞ ≔ B½Φ̂ðwÞ� ¼
X∞
k¼0

að0Þkþ1

Γðkþ 1Þ ξ
k: ð67Þ

Note that Φð0ÞðξÞ has a finite convergence radius and
rc ¼ S. Since Φ̂ð0ÞðwÞ is a divergent series, there should
exist a branch cut on the positive real axis with a branch
point S on the Borel plane. The position of the first
singularity corresponds to the Lyapunov exponent of the
flow lines approaching the asymptotically stable fixed
point in the dynamical system. Notice that the appearance
of a branch cut is a reminder that the series expansions
are coupled to higher-order transmonomials such as
expð−SwÞ=w which independently satisfy the same ODE,
i.e., Eq. (11).
The original divergent series (64) can be reproduced

through the Laplace integral,

Φ̃ð0Þ
θ ðwÞ ≔ Lθ½Φð0ÞðξÞ� ¼

Z
∞eiθ

0

e−ξwdξΦð0ÞðξÞ; ð68Þ

and subsequently taking the asymptotic limit

Φ̂ð0ÞðwÞ ∼ Φ̃ð0Þ
þ0ðwÞ ∼ Φ̃ð0Þ

−0ðwÞ as w → ∞: ð69Þ
It is noteworthy that the imaginary ambiguity depending on
the contour of integration is nothing but an artifact of going
to the Borel plane and it is exponentially suppressed in the
large-w limit. However, when one observes a singularity on
the Borel plane, one can build a relationship among
nonperturbative sectors by taking the Hankel contour going
around the singularity in the Laplace integral:

Lþ0½ΦðξÞ� − L−0½ΦðξÞ� ¼
Z
γ
e−ξwdξΦðξÞ: ð70Þ

The relations obtained in this way are called resurgence
relations.
We now are in position to introduce the Stokes auto-

morphismSθ. Formally speaking, the integration constants
in the transseries may jump once the singularity (Stokes)
rays on the Borel plane are crossed. This is associated with
the existence of an automorphism that takes one integration
constant to another plus some new contribution, defined by

Sθ ≔ Lθ∘B; ð71Þ

Sθþ ¼ Sθ−∘Sθ ¼ Sθ−∘ð1 − DiscθÞ; ð72Þ

Sθ ≔ exp

� X
ρ∈fρθg

_Δρ

�
; _Δρ ≔ e−ρwΔρ; ð73Þ

5The Gevrey-n class means that there exists a smooth function
f on Rd such that on every compact subset C, there are constants
p, q such that jDαfðxÞj ≤ pqkðk!Þn. Here, Dα is a differential
operator of some multi-indices α such that jαj ¼ k.
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where fρθg denotes the set of singular points along the
Stokes ray with the contour enclosing the singularities
being controlled by an angle parameter θ. Here, Δρ

represents an abstract derivative operator known as alien
derivative which can be understood as an infinitesimal
change in the asymptotic behavior due to a singularity in
the direction parametrized by θ. Note that

ðSþθ − S−θÞΦ̂ðwÞ ¼ 0; ð74Þ

if Φ̂ð0ÞðwÞ is not a divergent series along the θ direction.
However, when a singularity appears for a particular
angle θ, we can make the resurgence relations among
different sectors. In our case, the set of singularities on
the real positive axis can be given by fρ0g¼fnSjn∈Ng,
where again n ¼ 1 shows the Lyapunov exponent of the
flow lines flowing to the asymptotic stable fixed point of
the dynamical system. By taking the Hankel contour with
a singularity at nS, one can obtain the so-called bridge
equation

_ΔnSFðw; σÞ ¼ AnðσÞ
∂Fðw; σÞ

∂σ ; ð75Þ

and the relationships among different sectors are given by

ðSþ0−S−0ÞFðnÞðwÞ¼
X∞
l¼1

�
nþ l

n

�
AlS−0FðnþlÞðwÞ; ð76Þ

where A ∈ iR is the famous Stokes constant. This
equation means that information of some sector is carried
over to higher sectors once Stokes rays are crossed.

pmg:quad="50"Although the construction of resurgence
relations is generally an independent issue from the
imaginary ambiguity cancellation, we can systematically
find such a cancellation mechanism for the transseries
solution of the ODE in (11) without the need to resort to
the discussion of this section. The significantly important
fact is that a nonzero rhs in Eq. (76) satisfies the same
ODE. Therefore, the Borel-summed transseries along the
θ ¼ 0 ray may well be expressed by the arbitrariness in
the integration constant and the fact that nothing prevents
one from extending σ ∈ R to σ ∈ C. The relationship
between two integration constants across a Stokes ray is
then given by

σðθÞ ¼

8>><
>>:

σ− ¼ σð−0Þ for θ < 0;

σ0 ¼ σð−0Þ þ A
2

for θ ¼ 0;

σþ ¼ σð−0Þ þ A for θ > 0:

ð77Þ

Therefore, the imaginary ambiguity can be canceled by
shifting the integration constant in such a way that

Sþ0Fðw; σ þ A=2Þ ¼ S−0Fðw; σ − A=2Þ: ð78Þ

Let us demonstrate the imaginary ambiguity cancellation
for simple cases. For L ¼ 1 and N ¼ 0, the leading
large-order growth of the asymptotic expansion is given
by [75]

ũð0Þ1;k ∼Cðθ0Þ
Γðkþ b̃1Þ
2πiSkþb̃1

1

�
ũð1Þ1;0þ

S1
kþ b̃1− 1

ũð1Þ1;1þ� � �
�
þ� � �

→Cðθ0Þ
Γðkþ b̃1Þ
2πiSkþb̃1

1

; as k→∞; ð79Þ

where S1 ¼ 3
2θ0
, b̃1 ¼ −18=35, and Cðθ0Þ is an overall

factor depending on θ0. Here, we have used ũð1Þ1;0 ¼ 1 in the
second line. Since w always appears with a constant factor
1=θ0 in c̃lðwÞ, one finds that

CðθÞ ¼ C0θ
−b̃1
0 ; ð80Þ

where C0 is a constant. We measured C0 by numerical
fitting with the prepared form (79) and obtained

C0 ≈ 0.4898: ð81Þ

Therefore, the Stokes constant A1 is related to CðθÞ in the
following way:

A1 ¼ 2πiCðθ0Þ; ð82Þ

leading to the imaginary ambiguity cancellation once
we set

Imσ1 ¼ −πCðθ0Þ: ð83Þ

For general L and N, ũð0Þl;k are complex valued and so are the
integration constants σl for the reality condition to hold. For
L ¼ 2, the overall factor in (79) is found to be

C1ðθ0Þ ¼ C0θ
−b̃1
0 ¼ ½C2ðθ0Þ��; ð84Þ

in which b̃1 ¼ ð75þ i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
10655

p Þ=110 ¼ b̃�2. By fitting
numerically we can estimate the complex constant C0 as

C0 ≈ 0.8270 − 0.4060i: ð85Þ

Therefore, the Stokes constant as a function of θ0 can be
fully evaluated from Eq. (82). Finally, the imaginary
ambiguity cancellation follows by just shifting the integra-
tion constant as

σ1 → σ1 − iπC1ðθ0Þ: ð86Þ
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IV. GLOBAL DYNAMICS AND ASYMPTOTIC
STABILITY ANALYSIS

In this section we will explore the generic properties of
the Bjorken flow from the perspective of dynamical
systems with some useful definitions provided in
Appendix B for readability.

A. Phase space and asymptotic UV
and IR fixed points

The explicit time dependence of (9) means that the
system is nonautonomous and the phase space is larger than
that of a time-independent (autonomous) system with the
same number of variables. Let us assume that the total
number of Legendre and Laguerre terms in the expansion
of the distribution function is Lþ 1 and N þ 1, respec-
tively. Then one can write down the phase space of this
truncated dynamical system as

M ¼ RðLþ1ÞðNþ1Þ−1 ×Rþ ×Rþ

¼ ðM0;M1;M2;…;MN; T ; tÞ≡ ðX; tÞ; ð87Þ

where each subspace Mi consists of Lþ 1 dimensions and
we excluded the constant component c00 ¼ 1 from the
phase space. So (87) is just the hyperspace c00 ¼ 1 of the
full phase space. Eventually, the limit N;L → ∞ has to be
taken, meaning that the true physical dynamical system at
its full glory is infinite dimensional.6 The tuple ðM0;…Þ is
just short for the product of all the entries, and the time
manifold t is taken to be the set of positive real numbers
Rþ. This choice is made due to the fact that Eq. (9a) is not
regular at τ ¼ 0 so to keep the continuity, τ < 0 is not
allowed. Since temperature T has its own equation in (9),
we also add its manifold T to the crowd and let it take
values over T ¼ Rþ. In total we are then left with ðLþ1Þ
ðNþ1Þþ1þ1−1¼ðLþ1ÞðNþ1Þþ1dimensions forM.
By looking at the case where N ¼ 0, the dynamical

system reduces to Lþ 2 dimensional subspace ðM0; T ; tÞ
which is denoted by M0 ⊂ M. The special facet of this
subspace is that it indeed encompasses the invariant
manifold7 because its equations are completely decoupled
from the rest ðn > 0Þ in case we started with a larger system
involving more moments, i.e., N > 0. Therefore, any
solution of this subsystem entirely lies inside M0 at all
times τ > 0. The second observation is that the mode-to-
mode coupling terms in (9) for n > 0 all depend on the

elements of the subspaceM0. So it is crucial to understand
the dynamics happening in this subspace by first locating
the asymptotic fixed points and analyzing their stability
and finally obtaining the flow lines connecting these
fixed points to find the qualitative shape of the invariant
manifold.
In terms of the variable w ¼ τTðτÞ, the nonautonomous

dynamical system is described by

W ¼ RðLþ1ÞðNþ1Þ−1 ×Rþ
¼ ðW0;W1;W2;…;WN;wÞ≡ ðY;wÞ; ð88Þ

where w ¼ Rþ ≔ Rþ ∪ f0g. Note that w ¼ 0 has been
allowed since the combination of τTðτÞ does essentially
have a well-defined zero limit. The invariant manifold now
is inside W0 parametrized by c0l. The structure of this
invariant manifold will be the subject of the next
subsection.
There are however three major differences between the

two parametrizations of the phase space of the Bjorken
flow. Namely,

(i) In terms of τ, the early-time τ < 1 or UV limit of the
theory does have a pair of fixed points for the
truncation order L;N ¼ ∞; one being themaximally
oblate point at which the longitudinal pressure pL
vanishes and transverse pressure pT is maximized,
and one more fixed point, at which pL is maximum
and transverse pressure is vanishing, to be called the
maximally prolate point. The early-time shape of
flow lines in W looks completely different by
allowing a continuous flow from the maximally
prolate point, while in M there is no such flow in
general since the flows cannot reach the T ¼ 0 line
on which both these points are located. Either one of
the two parametrizations, nonetheless, leads to the
same IR structure for flow lines in both phase spaces
W and M.

(ii) A nonphysical singularity hypersurface c01 ¼ 20
emerges in W that again affects the UV physics
of the flow lines initiated in the basin of attraction of
the invariant manifold admitting the range given
in Eq. (7).

(iii) In the original version of the dynamical system,
Eqs. (9), the temperature does not converge in the
UV so practically speaking it is impossible to
connect continuously to the maximally oblate fixed
point at T ¼ 0 by running the evolution equations
backward in time, say, from somewhere in the IR. It
is also not possible to find a complete flow con-
necting to another UV fixed point present in the
Bjorken flow phase spaceM [41]. In terms of w, the
UV structure of the theory is altered through a
change in the stability of fixed points at w → 0 even
though the IR will remain intact as mentioned above.
It is now possible to search for flow lines starting at

6This is indeed expected by noting that the distribution
function f solving the Boltzmann equation has an exponential
kernel which admits infinitely many terms in its series expansion,
leading to an infinite number of moments.

7This manifold is basically an embedding in an Lþ 2 dimen-
sional phase space. Because the exact solution of RTA BE has
only the parameters ξ0, T0, and τ0 controlling the shape of flow
lines, the invariant manifold has to be a three-dimensional object.
For the argument in the w coordinate, cf. Sec. IV B.
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the maximally prolate point (see Fig. 3 for instance),
but still it will not be feasible to have a flow that
begins its journey at exactly the maximally oblate
fixed point. This latter solution, if it existed, would
be a critical line due to the extreme fine-tuning
required around a saddle point to initiate a struc-
turally unstable flow on the boundary of the

invariant manifold that connects to the IR fixed
point cnl ¼ δn0δl0 at w → ∞. This is explained
below.

If we consider the full theory with L ¼ ∞ and
N ¼ 0 in the M phase space of the Bjorken flow,
there are two UV fixed points in general whose
coordinates are given by

maximally oblate point∶
�
0; 0;

�
−2.5;

�
ð−1Þlð4lþ 1Þ

�
2l

l

�
4−l
�∞

l¼2

��
; ð89Þ

maximally prolate point∶ ð0; 0; ð5; f4lþ 1g∞l¼2ÞÞ; ð90Þ

where we have adopted the notation ðτ; T; fc0l; c02;…gÞ.
In Fig. 2 the stability analysis of these two fixed points
in the truncated system N ¼ 0; L ¼ 31 as well as
N ¼ 30; L ¼ 31 is shown. At a general truncation order,
the stability analysis is summarized as follows for any
relaxation time τr ¼ θ0

T1−Δ (0 ≤ Δ ≤ 1):
(a) N ¼ 0; L ¼ odd.—The system has two fixed

points in the UV. The maximally prolate fixed
point is a source while the maximally oblate
fixed point is a saddle point with one repelling
direction, i.e., index 1 fixed point).

(b) N ¼ 0; L ¼ even.—The system has only an
index 1 maximally oblate point. The total index
is still conserved since the other fixed point
becomes a complex saddle.

(c) N > 0; L ¼ odd.—The maximally prolate fixed
point becomes an indexðI − N þ 1Þ saddle point
whereas the maximally oblate fixed point is an
indexðN þ 1Þ saddle point.

(d) N > 0; L ¼ even.—The maximally oblate fixed
point is a saddle of indexðN þ 1Þ.

Here, we have again used the notation I ¼ ðLþ 1Þ
ðN þ 1Þ − 1. In the L ¼ odd case the total UV index is
always I þ 2. Considering that an asymptotically stable
hydrodynamic fixed point has zero index, then the total
Morse index is I þ 2. A comparison between the numerical
solutions of the flow lines in the L ¼ odd system and the
exact RTA BE shows that I þ 2 is the correct topological
invariant of the real phase portrait of the RTA BE. Note that
the temperature is always an attractive direction in both

FIG. 2. Eigenvalues of the Jacobian matrix around asymptotic UV fixed points in the truncated system. Red and blue points denote
eigenvalues of the maximally oblate point and the spiral source, respectively. In (a), the maximally oblate point behaves like a spiral sink
because ReðbiÞ are all negative. For the maximally prolate point, however, ReðbiÞ are all positive, a property that classifies it as a spiral
source. In (b), both of these points are shown to be able to have positive and negative ReðbiÞ at the same time; hence, they are in general
spiral saddle points. From the perspective of transseries, upon choosing those integration constants σi ¼ 0 associated with the
monomials with bi satisfying ReðbiÞ > 0, we can make the stability of the UV fixed points change to a source in the general case N > 0.
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UVand IR, and therefore it does not contribute to the index.
Furthermore, due to the lack of one real fixed point
(maximally prolate point) in the UV when L ¼ even,
this kind of truncation will not be physically sensible
and will be hereby omitted from our discussions.8

The phase portraits of different 3d sectors of the dyna-
mical system in (39) at odd truncation orders are plotted in
Figs. 3 and 4.

An interesting question that comes to mind concerns the
existence of a flow line that connects the maximally oblate
fixed point to the asymptotic hydrodynamic fixed point in
the phase portrait of the Bjorken dynamical system using
the w coordinate. There are two things that one might keep
in mind here. First, the invariant manifold is in the subspace
W0 ⊂ W or simply the subspace of the phase space with
coordinates c0l. Since the maximally oblate point forN > 0
is a saddle point of index N þ 1 [see (c) above], it must be
located on the boundary of the invariant manifold. So at
least in the N > 0; L ¼ odd system, there cannot be a
critical line since it will always flow outside of the basin of
attraction of the invariant manifold due to the repelling
directions being in the subspace ⋃N

n¼0 Wn. Second, for

FIG. 3. The phase portraits for the system truncated at N ¼ 0, L ¼ 3. The initial value of the flow is taken to be cnlðw0Þ ¼ cnlðw0; ξ0Þ.
In the UV (early time), the flows are coming out of a spiral source as seen on the left where anisotropy parameters are close to −1 that
corresponds to c01 ∼ 6.6 [41]. In the range closer to the maximally oblate point, that is 10 < ξ0 < 1000, the flow lines do not converge
since they are initiated outside of the basin of attraction (of the invariant manifold). The maximally oblate point is exactly located on the
boundary of the basin. Note that the flow lines are shown to be spiraling in the UV as w → 0, a symptom of being in the vicinity of a
spiral saddle. We can see the forward attractor in the IR for the flows initiated in the basin of attraction.

8Again, the past of the dynamical system in the w coordinate is
altered from the original case in a way that w ¼ 0 does not
capture the physics of the original theory, which is an argument
related to the stability of individual fixed points. Nonetheless, the
conclusion about the index is true across the board.
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N ¼ 0, the maximally oblate point is essentially a sink
(time is the only repelling direction). As a result, the c0l set
initially to be the coordinates of this fixed point at w ¼ 0
will change its position with time while being a fixed point
at any moment w > 0 until eventually it becomes the
hydrodynamic fixed point at w → ∞. So there will not be a
flow line (process) to begin with, proving that the critical
line does not exist in the w parametrization of the Bjorken
flow just like it could not exist in the τ coordinate but for a
completely different reason.9

B. Initial value problem for transseries
and invariant manifold

Although the transseries contains a large amount of
information about a given dynamical system, fixing the
integration constants is an important, yet challenging,
problem. On the one hand, since our (truncated) dynamical
system has I variables—thus I first-order ODEs—it con-
sequently has I integration constants needed to be tuned in
order for the basin of attraction (of the invariant space) to be
determined. On the other hand, the initial condition of the
exact integral solution of the Boltzmann equation has only
three parameters, namely τ0, T0, and ξ0.
By redefining the ODEs using w as a time coordinate, T0

can be completely separated from the rest of the dynamical
system which now has the form (22a). The new initial time
w0 determines a point on a flow (more precisely a process);
hence, σi do only depend on the anisotropy parameter ξ0.

FIG. 4. The phase space portraits for the system truncated atN ¼ 1, L ¼ 3. In the UV (early time), the flows are coming out of a spiral
source as seen on the left where anisotropy parameters are close to −1. In the range closer to the maximally oblate point, that is
10 < ξ0 < 1000, the flow lines are shown to be spiraling without any convergence happening in the UVas w → 0, a symptom of being
in the vicinity of a spiral saddle. We can see the forward attractor in the IR for the flows initiated in either range of anisotropy parameters.

9Another way to phrase this is that the rhs of the dynamical
system in Eq. (23) is obviously zero at the maximally oblate fixed
point, but it does remain zero at all times w > 0 even if the
position of this fixed point changes. This means that
dc0lðwÞ=dw ¼ 0 so a flow will not happen to exist at any later
time if c0 are equal to the values given in (89).
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We could behold from the numerical results of the integral
solution of the Boltzmann equation that every flow is
closed on an open subset of the W as long as ξ0 is chosen
from the domain ½−1;þ∞Þ. Moreover, we recall that
if a flow is initiated in the subspace W0 ⊂ W parametrized
by c0l, it always stays in that subspace, meaning that the
invariant manifold has to be an embedding in the space
ðW0;wÞ. But how does the transseries know about the
invariant manifold? Since ξ0 determines the basin of
attraction of the isolated invariant space of the
Boltzmann equation, there has to be a map from the ξ0
space to W0 such that

σ∶ ½−1;þ∞Þ → ðW0;wÞ ≃ F ; w0 ∈ w; ð91Þ

ξ0 ↦ σðξ0Þ; ð92Þ

where w ¼ ½0;þ∞Þ is the time manifold andF is the space
of integral curves given by the n ¼ 0 ODEs in the
dynamical system. Because of the uniqueness theorem,
the map in (91) is a bijection only when L;N ¼ ∞, and
consequently one can find that the invariant manifold is a
two-dimensional surface embedded in the space F .
It is a quite challenging problem to figure out the

correspondence defined by (92), but we can narrow RI

down to a subspace formed by those σðξ0Þwhich yield flow
lines starting in the basin of attraction of the invariant
manifold. This means that σðξ0Þ is able to give the invariant
manifold once the stability analysis of each fixed point in
the UV is performed and the approximate boundary of this
space is determined by finding possible critical lines. To
facilitate the search for the invariant manifold, one can
construct the transseries around every fixed point individu-
ally at w → 0, which would be something for the form

c̃iðwÞ ¼
X∞
jmj≥0

X∞
k¼0

σmwm·b̃ũðmÞ
i;k wk; ð93Þ

where the anomalous dimensions b̃i of the pseudomodes
are now the eigenvalues of the linearization matrix about
the corresponding fixed point.10 Choosing σi ¼ 0 for every
i for which Reðb̃iÞ < 0, we get a maximally prolate point
that is a source (that is otherwise a spiral) fixed point. We
will discuss the stability of the UV fixed points in
Sec. IVA.
An immediate question that comes to mind is whether

one can construct a complete flow line and/or a critical
line from the transseries solutions around individual
fixed points. One part of the answer involves topological
arguments to be discussed in an upcoming work from
the perspective of dynamical systems and equivariant

cohomology Conley index [76]. Another piece comes from
transferring the information from one transseries to another
by tuning σi to a particular set of numbers from both UV
and IR sides, provided that the flow line achieved this way
remains on the invariant manifold at all times.
As a final remark, let us mention that one can analyti-

cally continue the transseries by rotating in the time axis
w → eiαw such that the transseries solution around the
asymptotic hydrodynamic fixed point is now exactly a
Fourier decomposition at α ¼ π=2. Neglecting an overall
imaginary factor at each nonperturbative order, it is easy to
see that σi serve as amplitudes of the individual wave
components in the Fourier decomposition. The significant
advantage of analytic continuation is that the attractor
entails oscillatory components which were exponentially
suppressed in real time; thus, fitting the transseries to the
complex numerical solutions of the analytically continued
Boltzmann equation is much more tractable.

C. Dynamical renormalization of second-order
transport coefficients

In this section, we aim to construct an RG equation for
the transport coefficients in analogy with the gradient
descent approach to the RG flows in the context of quantum
field theories using the language of dynamical systems
(cf. Ref. [77]).
The variable w so far has been playing the role of flow

“time” in our system of ODEs, i.e., Eq. (22b). But in this
section, we want to interpret it as playing the role of
“energy scale” for the renormalization scheme arising from
resuming all the nonperturbative fluctuations around
the asymptotic expansion of nonhydrodynamic modes
c ≔ fcnlg. The reason is simple: the Knudsen number
Kn ¼ τrðτÞjDμuμj ∼ w−1 in Bjorken flow provides the only
parameter by which the system evolves from the UV
regime all the way to IR. Since the transseries coefficients
of individual moments include transport coefficients with
exponentially suppressed factors in w following [41], the
far-from-equilibrium dynamics of the moments can then be
associated to the running of these coefficients as w changes.
Hence, preparing a time-dependent (nonautonomous)
dynamical system for c automatically amounts to having
a renormalization group equation on the phase space of
moments c and w, together denoted by W, the so-called
phase space of the Bjorken flow in w parametrization as
in (88).
A flow (process) on the phase space is described by a

continuous map

ϕw;w0ðc0Þ∶ W × w → W ð94Þ
such that ϕw;w0ðc0Þ ¼ cðwÞ, and ϕw;w0ðϕs;w0ðcÞÞ ¼
ϕwþs;w0ðcÞ, where w ∈ Rþ is the RG time. The IR regime
of the theory is captured by the behavior of the flow lines
approaching to an asymptotic stable fixed point also known

10Since pseudomodes are not physical, b̃i can take complex
values in general.
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as hydrodynamic fixed point satisfying ceql ¼ δ0l ∈ M for
which ϕw;w0ðceql Þ ¼ ceql for all w ∈ Rþ. We alternatively
refer to ceql as the asymptotic IR fixed point since it is
reached at w → ∞.
Let us formulate our dynamical system as

dc
dw

¼ fðw;cÞ or w
dc
dw

¼wfðw;cÞ or
dc

d logμ
¼wfðw;cÞ;

ð95Þ

where μ ≔ w=θ is the RG scale and logðμÞ ∈ R. As μ
varies, the moments c are mapped to themselves in a self-
similar way, and any initial RG scale μ0 can initiate a
process to a later μ by the renormalization group action.
Since the rhs only depends on c and μ, one can write

dc
d log μ

¼ βðμ; cÞ≡ −
1

1 − c1
20

�
3μ

2
cþ Bc −

c1
5
cþ 3

2
γ

�
:

ð96Þ

This is nothing but an RG equation in the space of moments
c and the vector βðμ; cÞ consists of β functions, each
encoding the dependence of every nonhydrodynamic mode
on the renormalization scale, μ, in the process of equili-
bration. In this expression, it is convenient to redefine our
notations as

ũl;k → ũl;kθk; Fl;k → Fl;kθ
k;

λ → λθ−1; Sl → Slθ−1; ζl → ζlθ
b̃l : ð97Þ

Note that the ordinary derivative along an RG flow can be
expressed by two partial derivatives as

d
d log μ

¼
XL
l¼1

ðb̃l − SlμÞ
∂

∂ log ζl þ
∂

∂ log μ : ð98Þ

In the formalism we have been seeking to build so far,
one prominent assumption is that an observable O is able
to be expressed in terms of ciðwÞ [or c̃iðwÞ], namely
O ¼ OðcðwÞÞ. Therefore by solving the RG equation via
transseries, we can achieve a renormalized form of the
observable, say a transport coefficient, up to an arbitrary
order of our choosing.
It is straightforward to define the RG equation by starting

with the ODE in (40). To make things more tractable, we
again go back to the RG time w and compute the derivative
of an observable OðcðwÞÞ with respect to logw:

dOðcðwÞÞ
dlogw

¼
XI
i¼1

�X∞
k¼0

fðb̃−SwÞ · ζ̂C̃i;k−kC̃i;kgw−k
�
·
∂O
∂c̃i

¼
XI
i¼1

β̃i ·
∂O
∂c̃i ; ð99Þ

where f̃ ¼ Uf and β̃ ≔ wf̃. Here, use was made of
d=d logw ¼ ðb̃ − SwÞ · ζ̂ þ ∂=∂ logw and the fact that
c̃iðwÞ ¼

P∞
k¼1 C̃i;kðσζðwÞÞw−k. We should also point out

that ζ̂i ≔ ∂=∂ logðσiζiÞ. The first line describes the scaling
behavior of O in terms of w, and the second line contains
information of the dynamical system through β. Hence,
solving the RG equation determines a renormalization of
the observable O. Since we want to consider the RG
equation for the transport coefficients, we are slightly better
off with the definition of O changed to O ¼ OðCkðwÞÞ.
Roughly speaking, this implies that O is a function of the
transport coefficients and depends only on ζðwÞ.
Consequently, the scaling behavior could be derived in a
fashion similar to what we did to obtain (99), so

dOðCkðwÞÞ
d logw

¼
XI
i¼1

X∞
k¼0

½ðb̃ − SwÞ · ζ̂C̃i;k� ·
∂O
∂C̃i;k

: ð100Þ

However, the link between the scaling behavior and the
dynamical information hidden in β is very nontrivial.
Yet, one can proceed to calculate the RG equation for
the L ¼ 1; N ¼ 0 system.
To do so, we employ the scaling behavior in (100) which

gives

X∞
k¼0

fðb̃1 − S1wÞζ̂1C̃1;k − kC̃1;kgw−k ¼ β̃1: ð101Þ

Suppose now that ζ1 and w are independent of each other,
i.e., c̃1 ¼ c̃1ðσ1ζ1; wÞ and C̃1;k ¼ C̃1;kðσ1ζ1Þ. In this case
we have

X∞
k¼0

ζ̂1C̃1;kðσ1ζ1Þw−k

¼
P∞

k¼0 kC̃1;kðσ1ζ1Þw−k þ β̃1ðw; c̃1ðσ1ζ1; wÞÞ
ðb̃1 − S1wÞ

: ð102Þ

To remove w from the lhs of Eq. (102), we take a contour
integration around the origin after multiplying by wk−1,
which then gives

ζ̂1C̃1;kðσ1ζ1Þ ¼
1

2πi

I
jwj≪1

dw

P∞
k0¼0

k0C̃1;k0 ðσ1ζ1Þw−k0 þ β̃1ðw; c̃1ðσ1ζ1; wÞÞ
w1−kðb̃1 − S1wÞ

: ð103Þ
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Hence, Eq. (100) for L ¼ 1 and N ¼ 0 reads

dOðC1;kðwÞÞ
d logw

¼
X∞
k¼0

ðb̃1−S1wÞ

· ½ζ̂1C̃1;kðσ1ζ1Þ�ζ1¼σ1e−Swwb̃1 ·
∂O
∂C̃1;k

; ð104Þ

where ζ̂1C̃1;kðσ1ζ1Þ is given by Eq. (103).
The definition in (104) has a direct connection with the

dynamical information encoded in β1, so that (104) is
regarded as the RG equation of the transport coefficients by
setting OðC1;kðwÞÞ ¼ C1;kðwÞ. In the L ¼ 1; N ¼ 0 sys-
tem, choosing k ¼ 1 in Eq. (104) and solving for the
renormalized quantity C1;1 gives that it is proportional to
the shear-to-entropy ratio at the equilibrium [41]. Plugging
C1;1 back in the expansion of the nonhydrodynamic
moment c1 obtained using the linear response theory
(see Appendix A) automatically promotes the first-order
transport coefficient to the nonequilibrium case compatible
with the transasymptotic matching along an RG flow
approaching the IR fixed point asymptotically. This essen-
tially gives a dynamically renormalized η=s [41] as follows:

c1st1 ðw → ∞Þ ¼ −
8

3

θ0
w

¼ −
40

3

ðη=sÞ0
w

; ð105Þ�
η

s

�
reno

¼ −
3

40
C1;1ðwÞ; ð106Þ

where − 3
40
C1;1ðw → ∞Þ≡ ðη=sÞ0 [41]. Likewise, the sec-

ond-order renormalized transport coefficients are given by

c2nd1 ðw → ∞Þ ¼ −
32

63

θ20
w2

¼ −
40

9
T

�
τπ

�
η

s

�
0

−
�
λ1
s

�
0

�
1

w2
;

ð107Þ

T
�
τπ

η

s
−
λ1
s

�
reno

¼ 9

40
C1;2ðwÞ; ð108Þ

where again 9
40
C1;2ðw → ∞Þ≡ T½τπðηsÞ0 − ðλ1s Þ0�.

We conclude this section by discussing whether there is
some sort of a Lyapunov function that would identify the RG
flows from a global dynamical standpoint. It is well known
that one can formally define an object analogous to a
dynamical potential from the Newtonian mechanics. For
simplicity, we assume that β is independent of w (a scenario
that would hold once the limit θ0 → ∞ is taken).11

Now, we define a positive-definite differentiable function V:

dciðwÞ
d logw

¼ βiðcðwÞÞ; βiðcÞ ¼ −
∂VðcÞ
∂ci : ð110Þ

We can easily show that V is a monotonically decreasing
function in terms of w as

dVðcðwÞÞ
d logw

¼
XI
i¼1

dciðwÞ
d logw

·
∂VðcðwÞÞ
∂ciðwÞ

¼ −
XI
i¼1

jβiðcðwÞÞj2 ≤ 0: ð111Þ

and thus a candidate for a global Lyapunov function
satisfying the conditions in Eq. (B9).12

V. HYDRODYNAMIZATION OF SOFT
AND HARD MODES

In previous sections, we demonstrated that the moments
cnl solving the ODEs in the dynamical system of (22b) turn
out to be of the multiparameter transseries form. In this
section, we continue our quest for what type of information
one can get from these solutions on a more physical ground
by analyzing the late-time behavior of different momentum
and energy sectors of the distribution function. In doing so,
we stumble upon something interesting: a flow line in the
space of moments initiated at an arbitrary state in the basin
of attraction of the asymptotically stable fixed point is
controlled at late times by not only the known nonhydro-
dynamic moment c01 but also the mode c11. The latter also
happens to possess the same perturbative decay as c01. We
recall that this immediately leads to the statement that the
distribution function and any observable projecting onto or
involving at least the l ¼ 1 sector of the distribution
function would receive two major IR contributions. In this
section, we shall analyze in great detail the impact of the
slowest [¼ Oð1=ðτTÞÞ] nonhydrodynamic modes in the IR.
Let us start rewrite our ansatz as

fðτ; pT; pςÞ ¼ feq þ fs þ fsh þ fh; ð112Þ
where the soft (s), semihard (sh), and hard (h) sectors of the
distribution function are, respectively, defined by

fs ≔ feq

�
pτ

T

��XNl

l¼1

c0lðτÞP2l

�
pς

τpτ

��
; ð113aÞ

fsh ≔ feq

�
pτ

T

��XNn

n¼1

XNl

l¼1

cnlðτÞP2l

�
pς

τpτ

�
Lð3Þ
n

�
pτ

T

��
;

ð113bÞ
11When we keep w in the β function, we have to promote the

nonautonomous system to an autonomous system of one dimen-
sion higher by introducing an ODE for w in terms of a new flow
time ρ as follows:

dcðρÞ
d log ρ

¼ βðcðρÞ; wðρÞÞ; dwðρÞ
d log ρ

¼ βwðwðρÞÞ: ð109Þ
12In case V is not positive definite, one can always add a

positive constant to it such that it remains positive at all times
w < ∞.
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fh ≔ feq

�
pτ

T

��XNn

n¼1

cn0ðτÞLð3Þ
n

�
pτ

T

��
: ð113cÞ

In order to assess which sector of the distribution
function hydrodynamizes faster, we focus on the decay
of the following normalized moments13 [53,78]:

M̄nmðτÞ ¼ hðpτÞnðpς=τÞ2mi
hðpτÞnðpς=τÞ2mieq

: ð114Þ

M̄nm are then certainly sensitive to the energy and
momentum tails of the distribution function. To this
explicitly, first note that M̄nm ≥ 0 if and only if
fðτ; pT; pςÞ ≥ 0. This condition holds for the exact sol-
ution of the RTA BE, but not necessarily for the approxi-
mate distribution function. Second, the Landau matching
condition for the energy density implies M̄20 ≡ 1. Last,
some of the moments in (114) such as M̄10 ¼ n=neq (where
n and neq are the nonequilibrium and thermodynamic
particle densities, respectively) and M̄01 ¼ PL=P0 have a
direct interpretation in terms of the usual macroscopic
variables.
After taking the time M̄nm in Eq. (114), we end up with

the following equation:

∂τM̄nmþ
�
2ð3mþ1Þ−n

4τ

�
M̄nm−

�
nþ2ðmþ1Þ

12τ

�
M̄nmM̄01

þðn−1Þð1þ2mÞ
ð1þ2ðmþ1ÞÞ

M̄n−2;mþ1

τ
¼−

1

τr
ðM̄nm−1Þ: ð115Þ

The solutions to this system indicate that different momen-
tum tails of the distribution function reach values at
equilibrium state asymptotically, that is the asymptotic
hydrodynamic fixed point. In order to put the problem into
the framework of dynamical systems, we write M̄nm (114)
as a linear combination of the moments cnl using the ansatz
(3) of the distribution function, i.e.,14

M̄nmðτÞ ¼ 1þ 2mþ 1

2

X
k;l¼0
kþl>0

Γð1
2
þmÞΓð1þmÞ

Γð3
2
þmþ lÞΓð1þm − lÞ

×

�
1þ k − n − 2m

k

�
cklðτÞ; ð116Þ

where ΓðxÞ is the Gamma function and ðabÞ is the binomial
coefficient. Therefore the solutions to the dynamical system
in (115) are also written in the form of multiparameter
transseries.15 These solutions flow to the stable fixed point
at late times once the initial state is chosen in the basin of
attraction of the invariant manifold (of the truncated
system), which indicates that each momentum sector is
guaranteed to equilibrate eventually. In other words,
M̄nm → 1 since ceqnl → δn0δl0 asymptotically.
In Sec. III B [cf. Eq. (53)], we showed that the slowest

nonhydrodynamic moments decay perturbatively like
c01; c11 ∼ 1=w and c10; c20; c21; c22 ∼ 1=w2 at large w.
Thus, the asymptotic behavior of M̄nm is dominated by
the slowest moments appearing in each sector of the
distribution function.
We study first the normalized moments M̄nm for n; l > 0

where there are contributions coming only from both soft
and semihard sectors the distribution function whose
slowest nonhydrodynamic modes are c01 and c11, respec-
tively. In this case, the impact of these nonhydrodynamic
modes is determined by taking the following asymptotic
limits in Eq. (116):

(i) soft (s) regime in which there is only the leading-
order asymptotic contribution of c01 ∼ 1=w, i.e.,16

M̄nm
s ¼ 1þ 2m

2mþ 3
c01

≈ 1 −
16m

6mþ 9

θ0
w

þOð1=w2Þ; for m ≥ 1;

ð117Þ

13In this work we follow the notation of Strickland [78].
14In order to get this expression, we utilize the following identities [79,80]:Z

∞

0

dxe−xxγ−1LðμÞ
n ðtÞ ¼ ΓðγÞΓð1þ μþ n − γÞ

n!Γð1þ μ − γÞ ; Re½γ� > 0;Z
1

0

dxxρPmðxÞ ¼
π1=2

2ρþ1

Γðρþ 1Þ
Γð1þ ðρ −mÞ=2ÞΓðm=2þ 3=2þ ρ=2Þ ; Re½ρ� > −1:

15Alternatively one can also find a compact form of the moment M̄nm from the exact RTA BE solution of the distribution function [see
Eq. (A6) in Appendix F].

16In Eq. (4.6) of Ref. [78], the author assumes explicitly the 14-moment approximation when truncating the distribution function, that is

f ¼ feq

�
1þ pμpνπ

μν

2ðεþ pÞT2

�
¼ feq

�
1þ 3

16

�
3

�
pς

τ

�
2

− ðpτÞ2
�
π̄

T2

�
≈ feq

�
1þ 1

3T2

�
ðpτÞ2 − 3

�
pς

τ

�
2
�
η

s
1

Tτ

�
:

By substituting this expression in our definition (114), one obtains the result derived by Strickland, Eq. (4.8) [78], which obviously differs
from ours (117). This discrepancy arises from the truncation procedure. Here, we do not truncate the momentum and energy dependence of
the distribution function and rather keep these in their exact form. Instead, we truncate the number of moments entering the distribution
function at our discretion. We remind the reader of the work of Denicol et al. [47], where it was shown that the 14-moment approximation
does not provide a unique set of equations of motion for the dissipative currents, an ambiguity which was resolved in Ref. [46].
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(ii) soft + semihard (sþ sh) regime which incorporates
the leading-order asymptotic contribution of both
c01 and c11 up to Oðw−1Þ, namely

M̄nm
sþsh ¼ 1þ 2m

2mþ 3
c01 þ

2mð2 − n − 2mÞ
2mþ 3

c11

≈ 1 −
�
4mðnþ 2mþ 2Þ

6mþ 9

�
θ0
w

þOð1=w2Þ; for m ≥ 1: ð118Þ

In Fig. 5, a number of M̄nm are plotted versus the variable
w, obtained from the exact RTA BE solution (E8) (black
line), the s (117) (green dot-dashed line), and the sþ sh
(118) (blue dashed line) regimes. We verify numerically
that the IR behavior is not affected by the choice of initial
conditions as long as they agree with the bounds set by the
invariant manifold. In order to get a hold of how fast the
normalized moments equilibrate, we set an arbitrary sat-
uration bound at which a given moment falls within 5% of
its equilibrium value, that is to say Mnm ¼ 1� δ with
δ ¼ 0.05, and theþ or − is taken depending on whether the

FIG. 5. Evolution of several normalized moments M̄nm as a function of w. We compare the exact numerical expressions for the
normalized moments obtained by solving RTA BE (E8) (black lines) alongside the soft limit (117) (green dash-dotted lines) and the
softþ semihard limit (118) (blue dashed lines). For the initial conditions of the exact RTA BE solutions, τ0 ¼ 0.25 fm=c is chosen, and
the initial temperature is set to T0 ¼ 600 MeV, with the initial anisotropy parameter being ξ0 ¼ 10.
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moment monotonically increases or decreases, respectively.
In this setting, as seen in Fig. 5, it can be verified that,
independently of the truncation scheme, the normalized
moments will asymptote to one, as expected. In the UV,
however, the s and sþ sh regimes disagree with the exact
RTA BE result. This should not come as a surprise since
both limits are only valid when the distance from the
hydrodynamic fixed point is small. But in the IR region, the
moments M̄nm

s first reach the saturation bound while M̄nm
sþsh

and M̄nm
exact approach this value much later on and, above all

else, almost at the same time. In the same limit, we behold a
remarkable agreement between the exact and sþ sh
solutions. Thus, the asymptotic behavior of the normalized
moments M̄nm (n; l > 0) can only be given entirely by a
linear combination of both nonhydrodynamic modes c01
and c11.
In Fig. 6, the value of w ¼ wc is numerically evalu-

ated. As is shown, if the indices for energy, n, and
longitudinal momentum, m, are increased, ws for the
exact and sþ sh moments marks a later time. The
convergence of M̄nm

s depends only on m, which is
evident from Eq. (117). The numerical results in this
figure attests that in fact the exact and sþ sh moments
are in good agreement, and therefore sþ sh is the correct
description of the IR regime of different energy and
momentum sectors of the distribution function solely
based on a linear combination of both c01 and c11 as

written in Eq. (117).17 Given this agreement, one con-
cludes that the larger the index n > 0, the more relevant
the inclusion of the new nonhydrodynamic mode c11. We
want to mention that this is solely due to the power of
dynamical systems since the 1=w decay of both c01 and
c11 in the perturbation theory around the hydrodynamic
fixed point is directly confirmed from the form of ODEs
in (115).
We are now in position to analyze the normalized

moments M̄nm for n > 0; l ¼ 0. In this case, only the hard
sector of the distribution function contributes and the
slowest modes playing a role in Eq. (114) are c10 and
c20, both asymptotically decaying as 1=w2. As a double
check, consider for instance the mode M̄10 ¼ n=neq. For
the Bjorken flow, the Chapman-Enskog expansion in
the RTA approximation [81] shows that the NS correc-
tions to the particle density n vanish as chemical potential
μ is turned off, and thus the leading-order dissipative

FIG. 6. Saturation time wc versus m for different values of n ¼ f0; 1; 2; 3g (top right, top left, bottom right and bottom left panels,
respectively). The black dots are computed using the exact RTA BE solver; the blue squares and red triangles represent the values
obtained in the soft and softþ semihard regimes, respectively. We also see that the normalized momentsMnm

exact equilibrate later as both n
and m are increased.

17A careful reader would notice a minor disagreement (less
than 5%) between the values of wexact

c and wsþsh
c . This small

mismatch is due to the difficulty in extracting numerically the
large-time behavior of the exact RTA BE solver used here. While
concluding the draft of this paper, we were informed of an
optimized algorithm that uses logarithmically spaced grid in
proper time and reduces the numerical error at late times. This
new code is available in the ancillary files included in the arXiv
version of Ref. [78].
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corrections are of the second order in the Knudsen number
∼1=w2. In general, it is known that second-order fluid
dynamics theories, e.g., Israel-Stewart theory, do not
reproduce properly the behavior of the heat flow and
particle density as well as the dominant corrections arising
from couplings between the particle density and the shear
stress tensor [81,82].
Now, as done before, we study the impact of the

nonhydrodynamic modes entering Eq. (114) by taking
two truncation limits of the hard (h) regime:

M̄n0
c10þc20ðhÞ ¼ 1þ ðn2 − 4Þ 4θ20

45w2
; ð119aÞ

M̄n0
c10ðhÞ ¼ 1 − ð2 − nÞ 4θ

2
0

9w2
: ð119bÞ

In Fig. 7 the evolutions of several normalized moments
M̄n0 are shown. In the IR M̄n0

c10þc20ðhÞ and M̄n0
exact reach the

asymptotic hydrodynamic fixed point faster than the
moments M̄n0

c10ðhÞ, supporting the compatibility of the exact

normalized moments with the former. Note that the
asymptotic behavior of the normalized moments Mn0 is

entirely determined by the linear combination of the non-
hydrodynamic modes c10 and c20. This conclusion does not
hold when n ≥ 3, where only the mode c10 contributes.
In Fig. 8 the values of wc versus n for the moments Mn0

are plotted. It is seen that the saturation bound is
approached as n increases if n ≥ 3, as opposed to when
n ¼ 0; 1 for which wc decreases. Now, when comparing
with the results plotted in Fig. 6, we observe that M̄nm

(n > 0; m ≥ 1) asymptote to their values at the equilibrium
state later than the moments M̄n0 do. In terms of our
orthogonal polynomial basis expansion, it is easy to
understand this as the slowest nonhydrodynamic modes
in the soft and semihard sectors decay like ∼1=w, whereas
in the hard sector, the slowest modes die away like 1=w2.
On the other hand, for the given bound δ ¼ 0.05, there is a
disagreement between all the hard asymptotic limits (119)
and the exact results due to the truncation limitations. As
we emphasized previously, close to the IR fixed point, the
inclusion of both modes c10 and c20 [Eq. (119b)] is a must,
which is also seen in Fig. 8.
The rest of this section is dedicated to showing how the

presence of both c01 and c11 is a crucial factor in unveiling
the asymptotic behavior of the exact distribution function in

FIG. 7. Evolution of the normalized moments M̄n0 as a function of w. In this figure, the exact numerical expressions for the normalized
moments obtained by solving RTA BE (E8) (black lines) are compared against Eqs. (119a) (green dot-dashed lines) and hard mode limit
(119b) (blue dashed lines). For the initial conditions of the exact RTA BE solutions, τ0 ¼ 0.25 fm=c is chosen, and the initial
temperature is set to T0 ¼ 600 MeV, with the anisotropy parameter being ξ0 ¼ 10.
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the IR. We calculate the deviations from the thermal
equilibrium distribution function defined as

δfðτ; pT; pςÞ ¼
fðτ; pT; pςÞ − feqðpτðτÞ=TðτÞÞ

feqðpτðτÞ=TðτÞÞ ; ð120Þ

following the procedure outlined in Ref. [83]. In the s and
sþ sh regimes, δf reads

δfs ¼ c01P2

�
pς

τpτ

�
≈ −

8

3

θ0
τTNS

P2

�
pς

τpτ

�
; ð121aÞ

δfsþsh ¼ c01P2

�
pς

τpτ

�
þ c11P2

�
pς

τpτ

�
Lð3Þ
1

�
pτ

TNS

�

≈ −
8

3

θ0
τTNS

P2

�
pς

τpτ

�

þ 2

3

θ0
τTNS

P2

�
pς

τpτ

�
Lð3Þ
1

�
pτ

TNS

�
; ð121bÞ

where TNS denotes the NS solution of the conservation
law (9a). Figure 9 outlines the time evolution of δf for the
exact and asymptotic limits. As a double check, other valid
initial conditions are considered by varying the anisotropy
parameter ξ0. Two remarks are due here. First, no momen-
tum and energy sector of the distribution function does in
fact thermalize homogeneously, and, second, the low-
energy particles (pτ=T < 1) thermalize faster than the
highly energetic (pτ=T > 1) particles. This is not surprising
since it is known that for weakly coupled systems, and in
the absence of external fields, soft particles equilibrate
faster [61,62,84,85]. On the one hand, the IR limit of s
truncation (121b) does not capture the relaxation of the
energy and momentum tails when compared against the
exact RTA BE solution. On the other hand, the exact RTA
BE result is perfectly compatible with the sþ sh limit
(121a), which in turn confirms the necessity of including

FIG. 9. Time evolution of the deviation from the equilibrium distribution function (120) for the exact RTA (black lines), the s (green
dot-dashed lines) and the sþ sh (blue dashed lines) regimes. For δfexact, the initial ratio of pτ

0=T0 is set to be f0.5; 2.5; 4; 6g, and the
initial temperature for the exact RTA BE solver is set at T0 ¼ 0.6 GeV, τ0 ¼ 0.25 fm=c. Finally, we initialize the solver with ξ0 ¼ 0.

FIG. 8. Saturation time wc versus n for the moments M̄n0. The
black circles are computed using the exact RTA BE solutions; the
blue squares and red triangles represent the asymptotic hard limits
(119a) and (119b), respectively. The deviation between the exact
and c10 þ c20 results is obviously due to truncation effects.
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the new mode c11. Therefore, the proper description of the
IR in the Bjorken flow has to incorporate the dynamics of
this nonhydrodynamic mode as well.
In sum, the numerical results presented in this section

together with the previous analysis of the multiparameter
transseries solutions for the moments cnl lead to the true
mechanism behind the nonlinear relaxation processes of
different momentum sectors of the distribution function,
which is completely governed by various mode-to-mode
couplings among the moments in the framework of
dynamical systems. Furthermore, the IR regime of the
distribution function is determined uniquely by two non-
hydrodynamic modes c01 and c11. The conclusions derived
in this section would still hold if one used other relaxation
time models (cf. Appendix F).

VI. CONCLUSIONS

In this work, we have proposed a new dynamical
renormalization scheme which allows us to study the
nonlinear transient relaxation processes of a weakly
coupled plasma undergoing Bjorken expansion. The dis-
tribution function was expanded in terms of orthogonal
polynomials. The nonlinear dynamics of the RTA BE is
then investigated through the kinetic equations of the
coefficients entering this expansion, i.e., the average
momentum moments cnl of the distribution function. We
not only developed further our earlier findings [41] to
include higher modes, but we also found new interesting
results summarized in the following.

(i) Based on the seminal works of Costin [26,86] we
show that the coupled system of nonlinear ODEs for
the moments cnl admit analytic multiparameter
transseries solutions. At every given order in the
time-dependent perturbative asymptotic expansion
of each mode, the summation over all the transient
nonperturbative sectors appearing in the transseries
leads to renormalized transport coefficients. This
presents a new description of the transport coeffi-
cients in the regimes far from equilibrium with an
associated renormalization group equation, going
beyond the usual linear response theory.

(ii) As long as 0 ≤ Δ < 1, the T ¼ 0 limit of the
Boltzmann equation is explicitly time independent,
meaning that the distribution function f does not
evolve with time. In the language of our dynamical
system, this limit is equivalent to saying that the
system is autonomous. The stability of the max-
imally oblate point shows in this case that it is a sink
and, consequently, there is no flow line that could
connect it to the asymptotic hydrodynamic fixed
point at τ → ∞. As soon as T > 0, we have that the
dynamical system explicitly depends on τ > 0 (i.e.,
it is nonautonomous) and continuously connected to
the IR theory (hydrodynamics) at τ → ∞. But now
the maximally oblate point is out of reach; hence, a

flow line (process) cannot be found with τ0¼0;
T0¼0 which leads to hydrodynamical behavior at
late times. In other words, the actual phase spaceM
of the Bjorken flow is a disjoint union of hyper-
surfaces T ¼ 0 and T ≠ 0.

(iii) The above conclusion does not hold true in thew ¼ τT
parametrization. The phase spaceW is different in the
UV in the sense that the system stays always nonau-
tonomous for all w ≥ 0. Also, notice that the temper-
ature has been washed away from W at the cost of
introducing a new singularity hypersurface c01 ¼ 20.
However, themaximally prolate point is the only fixed
point in the UV that can connect to the IR as shown on
the lhs of Fig. 3. The maximally oblate point, that in
principleshouldcorrespond to the free-streaminglimit,
is a saddle point of index N þ 1. On the one hand, if
N ¼ 0, it is basically a sink from the perspective of an
observer sitting in the subspaceW0 ⊂ W parametrized
by c0l. Therefore, if the initial conditions are set to be
the coordinates of this fixed point, the observer only
sees themaximally oblate fixed pointmoving to the IR
as time passes. On the other hand, there is no
bifurcationor changeofstability along theway.Rather,
the same fixed point at w ¼ 0 is just dislocated to
become the fixed point atw → ∞. As a result, there is
no complete flow line connecting this fixed point to the
hydrodynamic fixed point.

Also, if N > 0, there appear to be repelling direc-
tions in the subspace⋃N

n¼1Wn. However, the invariant
manifold is inW0, and hence the search for a solution
hits a snagagain. If therewassucha line, thenwewould
have an example of a critical line. This critical flow line
is often mistaken in the literature as a global attractor
as if the system was autonomous. In nonautonomous
systems such as the Bjorken flow, the attractor is a
concept encoding information of the past or future of
the system of equations governing its dynamics inde-
pendently of each other, as shown in Fig. 3. The
relevant attractor is then either a forward or pullback
attractor. In sum, given our study of the dynamical
system for the Bjorken flow, we conclude that there is
no critical line connecting the maximally oblate point
to the hydrodynamic fixed point, which is otherwise
knownas the“attractor solution” in thehydrodynamics
literature.

(iv) For the Bjorken flow the asymptotic behavior of the
kinetic equations unveils the existence of a new
nonhydrodynamic mode whose decay rate is exactly
the same as the usual NS shear viscous component,
i.e., ∼ðτTÞ−1. The origin of the new mode’s decay is
due to the nonlinear mode-to-mode coupling c11c01
which dominates close to the asymptotic hydro-
dynamic fixed point. This nonhydrodynamic mode
is the slowest high-energy mode and it determines
quantitatively the late-time behavior of the transient
high-energy tails of the distribution function.
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In the present paper, we left out many interesting
questions which certainly require appropriate answers.
For instance, within our approach it is important to
understand the analytic behavior of the retarded correlators
together with the subtle interplay between branch cuts and
poles as a function of the coupling [87,88]. It will be also
important to investigate the possible phenomenological
consequences of the new nonhydrodynamic mode c11.
For instance, one might wonder about the impact of this
high-energy mode in the modeling of a jet crossing an
expanding quark-gluon plasma using kinetic theory.
Another possibility is to understand if the origin of
azimuthal anisotropies at large momenta is connected to
c11. It has been argued by different authors that the
azimuthal anisotropies at intermediate pT are related to
nonhydrodynamic transport [89–91]. On a more theoretical
ground, it would be very interesting to come up with
extending our analysis to the challenging case of nonlinear
PDEs such as Israel-Stewart hydrodynamic equations for
either 2þ 1 or 3þ 1 dimensions. Finally, our work can
be generalized to studying nonlinear aspects of time-
dependent systems of ODEs whose description is cast in
the form of the properties of a dynamical system. We have
left these exciting topics for future research projects.
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APPENDIX A: ASYMPTOTIC
CHAPMAN-ENSKOG EXPANSION OF THE

DISTRIBUTION FUNCTION

In this section, we briefly describe the asymptotic
Chapman-Enskog expansion of the distribution function
for the RTA Boltzmann equation. The Chapman-Enskog

expansion has been calculated up to second order by
different authors [47,92–98]. We follow closely the deri-
vation of Teaney and Yan [92] so any interested reader can
take a look into their work for further details.
It is convenient to rewrite the general RTA BE in the

following suitable form [92]:

pμ∂μfp ¼ −
T2

Cp
ðf − feqÞ; ðA1Þ

where Cp ¼ −T2τr=ðu · pÞ with τr ¼ θ0=T1−Δ. Next we
expand the distribution function around feq:

fp ¼ feq þ αδf1 þ α2δf2 þ � � � ; ðA2Þ

where α is an arbitrary parameter which keeps track of the
order of the gradients. One obtains the following set of
coupled equations for δf1 and δf2 at first and second order
in α:

OðαÞ∶δf1 ¼ −
Cp

T2
pμ∂μfeq:; ðA3aÞ

Oðα2Þ∶δf2 ¼ −
Cp

T2
pμ∂μδf1; ðA3bÞ

by substituting (A2) in the RTA BE (1) and using the fact
that the collisional kernel is OðαÞ. In order to write the
general form of δf1 and δf2, it is necessary to classify all
the possible irreducible tensors invariant under rotations
[92,99,100]. For d ¼ 4 one gets after some algebra18

[92–97]

δf1 ¼ −
σμνpμpν

T3
χ0p

�
u · p
T

�
; ðA4aÞ

18Here, we have used the Cauchy-Stokes decomposition of the
fluid velocity,

∂μuν ¼ −uμðu · ∂uνÞ þ Δμνð∂λuλÞ=3þ
σμν
2

þ ωμν;

together with the (conformal) conservation laws to first order in
gradients

D logT ¼ −
∂μuμ

3
;

Duν ¼ −Δμν∂ν logT:

The use of conservation laws at first order in the gradients ensures
that the value of δf does not change the equilibrium energy
density [101].
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δf2¼ χ1p
pμpνpλpβ

T6
σhμνσλβi

þχ2p
pμpνpλ

T5
½∇hμσνλi−3σhμν∇λi logT�

þ
�
4

7

p2

T
χ1pþðu ·pÞχ2p

�
pμpν

T5
σλhμσνiλ

−ðu ·pÞp
μpν

T5
χ2p

�
Dσhμνi þ

σμν
3
θ−2σλhνΩμiλ

�

þχ3p
pμ

T3
½−∇hλσλμi−2σhμλ∇λi logT�þχ4p

T2
σ2; ðA4bÞ

where Ahμ1 � � �Bμli is a projector being traceless, symmetric
and orthogonal to the fluid velocity uμ [100]. In these
expressions we have defined

χ0p

�
u · p
T

�
¼ −

1

2
Cpf0eq; ðA5aÞ

χ1;p ¼ −Cp

χ00;p
2

; ðA5bÞ

χ2;p ¼ Cpχ0;p; ðA5cÞ

χ4;p ¼ χ1;p
2ðp=TÞ4

ðd − 1Þðdþ 1Þ − χ2;p
ðpTÞ3
d − 1

− χ0;p
η

s
ðp=TÞ2
d − 1

þ aE�n0pðp=TÞ

¼ −
�
p̃2

6T2
þ 5p̃

6
þ p̃2

6
þ p̃3

6
þ 8p̃5

105
−
2p̃6

105

�
χpCp;

ðA5dÞ

aE� ¼ Tητπ
4s

−
dþ 3

d − 1

Tλ1
4s

þ dþ 1

2ðd − 1Þ
�
η

s

�
2

; ðA5eÞ

with f0eq ¼ dfeqðxÞ=dx, θ ¼ ∇ · u, p̃ ≔ p=T and a tilde
indicates that the quantity is dimensionless. The transport
coefficients in aE� (A5d) will be given below.
For the Bjorken flow the gradient expansion of the

distribution function reduces to the expression [63,64]

δf ¼ χpCp

�
−p̃2

4

9T4τ2
− p̃

20

9T2τ2
− p̃2

4

9T2τ2
− p̃3

4

9T2τ2
− p̃5

64

315T2τ2
þ p̃6

16

315T2τ2
þ � � �

�
P0ðcos θÞ

þ
�
−χ̃pp̃2

�
2

3τT

�
þ χ̃0pC̃pp̃4

�
8

63τ2T2

�
− χ̃pC̃pp̃3

�
8

9τ2T2

�
þ � � �

�
P2ðcos θÞ

þ
�
χ̃0pC̃pp̃4

�
8

35τ2T2

�
þ � � �

�
P4ðcos θÞ; ðA6Þ

where χ̃p ¼ −Cpf0eq. One immediately recognizes that the
Chapman-Enskog expansion of the distribution function is
an asymptotic series in terms of 1=ðτTÞ. Close to the
thermal equilibrium 1=ðτTÞ ≈ τ−2=3, which in the case of
Bjorken flow becomes proportional to the Knudsen and
inverse Reynolds numbers.
For the Bjorken flow using the second-order Chapman-

Enskog expansion for δf (A6) in Eq. (4) results in the
asymptotic series expansion of the moments c01 and c02 as
follows:

c01 ¼ −
8τr
5π2τ

−
64τ2r

105π2τ2
þOð1=τ3Þ

¼ −
2η

τT4
þ 4

3τ2T4
ðλ1 − ητπÞ þOð1=τ3Þ; ðA7aÞ

c02 ¼
32τ2r
21π2τ2

þOð1=τ3Þ ¼ 4

3τ2T4
ðλ1 þ ητπÞ þOð1=τ3Þ:

ðA7bÞ

The transport coefficients appearing in Eq. (A7) are
given by [92]

η ¼ 2

15T3

Z
p
p4χ0;p ¼ 4τrT4

5π2
; ðA8aÞ

ητπ ¼
2

15T5

Z
p
p5χ2;p ¼ 4τ2rT4

5π2
; ðA8bÞ

λ1 ¼
8

105T6

Z
p
p6χ1;p − ητπ ¼

12τ2rT4

35π2
: ðA8cÞ

APPENDIX B: A SELF-CONTAINED
DICTIONARY FOR THE
DYNAMICAL SYSTEMS

In this section, we list a dictionary of words from the
terminology of the mathematical field of dynamical sys-
tems used in Sec. IV. This is a self-contained and compact
dictionary that could help the reader with some terminology
of time-dependent dynamical systems.

DYNAMICAL SYSTEMS AND NONLINEAR TRANSIENT … PHYS. REV. D 99, 116012 (2019)

116012-27



(i) Dynamical system.—A set of differential equations
in terms of a state vector whose components are real
numbers determined by a set of points in some
suitable state space. Any small variation in the state
of the system leads in turn to a change in the
numbers. In short, the evolution of a dynamical
system is based on a fixed deterministic rule that
describes what future states follow from the current
state. When explicitly time dependent, however,
equations of the system also evolve in form, and
thus the rule changes as time passes.

(ii) Nonautonomous dynamical system.—A differential
equation of the form

d
dτ

xðτÞ ¼ gðxðτÞ; τÞ�
or

d
dw

xðwÞ ¼ hðxðwÞ; wÞ
�

ðB1Þ

is explicitly time dependent through the function g.
This defines a nonautonomous dynamical system if
the state function xðτÞ is dynamically evolving with
a flow time τ. TðτÞ, and the equivalent of g in (B1), is
the rhs of (9).

(iii) (Asymptotic) fixed point.—The time-dependent sol-
utions xðτÞ of gðxðτÞ; τÞ ¼ 0 are the moving fixed
points of the system (B1). For τ → ∞ these define a
point(s) x� at which the state vector is in a steady
equilibrium state for all times t > 0 if τ ¼ ∞þ t,
referred to as fixed points of the nonautonomous
system in (B1). Note that here the time τ takes values
over t ¼ Rþ.19 If we reparametrize flow time to ρ
such that t ¼ R, the fixed points can now be equally
defined at ρ → −∞. Hence τðρÞ turns into a new
independent variable in the dynamical system such
that

dx=dρ ¼ gðx; τÞ; dτ=dρ ¼ hðτÞ; ðB3Þ

is autonomous. The fixed points are then defined as
usual by finding those ðx�; τ�Þ for which gðx�; τ�Þ ¼
0 ¼ hðτ�Þ.

(iv) Flow line (process).—A flow line is a map
defined by ϕτ;τ0ðx0Þ∶ X × t × t → X such that
ϕτ;τ0ðx0Þ ¼ xðτÞ solves (B1) with some initial values
ðx0 ≡ xðτ0Þ; τ0Þ.

(v) Phase portrait.—It is a geometric representation of
the flow lines for a dynamical system in its phase
space given a set of initial conditions represented by
ðxi; τiÞ with i ∈ I, where I is simply an index set.

(vi) Invariant manifold.—As defined above, it is a subset
of the phase portrait which contains all the flow lines
initiated inside it (or at its boundary) which keep
being restricted in there at all times.

(vii) Complete flow line.—Choosing a different para-
metrization of flow time τ, say w, may allow us
to connect two fixed points at ðx0; 0Þ and ðx∞;∞Þ.
Note again that the time manifold w now allows 0 to
be a valid input. This flow line, if it existed, would be
called complete. The set of fixed points of the
dynamical system all belong to the boundary of
the invariant manifold iff there is one complete flow
line between every two fixed points.

(viii) Stability of a fixed point.—Linearizing the system in
(B3) about a fixed point ðx�;∞Þ leads to the
understanding of how flow lines behave around that
fixed point. Eigenvalues of the linearization matrix J
with components

Jij ≔
∂Gi

∂Xj
; G ¼ ðgðx; τÞ; hðτÞÞ; ðB4Þ

evaluated at ðx�;∞Þ, determine the stability of
ðx�;∞Þ. Let us denote the eigenvalues of (B4) by
λ∞. Throughout this section we only consider
hyperbolic fixed points for which Reðλ∞Þ ≠ 0.

(ix) The Hartman-Grobman (HG) theorem.—It shows
that near a hyperbolic fixed point ðx�;∞Þ, the
nonlinear system (B1) has the same qualitative
structure as the linear system

dx=dτ ¼ Jðx�;∞Þx: ðB5Þ

Therefore, HG implies that two hyperbolic systems
are locally topologically flow equivalent iff their
unstable manifolds have equal dimensions.

(x) Index of ðx�;∞Þ.—The number of components of
λ∞ whose real parts are positive is called the (Morse)
index of that fixed point, which is technically the
dimension of the unstable manifold around every
hyperbolic fixed point. So any nonzero index means
that the fixed point is basically unstable. This
instability is severe for a larger index. For example,
in a d-dimensional system ðx1;…; xd−1; τÞ, an index
n fixed point is an unstable saddle whose stable
manifold is d − n dimensional. The instability of an
index n fixed point known as a source is far more

19In math literature, a nonautonomous system is known to not
admit any fixed point by promoting it to an autonomous system of
one dimension higher and observing that the rhs of this secondary
system

dx=dτ ¼ gðxÞ; dτ=dτ ¼ 1; ðB2Þ

never vanishes. Nonetheless, our definition of a fixed point for a
nonautonomous system is not for all times as in the autonomous
case, rather over just enough period of time beyond τ ¼ ∞
in order to distinguish it as an equilibrium state. Studying
topology of the flow lines around such fixed points is thus
more complicated and requires a lot of additional mathematical
input [76].
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pronounced than a saddle. Finally, a stable fixed
point (so-called sink) has always a vanishing
index.20

(xi) Invariant manifold.—Suppose ϕ is a flow on the
phase space ðX; tÞ equipped with a spatial metric
dist. A family A ≔ ⋃τ∈tAτ of nonempty subsets of
X is invariant with respect to ϕ if for all τ ≥ τ0

ϕðτ; τ0; Aτ0Þ ¼ Aτ: ðB6Þ
A goes by the name of invariant manifold.

(xii) (a) Forward attraction.—Let ϕ be a flow (process).
A nonempty, compact and invariant manifold A ≔
⋃τAτ for compact I is said to forward attract if

lim
τ→∞

dist½ϕðτ; τ0; x0Þ; Aτ� ¼ 0; ðB7Þ

for all x0 ∈ X and τ0 ∈ t. The distance function
between two sets A and B is defined as usual on the
metric space X as distðA;BÞ ¼ infx∈A;y∈Bdistðx; yÞ.

(xii) (b) Pullback attraction.—A nonempty, compact and
invariant nonautonomous set A ≔ ⋃τAτ is said to
forward attract if

lim
τ0→−∞

dist½ϕðτ; τ0; x0Þ; Aτ� ¼ 0; ðB8Þ

for all x0 ∈ X and τ ∈ t.
(xiii) Basin of attraction.—A neighborhood of an attractor

is called the basin of attraction B if it consists of all
points that evolve to the attractor in the limit τ → ∞.
In other words, B is the set of all points b ∈ B in the
phase space provided that, for any open neighbor-
hood N of the attractor, there is a positive constant s
such that ϕτ;τ0ðbÞ ∈ N for all real τ > s.

(xiv) Lyapunov function.—Let us assume that the point
ðx; τÞ at τ → ∞ is ð0;∞Þ which defines an asymp-
totically stable fixed point of a nonautonomous
dynamical system. Then if there is a function
Vðx; τÞ such that the Lyapunov stability conditions

Vðx;τÞ>0; and

dVðx;τÞ
dτ

¼dxðτÞ
dτ

·∇Vðx;τÞ<0; ∀ x>0;τ<∞;

ðB9Þ

are satisfied, Vðx; τÞ is called a Lyapunov function.
It may be appropriate here to mention that in general, (xi)

(a) and (xi)(b) are very different and independent concepts.
Pullback attractor (B8) contains information about the past
(early time) of a nonautonomous dynamical system,
whereas forward attractor (B7) makes use of information

about the future. It well may be the case that one exists
while the other one does not in a nonautonomous system.
However, in the case of an autonomous system, they are
equivalent and the resulting attraction is global with the set
A referred to as the global attractor.

APPENDIX C: CONSTRUCTING THE
TRANSSERIES FOR TðτÞ

1. Algebraic properties of transseries

Let us suppose the following transseries is given:

ΦðzÞ ¼
X∞

n≥0;jnj≥0
σnζnðzÞ

X∞
k¼0

ϕðnÞ
k z−k; ðC1Þ

ζnðzÞ ¼ e−ðn·SÞzzn·β; ðC2Þ

σn ¼ σn11 …σnLL ; ðC3Þ

where ϕðnÞ
k are complex-valued coefficients. We define the

basis of the transseries also known as EðnÞ
k ðzÞ as

ΦðzÞ ¼
X∞

n≥0;jnj≥0

X∞
k¼0

ΦðnÞ
k ðzÞ; ðC4Þ

ΦðnÞ
k ðzÞ ¼ ϕðnÞ

k EðnÞ
k ðzÞ; ðC5Þ

EðnÞ
k ðzÞ ¼ σnζnðzÞz−k: ðC6Þ

The transseries can be regarded as an element of a vector
space defined as

H ¼ ⨁
n≥0;k¼0

HðnÞ
k ; ðC7Þ

ΦðnÞ
k ðzÞ ¼ ϕðnÞ

k EðnÞ
k ðzÞ ∈ HðnÞ

k ; ðC8Þ

ΦðzÞ ¼
X∞

n≥0;jnj≥0

X∞
k¼0

ΦðnÞ
k ðzÞ ∈ H: ðC9Þ

The operations on this vector space are briefly explained
below. Note that the transseries is always closed under
these operations.

a. Product

The product operation × between two transseries is an
additive operation on both transmonomial and asymptotic
orders given by

×∶ HðnÞ
k ×Hðn0Þ

k0 → Hðnþn0Þ
kþk0 ; ðC10Þ

ðϕðnÞ
k EðnÞ

k ;ψ ðn0Þ
k0 Eðn0Þ

k0 Þ ↦ ϕðnÞ
k ψ ðn0Þ

k0 Eðnþn0Þ
kþk0 : ðC11Þ

20The imaginary part of λ∞, if present, means that the flow line
is going to spiral its way in or out, thus the name stable or
unstable spiral, respectively.
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b. Exponential

The exponential operation Exp is an extension of the
product to the exponential terms defined by

ExpΦðnÞ
k ≔ expΦðnÞ

k ; ðC12Þ

where ΦðnÞ
k ∈ HðnÞ

k . Thus, the exponential is a linear
mapping of the form

Exp∶ HðnÞ
k → ⨁

∞

l¼0

HðlnÞ
lk ; ðC13Þ

ϕðnÞ
k EðnÞ

k ↦
X∞
l¼0

ðϕðnÞ
k Þl

Γðlþ 1ÞE
ðlnÞ
lk : ðC14Þ

c. Integration

We define an integration operation of the form

IntsΦ
ðnÞ
k ≔

Z
dz
zs

ΦðnÞ
k ; ðC15Þ

where ΦðnÞ
k ∈ HðnÞ

k and s ∈ N0. For realizing the closed-
ness of transseries under the integration, we have to
assume that

Φð0Þ
k ¼ 0 for any 0 ≤ k ≤ 1 − s: ðC16Þ

Then after some algebra, Eq. (C15) casts Ints in the form of
the following linear mapping:

Ints∶ HðnÞ
k →

8>><
>>:

Hð0Þ
kþs−1 for n ¼ 0;

⨁
∞

l¼0

HðnÞ
kþsþl otherwise;

ðC17Þ

ϕðnÞ
k EðnÞ

k ↦

8<
:− ϕð0Þ

k
kþs−1E

ð0Þ
kþs−1 for n ¼ 0;

−
P∞

l¼0

Rlð1þβ·n−k−sÞϕðnÞ
k

ðn·SÞlþ1 EðnÞ
kþsþl otherwise;

ðC18Þ

where RlðaÞ is written in terms of the Pochhammer
symbol ðaÞl:

RlðaÞ ¼ ð−1Þlð1 − aÞl; ðC19Þ

ðaÞl ¼
Γðaþ lÞ
ΓðaÞ : ðC20Þ

We recall that, to get the expression in (C18), use has been
made of the asymptotic form of the upper incomplete
Gamma function for z → ∞, namely

Γða; zÞ ¼ za−1e−z
�Xn−1

k¼0

RkðaÞz−k þOðz−nÞ
�
: ðC21Þ

2. Transseries solution for the temperature TðτÞ
As we have seen in the previous section, T̂ðτ̂Þ can be

expressed by the same transseries ansatz used for clðτ̂Þ due
to the fact that clðτ̂Þ ¼ Oðτ̂−1Þ. Using Exp and Ints
mappings defined in Eqs. (C13) and (C17) respectively,
we find that

T̂ðτ̂Þ ¼ ExpCTðτ̂Þ; ðC22Þ

CTðτ̂Þ ¼ −
1

20
Int1c1ðτ̂Þ: ðC23Þ

By assuming the ansatz for c01ðτ̂Þ as

c01ðτ̂Þ ¼
X∞
jnj≥0

σnζnðτ̂Þ
X∞
k¼0

uðnÞ01;kτ̂
−k; ðC24Þ

CTðτ̂Þ ¼
X∞
jnj≥0

σnζnðτ̂Þ
X∞
k¼0

uðnÞT;kτ̂
−k; ðC25Þ

T̂ðτ̂Þ ¼
X∞
jnj≥0

σnζnðτ̂Þ
X∞
k¼0

ûðnÞT;kτ̂
−k; ðC26Þ

we can get from Eq. (C23)

CTðτ̂Þ ¼
1

20

X∞
k¼1

uð0Þ01;k

k
τ̂−k þ 1

20

X∞
jnj>0

σnζnðτ̂Þ

×
X∞
k¼0

Xk
p¼0

Rk−pðn · β − pÞuðnÞ01;p

ðn · SÞk−pþ1
τ̂−k−1: ðC27Þ

Hence, it is easy to read off the coefficients

uðnÞT;k ¼

8>>><
>>>:

0 for any n and k ¼ 0;

uð0Þ
1;k

20k for n ¼ 0 and k ≥ 1;P
k−1
p¼0

Rk−p−1ðn·β−pÞuðnÞ1;p

20ðn·SÞk−p otherwise:

ðC28Þ

Therefore, inserting Eq. (C27) in (C22) results in

T̂ðτ̂Þ ¼ exp

�X∞
jnj≥0

σnζnðτ̂Þ
X∞
k¼1

uðnÞT;kτ̂
−k
�

¼ 1þΨðτ̂Þ;

ðC29Þ
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Ψðτ̂Þ¼
X∞
m1¼1

ðP∞
k¼1u

ð0Þ
T;kτ̂

−kÞm1

Γðm1þ1Þ

×

�
1þ

X∞
m2¼1

ðP∞
jnj>0 σ

nζnðτ̂ÞP∞
k¼1u

ðnÞ
T;kτ̂

−kÞm2

Γðm2þ1Þ
�
∈H;

ðC30Þ

where Ψðτ̂Þ converges to zero at late times, that
is limτ̂→∞Ψðτ̂Þ ¼ 0.

3. The c-T dynamical system

In the analysis of the previous section, we used w as a
time variable, but something else that may be done is to
consider the same analysis for the dynamical system
including explicitly the temperature, which will require
constructing transseries for TðτÞ as well. In this subsection,
we seek to prove that this dynamical system entails the
same structure as (11), which is compatible with Costin’s
prepared form.
The dynamical system in the τ coordinate takes the

following form:

dc
dτ

¼ −
1

τ
ðBcþ c01DcþAÞ − Tc

θ0
; ðC31Þ

dT
dτ

¼ −
T
3τ

�
1þ c01

10

�
; ðC32Þ

where B is a constant matrix, D is a diagonal constant
matrix, andA is a constant vector. From Eq. (C32), one can
obtain the formal solution of TðτÞ as

TðτÞ ¼ C0

�
τ0
τ

�
1=3

exp

�
−

1

30

Z
τ

τ0

dτ0

τ0
c01ðτ0Þ

�

¼ C0

�
τ0
τ

�
1=3

eCTðτÞ−CTðτ0Þ; ðC33Þ

where C0 is an integration constant and CTðτÞ is defined as

CTðτÞ ¼ −
1

30

Z
dτ
τ
c01ðτÞ: ðC34Þ

In the IR, or the late-time limit τ → ∞, TðτÞ is observed to
behave like

lim
τ→∞

TðτÞ ¼ T0

�
τ0
τ

�
1=3

; ðC35Þ

with a constant T0. Hence, by redefining this constant, the
temperature TðτÞ takes the form

TðτÞ ¼ T̂0eCTðτÞ

τ1=3
; T̂0 ¼ T0τ

1=3
0 : ðC36Þ

Now, by working (C36) into (C31) and changing the
parameters τ̂ and θ̂0 as

τ̂ ¼ τ2=3; θ̂0 ¼
θ0
T̂0

; ðC37Þ

the dynamical system becomes

dcðτ̂Þ
dτ̂

¼ −
1

τ̂
ðBcðτ̂Þ þ c01ðτ̂ÞDcðτ̂Þ þAÞ − T̂ðτ̂Þ

θ̂0
cðτ̂Þ;

ðC38Þ

where

T̂ðτ̂Þ ¼ eCTðτ̂Þ;

CTðτ̂Þ ¼ −
1

20

Z
dτ̂
τ̂
c01ðτ̂Þ: ðC39Þ

Note that the temperature Tðτ̂Þ can be reproduced by

Tðτ̂Þ ¼ T̂0

T̂ðτ̂Þ
τ̂1=2

: ðC40Þ

As discussed in Appendix C, we find that T̂ðτ̂Þ will be
expressed by

T̂ðτ̂Þ ¼ 1þ Ψðτ̂Þ; ðC41Þ

where Ψðτ̂Þ is a continuous function with a transseries
formula identical to that of c̃, which converges to zero
asymptotically. Therefore, Eq. (C38) bears the familiar
prepared form as in Eq. (11) with only one significant
difference from a physical standpoint: the temperature now
is a dimension in the phase space of the dynamical system.
In the UV limit, the divergence of TðτÞ as τ → 0 in general
[see Eq. (C32)] suggests that T ¼ 0 and T ≠ 0 theories are
disconnected from each other, and there cannot be any
flow line (process) that connects a UV fixed point to the
hydrodynamic fixed point achieved at τ → ∞ in the
original kinetic model of the Bjorken flow.

APPENDIX D: BJORKEN DYNAMICAL SYSTEM
AND ITS TRANSSERIES SOLUTIONS FOR

GENERAL τr = θ0=T1 −Δ

In this Appendix, we extend the dynamical system in
Eq. (9) to include general relaxation time, τr ¼ θ0=T1−Δ

with 0 ≤ Δ ≤ 1, which is very straightforward. The gen-
eralized system has the same number of asymptotic fixed
points with their stability being identical to the case Δ ¼ 0
as discussed in Sec. IVA. So except for some small
quantitative alterations in the flow lines around UV and
IR, the qualitative picture of the phase portrait remains the
same. In other words, there are no changes in global
dynamics.
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The generalized dynamical system is described by

dc
dτ

¼ −
2

3τ
ðBcþ c01DcþAÞ − T1−Δ

θ0
c; ðD1Þ

dT
dτ

¼ −
T
3τ

�
1þ c01

10

�
: ðD2Þ

As in the main bulk of the paper, we change to the
coordinate w ¼ τT1−Δ and consider the dynamical system
to be of the form

dc
dw

¼ −
�
1þ Δ=2 −

1 − Δ
20

c01

�
−1

×
�
Λ̂cþ 1

w
ðBcþ c01DcþAÞ

�
; ðD3Þ

where the matrices and vectors involved here have the same
definitions as in (41). Being again compatible with Costin’s
prepared form, we conclude that the transseries can be
explained with the same form used to explore the solutions
of the Δ ¼ 0 model defined by (15). By defining an
invertible matrix U for the diagonalization purposes again,
one finds the recursive relation involving the transseries
data as

20

�
ðð1þ Δ=2Þðm · b̃ − kÞ þ biÞũðmÞ

i;k

þ
�

3

2θ0
− ð1þ Δ=2Þm · S

�
ũðmÞ
i;kþ1

�
þ 20Ãiδk;0δm;0

−
Xm
jm0j≥0

�
ð1 − ΔÞ

Xk
k0¼0

ðm0 · b̃ − k0Þuðm−m0Þ
1;k−k0 ũðm

0Þ
i;k0

− 20
XI
i0¼1

Xk
k0¼0

uðm−m0Þ
1;k−k0 D̃ii0 ũ

ðm0Þ
i0;k0

− ð1 − ΔÞm0 · S
Xkþ1

k0¼0

uðm−m0Þ
1;k−k0þ1

ũðm
0Þ

i;k0

�
¼ 0; ðD4Þ

with the IR data Si and b̃i in the transseries being

Si ¼
3

ð2þ ΔÞθ0
;

b̃i ¼ −
1

1þ Δ=2

�
bi −

1 − Δ
5ð1þ Δ=2Þ

�
; ðD5Þ

where bi are the eigenvalues of the matrix B.
In addition, the transasymptotic matching is obtained in

the following, where ζ̂i ¼ ∂=∂ log ζi. Summing over m
yields the transasymptotic matching for the general Δ as

20

�
ðð1þ Δ=2Þðb̃ · ζ̂ − kÞ þ biÞC̃i;k

− ð1þ Δ=2ÞS · ζ̂C̃i;kþ1 þ
3

2θ0
C̃i;kþ1

�
þ 20Ãiδk;0

− ð1 − ΔÞ
Xk
k0¼0

C1;k−k0 ðb̃ · ζ̂ − k0ÞC̃i;k0

þ 20
XI
i0¼1

Xk
k0¼0

C1;k−k0D̃ii0C̃i0;k0

þ ð1 − ΔÞ
Xkþ1

k0¼0

C1;k−k0þ1S · ζ̂C̃i;k0 ¼ 0: ðD6Þ

The transseries and leading-order asymptotics of five
moments c01;…; c21 for the Δ ¼ 1 system are depicted in
Fig. 10. To avoid repeating ourselves here, we refer the
interested reader to the explanations given in the text prior
to Fig. 1.

1. Transasymptotic matching for c01
of the N = 0, L= 1, Δ= 1

dynamical system

As a result of Eq. (D6), the mode-to-mode coupling
term c01

dcnl
dw vanishes, and therefore the transasymptotic

matching effectively becomes a finite expansion of the
transmonomials packaged into ζ at each order. The first
five transseries coefficients are then found to be exactly
given by

C̃01;0ðζÞ ¼ ζ; ðD7Þ

C̃01;1ðζÞ ¼ −
2θ0
45

ð3ζ2 − 16ζ þ 60Þ; ðD8Þ

C̃01;2ðζÞ ¼
2θ20
4725

ð42ζ3 þ 17ζ2 − 3300Þ; ðD9Þ

C̃01;3ðζÞ ¼ −
8θ30

1488375
ð441ζ4 þ 2709ζ3 þ 55283ζ2

þ 219600Þ; ðD10Þ

C̃01;4ðζÞ ¼
4θ4

1406514375
ð111132ζ5 þ 1320354ζ4

þ 28776951ζ3 þ 290390942ζ2 − 698220000Þ:
ðD11Þ
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APPENDIX E: REVIEW OF THE EXACT
SOLUTION OF THE RTA BE

In this section, we briefly touch down on some aspects of
the exact RTA BE that have been taken advantage of
throughout this paper. For a more complete and detailed
explanation of this solution, we refer the reader to
Refs. [11,12,59].
The exact solution of the RTA BE (1) is

fðτ; pT; pςÞ ¼ Dðτ; τ0Þf0ðτ0; pT; pςÞ

þ
Z

τ

τ0

dτ0

τrðτ0Þ
Dðτ; τ0Þfeqðτ0; pT; pςÞ; ðE1Þ

where Dðτ2; τ1Þ ¼ exp ½− R τ2τ1 dτ0=τrðτ0Þ� and f0ðτ0; pT; pςÞ
is the initial distribution function at τ ¼ τ0. Here, we
consider the RS distribution function [74]

f0ðτ0;pT;pςÞ¼ exp
h
Λ0

−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
Tþð1þξ0Þðpς=τ0Þ2

q i
; ðE2Þ

where Λ0 and ξ0 are the initial temperature and initial
momentum anisotropy along the ς direction, respectively.
With (E2) at hand, the energy-momentum conservation law
leads to the following integral equation [11,12,59]:

T4ðτÞ ¼ T4
0Dðτ; τ0Þ

R200ðτ; τ0=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ0

p Þ
R200ðτ0; τ0=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ0

p Þ

þ
Z

τ

τ0

dτ0

τrðτ0Þ
T4ðτ0ÞDðτ; τ0ÞR200ðτ; τ0Þ

R200ðτ; τÞ
: ðE3Þ

The functions Rnqr appearing in the previous expression
are given by [65]

Rnqrðτ; τ0Þ ¼
Z

π

0

dθ
cosrθ sin2qþ1θ

½ð ττ0Þ2cos2θ þ sin2θ�ðnþ2Þ=2 : ðE4Þ

Equation (E3) is solved with the help of the iterative
methods discussed in Refs. [11–13,102]. By plugging the

FIG. 10. Five lowest nonhydrodynamic moments for the Δ ¼ 1 system are computed using transseries, leading asymptotics and the
exact solution. The blue shaded area depicts the probable variation in the transseries due to the standard deviation of integration
constants σi. Each moment is calculated up to its leading asymptotic order and renormalized by transasymptotic matching including all
the transmonomials up to 15th order.
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exact solution (E1) in the definition of the moments cnl in (4), one finds

cnlðτÞ ¼ 2π2ð4lþ 1Þ
�
Dðτ; τ0ÞBnl

�
τ; τ0; 1þ ξ0;

T0

R1=4ðξ0ÞTðτÞ
�
þ
Z

τ

τ0

dτ0

τrðτ0Þ
Dðτ; τ0ÞBnl

�
τ; τ0; 1;

Tðτ0Þ
TðτÞ

��
; ðE5aÞ

where

Bnl

�
τ; τ0; λk;

Λðτ0Þ
TðτÞ

�
¼ Γðnþ 1Þ

Γðnþ 4Þ
Z

π

0

dðcos θÞ
ð2πÞ2 P2lðcos θÞ

Z
∞

0

drr3Lð3Þ
n ðrÞ exp

"
−
TðτÞ
Λðτ0Þ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2θ þ λk

�
τ

τ0

�
2

cos2θ

s #

¼ 1

ð2πÞ2
�
Λðτ0Þ
TðτÞ

�
4
Z

1

−1
dxP2lðxÞ

½ð1þ ðλkð ττ0Þ2 − 1Þx2Þ1=2 − Λðτ0Þ
TðτÞ �n

½1þ ðλkð ττ0Þ2 − 1Þx2�ðnþ4Þ=2 : ðE6Þ

In Eq. (E5) the reader must bear in mind that the Landau
matching condition for the energy density at τ ¼ τ0 when
using the RS distribution function (E2) implies
T0 ¼ R1=4ðξ0ÞΛ0,where the functionRðξÞ is definedby [20]

RðξÞ ¼ 1

2

�
1

1þ ξ
þ arctanð ffiffiffi

ξ
p Þffiffiffi
ξ

p
�
: ðE7Þ

Themoments M̄nl (114) can now be evaluated from the exact
solution (E1) as follows:

M̄nm ¼ Mnm

Mnm
eq

¼
Dðτ; τ0ÞFnm

0 ðτ; τ0Þ þ
R
τ
τ0

dτ0
τrðτ0ÞDðτ; τ0ÞFnm

eq ðτ; τ0Þ
Fnm
eq ðτÞ

;

ðE8Þ

where

Fnm
0 ðτ; τ0Þ ¼ Γðnþ 2mþ 2Þ

ð2πÞ2 Rðξ0Þ−½ðnþ2mþ2Þ=4�Tðτ0Þnþ2mþ2

Z
1

−1
dx

x2m ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ0x2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðð ττ0Þ2 − 1Þx2

q �nþ2mþ2
; ðE9aÞ

Fnm
eq ðτ; τ0Þ ¼

Γðnþ 2mþ 2Þ
ð2πÞ2 Tðτ0Þnþ2mþ2

Z
1

−1
dxx2m

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

��
τ

τ0

�
2

− 1

�
x2

s !−ðnþ2mþ2Þ
: ðE9bÞ

The exact solutions for both cnl and M̄nl are determined
numerically by having the expression for the temperature
from Eq. (E3).

APPENDIX F: HYDRODYNAMIZATION
OF SOFT AND HARD MODES

FOR THE Δ= 1 SYSTEM

In Sec. V we analyzed the hydrodynamization process of
the normalized moments M̄nm for the conformal system,
i.e., τr ¼ θ0=T. Here, we give the results of hydrodynam-
ization when τr ¼ θ0=T1−Δ by fixing Δ ¼ 1. For this
choice, the variable w ¼ τðfm=cÞ becomes dimensionful.
The soft and semihard limits of the normalized moments
are given by the expressions in Eqs. (117) and (118),
respectively. Also, the exact moments M̄nm are given
by Eq. (E8).

The results of the hydrodynamization of the normalized
moments are presented in Figs. 11–15. From these plots,
we arrive at the conclusions already discussed in Sec. V: the
larger n andm, the longer it takes for M̄nm (n > 0; l ≥ 1) to
thermalize while M̄n0 (n ≥ 0). Furthermore, the IR behav-
ior is uniquely determined by both nonhydrodynamic
modes c01 and c11 for M̄nm (n > 0; l ≥ 1) while the
nonhydrodynamic modes c10 and c20 for M̄nm (n ≥ 0).
When calculating the deviation from equilibrium by fol-
lowing the same procedure discussed in Sec. V we reach
the same conclusions presented in there: the soft regime
does not capture the late-time asymptotics correctly while
there is an extremely good match between the softþ
semihard regime and exact results. This nontrivial double
check gives a solid evidence of the importance of consid-
ering not only the effective shear mode c01 but also the new
nonhydrodynamic mode c11.
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APPENDIX G: EXACT SOLUTION VERSUS
TRUNCATION OF THE DYNAMICAL SYSTEM

In the numerical analysis presented in this work, we used
various truncations in the number of moments in the
original dynamical system (9b). Both the exact solution
to RTA BE and the solution to the truncated dynamical
system share the same IR fixed point but as discussed in
Sec. IV, the solution of the truncated dynamical system
cannot fully agree with the exact solution at early times due
to the missing corrections due to the truncation. For
simplicity we take Δ ¼ 0 in Eq. (2).

In this section, we test how good the truncation schemes
would match the exact RTA BE result. We compare the
moments cnl obtained from Eq. (E8) by solving the RTA
BE exactly against solutions to the truncated dynamical
system in (22b), where the truncation is controlled by the
number of involved moments. For this reason, we solve
numerically the dynamical system in (9b) by varying its
dimension from 1 to L and compare against exact result (4)
by using the same set of initial values of the moments cl.
The initial conditions for the exact cnl (E6) are chosen to be
τ0 ¼ 0.25 fm=c, T0 ¼ 0.6 GeV and ξ0 ¼ 1000. In Fig. 16

FIG. 11. Time evolution of several normalized moments M̄nm (n > 0; l ≥ 1) in the case where the power law dependence of the
relaxation time is a constant, i.e., τr ¼ θ0. In this plot we present the numerical results of the exact RTA solution (E8) (black line), soft
(117) (green dot-dashed line) and softþ semihard (118) (blue dashed line) limits. The initial conditions are the same as in Fig. 5.
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FIG. 12. Time evolution of different normalized moments M̄n0 in the case where the power law dependence of the relaxation time is a
constant, i.e., τr ¼ θ0. In this plot we present the numerical results of the exact RTA solution (E8) (black line)and the hard limits given
by Eqs. (119a) (green dot-dashed line) and (119b) (blue dashed line). The saturation bounds are set to at the same level as before. The
initial conditions are the same as in Fig. 5.

FIG. 13. Saturation value of wc versusm for different values of n ¼ f0; 1; 2; 3g (top right, top left, bottom right and bottom left panels,
respectively) for the exact RTA (black circle), soft (blue square) and softþ semihard (red triangle) regimes.
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we present the numerical results for our findings by
considering the initial conditions c0lðw0Þ ¼ c0lðw0; ξ0Þ.
When the dimension of the truncated dynamical system
increases, they get closer to the exact solutions of the full
RTA BE. We notice that the larger the index l, the more
moments are needed in order to match the exact solution of
the RTA BE. In Fig. 17, the exact moments cnl ðn ¼ 1; 3; 5Þ
are compared to the solutions of the truncated system. This
figure encodes the information of the nonlinear structure of
the original dynamical system: the evolution equation of cnl
couples only to the moments of the same or lower order in
n, and at the same time it couples to the next moment cn;lþ1.
So cnl in Fig. 17 become closer to the exact RTA result if L
is increased for a fixed value of n. We comment that the
numerical results presented in Figs. 16 and 17 do not
depend on the particular choice of initial conditions as long
as we are bound to the basin of attraction of the invariant
manifold of the truncated system.

FIG. 14. Saturation value of wc versus n of the moments M̄n0

for the exact RTA (black circle) and hard limits, Eqs. (119a) (blue
square) and (119b) (red triangle).

FIG. 15. Time evolution of the deviation from the distribution function (E1) for the exact RTA BE solution when τr ¼ θ0. The black
lines represent the exact result (E1) while the green dot-dashed and blue dashed lines correspond to the soft limit (121a) and soft þ
semihard lim it (121b) limits. The initial conditions are the same as in (121b).
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FIG. 16. Impact of truncation on c01;…; c06. The exact solution to the RTA BE is shown with a black line. Dashed lines correspond to
c0l in a truncated system of L moments.

FIG. 17. Exact solutions for cnl of both the RTA BE and the truncated system. Dashed lines represent cnl in a truncated system
composed of N ¼ 5; L moments. The initial conditions for the exact cnl (E6) are τ0 ¼ 0.25 fm=c, T0 ¼ 0.6 GeV and ξ0 ¼ 1000.
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