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The supersymmetry (SUSY)-preserving μ parameter in SUSY theories is naively expected to be of order
the Planck scale while phenomenology requires it to be of order the weak scale. This is the famous SUSY μ
problem. Its solution involves two steps: first forbid μ, perhaps via some symmetry, and then regenerate it
of order the scale of soft SUSY-breaking terms. However, present LHC limits suggest the soft breaking
scale msoft lies in the multi-TeV regime while naturalness requires μ ∼mW;Z;h ∼ 100 GeV so that a little
hierarchy (LH) appears with μ ≪ msoft. We review 20 previously devised solutions to the SUSY μ problem
and reevaluate them in light of whether they are apt to support the LH. We organize the 20 solutions as
follows: (1) solutions from supergravity/superstring constructions, (2) extended minimal supersymmetric
Standard Model solutions, (3) solutions from an extra localUð1Þ0 and (4) solutions involving Peccei-Quinn
symmetry and axions. Early solutions invoked a global Peccei-Quinn symmetry to forbid the μ term while
relating the μ solution to solving the strong CP problem via the axion. We discuss the gravity-safety issue
pertaining to global symmetries and the movement instead toward local gauge symmetries or R
symmetries, either continuous or discrete. At present, discrete R symmetries of order M (ZR

M) which
emerge as remnants of the Lorentz symmetry of compact dimensions seem favored. Even so, a wide variety
of regenerative mechanisms are possible, some of which relate to other issues such as the strong CP
problem or the generation of neutrino masses. We also discuss the issue of the experimental verification or
falsifiability of various solutions to the μ problem. Almost all solutions seem able to accommodate the LH.
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I. INTRODUCTION: REFORMULATING
THE μ PROBLEM FOR THE LHC ERA

Supersymmetry (SUSY) provides a solution to the big
hierarchy problem—why does the Higgs mass not blow
up to the GUT/Planck scale?—via a neat cancellation of
quadratic divergences which is required by extending the
Poincaré group of spacetime symmetries to its maximal
structure [1,2]. SUSY is also supported indirectly via the
confrontation of data with virtual effects in that 1) the
measured gauge couplings unify under minimal super-
symmetric StandardModel (MSSM) renormalization group
evolution [3], 2) the measured value of mt falls in the range
required for a radiatively driven breakdown of electroweak

symmetry [4], 3) the measured value of the Higgs boson
mass falls squarely within the narrow allowed range
required by the MSSM [5,6] and 4) the measured values
of mW and mt favor the MSSM with heavy superpartners
[7]. In spite of these successes, so far no direct signal for
SUSY has emerged at the LHC leading to the mass limits
mg̃ ≳ 2 TeV and mt̃1 ≳ 1 TeV while the rather large value
of mh ≃ 125 GeV also seemingly requires multi-TeV
highly mixed top squarks [6]. The new LHC Higgs mass
measurement and sparticle mass limits seem to have
exacerbated the so-called little hierarchy problem
(LHP) [8]: why does the Higgs mass not blow up to
the soft SUSY-breaking scale msoft ≳ several TeV, or
what stabilizes the apparent hierarchy mh ≪ msoft?
The LHP opens up the naturalness question: how can it
be that the weak scale mweak ∼mW;Z;h ∼ 100 GeV without
unnatural fine-tunings of dimensionful terms in the MSSM
Lagrangian?
The most direct link between the magnitude of the weak

scale and the SUSY Lagrangian comes from minimization
of the MSSM Higgs potential to determine the Higgs field
vacuum expectation values (VEVs) [2]. A straightforward
calculation [2] reveals that
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m2
Z=2 ¼ m2

Hd
þ Σd

d − ðm2
Hu

þ Σu
uÞtan2β

tan2β − 1
− μ2

≃ −m2
Hu

− Σu
uðt̃1;2Þ − μ2 ð1Þ

where tan β≡ vu=vd is the ratio ofHiggs fieldVEVs,μ is the
SUSY-conserving Higgs/Higgsino mass term and m2

Hu;d
are

soft SUSY-breakingup- anddown-Higgsmass terms.TheΣu
u

and Σd
d terms contain a large assortment of loop corrections

(see the Appendix of Ref. [9] for expressions) the largest of
which are usually the Σu

uðt̃1;2Þ from the top-squark sector.
We can see immediately from the right-hand-side of

Eq. (1) that if say one contribution is far larger than m2
Z=2,

then another (unrelated) term will have to be fine-tuned to
compensate so as to maintain mZ at its measured value.
The electroweak (EW) fine-tuning measure ΔEW has been
introduced [9,10],

ΔEW ≡max jlargest term on rhs of Eq:ð1Þj=ðm2
Z=2Þ ð2Þ

to quantify the weak-scale fine-tuning required to maintain
mZ at its measured value. While a low value of ΔEW seems
to be a necessary condition for naturalness within the
MSSM, the question is: is it also sufficient? It was argued in
Refs. [11–14] that for correlated (i.e., interdependent) soft
terms as should occur in any more fundamental theory such
as supergravity (SUGRA) with a well-specified SUSY-
breaking sector, or in string theory, other measures such as

ΔHS ≃ δm2
h=m

2
h and ΔBG ≡maxij ∂ logm

2
Z∂ logpi
j (where the pi are

fundamental model parameters) collapse to ΔEW so that
ΔEW is sufficient as both an infrared and ultraviolet (UV)
fine-tuning measure. In contrast, theories with multiple
independent soft parameters may be susceptible to further
fine-tunings which would otherwise cancel in a more
fundamental theory. It should be recalled that in the
multi-soft-parameter effective theories such as constrained
minimal supersymmetric standard model/minimal super-
gravity Model, non-universal higgs model (with 2 extra
parameters) etc., the various soft parameters are introduced
to parametrize one’s ignorance of the SUSY-breaking
sector such that some choice of soft parameters will reflect
the true choice in nature. However, in no sense are the
multi-soft-parameter theories expected to be fundamental.
Thus, in this paper we will adopt ΔEW as a measure of
naturalness in fundamental theories with the MSSM as the
weak scale effective theory. In Ref. [15], it was shown that
the fine-tuning already turns on for values ofΔEW ∼ 20–30.
Wewill adopt a value ofΔEW < 30 as a conservative choice
for natural models of SUSY.
For a natural theory—where mW;Z;h ∼ 100 GeV because

the rhs contributions to Eq. (1) are comparable to or less
than the measured value of m2

Z=2—then evidently
(i) m2

Hu
ðweakÞ ∼ −ð100–300Þ2 GeV2

(ii) jμj ∼ 100–300 GeV [16,17], and
(iii) the largest of the radiative corrections [usually

Σu
uðt̃1;2Þ] are not too large.

The first of these conditions pertains to the soft SUSY-
breaking sector. It can be achieved for multi-TeV values of
high-scale soft terms (as required by LHC limits) by
radiatively driving m2

Hu
from large, seemingly unnatural

high scale values to a natural value at the weak scale. Thus,
a high scale value of m2

Hu
ðΛ ¼ mGUTÞ must be selected

such that electroweak symmetry is barely broken. While
this may seem to be a tuning in itself, such a selection
seems to automatically emerge from SUSY within the
string-landscape picture [18,19]. In this scenario, there is a
statistical attraction towards large soft terms which must be
balanced by the anthropic requirement that EW symmetry
be properly broken and with a weak-scale magnitude not
too far from its measured value[20]. The balance between
these two tendencies pulls m2

Hu
ðmGUTÞ to such large values

that EW symmetry is barely broken.
The third of the above conditions—that Σu

uðt̃1;2Þ∼
100–300 GeV—is achieved for third-generation squark
soft terms in the several-TeV range along with a large
trilinear soft term At (as is expected in gravity-mediation
models). These same conditions which reduce the Σu

uðt̃1;2Þ
values also increase the Higgs mass to its measured value
mh ∼ 125 GeV [9,10].
The second condition—that the superpotential μ param-

eter is of order the weak scale—brings up the famous
SUSY μ problem [21]: since WMSSM ∋ μHuHd is SUSY
preserving, naively one expects the dimensionful parameter
μ to be of order mP ≃ 2.4 × 1018 GeV while phenomenol-
ogy requires μ ∼mweak. In this paper, we focus attention
on the SUSY μ problem as occurs in gravity mediation.
The SUSY μ problem in gauge-mediated supersymmetry
breaking (GMSB) was summarized in Ref. [22]. In GMSB,
since the trilinear soft terms are expected to be tiny,
sparticle masses must become huge with highly unnatural
contributions to the weak scale in order to accommodate a
light Higgs boson with mh ≃ 125 GeV [23,24].1

There are two parts to solving the SUSY μ problem:
(i) First, one must forbid the appearance of μ, usually

via some symmetry such as Peccei-Quinn (PQ)
symmetry or better a continuous or discrete gauge
or R symmetry, and then

(ii) regenerate μ at the much lower weak scale jμj ∼
100–300 GeV (the lower the more natural) via some
mechanism such as symmetry breaking.

Many solutions to the SUSY μ problem have been
proposed, and indeed in Sec. II we will review 20 of these.
In most of these solutions, the goal (for gravity mediation)
was to regenerate μ ∼m3=2 wherem3=2 is the gravitino mass
which arises from SUGRA breaking and which sets the
mass scale for the soft SUSY-breaking terms [28]. When
many of these μ solutions were proposed—well before the

1We also do not consider SUSY models with nonholonomic
soft terms [25] or multiple μ terms; it is not clear whether such
models have viable UV completions [26,27].
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LHC era–it was commonly accepted that m3=2 ∼mweak

which would also solve the SUSY naturalness problem.
However, in light of the above discussion, the SUSY μ
problemneeds a reformulation for the LHC era: any solution
to the SUSY μ problem should first forbid the appearance of
μ, but then regenerate it at the weak scale, which is now
hierarchically smaller than the soft breaking scale:

jμj ∼mweak ∼ 100–300 GeV ≪ msoft

∼multi − TeV≲m3=2: ð3Þ
Our goal in this paper is to review various proposed

solutions to the SUSY μ problem and confront them with
the little hierarchy as established by LHC data and as
embodied by Eq. (3). While many solutions can be tuned to
maintain the little hierarchy, others may offer compatibility
with or even a mechanism to generate Eq. (3). Thus, present
LHC data may be pointing to favored solutions to the
SUSY μ problem which may be reflective of the way nature
actually works.
With this end inmind, in Sec. II wewill review a variety of

mechanisms which have been offered as solutions to the
SUSY μ problem.We organize the 20 solutions according to:
(1) solutions from supergravity/superstring constructions,
(2) extended MSSM solutions,
(3) solutions from an extra local Uð1Þ0 and
(4) solutions involving PQ symmetry and axions.

Many of these solutions tend to relate the μ parameter to the
scale of soft SUSY breaking which would place the μ
parameter well above the weak scale and thus require
significant EW fine-tuning. One such example is the original
Kim-Nilles (KN) [29] model (Sec. II D 1) which generates a
μ parameter μ ∼ v2PQ=mP and relates vPQ ∼mhidden (where
mhidden is a mass scale associated with hidden-sector
SUGRA breaking) and thus obtains μ ∼ v2PQ=mP ∼m2

hidden=
mP ∼m3=2. However, theLHPcan also be accommodatedby
allowing for vPQ ≪ mhidden so that μ ≪ m3=2. While KN
allows this possibility to be implemented “by hand,” the later
Murayama-Suzuki-Yanagida (MSY) [30], Choi-Chun-Kim
(CCK) [31] and Stephen P. Martin (SPM) [32] models
(Sec. II D 7) implement radiative PQ breaking as a conse-
quence of SUSY breaking with the result that vPQ ≪ mhidden

and hence μ ≪ msoft [33].
A prominent criticism of the μ solutions based on the

existence of a global PQ or discrete symmetry is that such
symmetries are incompatible with gravity at high scales
[34–38], i.e., that including the presence of gravity could
spoil any global or discrete symmetries which may be
postulated. In Sec. II D 4, we discuss possible ways around
the gravity spoliation of global or discrete symmetries.
The Martin-Babu-Gogoladze-Wang (MBGW) model [39]
(Sec. II D 9) adopts a gravity-safe PQ symmetry thanks to
a more fundamental discrete gauge symmetry Z22 and also
generates PQ breaking from SUSY breaking, albeit not
radiatively.

An attractive alternative to the discrete or continuous
gauge symmetry resides in the possibility of a discrete or
continuous R symmetry. Several discrete R symmetries are
possible which are anomaly free (up to a Green-Schwarz
term), forbid the μ parameter and other dangerous proton
decay operators, and are consistent with an underlying
grand unification structure [40,41]. Such discrete R sym-
metries are expected to arise from compactification of extra
dimensions in string theory. The ZR

4 symmetry stands out
as a particularly simple approach that also leads to exact
R-parity conservation. To relate a gravity-safe PQ solution
to the strong CP problem with a solution to the μ problem,
we examine two hybrid models based on ZR

24 (Sec. II E).
In this case, the PQ symmetry arises as an accidental
approximate global symmetry which emerges from the
more fundamental discrete R symmetry. Here, the PQ
breaking is generated through a large negative soft term
and not radiatively.
In Sec. III we discuss the issue of the experimental

testability and distinguishability of various solutions to
the μ problem. In Sec. IV, we present a convenient table
(Table XIV) which summarizes our review. Then we draw
some final conclusions. Some pedagogical reviews provid-
ing an in-depth overview of supersymmetric models of
particle physics can be found in Ref. [2].

II. A REVIEW OF SOME SOLUTIONS TO
THE SUSY μ PROBLEM

In this section, we review some solutions to the SUSY μ
problem. In the solutions reviewed here, the μ term is
typically generated by breaking the symmetry which origi-
nally prohibits the μ term at the tree level. Depending on
the source of such symmetry breaking, we categorize the
solutions according to 1. those from supergravity/superstring
models, 2. those from (visible-sector) extensions of the
MSSM, 3. those including an extra local Uð1Þ0 and 4. those
which include also a solution to the strong CP problem with
Peccei-Quinn symmetry breaking.

A. Solutions in supergravity/string constructions

1. Giudice-Masiero (GM)

In supergravity models the Kähler function G ¼ K þ
log jWj2 is written in terms of the real Kähler potential K
and the holomorphic superpotential W. If we posit some
symmetry (PQ or R symmetry was suggested in Ref. [42])
to forbid the usual MSSM μ term, then one may regenerate
it via the Higgs fields coupling to hidden-sector fields hm
via nonrenormalizable terms in K [42]:

K ∋ H†
uHu þH†

dHd þ
�
λμ
mP

HuHdh† þ H:c:

�
: ð4Þ

If we arrange for SUSY breaking in the hidden sector, then
the auxiliary component of h develops aVEV hFhi ∼m2

hidden
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so that the gravitino gets amassm3=2 ∼m2
hidden=mP. A μ term

is generated of order

μeff ¼ λμ
hF�

hi
mP

∼ λμm2
hidden=mP ∼ λμm3=2 ∼msoft: ð5Þ

Thus, in the GM case, the μ parameter arises which is
typically of order the soft breaking scale unless the coupling
λμ is suppressed at the ∼0.01–0.1 level.2

2. Casas-Muñoz (CM)

Casas and Muñoz [44] proposed a string-theory-inspired
solution to the SUSY μ problem. In string theory, dimen-
sionful couplings such as μ are already forbidden by the
scale invariance of the theory so no new symmetries are
needed to forbid it. They began with a superpotential of the
form

W ¼ W0 þ λμW0HuHd=m2
P ð6Þ

where W0 is the usual superpotential of the MSSM (but
without the μ term) along with the hidden-sector compo-
nent which is responsible for SUSY breaking: W0 ¼
Wvis

0 ðziÞ þWhid
0 ðhmÞ where the zi comprise visible-sector

fields while the hm denote hidden-sector fields. While the
scale-variant μ term is forbidden in Wvis

0 , the nonrenorma-
lizable contribution in Eq. (6) is certainly allowed and,
absent any symmetries which could forbid it, probably
mandatory. Under, for instance, F-term SUSY breaking in
the hidden sector, Whid

0 gains a VEV hWhid
0 i ∼m2

hiddenmP
[as is easy to see in the simplest Polonyi model for SUSY
breaking with WPolonyi ¼ m2

hiddenðhþ βmPÞ where β is a
dimensionless constant]. Under these conditions, a μ term
develops with

μeff ∼ λμm2
hidden=mP ∼ λμm3=2 ∼msoft: ð7Þ

Reference [44] went on to show that the CM solution can
easily emerge in models of SUSY breaking due to hidden-
sector gaugino condensation at some intermediate mass
scale Λh (where then wewould associatem2

hidden ≃ Λ3
h=mP).

A benefit of the CM solution is that it should be
consistent with any stringy UV completion [45] as it
avoids the presence of some global (PQ) symmetry. A
possible drawback to CM is that the μ term is naturally
expected to be of order msoft instead of mweak unless λμ is
suppressed (as in GM). One way to falsify the CM solution
would be to discover a Dine-Fischler-Srednicki-Zhitnitsky
(DFSZ)-like axion with consistent mass and coupling
values. Such a discovery would exclude the second term
in Eq. (6) since it would violate the PQ symmetry.

3. μ and a big hierarchy from approximate R symmetry

In string theory models, approximate R symmetries are
expected to develop from the overall Lorentz symmetry of
the ten-dimensional spacetime when compactified to four
dimensions. Under a continuous Uð1ÞR symmetry, the
superspace coordinates transform nontrivially and hence
so do the bosonic and fermionic components of superfields.
Thus, these symmetries can be linked to the overall Lorentz
symmetry where also bosons and fermions transform
differently.
Under exact R symmetry and supersymmetry, the super-

potential μ term is forbidden since the gauge-invariant
bilinear term of the Higgs pair HuHd carries zero R charge
while the superpotential must have RW ¼ þ2. However,
HuHd may couple to various other superfields ϕi which
carry nontrivial R charges so that

W ∋ PμðϕiÞHuHd ð8Þ

where PμðϕiÞ is a sum over monomials in the fields ϕn
i .

Unbroken R symmetry requires a vanishing hPμðϕiÞi but if
the R symmetry is approximate then nonvanishing PμðϕiÞ
contributions will develop at higher orders in powers of the
field VEVs hðϕi=mPÞi≲ 1. Thus, a mild hierarchy in the
field VEVs hϕi=mPi≲ 1, when raised to higher powers
hðϕi=mPÞnii ≪ 1, can generate a much larger hierarchy
of scales [46].3 In this solution to the μ problem, which
is essentially a UV completion of the CM solution, μ ∼
m3=2 ∼ hWi is expected to arise.

4. Solution via the discrete R symmetry ZR
4

A particularly attractive way to solve the μ problem in
some string constructions is via a discrete Abelian R
symmetry ZR

4 [48–50]. Such R symmetries may arise as
discrete remnants of the Lorentz symmetry of extra-dimen-
sional (d ¼ 10) models upon compactification to d ¼ 4.
In Ref. [51], the ZR

4 symmetry was invoked to forbid the μ
term as well as dimension-four baryon- and lepton-number-
violating operators while dangerous dimension-five oper-
ators leading to proton decay are highly suppressed [40,41].
The desirable Weinberg neutrino mass operator is allowed.
TheZR

4 charges are assigned so that all anomalies cancel by
including Green-Schwarz terms (and extra R-charged
singlets for gravitational anomalies). The R-charge assign-
ments for the discrete R symmetry ZR

4 are shown in the
second row of Table I.
The charge assignments are consistent with embedding

the matter superfields into a single 16 of SOð10Þ while the
split Higgs multiplets would arise from Wilson-line break-
ing of gauge symmetry. The ZR

4 symmetry may be broken
via nonperturbative effects such as gaugino condensation
breaking of SUGRA in the hidden sector so that a gravitino

2Some recent work on gravity-mediated SUSY breaking and
the GM solution to the μ problem is included in Ref. [43]. 3See also Ref. [47].
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massm3=2 is induced along with soft termsmsoft ∼m3=2. A μ
term may arise via GM (Sec. II A 1) and/or CM (Sec. II A 2)
so that μ ∼ hWi=m2

P ∼m3=2 ∼msoft. Although the discrete
ZR

4 R symmetry is broken, the discrete matter=R parity
remains unbroken so that the lightest supersymmetric
particle (LSP) remains absolutely stable. This sort of
solution to the μ problem is expected to be common in
heterotic string models compactified on an orbifold [41].
Other possibilities for ZR

N with N > 4 also occur [41] and in
fact any N value is possible under anomaly cancellations
provided one includes additional exotic matter into the
visible sector [52].
A further concern is that a spontaneously broken discrete

symmetry may lead to the formation of domain walls in the
early Universe which could dominate the present energy
density of the Universe [53–55]. For the case of gravity
mediation, the domain walls would be expected to form
around the SUSY-breaking scale T ∼ 1012 GeV. However,
if inflation persists to lower temperatures, then the domain
walls may be inflated away. It is key to observe that many
mechanisms of baryogenesis are consistent with inflation
persisting down to temperatures of T ∼ 106 GeV [56].

5. String instanton solution

In string theory models, it is possible for superpotential
terms to arise from nonperturbative instanton effects. These
are particularly well suited for open strings in braneworld
scenarios such as IIA and IIB string theory. Intriguing
applications of stringy instanton effects include the gen-
eration of Majorana neutrino mass terms, generation of
Yukawa couplings and generation of the μ term in the
superpotential [57,58]. In some D-brane models which
include the MSSM at low energy, the superpotential μ term
may be forbidden by Uð1Þ symmetries but then it is
generated nonperturbatively via nongauge D-brane instan-
ton effects. In this case, a μ term of the form

W ∼ expð−SclÞMsHuHd ð9Þ

can be induced where then μ ≃ expð−SclÞMs and Ms is the
string mass scale. The exponential suppression leads to the
possibility of a μ term far below the string scale. Of course,
in this case one might expect the μ term to arise at any
arbitrary mass scale below the string scale rather than
fortuitously at the weak scale. If the μ term does arise at the
weak scale from stringy instanton effects, then that value
may act as an attractor such that soft terms like m2

Hu
are

pulled statistically to large values by the string theory
landscape, but not so large that EW symmetry does not
break. Then the weak scale value of m2

Hu
is of comparable

(negative) magnitude to μ (the naturalness condition) to
ensure a universe with anthropically required electroweak
symmetry breaking [19].

6. μ solution in the G2MSSM

In Ref. [59], the authors considered 11-dimensional
M-theory compactified on a manifold of G2 holonomy,
and derived various phenomenological implications. They
considered fields living in multiplets of SUð5Þ so the
doublet-triplet splitting problem is present. As opposed
to string theory models compactified on orbifolds, in
M-theory the matter fields live only in four dimensions
so a different solution to the μ problem is required. Witten
suggested the existence of an additional discrete symmetry
which forbids the μ term from appearing but which allows
the Higgs triplets to gain large enough masses so as to
evade proton decay constraints [60]. In Ref. [61], it was
shown that a Z4 symmetry is sufficient to forbid the μ term
and other dangerous R-parity-violating (RPV) operators
while allowing massive Higgs triplets. The Z4 discrete
symmetry is assumed to be broken via moduli stabilization
so that a small μ term develops.
In the G2MSSM, the gravitino gains mass from non-

perturbative effects (such as gaugino condensation) in
the hidden sector so that m3=2 ∼ Λ3

h=m
2
P ∼ 10–200 TeV.

Matter scalar soft masses are expected atmϕ ∼m3=2 so they
should be very heavy [and likely unnatural in the context
of Eq. (1)]. In contrast, gauginos gain mass from the
gauge kinetic function which depends on the VEVs of
moduli fields so they are expected to be much lighter,
mλ ∼ TeV scale and in fact these may have dominant
anomaly-mediated SUSY breaking contributions [62] (with
comparablemoduli-mediated SUSY-breaking contributions)
so that the wino may be the lightest of the gauginos. The
dominant contribution to the μ parameter arises from Kähler
contributions à laGiudice-Masiero and these are expected to
be μ ∼ c hSii

mp
m3=2 ∼ 0.1m3=2 (where c is some constant ∼1)

and thus is suppressed compared to scalar soft masses, but
perhaps comparable to gaugino masses.4

B. Extended MSSM-type solutions

1. NMSSM: Added singlet with Z3 discrete symmetry

The case of adding an additional visible-sector gauge-
singlet superfield S to the MSSM leads to the next-to-
minimal SSM (NMSSM) [64]. Some motivation for the
NMSSM can originate in string theory models such as

TABLE I. ZR
4 charge assignments for various superfields of

the Lee-Raby-Ratz-Ross-Schieren-Schmidt-Hoberg-Vaudrevange
model [40].

Multiplet Hu Hd Qi Li Uc
i Dc

i Ec
i Nc

i

ZR
4 charge 0 0 1 1 1 1 1 1

4While the G2MSSM μ solution is not related to solving the
strong CP problem, a discussion on solving the strong CP
problem within the G2MSSM can be found in Ref. [63].
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heterotic orbifolds where the μ term arises as an effective
term from couplings of the Higgs pair to a singlet field [45].
Without imposing any symmetry to forbid singlet cou-
plings, we can write a generic NMSSM superpotential as
follows:

WNMSSM ¼ WMSSMðμ ¼ 0Þ þ λμSHuHd þ ξFSþ 1

2
μSS2

þ 1

3
κS3 ð10Þ

and the corresponding soft terms

LNMSSM
soft ¼ LMSSM

soft −
�
aλSHuHd þ BμHuHd þ

1

3
aκS3

þ 1

2
bSS2 þ tSþ c:c:

�
−m2

SjSj2: ð11Þ

Here WMSSMðμ ¼ 0Þ denotes the superpotential for the
MSSM but without the μ term. The tadpole t in Eq. (11)
may have destabilizing quadratic divergences and must
be suppressed [65]. A Z3 discrete symmetry is usually
imposed wherein chiral superfields transform as ϕ →
e2πi=3ϕ which sends the dimensionful couplings ξF, μ,
μS, Bμ, bS and t to zero (only cubic couplings are allowed)
at the expense of possibly introducing domain walls into
the early Universe after the electroweak phase transition
[66]. (Some means of avoiding domain walls were pro-
posed in Refs. [67].) By minimizing the scalar potential,
now including the new singlet scalar S, the VEVs vu, vd
and vs are induced. An effective μ term emerges with

μeff ¼ λμvs: ð12Þ

An attractive alternative choice for a μ-forbidding
symmetry other than the (perhaps ad hoc) Z3 would be
one of the anomaly-free discrete R symmetries ZR

4 or ZR
8

[41]. Like the Z3 discrete symmetry, the ZR
8 symmetry also

forbids the dangerous divergent tadpole term. The ZR
4

symmetry would allow the linear singlet term, but it can be
argued that in the effective theory the linear term appears
when the fields with which the singlet field is coupled
acquire VEVs. If these fields belong to the hidden sector,
then the coupling will be suppressed by some high mass
scale ranging as high as mP in the case of gravity
mediation. In this case the linear singlet term will be
present but it will be highly suppressed [41].
Thus, all the advantages of the Z3 discrete symmetry

can be obtained by imposing instead either a ZR
4 or ZR

8

symmetry: this then avoids the disadvantages (the ad hoc-
ness and introduction of domain walls into the early
Universe after the electroweak phase transition) inherent
in the Z3 discrete symmetry.
The added singlet superfield S in the NMSSM leads to

new scalar and pseudoscalar Higgs fields which can mix

with the usual MSSM Higgses for vs ∼ vu;d. So far, LHC
Higgs coupling measurements favor an SM-like Higgs so
one might expect vs ≫ vu;d which may lead one to an
unnatural value of μeff . The superfield S also contains a
spin- 1

2
singlino s̃ which may mix with the usual neutralinos

and might even be the LSP [68]. In the NMSSM, an
additional Higgs quartic potential term is generated from
the F term of the singlet superfield, and thus the SM-like
Higgs mass 125 GeV is explained more easily without
introducing large one-loop corrections. This feature can
make the NMSSM more attractive to those who are uncom-
fortable with an MSSMHiggs of massmh ≃ 125 GeV [69].

2. nMSSM

An alternative singlet extension of the MSSM is the
nearly minimal supersymmetric standard model (nMSSM)
(also sometimes called the minimal nonminimal super-
symmetric standard model) [70,71]. The nMSSM, like the
NMSSM, solves the μ problem via an added singlet
superfield S. But in the nMSSM, the model is founded
on a discrete R symmetry—either ZR

5 or ZR
7 . Discrete

R-charge assignments for ZR
5 are shown in Table II.

The tree-level superpotential is given by

WnMSSM ∋ λμSHuHd þ fuQHuUc þ fdQHdDc

þ flLHdEc þ fνLHuNc þ 1

2
MNNcNc

so that unlike the NMSSM with Z3 symmetry, the κS3 term
is now forbidden. This is why the model is touted as a more
minimal extension of the MSSM. The discrete R symmetry
is broken by SUSY-breaking effects in gravity mediation.
Then, in addition to the above terms, an effective potential
tadpole contribution

Wtad
nMSSM ∋ ξFS ð13Þ

is induced at the six-loop level or higher where ξF ∼m2
3=2

(along with a corresponding soft SUSY-breaking term).
Due to the lack of the discrete global Z3 symmetry, the
nMSSM then avoids the domain-wall and weak-scale axion
problems that might afflict the NMSSM.
Like the NMSSM, the nMSSM will include added scalar

and pseudoscalar Higgs particles along with a fifth neu-
tralino. However, due to the lack of the S self-coupling term
and the presence of the tadpole term, the mass eigenstates
and couplings of the added matter states will differ from

TABLE II. Charge assignments for various superfields of the
nMSSM with a ZR

5 discrete R symmetry.

Multiplet Hu Hd Qi Uc
i Dc

i Li Ec
i Nc S

ZR
5

2 2 4 6 6 4 6 6 3
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the NMSSM [72–76]. The neutralino in the nMSSM is very
light, mostly below 50 GeV, but it is hard to get lower than
30 GeV due to the dark matter relic density constraint.5

Since the neutralinos are so light it is very likely that a
chargino will decay into either an MSSM-like χ02 or a
singlino χ01, giving rise to a five-lepton final state. A further
decay of the neutralino can give rise to a seven-lepton state.
These kinds of multilepton events are more likely in the
nMSSM than in the NMSSM. Also, since in the nMSSM
the neutralino can be so light, deviations in Higgs boson h
decay branching fractions become more likely than in the
case of the NMSSM [74,75].

3. μ-from-ν SSM

The μ-from-νSSM (μνSSM) [78] is in a sense a more
minimal version of the NMSSM in that it makes use of the
gauge-singlet right-hand-neutrino superfields Nc

i to gen-
erate a μ term. The μνSSM first requires a Z3 symmetry to
forbid the usual μ term (and also a usual Majorana neutrino
mass term MiNcNc). The superpotential is given by

W ∋ fuQHuUc þ fdQHdDc þ flLHdEc þ fνLHuNc

þ λμiNc
i HuHd þ

1

3
κijkNc

i N
c
jN

c
k: ð14Þ

If the scalar component of one of the right-hand-neutrino
superfields ν̃Ri of Nc

i gains a weak scale VEV, then an
effective μ term develops,

μeff ¼ λμihν̃Rii ð15Þ

along with a weak scale Majorana neutrino mass term
MNjk ∼ κijkhν̃Rii. By taking small enough neutrino Yukawa
couplings, a weak-scale seesaw develops which can
accommodate the measured neutrino masses and mixings.
The μνSSM develops bilinear R-parity-violating terms

via the superpotential fνLHuNc term so that the lightest
μνSSM particle is not stable and does not comprise dark
matter: χ̃01 → Wð�Þl and other modes. As an alternative, a
gravitino LSP is suggested with an age longer than the age
of the Universe: it could decay as G̃ → νγ and possibly
yield gamma-ray signals from the sky [79]. The phenom-
enology of the μνSSM also becomes more complex: now
the neutrinos inhabit the same mass matrix as neutralinos,
leptons join charginos in another mass matrix and Higgs
scalars and sneutrinos inhabit a third mass matrix (albeit
with typically small mixing effects). Collider signals are
strongly modified from usual MSSM expectations [80].
While the μνSSM may be considered the most minimal

model to solve the μ problem, it suffers the same Z3

domain-wall problem as the NMSSM (and perhaps the
same routes to avoidance [67]). Also, in the context of

GUTs, the role that theNc
i field plays in the 16-dimensional

spinor of SOð10Þ would have to be abandoned.

C. μ from an extra local U(1)0

In this class of models [81–85], an SM singlet superfield
S is introduced which is charged under a new Uð1Þ0 gauge
interaction, so terms with mass dimensions in Eq. (10) are
forbidden. Due to the Uð1Þ0 gauge charges of S, the cubic
coupling S3 is also absent. We will see below three
representative realizations of this class of model.

1. CDEEL model

Cvetic, Demir, Espinosa, Everett, and Langacker
(CDEEL) [81] proposed aUð1Þ0-extended gauge symmetry
model as emblematic of fermionic orbifold string compac-
tifications. While the usual μ term is forbidden by the
extended gauge symmetry, the superpotential term

W ∋ λμSHuHd ð16Þ

is allowed andunderUð1Þ0 breakingS develops aVEV hSi ∼
mweak such that a μ term is generated μeff ¼ λμhSi along with
an additional weak-scale Z0 gauge boson. Forbidding the μ
term via a gauge symmetry avoids the gravity spoliation/
global symmetry problem. In addition, the μ term is linked
to EW symmetry breaking and this would be expected to
occur at mweak rather than msoft. The Uð1Þ0 breaking can
occur either via large soft SUSY-breaking trilinear couplings
or via radiative corrections driving certain mass-squared
terms negative. A way to test this class of models, in the
exotica decoupling limit, is to search for newZ0 gaugebosons
with exotic decays to light Higgsinos [84].
To maintain anomaly cancellation, a variety of (inter-

mediate scale) exotic quark and lepton fields must be
introduced along with extra SM gauge singlets. If these new
states come in GUT representations, then gauge coupling
unification can be maintained. A set of possible Uð1Þ0
gauge charges are listed in Table III.

2. sMSSM model

An alternative Uð1Þ0-extended MSSM (abbreviated as
sMSSM) [86,87] also solves the μ problem by invoking
multiple SM singlet superfields charged under Uð1Þ0
symmetry. In this model, a visible-sector singlet field S
directly couples to Higgs doublets but avoids stringent
constraints on having an additional weak scale Z0 gauge
boson by introducing as well a secluded sector containing

TABLE III. Charge assignments for various superfields of a
Uð1Þ0 model [83,84].

Multiplet Hu Hd Qi Uc
i Dc

i Li Ec
i S

ð2 ffiffiffiffiffi
10

p ÞQ0 −2 −3 1 1 2 2 1 5

5Radiative corrections can change this result: see Ref. [77].
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three additional singlets S1, S2, S3 charged under Uð1Þ0.
The superpotential is given by

WsMSSM ∋ λμSHuHd þ λsS1S2S3 ð17Þ
so that the secluded sector has a nearly F- and D-flat scalar
potential. The Uð1Þ0 and electroweak symmetry breaking
then occurs as a result of SUSY-breaking A terms. Then the
secluded sector scalars can obtain VEVs much larger than
the weak scale; if also the trilinear singlet coupling λs
is small, then the additional Z0 essentially decouples.
Nonetheless, additional Higgs bosons and singlinos appear
in the weak-scale effective theory so that this model
phenomenologically resembles the nMSSM (described in
Sec. II B 2) which has very different manifestations from
what is expected from the CDEEL Uð1Þ0 model.

3. HPT model

The Hundi-Pakvasa-Tata (HPT) model [82] also solves
the SUSY μ problem by positing an additional Uð1Þ0 gauge
symmetry in a supergravity context. The Uð1Þ0 charges of
the multiplets in the HPT scheme are shown in Table IV.
With these Uð1Þ0 charge assignments, the μ term is
forbidden in the superpotential but (unlike the CDEEL
model) a dimension-four term as the μ solution à la the
Kim-Nilles model is allowed:

W ∋ λμS2HuHd=Mp: ð18Þ
The Uð1Þ0 gauge symmetry also forbids trilinear RPV
couplings and dangerous p-decay operators. When the
Uð1Þ0 breaks (at an intermediate scale Q ∼ 1011 GeV), the
S field acquires a VEV to yield an effective μ parameter of
the required magnitude.
A distinctive feature of the HPT model is that a bilinear

RPV (bRPV) term, LHu is allowed at the right magnitude
so as to generate phenomenologically allowed neutrino
masses [88]. The desired pattern of neutrino masses and
mixing angles are also accommodated through radiative
corrections. The bRPV leads to an unstable lightest
neutralino which decays via χ̃01 → lWð�Þ or νZð�Þ and
may lead to displaced vertices in collider events. Dark
matter must be comprised of some other particles (e.g.,
axions). Also, the Uð1Þ0 is broken at the intermediate scale
Q ∼ 1011 GeV so that the additional Z0 has a mass far
beyond the reach of any collider.
Since solving the μ problem as well as generating the

neutrino mass scale of suitable order requires the introduc-
tion of a new gauge group Uð1Þ0, care must be taken so that

associated anomalies are canceled. Anomaly cancellation
requires introducing various additional exotic fields includ-
ing color-triplet Ki and K0

i states. The lightest of these leads
to stable weak-scale exotic hadrons which may also yield
highly ionizing tracks at collider experiments. In the HPT
scheme, gauge coupling unification may be upset.

D. Solutions related to Peccei-Quinn
symmetry breaking

In this subsection, we examine natural μ-term solutions
related to the PQ symmetry used to solve the strong CP
problem. In this class of models, the μ term is forbidden by
the PQ symmetry, but generated once the PQ symmetry is
spontaneously broken. Then the model also provides a
solution to the strong CP problem and generates axion dark
matter. In Secs. II D 1, II D 2, and II D 3, we review μ-term
generation models with various sources of PQ breaking.
Meanwhile, imposing a global symmetry causes the

“quality” issues of the symmetry which may spoil the PQ
solution to the strong CP problem, since global symmetries
are not protected fromquantumgravity effects. In Sec. II D 4,
we discuss a criterion for protecting the PQ solution to the
strong CP problem, and in Sec. II D 5 we present examples
based on discrete R symmetries which satisfy the gravity-
safety criterion and can be considered as generating an
accidental, approximate PQ symmetry. Also, we review
the natural Higgs-flavor-democracy solution which contains
an approximate PQ symmetry from a discrete symmetry in
Sec. II D 6.
Finally, we review μ-term generation by the breaking of

PQ symmetry from SUSY breaking: radiative breaking of
PQ symmetry (Sec. II D 7), breaking of an accidental
approximate PQ symmetry from a gaugedUð1ÞR symmetry
(Sec. II D 8) and a Z22 discrete gauge symmetry (Sec. II D
9) by a large negative trilinear term.

1. Kim-Nilles solution

Kim and Nilles (KN) [29] presented the first formulation
of the SUSY μ problem along with a proposed solution. In
Ref. [29], it was proposed that there exists a global PQ
symmetry Uð1ÞPQ which is needed at first as a solution to
the strong CP problem. The PQ symmetry is implemented
in the context of the supersymmetrized version of the DFSZ
[89] axion model6 wherein the Higgs multiplets carry PQ
charges e.g.,QPQðHuÞ ¼ QPQðHdÞ ¼ −1 so that the μ term
is forbidden by the global Uð1ÞPQ. Next, the Higgs
multiplets are coupled via a nonrenormalizable interaction
to a SM gauge-singlet field X which carries a PQ charge
QPQðXÞ ¼ þ2=ðnþ 1Þ:TABLE IV. Charge assignments for various superfields of the

HPT Uð1Þ0 supergravity model [82].

Multiplet Hu Hd Qi Uc
i Dc

i Li Ec
i S

Q0 25 −31 0 −25 31 2 29 3

6In the DFSZ axion model [89], the SM is extended to include
two Higgs doublets which then couple to singlets which contain
the axion.
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Wμ ∋
λμ
mn

P
Xnþ1HuHd ð19Þ

for n ≥ 1.
It is arranged to spontaneously break PQ symmetry by

giving the X field a VEV hXi which also generates a
(nearly) massless axion a which solves the strong CP
problem. To obtain cosmologically viable axions—with
hXi ∼ 1011 GeV and with mp ≃ 2.4 × 1018 GeV—we can
obtain the μ parameter of the order of m3=2 only if n ¼ 1

[for which QPQðXÞ ¼ þ1]. The matter superfields also
carry appropriate PQ charge so as to allow the MSSM
trilinear superpotential terms: see Table V.
The intermediate PQ breaking scale can be gained from a

PQ superpotential of the form

WPQ ¼ λPQZðXY − v2PQÞ: ð20Þ

The scalar components of X and Y develop VEVs hXi ¼
hYi ¼ vPQ such that a μ term is generated:

μ ¼ λμhXi2=mP: ð21Þ

This value of the μ term μ ∼ λμv2PQ=mP is to be compared to
the soft breaking scale in models of gravity mediation:
msoft ∼m3=2 ∼m2

hidden=mP. Here, vPQ is identified as vPQ ∼
mhidden and thus μ is obtained as μ ∼m3=2. But, a value
μ ∼mweak ≪ msoft ∼m3=2 can be accommodated for
vPQ < mhidden, i.e., if the scale of PQ breaking lies some-
what below the mass scale associated with hidden-sector
SUSY breaking.7,8 A virtue of the KN solution is that it
combines a solution to the strong CP problem with a
solution to the SUSY μ problem which also allows for a
little hierarchy. A further benefit is that it provides an
additional dark matter particle—namely the DFSZ [89]
axion—to coexist with the (thermally under-produced)
Higgsino-like weakly interacting massive particle (WIMP)

from natural SUSY. Thus, dark matter is then expected to be
comprised of a WIMP/axion admixture [92,93]. For the
lower range of the PQ scale vPQ, the dark matter tends to be
axion dominated with typically 10–20% WIMPs by mass
density [94]. For larger vPQ values, nonthermal processes
such as saxion and axino [95] decay augment the WIMP
abundance while for even larger values of vPQ the Higgsino-
likeWIMPs are overproduced and one typically runs into big
bang nucleosynthesis constraints from late-decaying neutral
particles (saxions and axinos) or overproduction of relativ-
istic axions from saxion decay which contribute to the
effective number of neutrino species Neff (which is found
to beNeff ¼ 3.13� 0.32 from the recent ParticleDataGroup
tabulation [96]). In the context of theDFSZmodel embedded
within the MSSM, the presence of Higgsinos in the aγγ
triangle diagram is expected to reduce the axion-photon-
photon coupling to levels below present sensitivity making
the SUSY DFSZ axion very challenging to detect [97].

2. Chun-Kim-Nilles model

In the Chun-Kim-Nilles (CKN) model [98], it is assumed
that SUSY is broken in the hidden sector due to gaugino
condensation hλλi ∼ Λ3

h ∼ ð1013 GeVÞ3 in the presence of
a hidden SUðNÞh gauge group. Furthermore, there may be
vector-like hidden-sector quark chiral superfields presentQ
and Qc which transform as N and N� under SUðNÞh. The
Higgs and hidden quark superfields carry PQ charges as in
Table VI: this allows for the presence of a superpotential
term

WCKN ∋
λμ
mP

QQcHuHd: ð22Þ

Along with gauginos condensing at a scale Λh to break
SUGRA with m3=2 ∼ Λ3

h=m
2
P, the hidden-sector scalar

squarks condense at a scale Λ < Λh to break the PQ
symmetry and to generate a μ term

μeff ∼ λμΛ2=mP: ð23Þ

Thus, this model provides a framework for μ < msoft. It also
generates a DFSZ axion to solve the strong CP problem
along with a string model-independent (MI) axion which
could provide a quintessence solution for the cosmological
constant (CC) [99]. The CC arises from the very low-mass
MI axion field slowly settling to theminimumof its potential.

TABLE V. PQ charge assignments for various superfields of the
KN model with n ¼ 1. One may add multiples of weak
hypercharge or B − L to these so their values are not unique.

Multiplet Hu Hd Qi Li Uc
i Dc

i Ec
i X Y Z

PQ charge −1 −1 þ1 þ1 0 0 0 þ1 −1 0

TABLE VI. PQ charge assignments for various superfields of
the CKN model.

Multiplet Hu Hd Q Qc Qi Uc
i Dc

i

PQ charge −1 −1 1 1 0 1 1

7In models with SUSY breaking arising from e.g., gaugino
condensation at an intermediate scale Λh, m3=2 ∼ Λ3

h=m
2
P in

which case we would define m2
hidden ∼ Λ3

h=mp.
8The model of Ref. [90] describes a more complete ultraviolet

theory which includes a mechanism to get vPQ in the intermediate
scale through the introduction of a chiral superfield in the hidden
brane, yielding an ultraviolet-suppressed term in the hidden brane
which gives rise to μ ∼mweak when SUSY is broken in the hidden
brane through the shining mechanism [91].
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3. BASTERO-GIL-KING/EYTON-WILLIAMS-KING
solution linked to inflation and strong CP

In Refs. [100,101], a model was proposed with the
superpotential

WEWK ∋ λμϕHuHd þ κϕN2 ð24Þ

where the ϕ field plays the role of the inflaton and the N
field is a waterfall field leading to hybrid inflation in the
early Universe [102]. Although the model appears similar
to the NMSSM, it is based on a PQ rather than Z3

symmetry with charges as in Table VII. Thus, it avoids the
NMSSM domain-wall problems which arise from a
postulated global Z3 symmetry. By augmenting the scalar
potential with soft breaking terms, the ϕ and N fields gain
VEVs of order some intermediate scale Q ∼ 1012 GeV so
that Yukawa couplings λμ and κ are of order 10−10. Such
tiny Yukawa couplings might arise from type-I string
theory constructs [103]. To fulfill the inflationary
slow-roll conditions, the field ϕ must gain a mass of less
than 5–10 MeV and a reheat temperature of 1–10 GeV.
Domain walls from breaking of the PQ symmetry are
inflated away.

4. Global symmetries and gravity

It is well known that gravitational effects violate
global symmetries, as has been considered via black hole
“no-hair” theorems [34] and wormhole effects [35]. In such
cases, it has been questioned whether the PQ mechanism
can be realistic once one includes gravity or embeds the
SUSY PQ theory into a UV-complete string framework
[36–38,104,105]. Indeed, Kamionkowski and March-
Russell (KMR) [38] considered the effect of gravitational
operators such as

VðϕÞ ∋ g

m2mþn−4
P

jϕj2mϕn þ H:c:þ c ð25Þ

involving PQ charged fields ϕ in the scalar potential
upon the axion potential. In the case of 2mþ n ¼ 5, i.e., a
term suppressed by a single power of mP, these gravi-
tational terms would displace the minimum of the PQ
axion potential such that the QCD CP-violating term
GμνAG̃

μν
A settles to a nonzero minimum thus destroying

the PQ solution to the strong CP problem. To maintain
θ̄ ≲ 10−10, KMR calculated that all gravitational oper-
ators contributing to the axion potential should be

suppressed by at least powers of ð1=mPÞ8. This is indeed
a formidable constraint!
To avoid such terms, additional symmetries are required

[106]. In string theory, it is known that discrete symmetries
arising from gauge symmetries are gravity safe, as are other
discrete symmetries or R symmetries arising from string
compactification.9 In Fig. 1 the Kim diagram is shown
[108,109]. The red/lavender column denotes an infinite set
of Lagrangian terms in the model under consideration
which obey some exact, gravity-safe, discrete symmetry.
Of this set of terms, the few lower-order terms, denoted by
the lavender region, obey an exact global symmetry,
understood here to be the PQ symmetry whose breaking
yields the QCD axion. The red-shaded terms obey the
discrete symmetry but violate any global symmetry. The
green/lavender row denotes the full, infinite set of global
symmetry terms, of which the green-shaded terms are not
gravity safe. If the discrete symmetry is strong enough, then
the gravity-unsafe terms will be sufficiently suppressed.
The global PQ symmetry is expected to be approximate.
The question then is: is it sufficiently strong so as to be
gravity safe? Some additional gravity-safe symmetry is
required to ensure that the PQ mechanism is robust. The
lavender region represents gravity-safe terms which obey
the global symmetry.

5. Gravity-safe symmetries: gauge symmetries
or R symmetries, continuous or discrete

Given that global symmetries are not gravity safe (and
hence not fundamental), it is common to turn to gauge
symmetries as a means to forbid the μ term. Some models
based on an extra local Uð1Þ0 were examined in Sec. II C.
Some problems with this approach emerge in that one has

TABLE VII. PQ charge assignments for various superfields of
the EWK model.

Multiplet Hu Hd ϕ N

PQ charge −1 −1 þ2 −1

FIG. 1. Kim diagram [108,109] where the column represents an
infinite sequence of Lagrangian terms obeying gravity-safe
discrete symmetry while the row represents an infinite sequence
of terms obeying the global symmetry. The green-region terms
are gravity unsafe while the red region violates the global
symmetry. The lavender terms are gravity safe and obey the
global symmetry.

9See e.g., Ref. [107].
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to suitably hide any new gauge bosons associated with the
extra gauge symmetry and one must also typically intro-
duce (and hide) extra exotic matter which may be needed
to ensure anomaly cancellation. In addition, such exotic
matter may destroy the desirable feature of gauge coupling
unification should the new exotica not appear in complete
GUT multiplets.
An alternative approach is to introduce discrete gauge

symmetries [106,110]. Such ZM symmetries may emerge
from a local Uð1Þ0 when a charge M object [charged under
the new Uð1Þ0] condenses at very high energy leaving a
discrete ZM gauge symmetry in the low-energy effective
theory. Since the ZM emerges from a local gauge theory, it
remains gravity safe. In Sec. II D 9, the MBGWmodel [39]
which is based on a Z22 discrete gauge symmetry is
examined. The model under Z22 is found to be anomaly
free and is used to not only forbid the μ term but also
generate a PQ symmetry needed to solve the strong CP
problem. The lowest-order PQ-violating term allowed by
the Z22 is sufficiently suppressed so that PQ arises as an
accidental approximate global symmetry thereby rendering
the model gravity safe. The Z22 discrete gauge charges of
the multiplets turn out to be inconsistent with GUTs which
should be manifested at some level in the high-energy
theory. Also, the presence of a charge 22 object which
condenses at some high energy scale may not be very
plausible and might be inconsistent with the UV comple-
tion of the theory (i.e., lie in the swampland).
Continuous or discrete R symmetries offer a further

choice for gravity-safe symmetries. A solution using a
continuousUð1ÞR symmetry was examined in Sec. II A 3.10

In the interest of minimality, it is noted that continuous R
symmetries are not consistent with the particle content of
just the MSSM [112]. Then it is also of interest to examine
the possibility of discrete remnant R symmetries ZR

N which
arise upon compactification of the full Lorentz symmetry of
ten-dimensional string theories. R symmetries are charac-
terized by the fact that superspace coordinates θ carry
nontrivial R charge: in the simplest case, QRðθÞ ¼ þ1 so
that QRðd2θÞ ¼ −2. For the Lagrangian L ∋

R
d2θW to be

invariant under ZR
N symmetry, the superpotential W must

carry QRðWÞ ¼ 2 + integer multiples of N.
These remnant discrete R symmetries ZR

N—if suffi-
ciently strong—can forbid lower-order operators in powers
of 1=mP which would violate putative global symmetries
such as PQ. Such a built-in mechanism from string theory
may enable the PQ symmetry to be strong enough to
support the axion solution to the strong CP problem. Since
the R symmetry is necessarily supersymmetric (it acts on
superspace coordinates), this is another instance of how
the implementation of the axion solution to the strong
CP problem is enhanced and made more plausible by
the presence of supersymmetry. However, not all possible

R symmetries are suitable candidates for a fundamental
symmetry. Table VIII (as derived in Refs. [40,41]) shows
the R symmetries along with the R charges of the multiplets
which are consistent with either SUð5Þ or SOð10Þ uni-
fication, are anomaly free (allowing for a Green-Schwarz
term), forbid the μ term and also forbid the R-parity-
violating and dimension-five proton decay operators and
hence can serve the purpose of being a fundamental
symmetry. In fact, the ZR

N symmetries of Table VIII have
been shown to be the only anomaly-free symmetries which
allow for fermion masses and suppress the μ term while
maintaining consistency with GUTs. As a bonus, they
allow for neutrino masses while forbidding R parity and
dangerous proton decay operators. Implementation of the
discrete R symmetries is only possible in extra-dimensional
GUTs, making their implementation in string compactifi-
cations very natural [113].

6. Natural Higgs-flavor-democracy solution
to the μ problem

In Ref. [114], the μ problem was solved by introducing
additional identical Higgs doublet superfields to those of
the MSSM. The theory then contains a direct product of
discrete interchange symmetries S2ðHuÞ × S2ðHdÞ. This is
Higgs-flavor democracy (HFD). Besides solving the μ
problem, this mechanism also gives rise to an approximate
PQ symmetry and hence a light QCD axion, thereby
solving the strong CP problem while avoiding the gravity
spoliation problem. The HFD discrete symmetry can be
found in several string theory models.
HFD: One starts by introducing two pairs of Higgs

doublets at the GUT scale mG, namely, fHð1Þ
u ; Hð1Þ

d g and

fHð2Þ
u ;Hð2Þ

d g. However, the weak-scale MSSM requires
only one pair of Higgs doublets: fHu;Hdg. If, at the

GUT scale, the two pairs of Higgs doublets Hu ¼
fHð1Þ

u ;Hð2Þ
u g and Hd ¼ fHð1Þ

d ; Hð2Þ
d g are indistinguishable

then there must exist the permutation symmetries
S2ðHuÞ × S2ðHdÞ. Then the Higgsino mass matrix has a
democratic form given by

TABLE VIII. Derived MSSM field R-charge assignments for
various anomaly-free discrete ZR

N symmetries which are consis-
tent with SUð5Þ or SOð10Þ unification (from Ref. [41]).

Multiplet ZR
4 ZR

6 ZR
8 ZR

12 ZR
24

Hu 0 4 0 4 16
Hd 0 0 4 0 12
Q 1 5 1 5 5
Uc 1 5 1 5 5
Ec 1 5 1 5 5
L 1 3 5 9 9
Dc 1 3 5 9 9
Nc 1 1 5 1 1

10See also Ref. [111].
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�
mG=2 mG=2

mG=2 mG=2

�
:

The Higgs mass eigenvalues are mG and 0. Hence, the
Higgs pair in the weak-scale MSSM is found to be
massless. Still, the model construction of the MSSM
requires a massive Higgs pair at the weak scale with mass
value μ. In order to fulfill this criteria, the HFD must be
broken and this mechanism results in μ ≈O ðTeVÞ.
Generation of μ: The minimal Kahler potential is

considered as K ¼ ΦiΦ
†
i þ XiX

†
i þ X̄iX̄

†
i where Φi

(i ¼ 1; 2) is a doublet under the gauge group such as the
Higgs superfield and Xi and X̄i (i ¼ 1; 2) are singlets under
the gauge group. Both Φi and Xi and the corresponding
barred fields obey the S2 × S2 symmetry. Xð0Þ and X̄ð0Þ are
SM singlet fields containing a very light QCD axion for
109 GeV ≤ vPQ ≤ 1012 GeV. With this construction, the
S2ðLÞ × S2ðRÞ-symmetric nonrenormalizable term is

WðnonrenormalizableÞ ¼
X
i;j¼1;2

�
XðiÞX̄ðjÞ

mP

�
HðiÞ

u HðjÞ
d

þ
X
ij

X
kl

�
XðiÞX̄ðjÞ

mP

�
HðkÞ

u HðlÞ
d : ð26Þ

With the HFD-breaking minimum at hX1i ¼ hX̄1i ¼ vPQ
and hX2i ¼ hX̄2i ¼ 0, Eq. (26) becomes

WðnonrenormalizableÞ ¼ λμv2PQ
2mP

ðHð0Þ
u þHðMGÞ

u ÞðHð0Þ
d þHðMGÞ

d Þ:

ð27Þ

This choice of HFD-breaking minimum is spontaneous.

Thus we obtain μ¼ λμv2PQ
2mP

. With 1010GeV≤vPQ≤1012GeV

and λμ ≈Oð1Þ, we obtain μ ≈O (0.1–103 TeV). The little
hierarchy (LH) can be accommodated for the lower range
of vPQ or if λμ < 1.
Light QCD axion: Integrating out the heavy fields in

Eq. (27), one obtains

W ¼ λμXð0ÞX̄ð0Þ

2mP
Hð0Þ

u Hð0Þ
d : ð28Þ

The PQ charges of Higgs multiplets are obtained from
their interaction with the quarks and the PQ charges of
Xð0Þ and X̄ð0Þ are defined by Eq. (28). Thus, a term
m3=2

λ2

4m2
P

1
MG

HuHdðXXcÞ2 is obtained which violates PQ

symmetry and hence adds a tiny correction to μ. Here, MG
is the GUT-scale Higgsino mass. Hence, PQ symmetry
emerges as an approximate symmetry, thereby giving rise
to a light QCD axion which does not suffer from the
gravity-spoliation problem.

7. Radiative PQ breaking from SUSY breaking

The above models are particularly compelling in that
they include supersymmetry which solves the gauge
hierarchy problem, but they also include the axion solution
to the strong CP problem of QCD. In addition, they allow
for the required little hierarchy of μ ≪ msoft. A drawback to
the KN model is that it inputs the PQ scale “by hand” via
the superpotential Eq. (20). It is desirable if the PQ scale
can be generated via some mechanism and furthermore, the
emergence of three intermediate mass scales in nature—the
hidden-sector SUSY-breaking scale, the PQ scale and
the Majorana neutrino scale—begs for some common
origin. A model which accomplishes this was first proposed
by Murayama, Suzuki and Yanagida [30].
In radiative PQ-breaking models, the MSSM super-

potential is

WMSSM ¼
X3
i;j¼1

½ðfuÞijQiHuUc
j þ ðfdÞijQiHdDc

j

þ ðfeÞijLiHdEc
j þ ðfνÞijLiHuNc

j � ð29Þ

where we explicitly include the right-handed neutrino
superfields Ni and the generation indices i, j run from
1–3. To this, we add a PQ superpotential containing new
PQ-charged fields X and Y of the form

WPQ ∋
1

2
hijXNc

i N
c
j þ

f
mP

X3Y þWμ ð30Þ

and where

WMSY
μ ¼ gMSY

mP
XYHuHd; ð31Þ

where thePQchargesQPQðmatterÞ¼1=2,QPQðHiggsÞ¼−1,
QPQðXÞ ¼ −1 and QPQðYÞ ¼ 3. Along with the MSY
superpotential terms, we include the corresponding soft
SUSY-breaking terms

VMSY ∋ m2
XjϕXj2 þm2

Y jϕY j2 þm2
Ni
jϕNi

j2

þ
�
1

2
hiAiϕ

2
Ni
ϕX þ f

mP
Afϕ

3
XϕY

þ gMSY

mP
AgHuHdϕXϕY þ H:c:

�
: ð32Þ

For simplicity, we assume a diagonal coupling hij ¼ hiδij.
The model may be defined as applicable at the reduced
Planck scale mP ≃ 2.4 × 1018 GeV and the corresponding
renormalization group equations can be found in Ref. [30] at
one-loop and Ref. [33] at two-loop order. Under RG
evolution, the large Yukawa coupling(s) hi pushes the soft
mass m2

X to negative values at some intermediate mass
scale resulting in the radiatively induced breakdown of
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PQ symmetry as a consequence of SUSY breaking. The
scalar potential consists of the terms V ¼ VF þ VD þ Vsoft.
TheHiggs field directions can be ignored since these develop
VEVs at much lower energy scales. Then the relevant part of
the scalar potential is just

VF ∋
jfj2
m2

P
jϕ3

Xj2 þ
9jfj2
m2

P
jϕ2

XϕY j2: ð33Þ

Augmenting this with Vsoft, we minimize V at a scale Q ¼
vPQ to find the VEVs of ϕX and ϕY (vX and vY):

0 ¼ 9jfj2
m2

P
jv2Xj2vY þ f�

A�
f

mP
v�3X þm2

YvY; ð34Þ

0 ¼ 3jfj2
m2

P
jv2Xj2vX þ 18jfj2

m2
P

jvXj2jvY j2vX

þ 3f�
A�
f

mP
v�2X v�Y þm2

XvX: ð35Þ

The first of these may be solved for vY. Substituting the first
equation into the second, we find a polynomial for vX which
may be solved for numerically. The potential has twominima
in the vX and vY plane symmetrically located with respect to
the origin. For practical purposes, we use the notation vX ¼
jvXj and vY ¼ jvY j.
The fields ϕX and ϕY obtains VEVs vX and vY at the

intermediate mass scale, taken here to be vPQ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2X þ 9v2Y

p
. The corresponding axion decay constant is

given by fa ¼
ffiffiffi
2

p
vPQ.

11 A DFSZ-like axion a arises as the
pseudo-Goldstone boson of spontaneous PQ breaking, thus
solving the strong CP problem. A μ parameter, which
is originally forbidden by PQ symmetry, is generated with a
value

μeff ¼ gMSY
vXvY
mP

ð36Þ

and a Majorana neutrino mass, also initially forbidden by
PQ symmetry, is generated at

MNi
¼ hijQ¼vxvX: ð37Þ

Since the μ term depends on an arbitrary coupling gMSY,
one may obtain any desired value of μ for particular vX and
vY VEVs by suitably adjusting gMSY. However, if the
required values of gMSY are very different from unity, i.e.,
gMSY ≫ 1 or gMSY ≪ 1, we might need to introduce an
additional physical scale to explain the μ term. To generate
a value of μ ¼ 150 GeV, values of gMSY as shown in Fig. 2

are required depending on the values of m3=2 and hðMPÞ
that are assumed.
The virtues of this model include the following:
(1) It is supersymmetric, thus stabilizing the Higgs

sector and allowing for a gauge hierarchy.
(2) It solves the strong CP problem via a DFSZ-like

axion a.
(3) It presents a unified treatment of the three inter-

mediate mass scales where the PQ and Majorana
neutrino scales arise as a consequence of SUSY
breaking.

(4) It allows for a little hierarchy μ ≪ msoft for the case
where vPQ < mhidden.

Detailed numerical calculations in the MSY model have
been carried out in Ref. [33]. There, it was found that for
generic WMSY

μ couplings gMSY ∼ 0.1–1, a μ parameter μ ∼
100–200 GeV can easily be generated from TeV-scale soft
breaking terms. Furthermore, since the μ term sets the mass
scale for the W, Z, h boson masses and is determined itself
by the PQ VEVs vX and vY , the axion mass ma ≃
0.48fπmπ=fa ¼ 6.25 × 10−3 GeV=fa is related to the
Higgs mass mh and the Higgsino masses mW̃1;Z̃1;2

∼ μ.
The required PQ charges for the MSY model are listed in
Table IX.
Other closely related models make different choices for

which fields enter into Wμ. We can also have

WCCK
μ ¼ gCCK

mP
X2HuHd or ð38Þ

WSPM
μ ¼ gSPM

mP
Y2HuHd: ð39Þ

The above three possibilities forWμ correspond to Refs. [30]
(MSY), [31] (CCK) and [32] (SPM). The corresponding
PQ charges for the three radiative PQ-breaking models are
listed in Table IX.

FIG. 2. Value of g that is needed in the MSY to generate μ ¼
150 GeV from a gravitino mass m3=2 and a GUT coupling h.
We also show some contours of vPQ.

11For axion interactions, the actual decay constant is fA ≡
fa=NDW where NDW is the domain-wall number.
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We also show in Figs. 3 and 4 the values of gCCK and
gSPM that are needed to generate a value of μ ≃ 150 GeV.
For a given value of hðmPÞ and m3=2, typically gCCK <
gMSY < gSPM. The MSY model has the interesting feature
that the PQ charge assignments are consistent with SOð10Þ
unification. We also remark that all three models can easily
generate weak-scale values of μ from multi-TeV values of
m3=2, i.e., μ ≪ m3=2 so that a little hierarchy is naturally
generated.
Gravity safety of radiative PQ-breaking models: An

important issue for the radiative PQ-breaking models is
whether the required PQ symmetry is actually gravity safe
and whether it may emerge from any of the aforementioned
ZR

N symmetries. We have examined whether or not the three
radiative PQ-breaking models of Table IX (CCK, MSY
and SPM) can be derived from any of the more fundamental
ZR

N symmetries in Table VIII [115]. In almost all cases, the
hXNcNc operator is disallowed; thus there is no large
Yukawa coupling present to drive the PQ soft term m2

X
negative so that PQ symmetry is broken. And since the PQ
symmetry does not allow for a Majorana mass term

1
2
MNNcNc, no seesaw scale can develop. One exception

is the MSY model under ZR
4 symmetry with charge

assignments QRðXÞ ¼ 0 and QRðYÞ ¼ 2; then a YHuHd
term is allowed which would generate a μ term of order the
intermediate scale. Also, without considering any specific
R charges for the fields X and Y, we can see that the R
charges for X and Y should be such that the term XYHuHd
is allowed and since the R charges of Hu and Hd are 0, a
term MXY would always be allowed: this term breaks PQ
at high order and is not gravity safe. A second exception is
SPM under the ZR

6 symmetry with charges QRðXÞ ¼ 0 and
QRðYÞ ¼ 2; then operators like Y4=mp are allowed which
break PQ but are not sufficiently suppressed so as to be
gravity safe. Furthermore, we can see that in this model the
R charge of Y is such that terms like M2Y which break PQ
are always allowed but are not gravity safe. Thus, we
conclude that while the radiative PQ-breaking models are
indeed compelling and can address all three intermediate
scales in a unified framework, the required PQ symmetry
does not appear to be gravity safe.

8. CCL model from gauged U(1)R symmetry

In the model of Choi, Chun and Lee (CCL) [111], the μ
term is generated in a manner similar to the SPM model
[32], but with the difference that the fundamental symmetry
is a gauged Uð1ÞR symmetry out of which the PQ
symmetry arises as an accidental approximate symmetry.
The superpotential for the CCL model is

WCCL ¼ fuQHuUc þ fdQHdDc þ feLHdEc

þ fνLHuNcþ ð40Þ

þλμ
Y2HuHd

mp
þκX3Y=mPþλNXnNcNc=2mn−1

P ;

ð41Þ

TABLE IX. PQ charge assignments for various superfields of
the CCK, MSY and SPM models of radiative PQ breaking.

Multiplet MSY CCK SPM

Hu −1 −1 −1
Hd −1 −1 −1
Q þ1=2 3=2 þ1=2
L þ1=2 3=2 þ5=6
Uc þ1=2 −1=2 þ1=2
Dc þ1=2 −1=2 þ1=2
Ec þ1=2 −1=2 þ1=6
Nc þ1=2 −1=2 þ1=6
X −1 þ1 −1=3
Y þ3 −3 þ1

FIG. 3. Value of g that is needed in the CCK to generate μ ¼
150 GeV from a gravitino mass m3=2 and a GUT coupling h.
We also show some contours of vPQ.

FIG. 4. Value of g that is needed in the SPM model to generate
μ ¼ 150 GeV from a gravitino massm3=2 and a GUT coupling h.
We also show some contours of vPQ.
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with Uð1ÞR and PQ charges for the n ¼ 2 case given in
Table X.
The singlets X and Y get their VEVs at the intermediate

scale when the PQ symmetry is broken via a large (relative
to m3=2) negative trilinear soft term contribution to the
scalar potential, thereby giving rise to μ ∼msoft. The Uð1ÞR
gauge boson has mass of order the compactification scale
so the low-energy theory is that of the MSSM. Because the
fundamental symmetry of CCL is a gauged Uð1ÞR sym-
metry, the phenomenology of this model is dictated by a
hierarchy of soft termsm1=2 ≫ mscalars > m3=2 (wherem1=2

is the gaugino mass). Scalar soft masses are fixed in terms
of Uð1ÞR D terms and typically lead to large negative m2

Hu

at the weak scale which then requires a large, unnatural μ
term which would violate the μ ≪ msoft little hierarchy.
The gravitino or the right-handed (RH) sneutrino turns out
to be the LSP and hence ends up as a cold dark matter
candidate. If the neutrino is of Majorana type then the
gravitino is the LSP and if the neutrino is of Dirac type then
the RH sneutrino is the LSP.

9. MBGW model of PQ breaking from SUSY breaking

The MBGW model [32,39] begins with a superpotential

W ¼ fuQHuUc þ fdQHdDc þ feLHdEc þ fνLHuNc

ð42Þ

þ 1

2
MRNcNc þ λμ

X2HuHd

mp
þ λ2

ðXYÞ2
mP

ð43Þ

which is augmented by soft SUSY-breaking terms

Vsoft ∋ m2
XjϕXj2 þm2

Y jϕY j2 þ
�
λ2C

ðϕXϕYÞ2
mP

þ H:c:
�

ð44Þ

so that the scalar potential is

VMBGW ¼ VF þ Vsoft ð45Þ

with

VF ∋ 4
λ22
mP

jϕXϕY j2ðjϕXj2 þ jϕY j2Þ: ð46Þ

The scalar potential admits nonzero minima in the fields ϕX

and ϕY for C < 0. The scalar potential for the case ofmX ¼
mY ≡ms ¼ 104 GeV and C ¼ −3.5 × 104 GeV is shown
in Fig. 5.
It was found in Ref. [39] that the model admits a remnant

Z22 discrete gauge symmetry which is anomaly free up to
Green-Schwarz terms and forbids lower-order operators
which would lead to gravitational instability. Beside the
terms in Eq. (43), the lowest-order PQ-violating term in

the superpotential is ðYÞ11
m8

P
; thus this model is gravity safe

according to the KMR criterion. An approximate PQ
symmetry emerges as an accidental consequence of the
discrete Z22 gauge symmetry. The Z22 and PQ charges are
listed in Table XI.
By taking hϕXi≡ vx and hϕYi≡ vY , the scalar potential

minimization conditions read

0¼ 2
λ2
mP

C�vxv2Y þm2
XvXþ4

λ22
m2

P
ðvXv2Yðv2Xþv2YÞþv3Xv

2
YÞ;

ð47Þ

0¼ 2
λ2
mP

C�v2xvY þm2
YvY þ4

λ22
m2

P
ðv2XvYðv2Xþv2YÞþv2Xv

3
YÞ:

ð48Þ

A simplifying assumption of m2
X ¼ m2

Y ≡m2
s and vX ¼

vY ≡ vs leads to

TABLE X. Uð1ÞR and PQ charge assignments for various
superfields of the CCL model for n ¼ 2.

Multiplet Hu Hd Qi Li Uc
i Dc

i Ec
i Nc

i X Y

Uð1ÞR charge 4 4 − 4
3

− 4
3

− 2
3

− 2
3

− 2
3

− 2
3

5
3

−3
PQ charge 3 3 −3 −2 0 0 −1 −1 1 −3

FIG. 5. Scalar potential VMBGW vs ϕX and ϕY for ms ¼
104 GeV and C ¼ −3.5 × 104 GeV.

TABLE XI. Z22 and PQ charge assignments for various super-
fields of the MBGW model.

Multiplet Hu Hd Qi Li Uc
i Dc

i Ec
i Nc

i X Y

Z22 charge 22 18 3 11 19 1 15 11 13 20
PQ charge −1 −1 þ1 þ1 0 0 0 0 þ1 −1
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v2s ¼
−C�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 − 12m2

s

p
12λ2

mP ð49Þ

so that the μ term is

μMBGW ≃ λμ
v2s
mP

ð50Þ

with v2s ≃
jCj
12λ2

mP. Taking ms ≃m3=2 ¼ 104 GeV with μ ¼
150 GeV and C ¼ −3.5 × 104 GeV leads to vs ≃ vPQ ≃
1011 GeV for λ2 ¼ 0.7 and λμ ≃ 0.036. Thus, the MBGW
model admits a little hierarchy μ ≪ m3=2 while generating
the PQ scale vPQ ∼ 1011 GeV (which generates mainly
axion dark matter with a smaller portion of Higgsino-like
WIMPs [93,94,97]). The allowed range of the MBGW
model parameter space is shown in Fig. 6 where we show
contours of λμ values which lead to μ ¼ 150 GeV.
As mentioned previously, the MBGW model appears to

be gravity safe under the Z22 discrete gauge symmetry. The
discrete gauge symmetry ZM might arise if a charge Me
field (where M is a large positive integer) condenses and is
integrated out of the low-energy theory while charge e
fields survive (see Ref. [115]). While the ensuing low-
energy theory should be gravity safe, for the case at hand
one might wonder about the plausibility of the condensa-
tion of a charge 22 object and whether it might occupy the
so-called swampland [116] of theories not consistent with a
UV completion in string theory. In addition, the charge
assignments [39] are not consistent with SUð5Þ or SOð10Þ
grand unification which may be expected at some level in a
more ultimate theory.
Alternatively, it is worth checking whether MBGW is

gravity safe under any of the discrete R symmetries listed in
Table VIII. To check gravity safety, we note that additional
superpotential terms of the form λ3XpYq may be allowed
for given ZR

N charge assignments and powers p and q.
Such terms will typically break the PQ symmetry and

render the model not gravity safe if the scalar potential
VðϕÞ includes terms which are not suppressed by at least
eight powers of 1=mP [38]. The largest dangerous scalar
potential terms develop from interference between
λ2ðXYÞ2=mP and λ3XpYq=mpþq−3

P when constructing the
scalar potentialVF ¼ P

ϕ̂j∂W=∂ϕ̂j2
ϕ̂→ϕ

(here, ϕ̂ labels chiral

superfields with ϕ being their leading components). We find
the MBGW model to be not gravity safe under any of the
ZR

N discrete R symmetries of Table VIII.

E. Hybrid models of PQ breaking from
SUSY breaking

In this subsection, we review three models which
combine approaches where PQ symmetry breaking is
triggered by SUSY breaking and where a gravity-safe
accidental approximate PQ symmetry might emerge from a
discrete R symmetry.
(1) These models are obtained by adopting a hybrid

approach [115] between the radiative-breaking
models and the MBGW model.

(2) In the radiative-breaking models, a Majorana neu-
trino scale is generated as the PQ field X gets a VEV.
However, in the hybrid models, the Majorana mass
term MNcNc=2 is allowed but it is not generated
through PQ breaking, similar to the MBGW model.

(3) In the radiative-breaking models, intermediate PQ
and Majorana neutrino scales develop as a conse-
quence of intermediate-scale SUSY breaking and
the running of the soft SUSY-breaking mass term to
negative squared values. In contrast, in the MBGW
model and in the hybrid models, PQ breaking is
triggered by large negative soft terms instead of
radiative breaking.

The three hybrid models are listed below.

1. Hybrid CCK model

The superpotential for the hybrid CCK model (hyCCK)
is given by [115]

WhyCCK ∋ fuQHuUc þ fdQHdDc þ flLHdEc

þ fνLHuNc þMNNcNc=2

þ fX3Y=mP þ λμX2HuHd=mP: ð51Þ

Thus when the PQ symmetry breaks, the μ parameter is
obtained as

μeff ¼ λμhXi2=mP: ð52Þ

We have checked that the hyCCK model is not gravity
safe under the ZR

N symmetries for N ¼ 4, 6, 8 or 12.
However, it does turn out to be gravity safe under ZR

24

symmetry with the ZR
24 charge and PQ charge assignments

as shown in Table XII.

FIG. 6. Value of λμ required for μ ¼ 150 GeV in the m3=2 vs
−C plane of the MBGW model.
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The scalar potential for hyCCK is found to be

V ¼
�
fAf

ϕ3
XϕY

mP
þ H:c:

�
þm2

XjϕXj2 þm2
Y jϕY j2

þ f2

m2
P
½9jϕXj4jϕY j2 þ jϕXj6� ð53Þ

and is shown in Fig. 7 vs the scalar field values ϕX and ϕY .
For large negative values of the soft term Af, a ZR

24 and
PQ-breaking minimum develops.
The lowest-order PQ-violating terms in the superpoten-

tial are X8Y2=m7
P, X

4Y6=m7
P and Y10=m7

P which implies
that the lowest-order PQ-breaking term in the scalar
potential is suppressed by 1=m8

P. Therefore, this model
satisfies the KMR condition for being gravity safe.
The allowed range of the hyCCK model parameter space

is shown in Fig. 8 where we show contours of λμ values
which lead to μ ¼ 200 GeV in the m3=2 vs −Af plane for
f ¼ 1. We also show several representative contours of vPQ
values. Values of λμ ∼ 0.015–0.2 are generally sufficient for
a natural μ term and are easily consistent with a soft mass
msoft ∼m3=2 ∼ 2–30 TeV as indicated by LHC searches.
We also note that for m3=2 ∼ 5–20 TeV, vPQ ∼ 1011 GeV
which corresponds to the sweet spot for axion cold dark
matter.

2. Hybrid SPM Model

The superpotential for the hybrid SPM model (hySPM)
is given by [111,115]

WhySPM ∋ fuQHuUc þ fdQHdDc þ flLHdEc

þ fνLHuNc þMNNcNc=2

þ fX3Y=mP þ λμY2HuHd=mP: ð54Þ
In this case, when PQ symmetry breaks, the μ parameter is
generated to be

μeff ¼ λμhYi2=mP: ð55Þ
This model also turns out to be not gravity safe under ZR

N
symmetries for N ¼ 4, 6, 8 and 12 but is gravity safe for
ZR

24 symmetry. The gravity-safe ZR
24 charge and PQ charge

assignments are shown in Table XIII.
The scalar potential is obtained similar to that in the

hyCCK model with the only difference being that now the
lowest-order PQ-violating terms in the superpotential are
Y8X2=m7

P, Y
4X6=m7

P and X10=m7
P which means that the

lowest-order PQ-breaking terms in the scalar potential are
suppressed by 1=m8

P so that the hySPMmodel also satisfies
the KMR condition for being gravity safe.
The allowed range of the hySPM model parameter

space is shown in Fig. 9 where we show contours of λμ
values which lead to μ ¼ 150 GeV in the m3=2 vs −Af

plane for f ¼ 1. We also show several representative
contours of vPQ values.

3. Hybrid MSY model

The superpotential in the hybrid MSY model (hyMSY)
is given as [115]

TABLE XII. ZR
24 and PQ charge assignments for various

superfields of the hyCCK model.

Multiplet Hu Hd Qi Li Uc
i Dc

i Ec
i Nc

i X Y

ZR
24 charge 16 12 5 9 5 9 5 1 −1 5

PQ charge −1 −1 1 1 0 0 0 0 1 −3

FIG. 7. Scalar potential VhyCCK vs ϕX and ϕY for mX ¼ mY≡
m3=2 ¼ 10 TeV, f ¼ 1 and Af ¼ −35.5 TeV.

FIG. 8. Representative values of λμ required for μ ¼ 200 GeV
in the m3=2 vs −Af plane of the hyCCK model for f ¼ 1. We also
show several contours of vPQ.

TABLE XIII. ZR
24 and PQ charge assignments for various

superfields of the hySPM model.

Multiplet Hu Hd Qi Li Uc
i Dc

i Ec
i Nc

i X Y

ZR
24 charge 16 12 5 9 5 9 5 1 5 −13

PQ charge −1 −1 1 1 0 0 0 0 −1=3 1

REVISITING THE SUSY μ PROBLEM AND ITS … PHYS. REV. D 99, 115027 (2019)

115027-17



WhyMSY ∋ fuQHuUc þ fdQHdDc þ flLHdEc

þ fνLHuNc þMNNcNc=2

þ fX3Y=mP þ λμXYHuHd=mP: ð56Þ

However, we have checked that the hyMSYmodel does not
satisfy the KMR condition for being gravity safe under any
of the R symmetries listed in Table VIII.

III. ARE THE VARIOUS μ SOLUTIONS
EXPERIMENTALLY DISTINGUISHABLE?

An important question arises: are the various solutions to
the SUSY μ problem experimentally testable and exper-
imentally distinguishable from one another?
Obviously, one important consequence is the existence

of weak-scale SUSY (WSS) so that if WSS is disproved,
then the whole discussion on the origin of the μ term is
moot. The main raison d’etre for SUSY is to stabilize the
weak scale under the presence of quantum corrections. In
addition, WSS provides a natural mechanism for electro-
weak symmetry breaking. This means that no severe fine-
tuning of parameters is involved in determining the
magnitude of the weak scale, which we take to be no
fine-tuning in Eq. (1). Upper limits have been derived on
sparticle masses within the context of unified SUSY
models with no fine-tuning [9,15,117] (i.e., ΔEW ≲ 30).12

These imply typically mg̃ ≲ 6 TeV and mt̃1 ≲ 3 TeV and
jμj≲ 360 GeV. To explore such high sparticle masses,
about 15 ab−1 of pp collisions at

ffiffiffi
s

p ≳ 27 TeV is required

for a hadron collider [117] or
ffiffiffi
s

p ≳ 720 GeV is needed for
an eþe− collider [120]. If no sparticles are seen at such
colliders, then SUSY as we understand it would no longer
be a viable hypothesis for stabilization of the weak scale.
Someof the μ solutions are expected to only give rise to the

MSSMas theweak-scale effective theory. In this case, it may
be difficult to distinguish for instance a GM solution from a
CM solution. In the case of the G2MSSM solution, distinc-
tive mass relations amongst sparticles are expected to occur
which could support or deter such explanations [121].
In addition to weak-scale SUSY, several models—KN,

CKN, EWK, HFD, radiative PQ models (MSY, CCK,
SPM), MBGWand hybrid models—predict a SUSY DFSZ
axion. Recent searches for axions at axion haloscope
experiments [122] have reached the non-SUSY DFSZ
coupling strengths for a narrow range of ma possibilities.
However, the SUSY DFSZ axion—by virtue of including
Higgsinos in the aγγ triangle vertex—has a much smaller
coupling [97]. It is not clear whether present technology
has the capability to probe such tiny aγγ couplings. In the
event that a thorough search can be made for SUSY DFSZ
axions over their allowed range of masses and couplings
strengths, then the (non)observation of axions could rule
out or verify this class of μ-problem solutions. A related
test could be the determination of a diminished abundance
of Higgsino-like WIMPs such that the presence (or
absence) of additional dark matter particles such as axions
is required.
Several of the μ solutions require as well additional

distinctive particles. The NMSSM solution requires the
presence of additional scalar and pseudoscalar Higgs bosons
and a fifth neutralino arising from the NMSSM singlino. For
many NMSSM parameter choices, some deviations in the h
boson coupling strengths are expected [64,68].
The Uð1Þ0 μ solutions also include distinctive new

particle predictions. The CDEEL model [81] requires the
presence of an additional weak-scale Z0 boson which could
decay to Higgsinos as well as SM particles [84,85]. For the
HPT model [82], the Z0 is expected to be far beyond any
collider reach projections. Instead, for HPT, one expects
bilinear RPV leading to distinctive collider signatures and
altered expectations for dark matter. Also, in these models
one may expect the presence of stable weak-scale exotic
hadrons or other exotica which arise from the requirement
for anomaly cancellation.

IV. CONCLUSIONS

In this paper, we have reexamined the SUSY μ problem
with perspective gained from experimental results from
the LHC through Run 2 with 150 fb−1 of data. The two
parts to the SUSY μ solutions are to first 1) forbid the μ
term, perhaps via some symmetry and then 2) regenerate
it, perhaps via symmetry breaking. The new perspective
from the LHC and the naturalness issue is that μ should be
generated of order mweak ∼mW;Z;h ∼ 100–300 GeV while

FIG. 9. Representative values of λμ required for μ ¼ 150 GeV
in the m3=2 vs −Af plane of the hySPM model for f ¼ 1. We also
show several contours of vPQ.

12Upper limits on sparticle masses from naturalness have also
been derived in Ref. [118] using the ΔBG measure and Ref. [119]
using the high-scale (HS) measure ΔHS. These latter limits are
much lower than those obtained using ΔEW. However, the
procedure for obtaining the BG and HS limits has been
challenged in Refs. [11–14].
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the soft SUSY-breaking terms likely inhabit the multi-TeV
regime. Thus, a LH should now be included in SUSY μ
solutions where jμj ≪ msoft. This is different from pre-
LHC expectations where solutions sought to generate
jμj ≃msoft.
To gain an updated perspective on the SUSY μ problem,

we examined 20 solutions. These solutions are summarized
in Table XIV where we list each solution and how it may
admit a LH, whether it also addresses the strong CP
problem, whether it is gravity safe, its relation to neutrino
masses (standard seesaw or other) and any distinctive
experimental consequences. While all solutions have the
capacity to be consistent with the LH (usually by adjusting
some arbitrary constant λμ), some actually generate
μ ∼mweak ≪ msoft with λμ ∼ 1 (such as the radiative
PQ-breaking models MSY, CCK and SPM).
Also, early attempts to solve the SUSY μ problem could

appeal to an underlying global symmetry such as PQ to
suppress the μ term. It soon became clear that such global
symmetries are not consistent with an ultraviolet com-
pletion which includes gravity effects since gravitational
interactions do not respect global symmetries. Continuous
[Uð1Þ0] or discrete gauge symmetries are gravity safe but
usually require the addition of perhaps unwanted exotica
in order to preserve anomaly freedom. The more recent
emergence of discrete R symmetries [40,41], which can
arise from the compactification of extra dimensions in
string theory, seems to provide the cleanest suppression

symmetry for the μ term. A delineation of anomaly-free
(including a Green-Schwarz term) ZR

N symmetries which
are consistent with SOð10Þ or SUð5Þ unification (thus
preserving gauge coupling unification) offers perhaps the
most compelling solutions for the first half of the SUSY μ
problem. For N ¼ 4, 6, 8, 12 and 24, these symmetries
forbid μ along with RPV trilinear terms and dimension-
five p-decay operators while allowing the required
Yukawa couplings and neutrino mass operators. Of these,
the ZR

4 stands out as both simple and compelling. It should
probably now replace R parity as a standard pillar upon
which the MSSM is constructed.
If one also seeks to simultaneously solve the strong CP

problem, then the ZR
24 symmetry works in the hybrid

models to suppress unwanted superpotential terms while
providing the underlying fundamental symmetry from
which a global PQ can emerge as an accidental, approxi-
mate symmetry which is gravity safe. Several other
solutions also have their roots in stringy behavior [CM,
Uð1Þ0, instanton, G2MSSM].
If the naturalness edict is followed—which requires jμj

to be not too far from mweak ∼ 100 GeV—then one expects
thermally underproduced Higgsino-like WIMPs as (part of)
dark matter. If the natural WIMP abundance is enhanced by
nonthermal processes to make up the entirety of dark
matter, then they become excluded by a combination of
direct and indirect WIMP detection experiments [123].
Thus, additional dark matter beyond WIMPs then seems to

TABLE XIV. Summary of the 20 solutions to the SUSY μ problem and 1) how they admit a LH, 2) how they solve
the strong CP problem (

p
) or not (×), 3) whether they are expected to be gravity safe, 4) whether they include the

standard neutrino seesaw (SNSS) or another mechanism and 5) some experimental consequences.

Model Admit LH?
Strong
CP?

Gravity
safe? Seesaw? Exp. cons.

GM small λμ × −− SNSS MSSM
CM small λμ × −− SNSS MSSM
R sym ðvi=mPÞni ≪ 1 × ? SNSS MSSM
ZR

4
small λμ × −− SNSS MSSM

Instanton small e−Scl × −− SNSS MSSM
G2MSSM hSii=mP ≪ 1 × −− SNSS G2 MSSM
NMSSM small λμ × −− SNSS Extra Higgs/neutralino
nMSSM small λμ × −− SNSS Extra Higgs/neutralino
μνSSM small λμ × −− bRPV bRPV, mixings
Uð1Þ0 (CDEEL) small λμ × −− SNSS Z0
sMSSM small λμ × −− SNSS Extra Higgs/neutralino
Uð1Þ0 (HPT) small λμ × −− bRPV bRPV, stable heavy hadrons
KN vPQ < mhidden ✓ ? SNSS DFSZ axion
CKN Λ < Λh ✓ ? SNSS DFSZ axion
BK=EWK λμ ∼ 10−10 ✓ ? SNSS DFSZ axion
HFD vPQ < mhidden ✓ ? SNSS MSSM
MSY/CCK/SPM vPQ < mhidden ✓ × RadSS DFSZ axion
CCL small λμ ✓ ? several DFSZ axion, G̃ or ν̃ LSP
BGW small λμ ✓ Z22 SNSS DFSZ axion
Hybrid CCK/
SPM

small λμ ✓ ZR
24

SNSS DFSZ axion
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be required. The axion is a highly motivated candidate
to make up the remaining bulk of dark matter. To gain
accord with the requirements of cold dark matter, a gravity-
safe solution to the strong CP problem and a solution to
the SUSY μ problem (while also suppressing dangerous
p-decay operators and allowing for seesaw neutrino
masses), the hybrid models based on ZR

24 discrete R
symmetry stand out as a rather complete answer.
Overall, the SUSY μ problem has generated a rich

panoply of solutions over the past 35 years. To begin
the process of selecting amongst them or building others, it
is of the essence to first discover SUSYand then to proceed
with precision measurements of the SUSY spectra along

with any exotica to gain insight into which if any of the
solutions best describes nature. Future collider and dark
matter experiments should go a long way towards selecting
amongst or ruling out these various solutions and other
solutions perhaps yet to come.
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