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The strong decays of the pseudoscalar and scalar double-charmed tetraquarks Tþ
cc;ūd̄

and T̃þ
cc;ūd̄

are

investigated in the framework of the QCD sum rule method. The mass and coupling of these exotic four-
quark mesons are calculated in the framework of the QCD two-point sum rule approach by taking into
account vacuum condensates of the quark, gluon, and mixed local operators up to dimension 10. Our results
for masses mT ¼ ð4130� 170Þ MeV and mT̃ ¼ ð3845� 175Þ MeV demonstrate that these tetraquarks
are strong-interaction unstable resonances and decay to conventional mesons through the channels
Tþ
cc;ūd̄

→ DþD�ð2007Þ0, D0D�ð2010Þþ and T̃þ
cc;ūd̄

→ DþD0. Key quantities necessary to compute the

partial width of these decay modes, i.e., the strong couplings of two D mesons and a corresponding
tetraquark gi, i ¼ 1, 2, and G, are extracted from the QCD three-point sum rules. The full width
ΓT ¼ ð129.9� 23.5Þ MeV demonstrates that the tetraquark Tþ

cc;ūd̄
is a broad resonance, whereas the scalar

exotic meson with ΓT̃ ¼ ð12.4� 3.1Þ MeV can be classified as a relatively narrow state.

DOI: 10.1103/PhysRevD.99.114016

I. INTRODUCTION

Double-charmed tetraquarks as exoticmesons are already
on the agenda of high-energy physics. Their properties were
studied in a more general context of double-heavy mesons
built of a heavy diquarkQQ and heavy or light antidiquarks
[1–4]. A main question addressed in these basic papers was
whether such 4 quarks can form bound states or exist as
unstable resonances. It was demonstrated that exoticmesons
QQq̄q̄ might be stable, provided that the mass ratio of
constituent quarks mQ=mq is large enough. In this sense,
tetraquarkswith a diquarkbb aremore promising candidates
to stable exotic mesons than ones containing a bc or cc pair.
In fact, the isoscalar JP ¼ 1þ tetraquarkT−

bb;ūd̄
is expected to

lie below the two B-meson threshold and is a strong-
interaction stable state [4]. The situation with Tbc;q̄q̄0 and
Tcc;q̄q̄0 is not quite clear; they may exist as either bound or
resonant states.
In the following years, the chiral quark model, dynamical

and relativistic quark models, and other theoretical schemes
of high-energy physics were used to calculate spectroscopic
parameters of the double-charmed tetraquarks [5–8].

Production of these particles in ion, proton-proton, and
electron-positron collisions in Bc and Ξbc decays was
investigated as well [9–13]. In the framework of the
QCD sum rule method, the axial-vector tetraquarks
QQūd̄ were explored in Ref. [14]. In accordance with
obtained results, the mass of T−

bb;ūd̄
is below the open

bottom threshold, and, hence, it cannot decay directly to
conventional mesons. Within the same method, tetraquarks
with quantum numbers JP ¼ 0−; 0þ; 1−, and 1þ and the
quark content QQq̄q̄ were studied in Ref. [15].
Recent intensive investigations of double-heavy tetra-

quarks were inspired by the discovery of double-charmed
baryon Ξþþ

cc ¼ ccu [16]. The mass of this particle was
utilized as input information in a phenomenological model
to evaluate masses of the tetraquarks T−

bb;ūd̄
and Tþ

cc;ūd̄
[17].

It was confirmed once more that the axial-vector isoscalar
state T−

bb;ūd̄
is stable against strong and electromagnetic

interactions, whereas the tetraquark Tþ
cc;ūd̄

can decay to

D0D�þ mesons. A conclusion on a stable nature of T−
bb;ūd̄

was drawn also in Refs. [18,19].
The spectroscopic parameters and widths of the double-

charmed pseudoscalar tetraquarks Tþþ
cc;s̄s̄ and Tþþ

cc;d̄s̄
, which

bear two units of the electric charge, were calculated in
Ref. [20]. Obtained results showed that these exotic
mesons are rather broad resonances. Various aspects of
double-charmed tetraquarks were analyzed also in the
publications [21–25].
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In the present work, we investigate the pseudoscalar and
scalar tetraquarks Tþ

cc;ūd̄
and T̃þ

cc;ūd̄
. First, we calculate their

spectroscopic parameters in the context of the QCD two-
point sum rule method by taking into account nonpertur-
bative contributions up to dimension 10. Our studies
demonstrate that these exotic mesons are unstable reso-
nances and decay strongly to conventional mesons.
The kinematically allowed decay modes Tþ

cc;ūd̄
→

DþD�ð2007Þþ, Tþ
cc;ūd̄

→ D0D�ð2010Þþ, and T̃þ
cc;ūd̄

→

D0Dþ are analyzed, and their partial widths are found.
To this end, we consider the strong couplings of two D
mesons and tetraquarks, which are key quantities of the
analysis, and extract their values from the three-point QCD
sum rules. Obtained predictions are used to estimate the full
width of the four-quark mesons Tþ

cc;ūd̄
and T̃þ

cc;ūd̄
.

This work has the following structure. In Sec. II, we
calculate the mass and coupling of the tetraquarks Tþ

cc;ūd̄

and T̃þ
cc;ūd̄

. Here, we provide details of calculations for the

pseudoscalar state Tþ
cc;ūd̄

and write down final predictions

for T̃þ
cc;ūd̄

. Section III is devoted to analysis of strong decays
of the tetraquarks. For these purposes, we evaluate the
couplings g1ðq2Þ, g2ðq2Þ, and Gðq2Þ corresponding to
relevant strong vertices and find the fit functions to
extrapolate sum rule predictions to the relevant D mesons’
mass shell. These strong couplings are utilized to evaluate
the partial width of decay processes. Our conclusions are
presented in Sec. IV.

II. MASS AND COUPLING OF THE
PSEUDOSCALAR AND SCALAR
TETRAQUARKS T +

cc;ūd̄
AND T̃ +

cc;ūd̄

As has been noted above, the mass and coupling of the
tetraquarks Tþ

cc;ūd̄
and T̃þ

cc;ūd̄
(in what follows denoted by T

and T̃, respectively) can be evaluated by means of the QCD
two-point sum rule method. The essential component of this
approach is the interpolating current, which should be
composed of relevant diquark fields and has the quantum
numbers of the original particle. There are different currents
that meet these requirements [15]. For the pseudoscalar
tetraquarkT with two identical c quarks,we choose a structure
made of the heavy pseudoscalar and light scalar diquarks:

JðxÞ ¼ cTaðxÞCcbðxÞūaðxÞγ5Cd̄TbðxÞ: ð1Þ

The current JðxÞ has the symmetric color structure and
belongs to the sextet representation of the color group. The
state T with structure (1) is a ūd̄ member of the multiplet of
pseudoscalar cc tetraquarks, while others are the four-quark
mesons Tþþ

cc;s̄s̄ and T
þþ
cc;d̄s̄

. The present investigation allows us
to add the new particle T to the list of double-charmed
pseudoscalar tetraquarks.

The interpolating current for the scalar tetraquark T̃ can
be constructed from the heavy and light axial-vector
diquark fields [21]

J̃ðxÞ ¼ ϵϵ̃½cTbðxÞCγμccðxÞ�½ūdðxÞγμCd̄Te ðxÞ�; ð2Þ

where ϵϵ̃ ¼ ϵabcϵade. In expressions above, a, b, c, d, and e
are color indices, and C is the charge-conjugation operator.
The QCD two-point sum rules to evaluate the spectro-

scopic parameters of the tetraquark T should be derived
from the correlation function

ΠðpÞ ¼ i
Z

d4xeip·xh0jT fJðxÞJ†ð0Þgj0i: ð3Þ

After replacement JðxÞ → J̃ðxÞ, a similar correlator can be
written down for the second particle T̃ as well. Below, we
give details of calculations for the massmT and coupling fT
and provide only final results for T̃.
To extract the desired sum rules from the correlation

function ΠðpÞ, one has, first of all, to express it in terms of
the tetraquarks’ physical parameters and, in this way,
determine their phenomenological side ΠPhysðpÞ. The
function ΠPhysðpÞ can be derived by inserting into the
correlation function ΠðpÞ a full set of relevant states,
carrying out integration over x in Eq. (3), and isolating a
contribution of the ground-state particle T. In this process,
we accept an assumption on the dominance of a tetraquark
term in the phenomenological side, which for multiquark
hadrons should be applied with some caution. The reason is
that an interpolating current used in such calculations
couples not only to a multiquark hadron but also to a
relevant two-hadron continuum, which may obstruct the
multiquark signal [26]. But direct subtraction of the two-
hadron contributions from the correlator leads to wrong
results and conclusions [27]. To solve this problem, the
authors in Ref. [27] utilized an alternative way and
computed explicitly a coupling of a two-hadron continuum
with a pentaquark current and demonstrated that these
effects constitute less than 10% of the sum rules.
A more general method to treat similar contributions in

the sum rules involving tetraquarks was used in Ref. [28]. It
turns out that two-meson continuum contributions give rise
to the finite width Γðp2Þ of the tetraquark, which can be
taken into account by modifying its propagator. In the sum
rules, this modification leads to rescaling of the tetraquark’s
coupling, while the mass remains unchanged. Our calcu-
lations showed that, even for the tetraquarks with the full
width of a few hundred mega-electron-volts, the two-meson
continuum changed the coupling approximately by (5–7)%
[20,29]. This uncertainty does not exceed the accuracy of
the sum rule calculations themselves; therefore, to derive
ΠPhysðpÞ, one can neglect it and use the zero-width single-
pole approximation.
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Then, for ΠPhysðpÞ, we get

ΠPhysðpÞ ¼ h0jJjTðpÞihTðpÞjJ†j0i
m2

T − p2
þ…; ð4Þ

which contains the contribution of the ground-state particle
written down explicitly as well as effects due to higher
resonances and continuum states; the latter in Eq. (4) is
denoted by dots.
The correlation function ΠPhysðpÞ can be recast into a

more simple form if one introduces the matrix element of
the pseudoscalar tetraquark

h0jJjTðpÞi ¼ fTm2
T

2mc
: ð5Þ

Then, we find

ΠPhysðpÞ ¼ 1

4m2
c

f2Tm
4
T

m2
T − p2

þ… ð6Þ

In general, to continue calculations, one should choose in
ΠPhysðpÞ some Lorentz structure and fix the corresponding
invariant amplitude. Because in the case under discussion
ΠPhysðpÞ has the trivial structure which is proportional to I,
the amplitude ΠPhysðp2Þ equals the function from Eq. (6).
The QCD side of the sum rules ΠOPEðpÞ can be found by

computing the correlation function in terms of the quark
propagators. To this end, we insert the interpolating current
JðxÞ to the expression (3) and after contracting the relevant
quark fields find

ΠOPEðpÞ ¼ i
Z

d4xeipxTr½γ5S̃b0bd ð−xÞγ5Sa0au ð−xÞ�

× Tr½Sbb0c ðxÞS̃aa0c ðxÞ þ Sab
0

c ðxÞS̃ba0c ðxÞ�: ð7Þ
Here, ScðxÞ and SuðdÞðxÞ are the heavy c- and light uðdÞ-
quark propagators, explicit expressions of which can be
found, for example, in Ref. [30]. In Eq. (7), we also
introduce the shorthand notation

S̃ðxÞ ¼ CSTðxÞC: ð8Þ
By equating the amplitudes ΠPhysðp2Þ and ΠOPEðp2Þ,

applying the Borel transformation to both sides of this
expression, and performing the continuum subtraction, we
get an equality, which can be used to derive sum rules for
the mass mT and coupling fT . The Borel transformation
suppresses the contribution of higher resonances and
continuum states and generates a dependence of the sum
rules on a new parameter M2. The continuum subtraction
allows one, by invoking the assumption on the quark-
hadron duality, to replace an unknown physical spectral
density ρPhysðsÞ by ρOPEðsÞ, which is calculable as an
imaginary part of ΠOPEðpÞ. As a result, the sum rules
acquire a dependence on the continuum threshold

parameter s0 that separates from one another the ground-
state and continuum contributions to ΠOPEðp2Þ.
To derive the final sum rules, we use this equality as well

as one obtained from the first expression by applying the
operator d=dð−1=M2Þ. As a result, we get

m2
T ¼

R s0
4m2

c
dssρOPEðsÞe−s=M2

R s0
4m2

c
dsρOPEðsÞe−s=M2 ; ð9Þ

and

f2T ¼ 4m2
c

m4
T

Z
s0

4m2
c

dsρOPEðsÞeðm2
T−sÞ=M2

: ð10Þ

As we have noted above, Eqs. (9) and (10) depend the
auxiliary parameters M2 and s0. Their values are related to
a problem under analysis and should be fixed to satisfy
constraints, which we explain below. But the sum rules
contain also various vacuum condensates that are universal
for all problems:

hq̄qi ¼ −ð0.24� 0.01Þ3 GeV3;

m2
0 ¼ ð0.8� 0.1Þ GeV2; hq̄gsσGqi ¼ m2

0hq̄qi;�
αsG2

π

�
¼ ð0.012� 0.004Þ GeV4;

hg3sG3i ¼ ð0.57� 0.29Þ GeV6: ð11Þ

In numerical computations, we use this information on
vacuum condensates and the c-quark mass mc ¼
1.275þ0.025

−0.035 GeV. Our studies prove that the working
regions for the parameters

M2 ∈ ½4; 6� GeV2; s0 ∈ ½20; 22� GeV2 ð12Þ

meet all restrictions imposed on M2 and s0.
The regions (12) are extracted from analysis of a pole

contribution to the correlator and convergence of the sum
rules. The pole contribution (PC)

PC ¼ ΠðM2; s0Þ
ΠðM2;∞Þ ; ð13Þ

where ΠðM2; s0Þ is the Borel-transformed and subtracted
invariant amplitude ΠOPEðp2Þ, is one of the important
quantities necessary to extract limits of the Borel parameter
ðM2

min;M
2
maxÞ. In accordance with our computations at

M2
min ¼ 4 GeV2, the pole contribution amounts to 0.7,

whereas atM2
max ¼ 6 GeV2, it is 0.37. But at the same time,

a lower limit of the Borel parameter depends on the
convergence of the operator product expansion (OPE).
Restrictions imposed on M2 by convergence of the OPE
can be analyzed by means of the ratio
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RðM2
minÞ ¼

ΠDimNðM2
min; s0Þ

ΠðM2
min; s0Þ

: ð14Þ

Here, ΠDimNðM2; s0Þ is a contribution to the correlation
function arising from the last term (or from the sum of last
few terms) in the OPE. Numerical analysis proves that for
DimN ¼ Dimð8þ 9þ 10Þ this ratio is Rð4 GeV2Þ ¼ 0.02,
which guarantees the convergence of the sum rules. It isworth
noting that the lower boundary of the Borel window is
determined from joint analysis of PC and RðM2

minÞ; i.e.,
the maximum accessible pole contribution is limited by the
convergence of the OPE. Additionally, at the minimum of
the Borel parameter, the perturbative term amounts to 68% of
the total result and exceeds the nonperturbative contributions.
In general, quantities extracted from the sum rules

should not depend on the auxiliary parameters M2 and
s0. In real calculations, however, we observe a residual
dependence of mT and fT on them. Hence, the choice of
M2 and s0 should minimize these nonphysical effects as
well. The working windows for the parameters M2 and s0
also satisfy these conditions. In Figs. 1 and 2, we plot the
mass mT and coupling fT as functions ofM2 and s0, which
allows one to see uncertainties generated by the sum rule
computations. It is seen that both mT and fT depend onM2

and s0, which are main sources of the theoretical uncer-
tainties inherent in the sum rule computations. For the mass
mT , these uncertainties are small,�4%, because the ratio in
Eq. (9) cancels some of these effects. But even for the
coupling fT , the ambiguities do not exceed �20% of the
central value.
Our calculations lead to the following results:

mT ¼ ð4130� 170Þ MeV;

fT ¼ ð0.26� 0.05Þ × 10−2 GeV4: ð15Þ
The prediction formT confirms that T can be interpreted as a
member of the multiplet formed by the double-charmed

pseudoscalar tetraquarks. In fact, parameters of other mem-
bers of this multiplet Tþþ

cc;s̄s̄ and Tþþ
cc;d̄s̄

were calculated in
Ref. [20]. The mass splitting between these two states
125 MeV is caused by the replacement s̄ ↔ d̄ in their quark
contents. By similar substitution s̄ → ū in Tþþ

cc;d̄s̄
, one can

create the tetraquarkT. Comparing now themass 4265MeV
of Tþþ

cc;d̄s̄
withmT ¼ 4130 MeV,we find themass difference

135 MeV between these two particles. In other words, the
state T occupies an appropriate place in the multiplet of the
double-charmed pseudoscalar tetraquarks, which we con-
sider an important consistency check of the present result.
Let us also note that mT is considerably lower than

ð4430� 130Þ MeV predicted in Ref. [15] for the pseudo-
scalar tetraquark with the same quark content and structure.
This discrepancy presumably stems from the quark propa-
gators, in which some of higher-dimensional nonperturba-
tive terms were neglected, and also from a choice of the
working regions for the parameters M2 and s0.
The mass and coupling of the state T̃ can be calculated

by a similar manner. The difference here is connected with
the matrix element of the scalar particle

h0jJ̃jT̃ðpÞi ¼ fT̃mT̃; ð16Þ

which leads to the substitution 4m2
c=m4

T → 1=m2
T̃
in the

sum rule for the coupling fT̃ (10). The QCD side of new
sum rules is given by the expression

Π̃OPEðpÞ ¼ i
Z

d4xeipxϵϵ̃ϵ0ϵ̃0Tr½γμS̃e0ed ð−xÞ

× γνSd
0d

u ð−xÞ�fTr½γνS̃bb0c ðxÞγμScc0c ðxÞ�
− Tr½γνS̃cb0c ðxÞγμSbc0c ðxÞ�g: ð17Þ

The new function Π̃OPEðpÞ also modifies the spectral
density ρOPEðsÞ. The remaining steps have been explained
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FIG. 1. The mass of the tetraquark T as a function of the Borel parameterM2 (left panel) and as a function of the continuum threshold
s0 (right panel).
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above; therefore, we provide final information about the
range of the parameters used in computations

M2 ∈ ½3; 4� GeV2; s0 ∈ ½19; 21� GeV2 ð18Þ
and obtained predictions

mT̃ ¼ ð3845� 175Þ MeV;

fT̃ ¼ ð1.16� 0.26Þ × 10−2 GeV4: ð19Þ
It is necessary to note that at M2

max ¼ 4 GeV2 the pole
contribution exceeds 0.16, which is acceptable when
considering the four-quark mesons, whereas at minimum
M2

min ¼ 3 GeV2, it reaches 0.7. The convergence of the
operator product expansion at M2

min ¼ 3 GeV2 is also
guaranteed because Rð3 GeV2Þ ¼ 0.03. Our result for
mT̃ is very close to the prediction ð3870� 90Þ MeV
obtained in Ref. [21].

III. STRONG DECAYS OF THE TETRAQUARKS
T +
cc;ūd̄

AND T̃ +
cc;ūd̄

Masses of the tetraquarks T and T̃ are large enough to
make their strong decays to ordinary mesons kinematically
allowed processes. The mass of T is ð58� 29Þ MeV below
(we refer only to central value of mT) the S-wave
DþD�

0ð2400Þ0 threshold but is 255 MeV above the open-
charm DþD�ð2007Þ0 and D0D�ð2010Þþ thresholds, and,
hence, T can decay in P-wave to these conventional
mesons. The exotic state T̃ decays in S-wave to a pair
of DþD0 mesons because its mass mT̃ exceeds 110 MeV
the corresponding border. The P-wave decays of T̃ require
a master particle to be considerably heavier than 3845MeV,
which is not the case.
Below, we consider in a detailed form the decay T →

DþD�ð2007Þ0 and present final results for the remaining
modes. Our goal here is to calculate the strong coupling
corresponding to the vertex TDþD�ð2007Þ0. To derive the

QCD three-point sum rule for this coupling and extract its
numerical value, one begins from analysis of the correlation
function

Πμðp; p0Þ ¼ i2
Z

d4xd4yeiðp0y−pxÞh0jT fJD�
μ ðyÞ

× JDð0ÞJ†ðxÞgj0i: ð20Þ

Here, JðxÞ, JDðxÞ, and JD�
μ ðxÞ are the interpolating currents

for the tetraquark T and mesons Dþ and D�ð2007Þ0,
respectively. The JðxÞ is given by Eq. (1), whereas for
the remaining two currents, we use

JD
�

μ ðxÞ ¼ ūiðxÞiγμciðxÞ; JDðxÞ ¼ d̄jðxÞiγ5cjðxÞ:
ð21Þ

The 4-momenta of the tetraquark T and meson D�ð2007Þ0
are p and p0; then, the momentum of the meson Dþ
is q ¼ p − p0.
We follow the standard prescriptions of the sum rule

method and calculate the correlation function Πμðp; p0Þ
using both physical parameters of the particles involved
into a process and quark-gluon degrees of freedom.
Separating the ground-state contribution to the correlation
function (20) from contributions of higher resonances and
continuum states, for the physical side of the sum rule
ΠPhys

μ ðp; p0Þ, we get

ΠPhys
μ ðp; p0Þ ¼ h0jJD�

μ jD�0ðp0Þih0jJDjDþðqÞi
ðp02 −m2

1D� Þðq2 −m2
DÞ

×
hDþðqÞD�0ðp0ÞjTðpÞihTðpÞjJ†j0i

ðp2 −m2
TÞ

þ…

ð22Þ

The function ΠPhys
μ ðp; p0Þ can be further simplified by

expressing matrix elements in terms of the mesons’
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FIG. 2. The same as in Fig. 1, but for the coupling fT of the state T.
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physical parameters. To this end, we introduce the matrix
elements

h0jJDjDþi ¼ m2
DfD
mc

;

h0jJD�
μ jD�0i ¼ m1D�fD�εμ; ð23Þ

where mD, m1D� and fD, fD� are the masses and decay
constants of the mesons Dþ and D�ð2007Þ0, respectively.
In Eq. (23), εμ is the polarization vector of the meson
D�ð2007Þ0. We model hDðqÞD�0ðp0ÞjTðpÞi in the form

hDþðqÞD�0ðp0ÞjTðpÞi ¼ g1ðq2Þqμε�μ ð24Þ

and denote by g1ðq2Þ the strong coupling of the vertex
TðpÞDðqÞD�0ðp0Þ. Then, it is not difficult to see that

ΠPhys
μ ðp; p0Þ ¼ g1ðq2Þ

m2
DfDm1D�fD�fTm2

T

2m2
cðp02 −m2

1D� Þðq2 −m2
DÞ

×
1

ðp2 −m2
TÞ

�
m2

T −m2
1D� − q2

2m2
1D�

p0
μ − qμ

�

þ… ð25Þ

The correlation function ΠPhys
μ ðp; p0Þ has two Lorentz

structures proportional to p0
μ and qμ. We choose to work

with the invariant amplitude ΠPhysðp2; p02; q2Þ correspond-
ing to the structure proportional to p0

μ. The double Borel
transformation of this amplitude over variables p2 and p02
forms the phenomenological side of the sum rule. To find
the QCD side of the three-point sum rule, we compute
Πμðp; p0Þ in terms of the quark propagators and get

ΠOPE
μ ðp; p0Þ ¼ i2

Z
d4xd4yeiðp0y−pxÞfTr½γμSjac ðy − xÞ

× S̃ibc ð−xÞγ5S̃bid ðxÞγ5Saju ðx − yÞ�
þ Tr½γμSjbc ðy − xÞ
× S̃iac ð−xÞγ5S̃bid ðxÞγ5Saju ðx − yÞ�g: ð26Þ

The correlation function ΠOPE
μ ðp; p0Þ is calculated with

dimension-5 accuracy and has the same Lorentz structures
as ΠPhys

μ ðp; p0Þ. The double Borel transformation
BΠOPEðp2; p02; q2Þ, where ΠOPEðp2; p02; q2Þ is the invari-
ant amplitude that corresponds to the term proportional to
p0
μ, constitutes the second part of the sum rule. By equating

BΠOPEðp2; p02; q2Þ and Borel transformation of
ΠPhysðp2; p02; q2Þ, and performing continuum subtraction,
we find the sum rule for the coupling g1ðq2Þ.
The Borel transformed and subtracted amplitude

ΠOPEðp2; p02; q2Þ can be expressed in terms of the spectral
density ρ̃ðs; s0; q2Þ, which is proportional to the imaginary
part of ΠOPEðp; p0Þ,

ΠðM2; s0; q2Þ ¼
Z

s0

4m2
c

ds
Z

s0
0

m2
c

ds0ρ̃ðs; s0; q2Þ

× e−s=M
2
1e−s

0=M2
2 ; ð27Þ

where M2 ¼ ðM2
1;M

2
2Þ and s0 ¼ ðs0; s00Þ are the Borel

and continuum threshold parameters, respectively. Then,
the sum rule for g1ðq2Þ is determined by the expression

g1ðq2Þ ¼
4m2

cm1D�

fDm2
DfD�fTm2

T

q2 −m2
D

m2
T −m2

1D� − q2

× em
2
T=M

2
1em

2
1D�=M2

2ΠðM2; s0; q2Þ: ð28Þ

The coupling g1ðq2Þ is a function of q2 and, at the same
time, depends on the Borel and continuum threshold
parameters which, for simplicity, are not shown in
Eq.(28) as arguments of g1. Afterwards, we introduce
new variable Q2 ¼ −q2 and denote the obtained function
as g1ðQ2Þ.
The sum rule (28) contains masses and decay constants

of the final mesons: these parameters are collected in
Table I. For the masses of D mesons, we use information
from Ref. [31]. A choice for the decay constants of the
pseudoscalar and vector D mesons is a more complicated
task. They were calculated using various models and
methods in Refs. [32–36]. Predictions obtained in these
papers sometimes differ from each other considerably.
Therefore, for the decay constant of the pseudoscalar D
mesons, we use the available experimental result, whereas
for the vector mesons, we use the QCD sum rule prediction
from Ref. [35].
To carry out numerical analysis of g1ðQ2Þ, apart from the

spectroscopic parameters of D mesons, one also needs to
fix M2 and s0. The restrictions imposed on these auxiliary
parameters are standard for sum rule computations and
have been discussed above. The windows for M2

1 and s0
correspond to the T channels and coincide with the working
regions M2

1 ∈ ½4; 6� GeV2 and s0 ∈ ½20; 22� GeV2 deter-
mined in the mass calculations. The next pair of parameters
ðM2

2; s
0
0Þ is chosen within the limits

M2
2 ∈ ½3; 5� GeV2; s00 ∈ ½6; 8� GeV2: ð29Þ

TABLE I. Parameters of D mesons produced in the decays of
the tetraquarks T and T̃.

Parameters Values (MeV)

mD0 1864.83� 0.05
mD 1869.65� 0.05
m1D� ðD�ð2007Þ0Þ 2006.85� 0.05
m2D� ðD�ð2010ÞþÞ 2010.26� 0.05
fD 203.7� 1.1
fD� 263� 21
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The extracted strong coupling g1ðQ2Þ depends on M2 and
s0; the working intervals for these parameters are chosen in
such a way as to minimize these uncertainties. For an
example, in Fig. 3, we plot the coupling g1ðQ2Þ as a
function of the Borel parametersM2

1 andM
2
2. It is seen that

the changing of M2 leads to varying of the coupling
g1ðQ2Þ, which nevertheless remains within allowed limits.
The width of the decay under analysis should be

computed using the strong coupling at the Dþ meson’s
mass shell q2 ¼ m2

D, which is not accessible to the sum rule
calculations. We evade this difficulty by employing a fit
function F1ðQ2Þ that for the momenta Q2 > 0 coincides
with QCD sum rule’s predictions but can be extrapolated to
the region of Q2 < 0 to find g1ð−m2

DÞ. In the present work,
to construct the fit function F1ðQ2Þ, we use the analytic
form

FiðQ2Þ ¼ Fi
0 exp

�
ci1

Q2

m2
T
þ ci2

�
Q2

m2
T

�
2
�
; ð30Þ

where Fi
0, c

i
1, and ci2 are fitting parameters. Numerical

analysis allows us to fix F1
0 ¼ 5.06, c11 ¼ 0.83, and

c12 ¼ −0.38. In Fig. 4, we depict the sum rule predictions
for g1ðQ2Þ and also provide F1ðQ2Þ; a nice agreement
between them is evident.
This function at the mass shell Q2 ¼ −m2

D gives

g1 ≡ F1ð−m2
DÞ ¼ 4.21� 0.65: ð31Þ

The width of decay T → DþD�ð2007Þ0 is determined by
the simple formula

Γ½T → DþD�ð2007Þ0� ¼ g21λ
3ðmT;m1D� ; mDÞ

8πm2
1D�

; ð32Þ

where

λða; b; cÞ ¼ 1

2a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4 þ b4 þ c4 − 2ða2b2 þ a2c2 þ b2c2Þ

q
:

ð33Þ

Using the strong coupling from Eq. (31), it is not difficult to
evaluate width of the decay T → DþD�ð2007Þ0,

Γ½T → DþD�ð2007Þ0� ¼ ð64.3� 16.5Þ MeV: ð34Þ

The second process T → D0D�ð2010Þþ can be consid-
ered via the same manner. Corrections which should to be
made in the physical side and matrix elements of the
previous decay channel are trivial. Thus, the QCD side of
the new sum rule in the approximation mu ¼ md ¼ 0

adopted in this paper coincides with ΠOPE
μ ðp; p0Þ. The

Borel and threshold parameters M2 and s0 are chosen as in
the first process. The differences are connected with the
spectroscopic parameters of produced mesons D0 and
D�ð2010Þþ. These factors modify numerical predictions
for g2ðQ2Þ, which is the strong coupling of the vertex
TD0D�ð2010Þþ, and change the fit function F2ðQ2Þ. For
parameters of F2ðQ2Þ, we get F2

0 ¼ 5.11, c21 ¼ 0.83, and
c22 ¼ −0.38. The result for the partial width of the decay
T → D0D�ð2010Þþ reads

Γ½T → D0D�ð2010Þþ� ¼ ð65.6� 16.8Þ MeV: ð35Þ

The decay of the scalar four-quark meson T̃ → DþD0 is
the last process to be considered in this section. To extract
the sum rule for the strong coupling Gðq2Þ corresponding
to the vertex T̃DþD0, we start from the correlation
function,

Π̃ðp; p0Þ ¼ i2
Z

d4xd4yeiðp0y−pxÞh0jT fJDðyÞ

× JD
0ð0ÞJ̃†ðxÞgj0i; ð36Þ

4.0
4.5

5.0
5.5

6.0
M1

2 GeV2
3.0

3.5

4.0

4.5

5.0

M2
2 GeV2

0

5

10

g1

FIG. 3. The strong coupling g1ðQ2Þ as a function of the Borel
parameters M2 ¼ ðM2

1;M
2
2Þ at the fixed ðs0; s00Þ ¼ ð21; 7Þ GeV2

and Q2 ¼ 5 GeV2.

10 5 0 5 10
0

2

4

6

8

10

Q2 GeV2

g 1

QCD sum rules

Fit Function

FIG. 4. The sum rule predictions and fit function for the strong
coupling g1ðQ2Þ. The star shows the point Q2 ¼ −m2

D.
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where J̃ðxÞ and JDðxÞ are the interpolating currents of the
particles T̃ and Dþ defined by Eqs. (2) and (21), respec-
tively. For the interpolating current of the pseudoscalar
meson D0, we use

JD
0ðxÞ ¼ ūjðxÞiγ5cjðxÞ: ð37Þ

Then, it is not difficult to get the physical side of the
sum rule

Π̃Physðp; p0Þ ¼ h0jJDjDþðp0Þih0jJD0 jD0ðqÞi
ðp02 −m2

DÞðq2 −m2
D0Þ

×
hD0ðqÞDþðp0ÞjT̃ðpÞihT̃ðpÞjJ̃†j0i

ðp2 −m2
T̃
Þ þ…

ð38Þ
Introducing the new matrix elements

h0jJD0 jD0ðqÞ ¼ m2
D0fD0

mc
;

hD0ðqÞDþðp0ÞjT̃ðpÞi ¼ Gðq2Þðp · p0Þ; ð39Þ
one can rewrite Π̃Physðp; p0Þ in terms of the physical
parameters

Π̃Physðp; p0Þ ¼ Gðq2Þ m2
DfDfT̃mT̃

2m2
cðp02 −m2

DÞðp2 −m2
T̃
Þ

×
m2

D0fD0

ðq2 −m2
D0Þ ðm

2
T̃
þm2

D − q2Þ þ… ð40Þ

In Eqs. (39) and (40),mD0 and fD0 are theD0 meson’s mass
and decay constant, respectively.
The QCD side of the sum rule Π̃OPEðp; p0Þ is given by

the expression

Π̃OPEðp; p0Þ ¼ i2
Z

d4xd4yeiðp0y−pxÞϵϵ̃fTr½γ5Sicc ðy − xÞ

× γμS̃
ib
c ð−xÞγ5S̃dju ðxÞγμSeid ðx − yÞ�

− Tr½γ5Sibc ðy − xÞ
× γμS̃

jc
c ð−xÞγ5S̃dju ðxÞγμSeid ðx − yÞ�g: ð41Þ

The standard operations with Π̃Physðp; p0Þ and Π̃OPEðp; p0Þ
yield the sum rule

Gðq2Þ ¼ 2m2
c

m2
DfDfT̃mT̃m

2
D0fD0

q2 −m2
D0

m2
T̃
þm2

D − q2

× em
2
T̃
=M2

1em
2
D=M

2
2Π̃ðM2; s0; q2Þ: ð42Þ

In numerical calculations, the auxiliary parameters for the T̃
and Dþ channels are chosen as in Eqs. (18) and (29),
respectively. The parameters of the fit function F3ðQ2Þ are
equal to F3

0 ¼ 0.31 MeV−1, c31 ¼ −1.15, and c32 ¼ 0.92,

which at the mass shell Q2 ¼ −m2
D0 leads to the strong

coupling

Gð−m2
D0Þ ¼ ð0.43� 0.07Þ GeV−1: ð43Þ

The width of this decay is determined by the expression

Γ½T̃ → DþD0� ¼ G2m2
D

8π
λ

�
1þ λ2

m2
D

�
; ð44Þ

where λ ¼ ðmT̃;mD;mD0Þ. Numerical computations pre-
dict

Γ½T̃ → DþD0� ¼ ð12.4� 3.1Þ MeV: ð45Þ
The partial width of these decays are the main result of

the present section.

IV. CONCLUSIONS

In this work, we have explored features of the double-
charmed pseudoscalar and scalar tetraquarks T and T̃. We
have calculated their masses and couplings as well as found
partial width of their strong decays. Our result for mT has
allowed us to interpret the resonance T as a member of the
multiplet of double-charmed pseudoscalar tetraquarks.
Saturating the full width of T by the decays T →
DþD�ð2007Þ0 and T → D0D�ð2010Þþ, it is possible to
find

ΓT ¼ ð129.9� 23.5Þ MeV: ð46Þ

Other members of this multiplet are tetraquarks Tþþ
cc;s̄s̄ and

Tþþ
cc;d̄s̄

, which were explored in Ref. [20]. These tetraquarks
together with T form the correct pattern of the pseudoscalar
multiplet. Indeed, masses of these particles differ from each
other by approximately 125MeV, caused by an existence or
absence of the s quark(s) in their contents. The full widths
of the exotic mesons Γ½Tþþ

cc;s̄s̄� ¼ ð302� 113Þ MeV and
Γ½Tþþ

cc;d̄s̄
� ¼ ð171� 52Þ MeV are large, and we can classify

them as broad resonances. The full width of the tetraquark
T differs from Γ½Tþþ

cc;s̄s̄� considerably but is comparable to
Γ½Tþþ

cc;d̄s̄
�. Therefore, we include the pseudoscalar tetraquark

T in a class of broad resonances.
The scalar double-charmed tetraquark T̃ with full width

ΓT̃ ¼ ð12.4� 3.1Þ MeV is a relatively narrow state. This
resonance is a member of a double-charmed scalar tetra-
quarks’ multiplet. Investigation of other members of this
multiplet, calculation of their masses, and partial and full
widths can provide valuable information about properties
of these scalar particles.
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