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We study the onset of chaos due to temporal and spatially periodic perturbations in charged Gauss-
Bonnet AdS black holes in extended thermodynamic phase space, by analyzing the zeros of the appropriate
Melnikov functions. Temporal perturbations coming from a thermal quench in the unstable spinodal region
of P-V diagram may lead to chaos when a certain perturbation parameter γ saturates a critical value,
involving the Gauss-Bonnet coupling α and the black hole charge Q. A general condition following from
the equation of state is found, which can rule out the existence of chaos in any black hole. Using this
condition, we find that the presence of charge is necessary for chaos under temporal perturbations. In
particular, chaos is absent in neutral Gauss-Bonnet and Lovelock black holes in general dimensions.
Chaotic behavior continues to exist under spatial perturbations, irrespective of whether the black hole
carries a charge or not.
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I. INTRODUCTION

Black hole solutions and their thermodynamics in gen-
eral relativity have thrown up remarkable surprises and
continue to be an intriguing area of research. In particular,
phase transitions of black holes in a variety of backgrounds,
such as anti–de Sitter (AdS) space-time have been actively
pursued, purely from a gravity point of view and also with
holographic motivations in mind [1–9]. More recently,
treating the cosmological constant as a dynamical thermo-
dynamical variable (pressure), an extended phase thermo-
dynamics has been proposed, where the first law of black
hole mechanics gets modified by a new pdV term [10–21].
The study of PV critical behavior of various black holes
confirms the existence of an exact map of black hole small/
large phase transitions to the Van der Waals liquid/gas
system [22–26].
It is known that chaos is unavoidable in certain dynami-

cal systems in nature, including black hole physics and
cosmology [27–34]. There have been several past works
probing chaotic behavior in black holes by various
methods, such as, computation of Lyapunov exponents
to study stability of orbits, quasinormal modes in Reissner-
Nordstrom (RN), and Gauss-Bonnet black holes [35,36],

and Melnikov’s [37] method in the context of geodesic
motion [27–29]. However, the study of chaos in the context
of black hole thermodynamics and phase transitions has
only just started emerging [38], partly due to the recent
developments where a pressure term in the first law is
included, making the connection with Van der Waals
system exact [22–26]. In [38], the Melnikov method used
in dynamical systems [37–41], developed in the context of
Van der Waals system [42], was applied to the case of black
holes in extended phase space to extract useful information
about the presence of chaos. Temporal and spatial periodic
perturbations were introduced in the PV thermodynamic
phase space, and the presence of chaos was detected from
the study of zeros of Melnikov function. A bound involving
the charge of the black hole was also found, beyond which
the system becomes chaotic.
In this paper, we take these issues forward by studying

chaos in the extended thermodynamic phase of black holes,
after incorporating the effects of higher curvature terms in
Einstein action. We focus on the case of Gauss-Bonnet(GB)
black holes, but the results are also spelled out for Lovelock
black holes. Gauss-Bonnet and Lovelock terms are quite
important in various contexts such as semiclassical quan-
tum gravity, low energy effective action of string theory,
and next to leading order large N corrections of boundary
conformal field theory (CFT) studies in holography
[43–62]. They are known to have given interesting insights
into the corrections to black hole entropy, viscosity to
entropy ratio, and several other recent developments in
extended phase space [49,51–54,56]. Chaotic dynamics of
test objects and instability of certain orbits, in particular, in
the context of holography and Gauss-Bonnet theories, has
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also been explored before [36,63,64], however, not from
thermodynamic point of view. The extended phase thermo-
dynamics of Gauss-Bonnet black holes in AdS (where the
cosmological constant is taken to be dynamical) and its
connection to the Van der Waals liquid/gas system via PV
criticality is now well studied [57]. Following the study of
chaotic behavior for Reissner-Nordstrom black holes in
AdS, it is important to know whether the behavior found in
[38] is a generic feature of systems exhibiting Van der
Waals type phase transitions. With this motivation, we thus
study chaotic dynamics in Gauss-Bonnet and other higher
derivative theories of gravity, with the inclusion of an
additional parameter, such as the Gauss-Bonnet coupling,
in addition to the charge (considered in [38]) and find that
there appears a new inequality which governs the existence
of chaos. We also show that neutral Gauss-Bonnet black
holes in five and higher dimensions, in contrast, do not
show chaotic behavior under temporal perturbations,
despite the fact that a Van der Waals type phase transition
and PV criticality exists [57]. We generalize this result to
generic black holes systems which have an extended
thermodynamic phase space description and starting from
the equation of state, we find a new relation which can be
used to rule out chaos. However, chaotic behavior under
spatial perturbations in the unstable thermodynamic region
continues to exist for charged, as well as, neutral black
holes. The results are also extended to Lovelock black holes
in various dimensions.
The rest of the paper is organized as follows. In Sec. II,

we recall the definition of Melnikov function and a few
known aspects of thermodynamics of GB black holes in
extended phase space formalism. Section III deals with the
effect of having a small temporal perturbation in the
spinodal region of GB black hole thermodynamic phase
space. We first obtain the analogue Hamiltonian system
starting from the equation of state of the GB black hole,
leading to the determination of homoclinic/heteroclinic
orbits. Using the solutions for these orbits, the Melnikov
function is computed explicitly and its zeros are analyzed,
which give a bound on the parameter γ (following from a
small temporal perturbation, to be introduced in Sec. III) for
the existence of chaotic behavior. This bound is also
discussed for Lovelock black holes in higher dimensions,
and a general condition for ruling out chaos in any black
hole is obtained. In Sec. IV, the effect of a small spatial
perturbation leading to the onset of chaos is discussed for
GB black holes. Section V contains conclusions.

II. MELNIKOV’S METHOD AND CHARGED
BLACK HOLES IN ADS

We start in Sec. II A by summarizing the basic technique
due to Melnikov for studying the onset of chatotic behavior
in Hamiltonian systems. In the following Sec. II B, we
collect the main results on charged Gauss-Bonnet black
holes in AdS. These are then used for the computation of a

Melnikov function in Secs. III and IV, for studying
temporal and spatial perturbations, respectively, in charged
Gauss-Bonnet black holes.

A. Melnikov’s method for perturbation
of Hamiltonian systems

To understand the Melnikov method, it is useful to start
from an evolution equation for a displacement function xðtÞ
as follows:

_x ¼ f0ðxÞ þ ϵf1ðx; tÞ; x ∈ ℜ2n; ð2:1Þ

with the following assumptions. First, ϵ ≪ 1, correspond-
ing to a small perturbation and the function f1ðx; tÞ, is
taken to be periodic in t. Second, the unperturbed system is
Hamiltonian with smooth flow, conserving energy and
contains a fixed point which is a homoclinic orbit1. There
are further nonresonance assumptions on the function
f1ðx; tÞ, which are necessary for smooth period perturba-
tions and are given in the appropriate sections below.
Figure 1 shows sample plots of homoclinic and heteroclinic
orbits. For homoclinic orbits, the stable Ws and unstable
Wu manifolds of the saddle connect to each other at the
hyperbolic fixed point P, while for heteroclinic orbits, the
stable manifold of one saddle joins the unstable manifold of
the other saddle, as seen in Fig. 1. Now, under a temporal/
spatial perturbation of the system, there will be infinite
number of complicated intersection points of stable and
unstable manifolds (as it takes an infinite time to approach a
saddle point). If the unperturbed homoclinic orbit is
considered to be a curve parametrized by time, then at
time t0, the stable and unstable manifolds are separated by a
perpendicular distance (as shown in Fig. 2) given as

dðt0Þ ¼
ϵMðt0Þ

jfðx0ð0ÞÞj
:

Here,Mðt0Þ is known to be the the Melnikov function, and
its explicit form can be shown to be [37–41],

FIG. 1. (a) Homoclinic orbit. (b) Heteroclinic orbit.

1The Melnikov method also works for heteroclinic orbits
connecting two saddle points and irrespective of whether the
solution x0ðtÞ is known analytically or not.
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Mðt0Þ ¼
Z þ∞

−∞
fT0 ðx0ðt − t0ÞÞΩnf1ðx0ðt − t0Þ; tÞdt; ð2:2Þ

with

Ωn¼2 ¼

0
BBB@

0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0

1
CCCA and Ωn¼1 ¼

�
0 1

−1 0

�
:

ð2:3Þ

Here, the subscript 1 and 2 stand for the number of degrees
of freedom appearing in temporal and spatial perturbations,
respectively. Melnikov function, Mðt0Þ, is thus an estimate
of the distance dðt0Þ for the transverse intersections of
stable and unstable orbits. If Mðt0Þ has a simple zero as
a function of t0, then for ϵ > 0 and for a suitably small
value, the stable and unstable manifold of the Hamiltonian
system intersect transversally [37–41]. From the Smale-
Birkhoff theorem [65], the presence of such intersecting

orbits implies that the Poincare map has a invariant
hyperbolic set: a Smale horseshoe, which is an indicator
of chaos [41,66].

B. Charged Gauss-Bonnet black holes in AdS

We start with some preliminaries on the thermodynamics
of black holes in extended phase space and defining the
spinodal region where chaos is found. The Einstein-
Maxwell action with a Gauss-Bonnet term and a cosmo-
logical constant Λ, in d dimensions is as follows:

S ¼ 1

16π

Z
ddx

ffiffiffiffiffiffi
−g

p ½R − 2Λþ αGBðRμνγδRμνγδ

− 4RμνRμν þ R2Þ − 4πFμνFμν�; ð2:4Þ

where αGB is Gauss Bonnet coupling and Λ ¼ − ðd−1Þðd−2Þ
2l2 .

Fμν is the Maxwell field strength, defined as Fμν ¼
∂μAν − ∂νAμ, with the vector potential Aμ. Here, we will
mostly consider the case with αGB ≥ 0. The Gauss-Bonnet
term, proportional to αGB in the above action, is a
topological term in four dimensions, and hence, we take
d ≥ 5. The solution for a static charged GB black hole is
given as

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dΩ2
d−2; ð2:5Þ

where dΩ2
d−2 is a line element of (d − 2) dimensional

maximally symmetric Einstein space with a volume Σk,
where k can be 1,0,-1, corresponding to spherical, Ricci
flat, and hyperbolic topology of a black hole horizon,
respectively. We will mainly deal with horizon of spherical
topology. The general metric function is given by [57]

fðrÞ ¼ kþ r2

2α

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 64παM

ðd − 2ÞΣkrd−1
−

2αQ2

ðd − 2Þðd − 3Þr2d−4 −
64παP

ðd − 1Þðd − 2Þ

s !
: ð2:6Þ

Here, α ¼ ðd − 3Þðd − 4ÞαGB,M and Q are mass and charge of black hole, and the pressure P ¼ − Λ
8π. Notice that we have

considered the cosmological constant to be a thermodynamic variable and replaced it with pressure as is the norm in the
extended thermodynamic phase space approach. The equation of state can be written as [57],

P ¼ d − 2

4r

�
1þ 2kα

r2

�
T −

ðd − 2Þðd − 3Þk
16πr2

−
ðd − 2Þðd − 5Þk2α

16πr4
þ Q2

8πr2d−4
: ð2:7Þ

Thus, the first law in extended phase space is

dM ¼ TdSþΦdQþ VdPþAdα; ð2:8Þ

where S is the entropy, Φ is the electric potential, and A is
conjugate to the GB coupling α. The Hawking temperature

T and the thermodynamic volume V are given, respec-
tively, as

T ¼ 1

4π
f0ðrÞ ¼ 16πPr4=3þ 2kr2 − 2Q2

3r2

4πrðr2 þ 2kαÞ ; ð2:9Þ

and

FIG. 2. Homoclinic orbit: (a) Before perturbation. (b) After
perturbation.
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V ¼ Σkrd−1h

d − 1
: ð2:10Þ

The equation of state in five dimensions is thus,

P ¼ T
v

�
1þ 32αk

9v2

�
−

2k
3πv2

þ 512Q2

729πv6
; ð2:11Þ

where the specific volume v ¼ 4r
d−2 ¼ 4r

3
. The Melnikov

method is well suited for studying chaotic behavior in
the black hole systems which follow the Van der Waals
equation for a phase transition in the extended phase space
formalism. To study the behavior of the system in spinodal
region, the P − v phase diagram is introduced in Fig. 3,
where the labeling of different points is explained below.
Denoting δP ¼ ∂Pðv; T0Þ=∂v and for a temperature T 0
below a critical temperature, the phase space of specific
volume, i.e., v ∈ ½0;∞�), is divided in to three regimes.
½0; α� corresponds to the region where small black holes
exist, i.e., the fluid being in liquid phase; i.e., δP < 0. ½α; β�
corresponds to an unstable region, where small and large
black hole phase coexists, i.e., δP > 0. The two points α
and β are determined by δPjv¼α ¼ δPjv¼β ¼ 0. This is the
main region of interest in the present case, called the
spinodal domain, where a temporal or spatial periodic
perturbation leads to chaos under certain conditions, to be
discussed below. ½β;∞� corresponds to the large black hole
domain, i.e., the fluid being vapor and where δP < 0.

III. TEMPORAL CHAOS IN A
SPINODAL REGION

Here, we study the effect of a small temporally periodic
perturbation, when the system is quenched to the unstable
spinodal region. We first compute the Hamiltonian for the
fluid flow using the black hole equation of state and obtain
the Melnikov function, which contains information about
the onset of chaos. Let us start by considering a specific

volume v0 corresponding to an isotherm T0, which is
fluctuated as follows [38,42]:

T ¼ T0 þ ϵγ cosðωtÞ cosðXÞ with ϵ ≪ 1: ð3:1Þ
The fluid flow is assumed to be taking place along the
x axis in a tube of a unit cross section with a fixed volume,
which contains a total of a mass 2π=q of fluid in a volume
ð2π=qÞv0, where q > 0 is a constant [42]. The fluid is
further assumed to be thermoelastic, slightly vicious and
isotropic with an additional stress following from the van
der Waals-Korteweg theory of capillarity [42,67,68]. Here,
X represents a column of a black hole of a unit cross section
taken between certain points, and the details together with
other assumptions are similar to earlier considerations
given in [38,42]. In the present case, the Hamiltonian is
symbolically given to be [38,42],

H ¼ 1

π

Z
2π

0

�
u2

2
þ F ðv; TÞ þ Aq2

2

�∂v
∂X
�

2
�
dX; ð3:2Þ

where uðx; tÞ ¼ xtðX; tÞ is the velocity of the reference
fluid particle and A is a constant. Here,

F ðv; TÞ ¼ −
Z

P̄ðv; TÞdv; ð3:3Þ

with

P̄ðv; TÞ ¼ Pðv; TÞ dV
dv

¼ 4πQ2

9v3

þ 9

128
π2ð−6kvþ 9Tv2 þ 32kTαÞÞ: ð3:4Þ

p̄ðv; TÞ is an effective equation of state obtained by
replacing v in terms of the thermodynamic volume V ¼
πv3
6
before performing the integral. This is important as the

Gibbs free energy written in terms of thermodynamic
volume remains unchanged during phase transition, and
it is the combination PdV that has the right scaling [58,59].
Following the approach in [38,42], ignoring coefficients of
order Oð1=v4Þ in Taylor series expansion, the Hamiltonian
can be computed to be

Hðx;uÞ¼ u21þu22
2

−
P̄v

2
ðv0;T0Þðx21þx22Þ−

P̄v;v

4
ðv0;T0Þx21x2

−
P̄v;v;v

32
ðv0;T0Þðx41þx42þ4x21x

2
2Þ

− P̄Tðv0;T0Þϵγ cosðωtÞx1
− P̄v;Tðv0;T0Þϵγ cosðωtÞx1x2
−
P̄v;v;T

24
ðv0;T0Þ3ϵγ cosðωtÞx1ðx21þ2x22Þ

þAq2

2
ðx21þ4x22Þ: ð3:5Þ

FIG. 3. P-v diagram for the Gauss-Bonnet AdS black hole.
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Let us note that the above form of the Hamiltonian is quite generic and is valid for any black hole in extended phase space
thermodynamics. For the particular case of charged GB black holes, the relevant Hamiltonian is found to be

Hðx; uÞ ¼ u21 þ u22
2

þ Aq2

2
ðx21 þ 4x22Þ −

9π2

128
ϵγ cosðωtÞð32kαþ 9v20Þx1 −

81π2

128
ϵγ cosðωtÞv0x1x2

−
1

4

�
81π2T0

64
þ 16πQ2

3v50

�
x21x2 −

1

2

�
−
4πQ2

3v40
þ 9π

128
ð−6kþ 18πT0v0Þ

�
ðx21 þ x22Þ

−
81π2

512
ϵγ cosðωtÞx1ðx1 þ 2x22Þ þ

5πQ2

6v60
ðx41 þ x4 þ 4x21x

2
2Þ: ð3:6Þ

Here, ðx1; x2Þ and ðu1; u2Þ are the position and velocities of the first two modes, and the corresponding equations of
motion are

_x1 ¼
∂H2

∂u1 ¼ u1;

_x2 ¼
∂H2

∂u2 ¼ u2; ð3:7Þ

_u1 ¼ −
∂H2

∂x1 − ϵμ0qu1 ¼
9π2

128
ϵγ cosðωtÞð32kαþ 9v20Þ − Aq2x1

þ
�
−
4πQ2

3v40
þ 9π2

128
ð−6kþ 18T0v0Þ

�
x1 þ

81π2

256
ϵγ cosðωtÞx21

þ 81π2

128
ϵγ cosðωtÞv0x2 þ

1

2

�
81π2T0

64
þ 16πQ2

3v50

�
x1x2 þ

81π2

512
ϵγ cosðωtÞðx21 þ 2x22Þ

−
5πQ2

6v60
ð4x31 þ 8x1x22Þ − qϵμ0u1; ð3:8Þ

_u2 ¼ −
∂H2

∂x2 − 4ϵμ0qu2 ¼ þ 81

128
π2ϵγ cosðωtÞv0x1 þ

1

4

�
81π2T0

64
þ 16πQ2

3v50

�
x21 − 4Aq2x2

þ
�
−
4πQ2

3v40
þ 9π2

128
ð−6kþ 18T0v0Þ

�
x2 þ

81π2

128
ϵγ cosðωtÞx1x2 −

5πQ2

6v60
ð4x32 þ 8x21x2Þ − 4qϵμ0u2: ð3:9Þ

Writing z ¼ ðx1; x2; u1; u2ÞT , Eqs. (3.7)–(3.9) can be written in a compact form as _zðtÞ ¼ f0ðzÞ þ ϵf1ðz; tÞ; f1 is periodic in
t, and the unperturbed system with ϵ ¼ 0 is given as _zðtÞ ¼ f0ðzÞ. If we linearize the unperturbed system about z ¼ 0, we
get _zLðtÞ ¼ LzLðtÞ. The matrix L can be computed to be [38,42]

L ¼

0
BBB@

0 0 1 0

0 0 0 1

−Aq2 þ ψ 0 −ϵμ0q 0

0 −4Aq2 þ ψ 0 −4ϵμ0q

1
CCCA; ð3:10Þ

with eigen values,

λ1;2 ¼
−ϵμ0q

2
� 1

2
½ϵ2μ20q2 − 4ðAq2 − ψÞ�12;

λ3;4 ¼ −
4ϵμ0q
2

� ½4ϵ2μ20q2 − ð4Aq2 − ψÞ�12:

Here,

ψ ¼ −
4πQ2

3v40
þ 9π

128
ð−6kþ 18πT0v0Þ:
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Stability of the nodes depends on q2. For q2 < ψ
A, one notes

that λ1 > 0, λ2 < 0 and both are real; while for q2 > ψ
4A,

both the eigen values λ3;4 ¼ − 4ϵμ0q
2

� ι½ð4Aq2 − ðψÞ�12 are
imaginary. Regarding λ1;2, at least one of them has a
positive real part and the other a negative real part, which
signals a saddle point and an unstable equilibrium of the
first node. On the other hand, both λ3;4 have a negative real
part, indicating the existence of a spiral and a stable
equilibrium of the second and higher modes [42]. The
solution of an unperturbed system [39,42], which is known
to exist in the present case for the Hamiltonian given in
Eq. (3.6) is

z0ðtÞ ¼

0
BBB@

C1sechðatÞ
0

C2sechðatÞ tanhðatÞ
0

1
CCCA; ð3:11Þ

where

a ¼ ðψ − Aq2Þ12; C1 ¼
av30
2Q

ffiffiffiffiffiffi
3

5π

r
and C2 ¼ −aC1:

ð3:12Þ
Having established the presence of a homoclinic orbit in
Eq. (3.11) connecting the origin to itself in the unperturbed
system, we now add the small temporal perturbation and
compute the Melnikov function defined earlier in Eq. (2.2)
to be

Mðt0Þ ¼ −
Z þ∞

−∞
½A1γ cosðωtÞχξþ A2γ cosðωtÞξ3χ

− qμ0A3ξ
2χ2�; ð3:13Þ

where χ¼sechðaðt−t0ÞÞ and ξ ¼ tanhðaðt − t0ÞÞ. Further,
A1 ¼ ð9π2kα

4
þ 81π2v2

0

128
ÞC2; A2 ¼ 243π2C2C2

1

512
, and A3 ¼ C2

2. The
evaluation ofMðt0Þ is best done using the residue theorem,
resulting in

Mðt0Þ ¼ Nγω sinðωt0Þ − qμ0I; ð3:14Þ

where

N ¼ A4πsech

�
πω

2a

�
and I ¼ πA3

2a
; ð3:15Þ

with

A4 ¼
C2ð 81128 π2v20 þ 9

4
π2kαÞ

a2
þ C2

1C2ðω2 þ a2Þ
16a4

81π2

64
;

and A3 ¼ C2
2: ð3:16Þ

Mðt0Þ has simple zeros at Nγω sinðωt0Þ − qμ0I ¼ 0,
giving the bound

���� qμ0INγω

���� ≤ 1: ð3:17Þ

Further, Eq. (3.17) translates into a critical value for the
perturbation parameter γ of Eq. (3.1), as follows:

γcritical ¼
� ffiffiffi

3
p

512a5v30q coshðπω2aÞC1μ0

18
ffiffiffi
5

p
Qπ3=2ωð256a2kαþ 9a2C2

1 þ 9ω2C2
1 þ 72a2v20Þ

�
: ð3:18Þ

One notes from Eq. (3.18) that a small perturbation with
γ > γcritical guarantees the transversal intersection of stable
and unstable manifolds, including the possible occurrence
of Smale horseshoe chaotic motion [41,66]. Chaotic
behavior can be noted from Fig. 4, where a numerical
plot of time evolution of equations of motion in (3.7)–(3.9)
is presented (for simplicity, x2, u2 are set to zero). Plots in
Figs. 4(a) and 4(b) show normal trajectories of the system
in the absence and presence of a small perturbation (but, for
γ < γcritical), respectively. Figure 4(c) shows the onset of
chaotic trajectories for γ > γcritical. The value of γ that needs
to be chosen for chaotic behavior is shown as the shaded
region in the Figs. 5(a) and 5(b), which essentially
correspond to the plots of Eq. (3.18). Wherever not
mentioned, all the parameters are taken to be unity, without
a loss of generality. It is interesting to note from Eq. (3.11),
that the homoclinic orbit does not exist for Q ¼ 0, as the
nonlinear term leading to such an orbit is absent from
the Hamiltonian in Eq. (3.6). The nonlinear term in the

Hamiltonian in Eq. (3.6) can be traced back to the
P̄v;v;vðv0; T0Þ term in Eq. (3.5). As seen from Eq. (3.4),
this term vanishes for Q ¼ 0. Thus, we conclude that for
neutral Gauss-Bonnet black holes, chaos under temporal
perturbations does not occur, unless the black hole carries
charge. Noting the importance of the nonvanishing nature
of P̄v;v;vðv0; T0Þ, the above results can be generalized to
more general black hole systems by asking: what is the
minimum power of v that needs to be present in the
equation of state for nonlinearity to appear in the Hamil-
tonian and lead to chaos? To answer this, let us assume a
relation such as P ∝ 1=vn, for a generic black hole in
extended phase thermodynamics, where n is the largest
power of v that occurs in a given black hole equation of
state2 in a general dimension d. The condition to rule out

2This assumption is valid for most of the static black holes as
the equation of state contains polynomials of v.
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nonlinearity in the Hamiltonian in Eq. (3.5) and the absence
of chaotic behavior is that P̄v;v;vðv0; T0Þ ¼ 0. Solving this
equation, we get a relation between n and d as

d ¼ 2; n > 0; d > i; n ¼ d − i for i ¼ 3; 4; 5:

ð3:19Þ
Let us note that the conditions in Eq. (3.19) are obtained for
any generic black hole in AdS with extended phase

thermodynamic description and can be used to rule out
chaos based on the equation of state itself. For instance, as
seen from Eq. (2.7), the largest power of v in the equation
of state for a neutral Gauss-Bonnet black hole in a general
dimension d is n ¼ 4. Either one of the conditions, given in
Eq. (3.19), is always satisfied for any d > 4 for n ¼ 4. We
thus conclude that chaotic behavior under temporal per-
turbations would be absent for neutral Gauss-Bonnet black
holes in any dimension. On the other hand, for charged GB

FIG. 5. Shaded region denotes the onset of chaotic motion: v0 ¼ 2.75, T0 ¼ 0.01 (a) γ vs α plot for charged GB black holes in d ¼ 5,
for Q ¼ 1, (b) γ vs Q plot for charged GB black holes in d ¼ 5 for α ¼ 1.

FIG. 4. Plots show time evolution in the phase space of velocity vs displacement for (a) ϵ ¼ 0, (b) ϵ ≠ 0,γ < γcritical, (c) ϵ ≠ 0,
γ > γcritical.
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black holes, there is a term in the equation of state in
Eq. (2.7), which contains higher powers of v, and it can be
checked that the conditions in Eq. (3.19) are not satisfied in
any dimension. Thus, chaotic behavior is possible, once the
perturbation parameters satisfy the constraints put forward
in Eq. (3.18). These differences between neutral and
charged black holes should be investigated further for
better understanding, especially, because the spinodal

region in the PV diagram continues to exist, irrespective
of the presence of charge Q or not.
We now extend the results obtained above to the more

general case of Lovelock black holes in higher dimen-
sions and check for chaotic behavior. The details of the
action and PV critical behavior are discussed in detail in
[61,62], and we only need to recall the equation of state
given as

P ¼ T
v
þ 32kαT
ðd − 2Þ2v3 þ

256k2Tα2

ðd − 2Þ4v5 −
ðd − 3Þk
ðd − 2Þπv2 −

16k2ðd − 5Þα
ðd − 2Þ3πv4 −

256k3ðd − 7Þα2
3ðd − 2Þ5πv6 þ 16d−3ðd − 3ÞQ2

πðd − 2Þð2d−5Þvð2d−4Þ : ð3:20Þ

It is known that a Van der Waals type phase transition exists
in these theories, together with a presence of a spinodal
unstable region. The procedure discussed in this section can
be straightforwardly extended to the present case in all
dimensions, starting from the equation of state in Eq. (3.20)
in general dimensions. Applying the condition in Eq. (3.19)
to the equation of state in Eq. (3.20) above, chaos can be
ruled out for neutral third order Lovelock black holes
starting from the dimension d ¼ 7. For the charged case,
however, the nonlinear terms following from the relevant
Hamiltonian in Eq. (3.5) will be present, and we see below
that chaotic behavior above a certain value of γ persists.
We have computed analytically the expressions for the
Hamiltonian, Melnikov functions, and associated bound on
γ, but they are cumbersome and otherwise not very
illuminating. We suppress the expressions and present a
plot of γ vs α and Q in seven dimensions in Fig. 6, where
the shaded parts show the allowed regions of γ for which
temporal chaos will be present.
Now, let us comment on the chaotic behavior in the case

of RN AdS black holes in general dimensions. In this case,
the equation of state is given as [69]

P ¼ T
v
−

d − 3

ðd − 2Þπv2 þ
ðd − 3Þ24ðd−3ÞQ2

ðd − 2Þ2d−5πv2ðd−2Þ : ð3:21Þ

It can be checked explicitly, that none of the conditions
in Eq. (3.19) are satisfied in any dimension, and hence,
chaos will exist beyond a certain value of the perturbation
parameter γ in RN AdS black holes in any dimension. As
the Gauss-Bonnet terms are total derivative terms in four
dimensions, we can start comparing with the RN AdS
case (by setting α ¼ 0), starting from five dimensions. In
fact, setting α ¼ 0 in Eq. (3.18), gives the limit on γ,
beyond which chaos will exist in RN AdS black holes in
five dimensions. The corresponding result in four dimen-
sions was explicitly computed in [38]. Thus, the con-
clusion that chaotic behavior should be present in the
four dimensional example of RN AdS black holes,
studied in [38], is in conformity with our general
condition in Eq. (3.19). Furthermore, as α increases, it
can be noted from Fig. 5(a), that the GB system becomes
chaotic for even smaller values of the perturbation
parameter γ.

FIG. 6. Charged Lovelock black holes in d ¼ 7, with v0 ¼ 1.44, T0 ¼ 0.1: Plots of (a) γ vs α for Q ¼ 2 and (b) γ vs Q for α ¼ 1.
Values of γ in the shaded region lead to onset of chaotic motion.

SANDIP MAHISH and CHANDRASEKHAR BHAMIDIPATI PHYS. REV. D 99, 106012 (2019)

106012-8



To conclude this section, we note that the presence of
charge Q is necessary for triggering chaos under temporal
perturbations in the extended thermodynamic phase space
of black hole systems.

IV. SPATIAL PERTURBATIONS
AND CHAOS

In this section, our aim is to study the effect of a
small spatially periodic perturbation in the equilibrium
state solutions about a subcritical temperature given as
follows [42]:

T ¼ T0 þ ϵ cosðqxÞ: ð4:1Þ

Korteweig’s theory gives the Piola stress tensor as [42]

τ ¼ −Pðv; TÞ − Av00; ð4:2Þ

where 0 stands for d
dx. Pðv; TÞ is supplied by the GB black

hole equation of state from Eq. (2.11) and T is absolute

temperature with A > 0. For a zero body force balance of
linear momentum, one sets τ0 ¼ 0, giving τ ¼ B ¼
constant. Thus, B is the ambient pressure as jxj → ∞;
using this, Eq. (4.2) yields

v00 þ Pðv; TÞ ¼ B: ð4:3Þ

Let us start by discussing the unperturbed system, where
one starts by setting T ¼ T0 in Eq. (4.3). The fixed points
of the system in Eq. (4.3) can be found, which are the
specific volumes corresponding to ambient pressures B for
different given temperatures. We choose a set of sample
temperatures, 0.8Tc and 0.7TC, and call the corresponding
fixed points as ðv1; v2; v3Þ and ðw1; w2; w3Þ. For the case of
T0 ¼ 0.8Tc, these are shown in Fig. 7, with an analogous
construction assumed at T0 ¼ 0.7Tc. Let us note that the
Maxwell equal area construction for Gauss Bonnet black
holes done in [60] is useful while plotting Fig. 7. Now, from
Eq. (4.3) and Fig. 7, one infers three different kinds of
orbits in the v0 − v phase plane.

(i) Case-1: In this case, we choose the pressure in the
range Pðv1; T0Þ < B < Pðβ; T0Þ and get a homo-
clinic orbit connecting a saddle point v3 to itself.
Corresponding phase orbits are shown in Figs. 8(a)
and 8(b) for charged and neutral black holes,
respectively.

(ii) Case-2: Choosing the pressure in the range
Pðα; T0Þ < B < Pðv2; T0Þ results in a homoclinic
orbit connecting a saddle point v1 to itself, as in
case-1 above. Corresponding phase orbits are pre-
sented in Figs. 9(a) and 9(b) for charged and neutral
black holes, respectively.

(iii) Case-3: In this case, the pressure is taken such that
Pðv1; T0Þ ¼ B ¼ Pðv2; T0Þ; this results in a hetero-
clinic orbit connecting v1 with v3. Corresponding
phase orbits are shown in Figs. 10(a) and 10(b) for
charged and neutral black holes, respectively.

Including a small spatial perturbation given in Eq. (4.1), we
can rewrite the Eq. (4.3) for perturbed system as follows:

FIG. 7. Charged GB Maxwell equal area construction for
Q ¼ 1, α ¼ 1, k ¼ 1, T ¼ 0.8Tc.

FIG. 8. Case1: (a) Charged Gauss-Bonnet with v1 ¼ 1.68107, v2 ¼ 4.77519, v3 ¼ 10.9746. (b) Neutral Gauss-Bonnet with
v1 ¼ 0.849379, v2 ¼ 2.97856, v3 ¼ 9.04772.
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v00 ¼ B − Pðv; T0Þ −
ϵ cosðqxÞ

v
: ð4:4Þ

Melnikov function from Eq. (2.2) written suitably for
spatially perturbed systems is

Mðx0Þ ¼
Z

∞

−∞
fðzðx − x0ÞÞΩn¼1gðzðx − x0Þ; xÞdx: ð4:5Þ

Setting v0 ¼ h, Eq. (4.4) converts to a set of first order
equations as

v0 ¼ h

h0 ¼ B − Pðv; T0Þ −
ϵ cosðqxÞ

v
: ð4:6Þ

As in the previous section, writing general solutions for
(homoclinic or heteroclinic) orbit as

zðxÞ ¼
�

v0ðx − x0Þ
h0ðx − x0Þ;

�
; ð4:7Þ

and using them in Eq. (4.4), one can write fðzðx − X0ÞÞ and
gðzðx − x0Þ; xÞ as

fðzðx − X0ÞÞ ¼
�

h0ðx − x0Þ
B − Pðv0ðx − x0Þ; T0Þ

�
;

gðzðx − X0Þ; xÞ ¼
�

0

− cosðq;xÞ
v0ðx−x0Þ

�
: ð4:8Þ

Using these in Eq. (4.5), Melnikov function is finally

Mðx0Þ ¼ −
Z þ∞

−∞

h0ðx − x0Þ cosðqxÞ
v0ðx − x0Þ

dx:

Changing variables to R ¼ x − x0, the Melnikov function
becomes

Mðx0Þ ¼ −L cosðqx0Þ þW sinðqx0Þ;
with

L ¼
Z

∞

−∞

h0ðRÞ cosðqRÞ
v0ðRÞ

dR;

W ¼
Z

∞

−∞

h0ðRÞ sinðqRÞ
v0ðRÞ

dR: ð4:9Þ

From the structure of the Melnikov function and following
the arguments in [42], Mðx0Þ always possesses simple

FIG. 9. Case2: (a) Charged Gauss-Bonnet with v1 ¼ 1.73389, v2 ¼ 3.51509, v3 ¼ 28.2263. (b) Neutral Gauss-Bonnet with
v1 ¼ 0.862346, v2 ¼ 2.47978, v3 ¼ 16.4746.

FIG. 10. Case3: (a) Charged Gauss-Bonnet with v1 ¼ 1.69635, v2 ¼ 4.20704, v3 ¼ 14.593. (b) Neutral Gauss-Bonnet with
v1 ¼ 0.855689, v2 ¼ 2.68773, v3 ¼ 12.0659.
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zeros, signaling chaos. The results of this section can be
carried over to charged Lovelock black holes in various
dimensions, and we have checked that the general features
found in this section continue to exist, namely the system
exhibits homoclinic orbits for the cases-1 and 2 discussed
above; for case-3, the system has homoclinic as well as
heteroclinic orbits. The presence of chaos under spatial
perturbations is found in all three cases in Lovelock black
holes in higher dimensions, irrespective of whether the
charge is present or not, unlike the case of temporal
perturbations discussed in last section.

V. CONCLUSIONS

In this work, we studied the emergence of chaotic
behavior under temporal and spatial perturbations in the
spinodal region of charged and neutral Gauss-Bonnet black
holes in extended thermodynamic phase space. The per-
turbed Hamiltonian system corresponding to the motion of
the fluid in the spinodal region, following from the black
hole equation of state, was obtained and shown to possess
nonlinear terms giving homoclinic/heteroclinic orbits in
phase space. Analysis of the zeroes of the appropriate
Melnikov functions gives information about the onset of
chaos in the thermodynamic phase space. As regards to
temporal perturbations, chaotic behavior is found to be
present in charged GB black holes in five dimensions. The
zeros of the Melnikov function give a bound on the
perturbation parameter for chaos to exist. This was com-
puted analytically, such as the one in Eq. (3.18) and
depends on the charge Q and the GB coupling α. It is
important to note that in this paper, the computations were
performed explicitly in five dimensions, as the Gauss-
Bonnet term is a total derivative in four dimensions and
does not effect the black hole solution. Setting the GB
coupling α ¼ 0 in Eq. (3.18), gives us the bound on γ for
chaos to exist, for the corresponding RNAdS black holes in
five dimensions. These general conclusions hold true in any
dimension, based on the condition in Eq. (3.19). For
instance, based on Eqs. (3.19) and (3.21), it can be said
that in four dimensions, chaotic behavior should exist
beyond a certain value of γ. This result is in conformity

with the analysis in [38], where the explicit value of γ was
computed in four dimensions. When α is nonzero, we find
that the onset of chaotic behavior occurs for even lower
values of the temporal perturbation parameter γ, showing
the sensitivity of chaotic behavior in the presence of GB
terms. Intriguingly, the chaotic behavior under temporal
perturbations is not present for neutral GB and Lovelock
black holes in general dimensions, which needs to be
investigated further. A general condition was derived in
Eq. (3.19), which can be used to rule out chaos under
temporal perturbations in general dimensions by analyzing
the equation of state provided by the black hole. In every
dimension, for chaos to exist, the highest power of v in the
equation of state cannot be lower than a certain value [as
governed by Eq. (3.19)]. The reason for existence of
chaotic behavior in charged black holes is that the term
dependent on the charge Q in the black hole equation of
state, increases quadratically with v, as the number of
dimensions increases. This can be seen from the last term in
the GB and RN AdS equations of state given in Eqs. (2.7)
and (3.21), respectively. Thus, chaotic behavior crucially
depends on the number of dimensions as well as the
equation of state of the black hole.
Under spatial perturbations, the existence of homoclinic

and heteroclinic orbits is found to exist in charged as well
as neutral GB black holes, and the phase space plots were
given. The extension of results to Lovelock black holes in
higher dimensions was discussed. It would be interesting to
understand the holographic aspects of these chaotic beha-
viors, particularly found in the unstable small/large black
hole phase transition domain, not just in GB black holes,
but also in other charged and neutral black holes in AdS,
considering other stringy corrections. More importantly,
the absence of chaos in neutral black holes needs to be
understood better.
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