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A holographic bottom-up model used in studying the superconducting system is applied to search for the
color superconducting phase of supersymmetric Yang-Mills theory with quarks. We apply the probe
analysis of this model to the supersymmetric Yang-Mills theory in both the confinement and the
deconfinement phases. In this analysis, we find the color superconductivity in both phases when the baryon
chemical potential exceeds a certain critical value. This result implies that, above the critical chemical
potential, a color nonsinglet diquark operator, namely the Cooper pair, has its vacuum expectation value
even in the confinement phase. In order to improve this peculiar situation, we proceed with the analysis by
taking account of the full backreaction from the probe. As a result, the color superconducting phase, which
is observed in the probe approximation, disappears in both the confinement and the deconfinement phases
when parameters of the theory are set within their reasonable values.
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I. INTRODUCTION

The color superconducting (CSC) phase has been
expected in QCD at the finite baryon chemical potential,
but it is difficult to show it (see e.g., the review [1]). The
numerical simulation is also difficult due to the complex
Euclidean action problem known as the sign problem. On
the one hand, the gauge/gravity duality [2–4] has been used
as a powerful method to clarify many properties related to
QCD in the strong coupling region. As for the CSC,
however, the holographic method is not clear to be useful.
The reason is that we need to introduce a color nonsinglet
scalar field, which provides us the vacuum expectation
value (VEV) of the color nonsinglet operator in the CSC
phase. In the top-down holographic approaches, the scalar
field introduced in both the bulk and the probe branes
should be a color singlet.
On the other hand, from the viewpoint of the bottom-up

approach, a holographic model for the superconducting
phase has been studied by introducing a Uð1Þ gauge field
and a charged scalar field in the bulk [5–8]. The important

point in applying them as the holographic CSC model is
that the charge of the Uð1Þ gauge field is regarded as the
baryon number [9,10]. Namely, theUð1Þ gauge field is dual
to the baryon number current, density, and chemical
potential for the quarks of the SUðNcÞ Yang-Mills theory.
And, the charged scalar is dual to a composite field operator
with a finite quark number. In the model, they are not
introduced through the probe D-branes but are given by the
bulk action. Although it is not known how this model is
lifted up to the ten-dimensional superstring theory, we call
the model considered here the holographic supersymmetric
Yang-Mills (SYM) theory by respecting the basic gauge
theory dual to the gravity in the AdS5.
In Ref. [9], the matter part, the system consisting of a

Uð1Þ gauge field and a charged scalar field, is treated as the
probe as in Ref. [6]. In other words, any backreaction from
the matter part to the bulk configuration is neglected.1 Then
the authors of Ref. [9] performed the analysis in the high
temperature deconfinement phase of the SYM theory,
which is dual to the five-dimensional anti–de Sitter
(AdS)–Schwarzschild background, and found the CSC
phase above a certain chemical potential.
In Ref. [10], on the other hand, the backreaction from

the matter part to the bulk is fully taken into account. Due to
the backreaction from the Uð1Þ gauge field, the high
temperature deconfinement phase is described by the
Reissner-Nordstrom charged black hole in the gravity side.
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1This approximation would be justified for the case of a large
charge of the scalar; however, we do not impose this restriction
here.
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In Ref. [10], however, a color neutral scalar field is chosen
to study the color superconductor. Furthermore, the con-
formal dimension of the scalar is supposed to be smaller
than that of the diquark operator. As a result of these special
settings, at a very low temperature, a phase transition to the
CSC phase has been observed.
In this paper, taking the idea and technique of

Refs. [6,9,10] into account, we proceed with the analysis
of the bottom-up model in order to get more profound
knowledge about the CSC phase in the SYM theory. At
first, we apply a simple probe analysis, in which the matter
part is treated as a probe, to the background for both the
confinement and the deconfinement phases. In this analy-
sis, the CSC phase is confirmed by the nonvanishing VEV
of a color nonsinglet diquark operator, namely the Cooper
pair. As a result, we find the CSC phase in both the
deconfinement and the confinement backgrounds. At a
glance, it seems strange that the VEVof a color nonsinglet
operator exists in the confinement phase. This may indicate
the breakdown of the simple probe approximation. The
probe approximation is available for a large scalar charge,
which is supposed as q ¼ 2=Nc in this paper, and the
holographic approach is useful for large Nc. Then the two
methods are not compatible. We therefore cannot trust the
results obtained from the probe approximation.
In order to improve the probe approximation, it is natural

to consider the vacuum solutions which are given by
solving the Einstein-Maxwell equation of the system with
the Einstein-Hilbert action and theUð1Þ gauge field part. In
this case, the phase diagram in the μ-T plane should be
modified to the chemical potential dependent form.2 This
modification is equivalently obtained by taking account of
the full backreaction from the probe action as shown in
Ref. [10]. Thus, as the next step, we proceed with the
analysis based on this modification.
In the next section, we set up our holographic model and

make a probe analysis to find the CSC phase in SYM
theory. In the resultant phase diagram obtained by the probe
approximation, we find a result which is unacceptable from
the viewpoint of QCD. In Sec. III, we continue the analysis
by taking account of the backreaction to improve the probe
approximation, and we search the CSC phase in the
improved background. Summary and discussions are given
in the final section.

II. A BOTTOM-UP MODEL
AND A PROBE APPROACH

We consider a bottom-up holographic dual for the
SYM theory. It is given by the following gravitational
theory [5,6]:

S ¼
Z

ddþ1x
ffiffiffiffiffiffi
−g

p
L; ð2:1Þ

L ¼ LGravity þ LCSC; ð2:2Þ

LGravity ¼ Rþ dðd − 1Þ
L2

; ð2:3Þ

LCSC ¼ −
1

4
F2 − jDμψ j2 −m2jψ j2; ð2:4Þ

Fμν ¼ ∂μAν − ∂νAμ; Dμψ ¼ ð∂μ − iqAμÞψ : ð2:5Þ

It describes (dþ 1)-dimensional gravity coupled to a Uð1Þ
gauge field, Aμ, and a charged scalar field, ψ . The charge q
denotes the baryon number of the scalar ψ, which is
considered to be dual to the diquark operator in this paper,
and for the moment it is chosen that q ¼ 2=3.3 The mass m
is given to reproduce the correct conformal dimension of
the diquark operator dual to the scalar field ψ . Here we put
1=2κ26 ¼ 1 and consider the case of d ¼ 5 hereafter.
The above holographic model, previously, has been

considered to be dual to the superconductor of the electric
charge [5,6] and of the R-charge [8]. And it is recently
extended to a theory dual to the color superconductor in
[9,10]. However, it is unknown how this theory is dual to
the SYM theory and can be related to the ten-dimensional
string theory. In this paper, we proceed with the analysis of
this model by supposing that this is dual to the SYM theory
to study the existence of the CSC phase.

Bulk and probe
Here, LCSC is considered as the probe to see the

condensation of the colored operator which is expressed
in terms of the scalar field ψ . Therefore, the vacuum of the
dual SYM theory is given by the solution of the Einstein
equation of the action,

SGravity ¼
Z

ddþ1x
ffiffiffiffiffiffi
−g

p �
Rþ 20

L2

�
; ð2:6Þ

where LCSC is neglected. Hereafter, we put L ¼ 1. After
giving the vacuum of the SYM theory by solving the above
action, the equations of motion of the probe actionLCSC are
solved without changing the background configuration
given by SGravity.
In the present case, we could find two solutions of the

Einstein equation (2.6). They represent a low temperature
confinement phase and a high temperature deconfinement
one. For each phase, we study the superconducting phase
by applying the probe method mentioned above.

2In Ref. [8], in a context of the R-charge superconductor, an
analysis has been done based on the similar background
configuration.

3In the model, it should be taken as q ¼ 2=Nc. In this section,
we suppose that we are considering the dual theory as QCD with
the SUð3Þ gauge group.
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In LCSC given above, the charge q is factored out by the
rescaling, qAμ → Aμ and qψ → ψ , as follows:

LCSC →
1

q2
L̃CSC; ð2:7Þ

where L̃CSC is independent of q. This means that the probe
approximation for LCSC would be justified for the case of
large q. Then we find that the probe approximation for
q ¼ 2=3 is not good. However, we perform the analysis in
this approximation to see what kind of results are obtained.

A. High temperature deconfinement phase

First, we consider the high temperature deconfinement
phase, where the temperature is given by

T ¼ 5r0
4π

: ð2:8Þ

The solution is known as the AdS–Schwarzschild solution,
which is written as

ds2 ¼ r2ð−fðrÞdt2 þ
X3
i¼1

ðdxiÞ2 þ dw2Þ þ dr2

r2fðrÞ ; ð2:9Þ

where

fðrÞ ¼ 1 −
�
r0
r

�
5

; r0 ¼
2

5Rw
: ð2:10Þ

Here the Sherk-Schwartz compactification is imposed in
the direction w, and then its circle length is taken as 2πRw.

Equations of probe LCSC
In this case the equations of motion are given as

ψ 00 þ
�
6

r
þ f0

f

�
ψ 0 þ 1

r2f

�
q2ϕ2

r2f
−m2

�
ψ ¼ 0; ð2:11Þ

ϕ00 þ 4

r
ϕ0 −

2q2ψ2

r2f
ϕ ¼ 0; ð2:12Þ

where we assumed A ¼ Aμdxμ ¼ ϕðrÞdt and ψ ¼ ψðrÞ.
The conformal dimension of the scalar, say Δ, is related

to the mass as

Δ ¼ 1

2

�
dþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ 4m2

p �
: ð2:13Þ

Here we suppose that the scalar is dual to the Cooper pair,
so the dimension is expected to be Δ ¼ 2 × d−1

2
¼ d − 1,

which is realized for m2 ¼ −ðd − 1Þ. We notice here d ¼ 5

and m2 ¼ −4. Then the asymptotic forms of ϕ and ψ are
expected as

ϕ ¼ μ −
d̄
r3

þ � � � ; ψ ¼ JC
r
þ C
r4

þ � � � ðr → ∞Þ;
ð2:14Þ

where μ, d̄, JC, and C denote the chemical potential, charge
density, source, and VEV of the dual operator of ψ ,
respectively.
These equations are essentially equivalent to the one

studied in Ref. [9]. The difference is in the dimension of the
YM theory. In our case, the boundary YM theory is defined
in (4þ 1)-dimensional spacetime with one compactified
space (w). The effective space dimension is however three,
so there is no essential difference. We adopt this model to
analyze the confinement phase in a way parallel to Ref. [9],
in which the vacuum solution is obtained by the double
Wick rotation of (2.9) as shown below.
In order to avoid the singularity at the horizon (r0), the

boundary conditions are given as

ϕðr0Þ ¼ 0; ψ 0ðr0Þ ¼ −
4

5r0
ψðr0Þ; ð2:15Þ

and the temperature is given by (2.8).
In this case, we could find the color superconducting

phase for μ > μc ≃ 6.9.4 This is assured by the nontrivial
solution of ψ for JC ¼ 0 and C ≠ 0. As pointed out in
Ref. [9], there are plural solutions (node ¼ 0; 1; 2;…) for
large μ. The solutions for node ≥ 1 represent metastable
vacua of the theory. The solution of the lowest vacuum
(node ¼ 0) is shown in Fig. 1.
As for the charge density, we can see that it has the

singularity at the transition point. Based on Refs. [11,12],
such first-order singularity (shape bend) can be understood
as the singularity propagation; it means that discontinuities
appearing in a particular order parameter can be propagated
via the entropy density and/or the charge density. Thus, the
charge density also has the same order of the singularity.

B. Low temperature confinement phase

The low temperature solution of (2.6) is known as the
AdS soliton solution [13,14], and it is obtained as

ds2 ¼ r2ðημνdxμdxν þ fðrÞdw2Þ þ dr2

r2fðrÞ ; ð2:16Þ

where

4The transition line between the normal phase (b) and the color
superconducting phase (d) for this case is shown in the phase
diagram in the μ-T plane, which appears later in Fig. 3.
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fðrÞ ¼ 1 −
�
r0
r

�
5

; r0 ¼
2

5Rw
; ð2:17Þ

and 2πRw denotes the compactified length of w.
This configuration is realized for T ≤ 5r0

4π , and the
vacuum state is dual to the confinement phase. Namely,
the line T ¼ 5r0

4π denotes the Hawking-Page transition line.
Under the configuration (2.16), we find a linear potential
between quark and antiquark by evaluating the Wilson
loop. In this case, we suppose that the condensed scalar
should be a color singlet and the charge density d̄ is also
constructed by the color singlet. This supposition would be
correct when the chemical potential is not taken into
account in the probe action since (2.16) is independent
of μ.
In the present case, however, the chemical potential and

the charge density are contained in the probe. Therefore,
the chemical potential cannot affect the confinement back-
ground. This implies that it may be expected to find the
phase transition to the CSC phase by solving the LCSC even
in the case of (2.16). So it is very important to apply the
model to the background (2.16).

Equations of probe LCSC
Equations of motion of Aμ and ψ are obtained by

assuming again A ¼ Aμdxμ ¼ ϕðrÞdt and ψ ¼ ψðrÞ:

ψ 00 þ
�
6

r
þ f0

f

�
ψ 0 þ 1

r2f

�
q2ϕ2

r2
−m2

�
ψ ¼ 0; ð2:18Þ

ϕ00 þ
�
4

r
þ f0

f

�
ϕ0 −

2q2ψ2

r2f
ϕ ¼ 0: ð2:19Þ

Since fðrÞ vanishes at r ¼ r0, Eqs. (2.18) and (2.19)
should be solved under the following conditions:

ϕ0ðr0Þ ¼
2q2ψ2ðr0Þ

5r0
ϕðr0Þ;

ψ 0ðr0Þ ¼ −
1

5r0

�
q2ϕ2ðr0Þ

r20
−m2

�
ψðr0Þ: ð2:20Þ

Here, we notice the boundary condition (2.20) allows the
solution of ϕðr0Þ ≠ 0.
As expected, we could find nontrivial solutions of ψ with

JC ¼ 0 and C ≠ 0 for μ > μconfc ≃ 4.7 with r0 ¼ 1. For
such nontrivial solutions, the μ dependence of d̄ and C in
the confined phase are shown in Fig. 2.
From the present analysis, we can draw the phase

diagram in the μ-T plane, as shown by Fig. 3. We notice
the existence of the critical line between the regions 3(a)
and 3(c). As a result, there appear two superconducting
phases 3(c) and 3(d). It is an interesting point how they are
different from each other.
In the phase 3(c), the bulk represents the confinement

phase. This phase would not be compatible with the
existence of the VEV of the diquark operator and of the
finite charge density. The reason why the CSC phase
appears in the confinement bulk background may be
reduced to the probe approximation used in this section.
As explained above through Eq. (2.7), which is given by the
rescaling qAμ → Aμ and qψ → ψ , the probe approximation
is useful for large q. However, qð¼ 2=NcÞ should be very
small in the present case since the holographic approach is
available for large Nc.
An alternative idea to support the probe approximation is

to suppress L̃CSC by a small number of the flavor branes,
Nf, which would appear as the prefactor as

L ¼ LGravity þ
Nf

q2
L̃CSC: ð2:21Þ
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FIG. 1. The condensation (C) and the charge density (d̄) vs μ in the deconfinement phase at T ¼ 5=ð4πÞ.
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Then we can say the validity of the probe approximation for
Nf=q2 ≪ 1. This is, however, impossible since Nf > 1.
Therefore, it seems difficult to support the validity of the
probe approximation. Then, we should improve the probe
approximation by considering the backreaction from the
terms of LCSC as performed in the next section.

III. SUPERCONDUCTOR IN THE BACKREACTED
BACKGROUND

In the previous section, we find a phase transition to a
color superconducting phase even in the confinement

background of the theory. Why has such a transition been
observed in the confinement vacuum?
As mentioned above, this is because of the application of

the probe approximation without any backreaction from the
matter field part of the model. The superconducting phase
is observed in the large μ region, μ ≥ μc. We expect that, in
this region, the confinement force is suppressed by the
effect of the chemical potential and the charge density so
that the deconfinement phase might be realized. In order to
make the situation clear, we should take account of the
backreaction of the probe action to the gravity part. This is
performed here according to the way given in Ref. [10].
At first, the basic background configuration is set by

taking account of the Uð1Þ gauge part into the gravity part.
In other words, the backreaction from the Uð1Þ gauge part
to the bulk gravity is fully considered since it becomes
important in the region, μ ≥ μc.
Now, we set the bulk background configuration by

solving the following action [15]:

SBulk ¼
Z

d6x
ffiffiffiffiffiffi
−g

p �
Rþ 20

L2
−
1

4
F2

�
: ð3:1Þ

The action leads to the following three solutions:
(1) AdS soliton (confinement phase)

The solution is given by the background metric
(2.16), (2.17), and the constant potential,

A0 ¼ ϕ ¼ μ: ð3:2Þ

(2) AdS–Schwarzschild (deconfinement phase)
The solution with the background (2.9) is com-

patible with the same type of a constant potential
as (3.2).

a

b

c

d

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

1.2

T

FIG. 3. Phase diagram given by the probe approximation for
q ¼ 2=3, m2 ¼ −4. The regions (b) and (d) represent the normal
and CSC phases for the AdS–Schwarzschild deconfinement
background. The critical line between (b) and (d) is given by
T ¼ 0.058μ. For the AdS soliton confinement background, (a)
and (c) represent the normal and CSC phases with the critical line
μ ¼ 4.7 which is independent of T.
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FIG. 2. The condensation (C) and the charge density (d̄) vs μ in the confinement phase at T ¼ 5=ð4πÞ.
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(3) Reissner-Nordstrom (RN) (deconfinement phase)
By considering the Uð1Þ potential A0 with a finite

charge density, a charged black hole solution (see,
e.g., Refs. [15,16]) is obtained:5

ds2 ¼ r2
�
−gðrÞdt2 þ

X3
i¼1

ðdxiÞ2 þ dw2

�
þ dr2

r2gðrÞ ;

ð3:3Þ

gðrÞ ¼ 1 −
�
1þ 3μ2

8r2þ

��
rþ
r

�
5

þ 3μ2r6þ
8r8

; ð3:4Þ

A0 ¼ ϕ ¼ μ

�
1 −

r3þ
r3

�
; ð3:5Þ

where rþ denotes the horizon of the charged
black hole, and the Hawking temperature is
given by

T ¼ 1

4π

�
5rþ −

9μ2

8rþ

�
: ð3:6Þ

Here we notice the setting of the parameter q. As
mentioned above, by rescaling as qAμ → Aμ and qψ → ψ ,
Eq. (2.2) is rewritten by Eq. (2.7). Then the equations of
motion derived from L̃CSC for the rescaled ϕ and ψ are
independent of q. However, q appears in the equations of
motion when we take into account the backreaction to the
background determined by gravity since q remains as the

prefactor of L̃CSC. Due to this fact, in this section, we solve
the equations without any rescaling mentioned above.

A. Phase diagram before adding scalar

Before adding the scalar field, we compare the free
energies of three types of vacua which arise from the
background configurations, those are AdS black hole (BH),
AdS soliton (Soliton), and Reissner-Nordstrom black hole
(RN) given by (2.9), (2.16), and (3.3), respectively.
Action densities for the three solutions are given as

S1=V3 ≡ SðSolitonÞ=V3 ¼ −r50
4π

5r0

1

T
; ð3:7Þ

S2=V3 ≡ SðBHÞ=V3 ¼ −r50

�
4π

5r0

�
2

; ð3:8Þ

S3=V3 ≡ SðRNÞ=V3 ¼ −r5þ

�
1þ 3μ2

8r2þ

�
4π

5r0

1

T
; ð3:9Þ

where V3 ¼
R
dxdydz. We notice that the temperature T

for RN and BH are given by (3.6) and (2.8), respectively. In
the μ-T plane, we find the phase diagram by choosing the
lowest action density among the above three. We find that
the solution of BH is not realized when the solution of RN
is added to compare.
The difference of the actions are written as

ðSi − SjÞ=V3 ¼ NijðX5
ij − Y5

ijÞ; ð3:10Þ

where i and j run from 1 to 3, and

FIG. 4. Comparison among the actions (S2 vs S3 and S1 vs S3).

5The notation is taken following Ref. [10].
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N23 ¼ N13 ¼
4π

5r0T
; X13 ¼ X23 ¼ rþ

�
1þ 3μ2

8r2þ

�
1=5

;

ð3:11Þ

Y23 ¼ r0

�
4πT
5r0

�
1=5

; Y13 ¼ r0 ¼ 1: ð3:12Þ

Then, which action is larger is found by the plots of
Xij − Yij, which are shown in Fig. 4.
In the left-hand side of Fig. 4, there is a region where

S2 < S3. However, we easily find S2 > S1 in this region. In
fact, S1 < S2 for T < 5r0=4π at any μ. Then the phase
diagram is constructed by the phase represented by Soliton
and RN backgrounds, and it is given by the right-hand side
of Fig. 4, which is separated by the phase of Soliton and
RN. The critical curve in Fig. 7, which is shown in the
Sec. III B, is given by

X13 ¼ 1: ð3:13Þ

We notice the following point. In the previous section,
the gauge field part is treated as the probe. It is not used for
constructing the background metric. As a result, the phase
diagram is given by comparing S2 and S1. In this case, the
parameter space is separated into two phases, correspond-
ing to the Soliton solution and the BH one, and the critical
line is given by T ¼ 5r0=4π. Therefore the phase diagram
in the previous section is largely changed after adding the
Uð1Þ gauge part in the equations of motion to be solved.

B. Phase diagram after adding scalar

The phase diagrams shown in Fig. 4 would be changed
due to the appearance of the color superconducting phase,
which could be found by the scalar field condensation. We
should remember that the backgrounds considered here are
obtained by taking into account the backreaction of the
Uð1Þ gauge part. The backreaction of the scalar is also
taken into account when we solve its equation of motion. In
this case, we must solve the equations of backreacted
metric and gauge fields, and the equation of the scalar at the
same time. Although it is straightforward but hard work to
solve those simultaneous equations, we can find a phase
diagram after solving them.
On the other hand, it would be possible to find the critical

curve without solving the full equations. This economical
method has been proposed in Ref. [10]. When a super-
conducting phase exists, there is a solution for the scalar
with JC ¼ 0 and a finite C for μ > μðBÞc at a finite T. And,

for μ → μðBÞc , C approaches zero.6 Then the backreaction
from the scalar to the bulk configuration becomes

negligible near the critical point. This means that the
backreactions to both the metric and the gauge fields
disappear. This implies that the critical line can be obtained
by solving the equation of motion of only the scalar which
is treated as a probe in the two vacuum configurations given
above. Then the task to find the critical line is to solve the
equation of the scalar field in the given background of SBulk
denoted in (3.1).

Deconfinement phase
At first we consider the equation of the motion in the RN

background, (3.3)–(3.5). It is given as

ψ 00 þ
�
6

r
þ g0

g

�
ψ 0 þ 1

r2g

�
q2ϕ2

r2g
−m2

�
ψ ¼ 0: ð3:14Þ

The boundary condition to be imposed is

ψ 0ðrþÞ ¼
m2

5rþ − 9μ2

8rþ

ψðrþÞ: ð3:15Þ

Equation (3.14) includes parameters,q,μ, and rþ. Here the
temperature is expressed by rþ andμ as (3.6). SinceT should
be positive, then we find the following constraint for μ:

0 ≤
μ

rþ
≤

ffiffiffiffiffi
40

p

3
: ð3:16Þ

Under this constraint,we searched for a solutionwith JC ¼ 0
and C ≠ 0. And, within the error of our numerical calcu-
lation, we get to the conclusion that there is no such solution
forq ¼ 2=Nc ≤ 1. Since our concern is in the case ofNc ¼ 3
(or Nc ¼ 2), we cannot say that there exists a color super-
conducting phase in four-dimensional (4D) Yang-Mills
theories with quarks.
According to a view pointed out in Ref. [9], the reason

why the solution leading to the condensation of the Cooper
pair is not found in the present case is explained by
considering the effective mass of the scalar, meff . The
input mass m2 ¼ −4 satisfies the Breitenlohner Freedman
(BF) bound (−25=4 < m2) in the (5þ 1)-dimensional AdS
spacetime. However, as shown below, the mass is effec-
tively suppressed by the coupling to the gauge potential ϕ.
Noticing that Eq. (3.14) is rewritten as ð□RN −m2

effÞψ ¼ 0,
where □RN denotes the Laplacian in the RN background,
meff can be read as follows:

m2
eff ¼ m2 − Δm2; Δm2 ≡ q2ϕ2

r2g
: ð3:17Þ

Then we consider that the necessary condition to destabi-
lize the scalar field and to condense in the vacuum is to
break the BF bound for meff. It is given by m2

eff < − 25
4
or

equivalently by

Δm2 >
9

4
: ð3:18Þ

6Here we suppose the order parameter C has no gap at the
transition point as seen in the previous section for the probe
approximation.
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Here we notice that Δm2 is r dependent and it is rewritten
by using (3.4) and (3.5) as

Δm2 ¼ q2Fðx; μ̃Þ; μ̃ ¼ μ

rþ
; ð3:19Þ

Fðx; μ̃Þ ¼ x2ð1 − x3Þ2μ̃2
1 − ð1þ 3μ̃2

8
Þx5 þ 3μ̃2

8
x8

; ð3:20Þ

where x ¼ rþ=r.
The factor Fðx; μ̃Þ increases with μ̃ at any x. The value of

μ̃ is bounded from above as shown by (3.16), so we can find
the maximum form of Fðx; μ̃Þ as Fðx; ffiffiffiffiffi

40
p

=3Þ as shown by
the curve (a) in Fig. 5. Further the maximum value of this
function is found as Fðx; ffiffiffiffiffi

40
p

=3Þ < 1.993 ≃ 2. Then we
are led to

0 < Δm2 < 2q2 ¼ 8

N2
c

ð3:21Þ

for all regions of rð≥ rþÞ. The above equality comes from
q ¼ 2

Nc
since we assume that the scalar is dual to the diquark

operator.
From (3.21) and (3.18), we have the condition that Δm2

breaks the BF condition at some point of r, as

9

4
< Δm2 <

8

N2
c
; ð3:22Þ

and thus we obtain

Nc <
4

ffiffiffi
2

p

3
≃ 1.89: ð3:23Þ

This implies that it is impossible to see the scalar con-
densate with reasonable values of Nc, namely in the region
Nc ≥ 2, in the present holographic model. As a result, we
can say that there is no CSC phase in the RN background.
In arriving at the above result, we must notice the

following comments:
(C1)While a necessary condition for the condensation of

the scalar is given above, we did not say anything about the
sufficient condition. It is shown by a simple example
studied in the previous section. For the case of the
confinement phase, from Eq. (2.18) we can set it as

Δm2 ¼ q2ϕ2

r2
¼ q2

μ2

r20

�
r0
r

�
2

: ð3:24Þ

For r0 ¼ 1, the necessary condition of BF bound breaking
is given by qμ > 1.5. However, we need qμ > 3.017 to find
the CSC phase. This implies that a wide enough region of r,
where BF bound is broken, should be needed as a sufficient
condition of the scalar condensation. This statement for the
sufficient condition is available in other cases.
In Fig. 6, some examples of meff in the deconfinement

phase are shown at T ¼ 0. In this case, the sufficient
condition is given as q > 1.5, and its meff is shown by the
curve (b) of Fig. 6.
(C2) In the case of the deconfinement phase, the curve

(a) in Fig. 5 is lower than the bound for all x. This curve is
given for q ¼ 1 (Nc ¼ 2). On the other hand, we can find a
CSC phase with the critical line T=μ ¼ 0.0426 for q ¼ 2
(Nc ¼ 1) [see the curve (c) of Fig. 6 and the right-hand part

(a)

(b)

(c)

0.2 0.4 0.6 0.8 1.0
x

0.5

1.0

1.5

2.0

2.5

3.0
m2

FIG. 5. The value of Δm2 for q ¼ 1 and (a) μ̃ ¼
ffiffiffiffi
40

p
3
,

(b) μ̃ ¼ 0.8 ×
ffiffiffiffi
40

p
3
, and (c) μ̃ ¼ 0.5 ×

ffiffiffiffi
40

p
3
. The horizontal dot-

dashed and dotted lines show 9=4 and 1.0, the bound to break the
BF bound for Δm2 in the AdS6 and infrared AdS2.

a

b

c

0.2 0.4 0.6 0.8 1.0
x

2

4

6

8

m2

FIG. 6. The value of Δm2 for μ̃ ¼
ffiffiffiffi
40

p
3

and (a) q ¼ 1,
(b) q ¼ 1.5, and (c) q ¼ 2. The horizontal dot-dashed and dotted
lines show 9=4 and 1.0, the bound to break the BF bound forΔm2

in the AdS6 and infrared AdS2. For q ≥ 1.5, the CSC phase has
been found.

7The value of qμ is obtained by our numerical estimation.
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of Fig. 7]. Then, in this case, the magnitude of the scalar
charge is sufficient to generate the condensation. However,
in this case, we have Nc ¼ 1, which means that the dual
theory is Uð1Þc gauge theory. So it is unrealistic in the
present bottom-up model as the SYM theory and also from
the holographic setup.
(C3) We notice another scalar mass bound which has

been examined in [10]. Near the horizon of the RN black
hole solution, we find a geometry AdS2 × R4 [7,16] where
the radius of AdS2 is given by L=

ffiffiffiffiffi
20

p
. Then the new BF

bound near this AdS2 geometry is given bym2
eff > −5. This

bound is broken for Δm2 > 1. From Fig. 5, the curve (a) is
over the bound value in a long range of x. This implies a
possibility of the solution of the scalar which indicates the
Cooper pair condensation at a very small temperature as
found in [10] for a neutral scalar with m2 < −5. However,
we cannot find such a solution in the present model. So one
may consider that the curve (a) is not yet sufficient to
generate the CSC phase as mentioned in the above com-
ment (C1). An alternate reason for not finding the CSC
phase may be that we are not considering the neutral scalar
but a charged one. Since the operators dual to the scalars are
different from each other, then our result might be com-
patible with the one of Ref. [10]. In any case, this point is an
open problem.

Confinement phase
In the confinement region, the equations to be solved are

given as

ψ 00 þ
�
6

r
þ f0

f

�
ψ 0 þ 1

r2f

�
q2ϕ2

r2
−m2

�
ψ ¼ 0; ð3:25Þ

f ¼ 1 −
�
r0
r

�
5

; ϕ ¼ μ; ð3:26Þ

with the following condition at r ¼ r0:

ψ 0ðr0Þ ¼ −
1

5r0

�
q2ϕ2ðr0Þ

r20
−m2

�
ψðr0Þ: ð3:27Þ

In this case, the effective scalar mass has the same form
with the case considered in the previous section. Hence
Δm2 is given by (3.24). Thus the instability would be seen
locally for qμ > 1.5 when we set it as r0 ¼ 1. However, the
sufficient condition to find the CSC phase is qμ > 3.01 as
mentioned above. This implies μ > 3.01 for q ¼ 1. This
region of μ is out of the confinement phase, μ < 1.73. So
we cannot find the CSC phase also in the confinement
background. Noticing q ¼ 2=Nc, the CSC phase cannot be
found for Nc ≥ 2.
We should notice that the CSC phase is realized for q ¼

2 (Nc ¼ 1) since the sufficient condition is given as μ >
3.01=q ¼ 1.5 which is within the confinement region. The
phase diagram for the q ¼ 2 case is given in Fig. 7.
This section can be summarized as follows:
(1) For Nc ≥ 2, we can say that there is no CSC phase in

the deconfinement and also in the confinement

AdS Soliton (confine)

RN (deconfine)

0.5 1.0 1.5 2.0
0.0

0.1

0.2

0.3

0.4

0.5

T

RN (deconfine)

AdS Soliton (confine)

d2
c2

0 1 2 3 4
0.0

0.1

0.2

0.3

0.4

0.5

T

FIG. 7. Left: The phase diagram for the case of the backreacted background for Nc ≥ 2. There is no CSC phase. The critical
curve between the deconfinement and the confinement phases, which are denoted by RN (deconfine) and AdS-Soliton (confine)
respectively, is given in the right-hand part of Fig. 4. Right: The phase diagram for Nc ¼ 1. The regions (c2) and (d2) denote
the CSC phases, and the critical line in the RN represents T=μ ¼ 0.0426. The vertical line in the confinement phase denotes
μ ¼ 1.5.
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phases. Then, we need not change the phase diagram
even if an appropriately charged scalar is added by
taking into account the backreaction to realize the
color superconductivity in the SYM theory.

(2) For Nc ¼ 1, a phase diagram with the CSC phase is
obtained, but the setting of Nc ¼ 1 is unrealistic
since it is incompatible with the holography. So it is
hard to accept the results obtained in this case.

We must remember that the CSC phase searched in this
section is the one realized by the phase transition without
the gap of the order parameter C. In this paper, we
concentrated on this type of phase transition since the
same type transition is found in the case of the probe
approximation as shown in the Sec. II.

IV. SUMMARY AND DISCUSSION

We have studied a possibility of the CSC phase in the
SYM theory by using a bottom-up holographic model
which is constructed by the gravity and a simple matter
action composed of a Uð1Þ gauge field and a charged
scalar. The time component of the gauge field gives a finite
chemical potential μ of the baryon number and its density in
the vacuum of the SYM theory. The mass and the charge of
the scalar give the conformal dimension and the baryon
number of the composite operator of the dual SYM theory.
It is chosen as a scalar which is dual to the diquark operator.
According to this holographic setting, the equations of
motion of the system are solved, and the CSC phase of the
SYM theory is searched.
Using this model, at first, a probe analysis has been

applied to the two vacuum states, the confinement and
deconfinement phases. The probe action is composed of the
Uð1Þ gauge field and the charged scalar. The bulk con-
figurations of these two phases are therefore independent of
μ since the chemical potential and the charge density
belong to the probe. In this case, we find the CSC phase
in each vacuum when the value of μ exceeds a critical point
observed in each phase. In any case, this transition causes
the breaking of the gauge symmetry since the VEV of the
diquark operator is not a color singlet except for the case of
Nc ¼ 2. In this sense, it might be interesting to study the
color superconductors in the holographic Higgs branch
[17–20]. The approach in this direction would be given
elsewhere.
In any case, this CSC transition implies the transition

from the confinement to the deconfinement phase at the
same time. The reason why this curious phenomenon
occurs would be that the probe approximation is used in
the situation where this approximation may not be useful.
In fact, here the holographic approach is set for q ¼ 2=Nc
with large Nc, so q is small. On the other hand, a large q is
needed for the validity of the probe approximation.
In order to improve the results of the probe approxima-

tion, we consider the backreactions. At first, we reset the
vacuum. It is given as a solution of the gravity with the full

backreaction from the Uð1Þ gauge field. As a result, the
solutions and the phase diagram, which is given by the
two phases, confinement (AdS soliton) and deconfine-
ment (Reissner-Nordstrom black hole), have been largely
changed and are dependent on μ. By adding the scalar in
these vacuum configurations, the superconducting phase
has been searched. Here the backreaction of the scalar is
also considered, and we arrive at the conclusion that
there is no CSC phase in both the confinement and the
deconfinement phases with the reasonable parameters of
the theory.
We should, however, notice that we find a region of r

where the BF bound is broken, for Nc ¼ 2, in the confine-
ment phase. But enough instability to generate the
CSC phase cannot be obtained in this case.8 There are
some studies of the CSC phase via two color lattice QCD
(QC2D) since the fermion determinant is pseudoreal and
then the sign problem vanishes. Through lattice simula-
tions, actually, the CSC phase has been found in
Refs. [22,23] in the deconfined regime. But the parameters
used in this case lead to a result that the pion mass is rather
heavier than the physical one, mπ=mρ ∼ 0.8 where mπ and
mρ are the π and ρ meson masses. Therefore, to conclude
that our present model is correct, we will need more data of
the lattice QC2D with physical quark masses.
Another point to be noticed is that we find the CSC phase

when the charge q becomes large, q > 1.5. In Sec. III, an
example is shown for q ¼ 2, where the CSC phases are
found in both the deconfinement and the confinement
phases with a definite critical line. However, since
qð¼ 2=NcÞ ≥ 2 means Nc ≤ 1, the holographic approach
is not useful in this case. So we cannot trust any result for
large q. The other example of CSC phase realization may
be possible in the lower space dimension. For 2þ 1 space
dimension, an analysis has been given in [8] for the
superconductor of R-charge (not for the baryon charge)
though the equations of motion are similar. So it would be
possible to study the CSC phase in such lower dimensional
cases by using the holographic model used here.
As for the chiral symmetry, the phase diagram in the

μ − T plane has been examined by solving the profile of
probe branes based on a top-down model in the deconfine-
ment phase [24]. And a chiral symmetry breaking phase has
been found in the small μ region. However, in the present
model, it is impossible to find such a broken phase in both
the deconfinement and the confinement phases when the
scalar is set as a field dual to the quark antiquark operator in
order to investigate the chiral symmetry. This is easily
understood. Since the scalar field has no baryon charge
(q ¼ 0), then the effective mass cannot be changed from the

8As a related example, another kind of phase transition in the
confinement phase has been studied by using a different form of
probe composed of D8D̄8 branes, in which the baryon chemical
potential is considered [21].
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given mass m2 ¼ −4. As a result, the trivial solution of the
scalar field is the stable one. In other words, the present
bottom-up model is not suitable for studying the chiral
symmetry. It is important to improve the model in this
point; however, it is out of the present task.
Finally, we give a brief comment on the flavor degrees of

freedom and the mass of quarks. Although, in this paper,
we have not considered them, we would have a variety of
phases such as two flavor CSC [25,26] and color-flavor

locking [1,27]. And once this is accomplished, it might be
possible to study an interesting issue in high density QCD.
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