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We show that liquids and certain holographic models are strikingly similar in terms of several detailed
and specific properties related to their energy spectra. We consider two different holographic models and
ascertain their similarity with liquids on the basis of emergence of the gap in transverse momentum space
and the functional form of the dispersion relation. Furthermore, we find that the gap increases with
temperature, the relaxation time governing the gap decreases with temperature and, finally, the gap is
inversely proportional to the relaxation time as in liquids. On this basis, we propose that the general idea
involved in Maxwell-Frenkel approach to liquids can be used to understand holographic models and their
strongly coupled field theory counterparts in a nonperturbative way.
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I. INTRODUCTION

Many interesting effects in quantum field theory (QFT)
are related to strongly coupled dynamics. These problems
cannot be solved by the perturbative approaches commonly
used in QFT. However, the proposal of the correspondence
between QFT and gravity models (AdS-CFT corrrespond-
ence) has opened the way to approach strongly coupled
QFT problems by addressing the corresponding weakly
interacting gravitational duals [1,2].
For the same reason of strong coupling, a theory of

liquids was believed to be impossible to construct in a
general form [3]. Perturbation theories do not apply to
liquids because the interatomic interactions are strong.
Solid-based approaches seemingly do not apply to liquids
either: its unclear how to apply the traditional harmonic
expansion around the equilibrium positions because the
equilibrium lattice does not exist due to particle rearrange-
ments that enable liquids to flow. This combination of
strong interactions and large particle displacements has
proved to be the ultimate problem in understanding liquids

theoretically, and is known as the “absence of a small
parameter.”
The absence of traditional simplifying features in the

liquid description does not mean that the problem cannot be
solved in some other way, including attempting the first-
principles approach using the equations of motion.
However, this involves solving a large number of nonlinear
equations, an exponentially complex problem not currently
tractable [4].
In this paper, we find striking similarities between

liquids and certain holographic systems. In particular we
will underpin the common features on the basis of Maxwell
interpolation giving rise to a specific dispersion relation of
the type:

ω2 ≈ k2 − k2g ð1Þ
which we call the k-gapped dispersion relation.
In liquids, the k-gap gives the upper cutoff of wave-

lengths at which the shear waves can propagate and is
related to liquid relaxation time representing the average
time between molecular rearrangements [5]. In the
Maxwell viscoelastic model discussed below, the relaxation
time can be written as:

τM ¼ η

G∞
ð2Þ

where η is the shear viscosity and G∞ the instantaneous
shear modulus. At the microscopic level, Frenkel’s
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theory [5] has identified the relaxation time with the
average time between consecutive molecular rearrange-
ments, the picture that has become widely accepted
since [6].
In holographic models, the relaxation time arises from

the intrinsic dissipative dynamics connected to the finite
temperature setups and in particular to the dissipative
nature of the black hole event horizon. Although it may
be hard to rigorously prove that this mechanism is the same
as in nonrelativistic liquids, we will see that the common-
alities are intriguing. First, the dispersion relation found in
the holographic models is the same as predicted by
Maxwell interpolation. Second, the k-gap increases with
temperature as in liquids and the corresponding relaxation
time shows a temperature behavior similar to the Vogel-
Tammann-Fulcher law seen in liquids. The strong similar-
ities suggest an underlying and fundamental principle
behind the physics of the k-gap which has not yet been
identified.
In the first Sec. II, we review the theory of phonons in

liquids, Maxwell-Frenkel approach and the emergence of
the k-gap. In the second Sec. III, we present two simple
holographic models which display the k-gap and show
other interesting similarities with liquids. In the final
Sec. IV, we conclude and discuss possible future directions.

II. MAXWELL-FRENKEL APPROACH TO
LIQUIDS AND THE EMERGENCE OF k-GAP

Recent progress in understanding liquid thermodynam-
ics followed from considering what kind of collective
modes (phonons) can propagate in liquids and supercritical
fluids [4]. It has been ascertained that solidlike transverse
modes can propagate in liquids but, interestingly, they
develop a gap in k, or momentum space, with the gap
growing with the inverse of liquids relaxation time [7]. This
enabled us to discuss and understand liquid thermodynam-
ics on the basis of phonons, as is done in the solid-state
theory.
We start with recalling how liquid transverse modes

develop a gap in momentum space. This program starts
with Maxwell interpolation:

dS
dt

¼ P
η
þ 1

G
dP
dt

ð3Þ

where S is shear strain, η is viscosity, G is shear modulus
and P is shear stress.
Equation (3) reflects Maxwell’s proposal [8] that the

shear response in a liquid is the sum of viscous and elastic
responses given by the first and second right-hand side
terms. Notably, neither elastic nor the dissipative term
containing the viscosity are introduced as a small pertur-
bation: both elastic and viscous deformations are treated in
(3) on equal footing. This implies that hydrodynamics and

elasticity can be equally good starting points of liquid
description. We will return to this point below.
Frenkel proposed [5] to represent the Maxwell interpola-

tion by introducing the operator A as A ¼ 1þ τ d
dt so that

Eq. (3) can be written as dS
dt ¼ 1

ηAP. Here, τ is the Maxwell
relaxation time η

G. Frenkel’s idea was to generalize η to
account for liquid’s short-time elasticity as 1

η →
1
η ð1þ τ d

dtÞ
and use this η in the Navier-Stokes equation as∇2v ¼ 1

η ρ
dv
dt,

where v is velocity, ρ is density and the full derivative is
d
dt ¼ ∂

∂t þ v∇. We have carried this idea forward [4] and,
considering small v, wrote

c2
∂2v
∂x2 ¼

∂2v
∂t2 þ 1

τ

∂v
∂t ð4Þ

where v is the velocity component perpendicular to the x
direction, η ¼ Gτ ¼ ρc2τ and c is the shear wave velocity.
Equation (4) can also be obtained by starting with the

solidlike elastic equation for the nondecaying wave and,
using Maxwell interpolation (3), generalizing the shear
modulus to include the viscous response [9]. This shows
that the hydrodynamic approach commonly applied to
liquids [10] is not a unique starting point and that the
solidlike elastic approach is equally legitimate, implying an
interesting symmetry of the liquid description. This is
consistent with elastic and viscous terms being treated on
equal footing in (3) as mentioned above.
In contrast to the Navier-Stokes equation, Eq. (4) con-

tains the second time derivative of v and hence allows for
propagating waves. We solved Eq. (4) [4] by seeking a
plane-wave solution as v ¼ v0 exp ðiðkx − ωtÞÞ. This gives

ω2 þ ω
i
τ
− c2k2 ¼ 0 ð5Þ

and the following dispersion relation

ω ¼ −
i
2τ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2k2 −

1

4τ2

r
ð6Þ

which is shown in Fig. 1.
An important property is the emergence of the gap in k-

space: in order for ω in (6) to be real, k > kg should hold,
where the k-gap is

kg ¼
1

2cτ
ð7Þ

increases with the temperature because τ decreases.
The gap in k-space, or momentum space is interesting.

Indeed, the two commonly discussed types of dispersion
relations are either gapless as for photons and phonons,
E ¼ k (c ¼ 1), or have the energy (frequency) gap for
massive particles, E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
, where the gap is along

the y-axis. On the other hand, (6) implies that the gap is in
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momentum space and along the x-axis, similar to the
hypothesized tachyon particles with imaginary mass [11].
Recently [7], detailed evidence for the k-gap in liquids

and supercritical fluids was presented on the basis of
molecular dynamics simulations. It has been ascertained
that kg increases with the inverse of liquid relaxation time in
a wide range of temperature and pressure for different
liquids and supercritical fluids, as (7) predicts.
Interestingly, direct experimental evidence for the k-gap

has come not from liquids but from strongly coupled
plasma [12] where large particle separations and slow
timescales enabled direct imaging of plasma particles. In
liquids, there are two pieces of indirect evidence for the
k-gap. The first piece of evidence comes from the fast
sound or positive sound dispersion (PSD), the increase of
the measured speed of sound over its hydrodynamic value
[4]. As first noted by Frenkel [5], a nonzero shear modulus
of liquids implies that the propagation velocity crosses over

from its hydrodynamic value v ¼
ffiffiffi
B
ρ

q
to the solidlike

elastic value v ¼
ffiffiffiffiffiffiffiffiffi
Bþ4

3
G

ρ

q
, where B and G are bulk and

shear moduli, respectively [6,13]. According to the dis-
cussion in the previous section, shear modes become
propagating k > kg, implying PSD at these k-points.

This further implies that PSD should disappear with
temperature starting from small k because the k-gap
increases with temperature. This is confirmed experimen-
tally [14]: inelastic X-ray experiments in liquid Na show
that PSD is present in a wide range of k at low temperature.
As temperature increases, PSD disappears starting from
small k, in agreement with the k-gap picture. At high
temperature, PSD is present at large k only.
Another piece of evidence comes from low-frequency

shear elasticity of liquids at small scale [15,16]. According
to (6), the frequency at which a liquid supports shear stress
can be arbitrarily small provided k is close to kg. This
implies that small systems are able to support shear stress at
low frequency. This has been ascertained experimentally
[15,16]. This important result was to some extent surpris-
ing, given the widely held view that liquids were thought to
be able to support shear stress at high frequency only [5,6].
Equations (5)–(7) represent important results of this

section and will be discussed in later sections related to
holographic models.

III. HOLOGRAPHIC MODELS

A. A global symmetry framework

In this section, we describe two holographic models
which display remarkable similarities to the k-gap dis-
cussed in the previous section.
The first holographic model has been recently proposed

in Ref. [17]. The setup represents the gravity dual for a
finite number of elastic defects immersed in a fluid back-
ground phase and is based on recent ideas related to the role
of global symmetries in electromagnetism (EM), magneto-
hydrodynamics (MHD) and lattice dynamics [18–21]. The
momentum is a conserved quantity, and the theory, to be
renormalizable, necessitates a finite UV cutoff which will
be denoted as C.
The gravitational bulk action is defined in four dimen-

sions as:

S ¼ 1

2κ24

Z
d4x

ffiffiffi
g

p �
Rþ 6

L2
−

1

12
HI

abcH
abc
I

�
ð8Þ

where κ4 is the four-dimensional gravitational coupling and
HI ¼ dBI the field strength of a collection of two-bulk
forms labeled by the internal index I.
The two forms admit the simple solution in terms of their

field strengths:

H1
txr ¼ H2

tyr ¼ M ð9Þ

where M physically encodes the density of the aforemen-
tioned elastic defects and all associated elastic properties of
the system. The system admits a black brane solution:

FIG. 1. The dispersion relation of the two modes in Eq. (6). At
k ¼ kgap ¼ 0.5 the collision happens and a propagating mode
with positive real part appears. The parameters are fixed to
c ¼ τ ¼ 1.
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ds2 ¼ dr2

r2fðrÞ þ r2ð−fðrÞdt2 þ dx2 þ dy2Þ ð10Þ

fðrÞ ¼ 1 −
2M2

r2
−
�
1 −

M2

2r2h

�
r3h
r3

ð11Þ

where rh is the location of the black hole event horizon
defined by fðrhÞ ¼ 0.
The corresponding temperature of the dual field theory

can be found as usual via the surface gravity at the horizon
and reads:

T ¼ rh
4π

�
3 −

M2

2r2h

�
: ð12Þ

In summary, the system can be described in terms of
three parameters: the temperature T, the UV cutoff C and
the defects density M.
For simplicity, we will focus on the simple limit M ¼ 0

which corresponds zero density of elastic defects. Note that
this limit will make the static shear modulus G zero but the
instantaneous elastic modulus is finite as in liquids.1

Our interest lies in the correlator of the two-form current
hJ ijJ kli which is dual to the bulk two forms B. The
vibrational degrees of freedom of the systems are encoded
in this correlator and can be thought of as the vibration of
the line defects coupled to the bulk to form Bμν.
In the hydrodynamic limit ω=T; k=T ≪ 1 and taking

the UV cutoff to be large compared to the tempera-
ture C=T ≫ 1, the equation governing the dynamics of
the vibrational degrees of freedom can be written analyti-
cally as:

ω

�
1 −

ω

ωg

�
þ i

�
C̄ − 1

rh

�
k2 ¼ 0 ð15Þ

where C̄≡ C=rh is the dimensionless renormalization scale
and:

ωg ¼
rh

C̄ − 1þ 1
2
ðlog 3 − π

3
ffiffi
3

p Þ : ð16Þ

Equation (15) can be solved explicitly, giving:

ω� ¼ −
ωg

2
i�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðC̄ − 1Þωg

rh
k2 −

ω2
g

4

s
ð17Þ

which is identical to the solution of the Maxwell-Frenkel
equation in liquids

ω ¼ −
i
2τ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2k2 −

1

4τ2

r
ð18Þ

with a finite k-gap (6). Moreover, we immediately obtain
the expressions for the speed c and relaxation time τ:

c2 ¼ ðC̄ − 1Þωg

rh
¼ 9ð4π − 3C̃Þ

2πð18þ ffiffiffi
3

p
π − 9 logð3ÞÞ − 27C̃

ð19Þ

τ≡ 1

ωg
¼ 27C̃ − 2πð18þ ffiffiffi

3
p

π − 9 logð3ÞÞ
48π2T

ð20Þ

where we have used C̃≡ C=T.
Let us highlight two important features of the model:

(a) at infinite cutoff C̃ → ∞, the speed becomes relativistic
c ¼ 1, the relaxation time τ diverges and the k-gap closes as
a result of (17) and (b) the k-gap increases with temperature
and the relaxation time decreases as T−1. This behavior
appears similar to what takes place in liquids.
Using standard methods, we can see that the Green

function of the conserved two form current Jμν contains a
single hydrodynamic mode:

ω ¼ −iDk2 þ… ð21Þ
which displays a diffusive dispersion relation.
The diffusion constant is given by:

D ¼ 3

4πT

�
3C
4πT

− 1

�
: ð22Þ

It is straightforward to check that the following relation
holds

τ ¼ D
c2

: ð23Þ

The latter can be easily derived expanding the k-gap
dispersion relation (6) at low momenta and matching it
with the diffusive mode (21). We propose that this is a
universal relation related to the appearance of the k-gap in
relativistic systems which could have potentially important
consequences.
Let us emphasize one final feature of the model. At zero

densityM ¼ 0, the shear sector governed by the stress tensor

1To be more precise, we define the static elastic modulus as:

G0 ¼ Re½GR
TxyTxy

�ðω ¼ k ¼ 0Þ ð13Þ

and the instantaneous elastic modulus as:

G∞ ¼ Re½GR
TxyTxy

�ðω ¼ ∞; k ¼ 0Þ ð14Þ

where GR
TxyTxy

is the retarded Green function of the shear stress
tensor. Note that in liquids G0 ¼ 0 while in solids it is finite. See,
for example, [22] for this distinction in similar holographic
models.
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and the dynamics of the two-form current are decoupled. As
a consequence, the relaxation time appearing in Eq. (20)
cannot be determined by viscosity and elasticity of the
system. In other words, the relaxation time appearing in the
k-gap dispersion relation in this model does not need to be
identified with Maxwell relaxation time (2). This suggests
that the physical behavior related to Eq. (5) is more general
than the Maxwell viscoelastic model and is potentially
applicable to different physical systems.
We can finally ascertain the validity of the main result for

the k-gap (7) predicting kg ∝ 1
τ. We plot kg as a function of

1
τ

in Fig. 2. We observe that the dependence is linear for large
cutoff. For smaller cutoff, kg vs 1

τ departs from linearity. The
analogy with liquids can explain this departure as follows.
As discussed earlier, smaller cutoff in the HM corresponds to
smaller activation barrier in liquids and hence smaller τ,
resulting in faster-than-linear increase of kg according to (7).

B. The linear axions theory and its collective modes

We now focus on a second holographic model known as
the linear axions model [23]. This represents a simple setup
to introduce momentum relaxation into the holographic
framework using a specific massive gravity theory in the
bulk2 [29,30]. The four dimensional gravitational bulk
action is defined as:

S ¼ M2
P

Z
d4x

ffiffiffiffiffiffi
−g

p �
R
2
þ 3

l2
−m2∂μϕ

I∂μϕI

�
ð24Þ

where MP is the Planck mass and the ϕI are two
Stückelberg fields [31]. ϕI have a radially constant bulk
profile ϕI ¼ xI with I ¼ x, y. This is an exact solution due
to the shift symmetry of the system. In the dual description,
these fields are marginal operators breaking translational
invariance because of their explicit dependence on the
spatial coordinates. The geometry remains homogeneous
thanks to the global symmetries of the setup and can be
written in the simple form:

ds2 ¼ l2

u2

�
du2

fðuÞ − fðuÞdt2 þ dx2 þ dy2
�
; ð25Þ

where u ∈ ½0; uh� is the radial holographic direction span-
ning from the boundary to the horizon, defined through
fðuhÞ ¼ 0, and l is the AdS radius.
The blackening factor appearing in the black brane

solution above takes the form:

fðuÞ ¼ 1 −m2u2 −
u3

u3h
þm2

u3

uh
ð26Þ

and the corresponding temperature reads:

T ¼ 3

4πuh
−
m2uh
4π

: ð27Þ

The dual theory of the bulk model [23] displays a finite
relaxation time for the momentum operator τ−1rel ¼ Γ which
is inversely proportional to the graviton mass ∼m2 ([32]).
From the symmetry point of view, this can easily be
understood: the graviton mass breaks explicitly diffeo-
morphisms invariance of the bulk theory, and the con-
servation of the dual stress tensor does not hold as a result.
It is important to note that the stress tensor does not acquire
an anomalous dimension because the graviton mass is zero
at the UV fixed point.
The computation of the stress tensor correlator hTxyTxyi

can be done by solving the equations for perturbations on the
background shown previously. The transverse or shear per-
turbations are encoded in the fluctuations ax, htx ≡ u2δgtx,
hxy ≡ u2δgxy, δϕx, δgxu. Assuming the radial gauge, i.e.,
δgxu ¼ 0, and using the ingoing Eddington-Finkelstein
coordinates

ds2 ¼ 1

u2
½−fðuÞdt2 − 2dtduþ dx2 þ dy2� ð28Þ

the remaining equations read

FIG. 2. The k-gap as a function of 1
τ for the holographic model

of Ref. [17]. Different colors are for different cutoffs C=T ¼ 10,
50, 1000 (blue,orange,green). The straight dashed line is a guide
for the eye.

2Similar massive gravity models have been discussed in
holography in [24–28].
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−2htx þ uh0tx − ikuhxy − ðk2uþ 2iωÞδϕx þ ufδϕ00
x þ ð−2f þ uð2iωþ f0ÞÞδϕx

0 ¼ 0;

u2kωhxy þ ð6þ k2u2 − 6f þ 2uf0Þhtx þ 2im2u2ωδϕx þ ð2uf − iu2ωÞh0tx − u2fh00tx ¼ 0;

−iku2h0tx − 2ikm2u2δϕx þ 2hxyð3þ iuω − 3f þ uf0Þ þ 2ikuhtx − ð2iu2ω − 2uf þ u2f0Þh0xy − u2fh00xy ¼ 0

2h0tx − uh00tx − 2m2uδϕ0
x þ ikuh0xy ¼ 0; ð29Þ

and their solution can be obtained numerically.

Importantly, the asymptotic behavior of the different
bulk fields close to the UV boundary u ¼ 0 are

δϕx ¼ ϕxðlÞð1þ…Þ þ ϕxðsÞu3ð1þ…Þ;
htx ¼ htxðlÞð1þ…Þ þ htxðsÞu3ð1þ…Þ;
hxy ¼ hxyðlÞð1þ…Þ þ hxyðsÞu3ð1þ…Þ; ð30Þ

where the subscript l stands for “leading” and the subscript
s for “subleading” contributions. Choosing this coordinates
system, the ingoing boundary conditions at the horizon are
automatically satisfied by regularity at the horizon. The
various retarded Green’s functions can be defined as:

GðRÞ
TtxTtx

¼ 2Δ − d
2

htxðsÞ
htxðlÞ

¼ 3

2

htxðsÞ
htxðlÞ

;

GðRÞ
TxyTxy

¼ 2Δ − d
2

hxyðsÞ
hxyðlÞ

¼ 3

2

hxyðsÞ
hxyðlÞ

: ð31Þ

where spacetime dependences are omitted for simplicity.
The conformal dimension of the stress tensor operator is
simply Δ ¼ 3. From the poles of the Green functions,

defined as the zero of the leading terms in theUVexpansions,
we can read off the quasinormal modes frequency at a finite
momentum.
The first important result from the first model is the

emergence of the k-gap shown in Fig 3. The numerical
study of the transverse fluctuations results in the identi-
fication of the quasinormal modes spectrum shown in
Fig. 3. At high enough temperature, we observe the
emergence of the gap in k-space. The k-gap increases with
temperature, the same effect as in liquids [see (7)] derived
from the Maxwell-Frenkel approach.
The temperature at which the k-gap opens up in Fig. 3

corresponds to T=m > 0.156. At smaller values of T=m,
the spectrum has a mass gap as is the case for a massive
particle. This can be attributed to the competition between
the effective mass termm and the dissipative 1

τ term: adding
the mass term to the Lagrangian describing the k-gap in (6)
modifies the dispersion relation as [9]:

ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2 −

1

4τ2

r
: ð32Þ

According to (32), the dispersion relation is linear and
gapless form ¼ 1

2τ, whereas the gap in k-space opens up for
1
2τ > m. The nature of the effective mass m within the
model [23] will be discussed elsewhere.
At a specific value of T=m, at which the energy density

vanishes ϵ ¼ 0, the system enjoys an enhanced symmetry
which allows us to compute the Green function for the
transverse modes analytically [33]. As a result we are able
to find analytically the k-gap as:

ω ¼ −
3

2
i�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 −

1

4

r
: ð33Þ

The corresponding τ, calculated by matching the k-gap
dispersion relation (6) with the analytic poles of the Green
function [see (33)], is shown in red in Fig. 4 and agrees well
with τ calculated from (37). Finally, we note that in the limit
of large T=m, analytic formulas for the diffusion constantD
and the momentum dissipation rate Γ have been obtained
[32,34]:

Γ ¼ m2

2πT
þ… ð34Þ

FIG. 3. The dispersion relation of the transverse collective
modes obtained numerically in the HM of [23]. The temperature
increases from blue (T=m ∼ 0.141) to red (T=m ∼ 0.171). The
shaded region (T=m > 0.156) displays the presence of the k-gap.
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D ¼ 1

4πT

�
1þ 1

24
ð9þ

ffiffiffi
3

p
π − 9 log 3Þ m2

8π2T2

�
þ… ð35Þ

Both previous formulas are in agreement with our
numerical results in the regime T=m ≫ 1.
Before proceeding with the analysis of the k-gap further,

we discuss the relaxation time τ and its physical meaning in
liquids and HMs. There are two dynamical regimes in the
liquid state where liquid properties are qualitatively differ-
ent. In the low-temperature regime, particle dynamics
combines solidlike oscillatory motion and diffusive jumps
between quasiequilibrium positions. In the low-temperature
regime, the diffusion constant D is approximately Dl ¼ a2

τ ,
where a is of the order of interatomic separations, and
decreases with τ. In this regime, Dl is inversely propor-
tional to viscosity η, and η itself decreases with temperature
[5]. In the high-temperature gaslike regime, particles lose
the oscillatory component of their motion and move as in a
gas. In this regime, the relaxation time τ is related to the
time between momentum-transferring particle collisions
which sets the length of the mean free path. The diffusion
constant Dh ¼ η

ρ is proportional to η, and η itself increases
with temperature [5]. The liquid-like molecular motion
combining solid-like oscillatory and gas-like diffusive
motion is separated from purely diffusive molecular motion
by the Frenkel line recently introduced and extending to the
supercritical state of matter [4].

A hydrodynamic description of relativistic fluids is
characterised by (a) proportionality between D and η as
D ¼ η=ðϵþ pÞ and (b) viscosity increasing with temper-
ature. As discussed above, this implies that these systems
are in the high-temperature gas-like dynamical regime from
the point of view of condensed matter physics. The
relationship between D and τ in this regime can be derived
by expanding ω in (6) in the hydrodynamic limit of small k
ω− ¼ −ic2τk2 þ � � � or solving Eq. (4) in its Navier-Stokes
form without the second time derivative term and sub-
sequently comparing the result with the usual diffusive
mode ω ¼ −iDk2. This gives a simple relation3

D ¼ c2τ: ð36Þ

We note that relaxation time τ can also be obtained from
ImðωÞ at large k, whereω is given by the dispersion relation
(6). ImðωÞ approaches a constant value in the limit of large
k (see [36] for more details).
The same relation (36) follows from considering τ in

Dl ¼ a2
τ as the time between particle collisions in the high-

temperature regime, in which case a ¼ cτ becomes the
distance travelled ballistically. For relativistic fluids, (36)
follows from combining D ¼ η=ðϵþ pÞ with the speed of
transverse phonons c2 ¼ G=ðϵþ pÞ to yield D ¼ c2 η

G and
subsequently noting that η

G is relaxation time from Maxwell
theory.4

The last point calls for two important observations
related to Maxwell interpolation (3) which gives rise to
the k-gap equation (5). Notably, Maxwell interpolation was
discussed and later developed in the low-temperature
liquidlike dynamical regime only, with G being the solid-
like high-frequency shear modulus governed by inter-
atomic interactions. However, we propose that Maxwell
interpolation also applies to the high-temperature gaslike
regime. Indeed, the idea of the system being able to support
two types of response, viscous and elastic, is general
enough and applicable to the high-temperature gaslike
state as well, but with the proviso that in this state G in (3)
describes a purely kinetic term ∝ T due to particle inertia (η
is defined in the usual way).
Second, the emergence of the k-gap in liquids due to

Maxwell interpolation differs from the HMs in one impor-
tant respect. In liquids as well as solids, there is an
“ultraviolet” cutoff related to the shortest interatomic
separation a and the largest, Debye, frequency in the
system, ωD, or the shortest vibration period, τD. When τ
in (7) reduces at high temperature and approaches τD, the

FIG. 4. Comparison between the numerical data (filled bullets)
obtained fitting the dispersion curves ωðkÞ and the analytic
formula (37) (purple line) for the HM of [23]. We also show the
value of the naive timescale D=c2 (yellow line) and the
approximate formula of [34] (dashed line). We plot just an
intermediate scale of temperatures because away from it our
formulas are not valid. At low T=m momentum dissipation is
strong and the shear mode becomes overdamped. At high T=m
the relaxation time τ becomes small and therefore the second pole
becomes overdamped. The red dot is the result at the self-dual
point at which the k-gap can be extracted analytically (33).

3The same expression was already considered in [35] in the
study of the causality of relativistic dissipative fluid dynamics.

4We note that in the Maxwell viscoelastic model, the shear
modulus G corresponds to the instantaneous modulus G∞ and
therefore we do not need to distinguish them with different
symbols.
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k-gap extends to the entire first zone or, equivalently, the
wavelength of propagating shear modes becomes compa-
rable to the interatomic separation. At this point, all
transverse modes disappear from the liquid spectrum [4].
On the other hands, no equivalent cutoff exists in HMs.
Therefore, the k-gap for propagating shear modes in HMs is
not bounded from above.
We now return to our analysis of properties of the k-gap.

The model has an additional dissipative contribution to τ
due to momentum relaxation time τrel ¼ Γ−1, resulting in
ω ¼ −iΓ − iDk2. As a consequence, the description in
terms of Eq. (5) becomes more subtle. First, the require-
ment for the validity of Eq. (5) is that relaxation time τ is
large compared to the characteristic energy scale of the
system τT ≫ 1. The latter guarantees that the mode
ω ¼ −iτ−1 is underdamped and is included in the hydro-
dynamic description. In the opposite scenario when
τT ≪ 1, such a mode is overdamped and is not present
in the hydrodynamic description. The second requirements
is that the shear diffusive mode is not overdamped because
of momentum relaxation. This implies that the momentum
relaxation rate is small, i.e., τrelT ≫ 1.
In order for the two above conditions to hold, we find

that Eq. (5) can accurately describe physics of the system
only in an intermediate regime of m=T, as is shown in
Fig. 4. Interestingly, we find that at lower values of T=m
where momentum relaxation mechanism becomes impor-
tant, the relaxation time τ formula is in good agreement
with

τ ¼ D
c2 −DΓ

ð37Þ

which can be obtained by applying a simple inverse
Matthiesen’rule. Finally, we note that momentum relaxa-
tion is not necessary for the emergence of the k-gap.
We now discuss the numerical results of this model in

more detail. We fit the calculated dispersion curves with
k-gaps in Fig. 3 to ω predicted on the basis of Maxwell
interpolation in Eq. (6), fixing the speed to its relativistic
limit c ¼ 1. We find that the fits are of high quality. Using
the fits, we extract the corresponding τ in (6) and plot τ in
Fig. 4. We subsequently compute D from the imaginary
part of ω at low momenta numerically and calculate τ using
(36) and (37) as well as an approximate analytical equation
for D [34]. The resulting curves are shown in Fig. 4. We
observe that τ from the fit of ω to (6) and τ calculated from
Eq. (37) agree with high accuracy. We further observe that
relaxation time τ obtained by fitting the numerical data and
all τ calculated from the diffusion constant D coincide in
the intermediate temperature regime already mentioned and
displayed with a shaded region. At lower temperature, we
note that Eq. (37) captures the behavior of the numerical
data, representing a good approximation that takes the first

corrections due to the momentum relaxation rate Γ ≠ 0 into
account.
Several important implications follow from our analysis

and from Fig. 4. First, τ decreases with T as is the case in
liquids. Second, the dispersion relations in the HMs with
the k-gap emerging in Fig. 3 agree with the liquid gapped
dispersion relation resulting fromMaxwell interpolation (6)
as discussed above. This, in turn, suggests that the ideas
involved in Maxwell interpolation and its extension by
Frenkel can be used more generally to analytically treat
HMs and strongly coupled fields.
Finally, we observe the validity of the main result for the

k-gap (7) predicting kg ∝ 1
τ. We plot kg as a function of

1
τ in

Fig. 5 and observe a linear dependence with good accuracy.
We make a remark regarding relaxation time τ that

governs the k-gap in the Maxwell-Frenkel approach. From
a practical perspective, the introduction of τ in (3)–(7)
enables us to discuss collective modes in liquids and their
role in liquid dynamical and thermodynamic properties [4].
From a general-theoretical perspective of treating strongly
interacting and dynamically disordered systems, the intro-
duction of τ simplifies and solves an exponentially complex
problem of coupled nonlinear oscillators describing the
motion of liquid particles in the strongly anharmonic multi-
well potential [4]. Although not derived from first-princi-
ples (recall that a first-principles description of liquids is
exponentially complex and hence is nontractable), τ is an
important liquid property directly linked to viscosity that
enables to provide relationships between different liquid
properties [4]. Therefore, the introduction of τ is a non-
perturbative way to treat strong interactions and in this

FIG. 5. The k-gap as a function of 1
τ in the HM of [23].
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sense is particularly suitable to address strong interactions
in field theories.
Before concluding, we note that the k-gap has earlier

appeared in the Israel-Stewart formalism for relativistic
hydrodynamics [37,38]. In these studies, the second-order
terms of the gradient expansion introduce a relaxation time
in order to cure the linearized approximation from causality
and unitarity issues [35]. In our case, the relaxation time has
the physical meaning and directly affects the physical
degrees of freedom. In this sense, our results are different
from those obtained in the Israel-Stewart framework where
introducing relaxation time is a phenomenological step
which does not appear in the full description of relativistic
hydrodynamics and does not affect realistic collective
modes.

IV. CONCLUSIONS

In summary, we have shown that liquids and holographic
models are strikingly similar in terms of several detailed
and specific properties. Similarly to liquids, we find that
(a) the HMs develop the k-gap with the same dispersion
relation, (b) the k-gap in the HMs increases with temper-
ature, (c) the relaxation time τ governing the k-gap in the
HMs coincides with the relaxation time calculated from the

gapped dispersion relation following from Maxwell inter-
polation, (d) τ in the HMs decreases with temperature as in
liquids, and (e) the k-gap is inversely proportional to the
relaxation time. These close similarities suggest that the
general idea involved in Maxwell interpolation and its
Frenkel development can serve as a constructive approach
to treat holographic models and their strongly coupled field
theory counterparts. It will be interesting to construct a
more general theoretical framework to explain the k-gap
phenomenon and its appearance in different areas of
physics.

ACKNOWLEDGMENTS

We thank A. Zaccone, L. Noirez, Richard Davison and
Ben Withers for useful discussions and comments about
this work. We are particularly grateful to Martin Ammon
and Amadeo Jimenez for help, support and discussions and
for sharing with us the numerical codes used in [39]. This
research utilized Queen Mary’s Apocrita HPC facility,
supported by QMUL Research-IT. K. T. is grateful to the
EPSRC for support. M. B. is supported in part by the
Advanced ERC grant SM-grav, No. 669288. M. B. would
like to thank Marianna Siouti for the unconditional support.

[1] J. M. Maldacena, Int. J. Theor. Phys. 38, 1113 (1999); Adv.
Theor. Math. Phys. 2, 231 (1998).

[2] S. A. Hartnoll, A. Lucas, and S. Sachdev, arXiv:
1612.07324.

[3] L. D. Landau and E. M. Lifshitz, Statistical Physics
(Pergamon Press, New York, 1969).

[4] K. Trachenko and V. V. Brazhkin, Rep. Prog. Phys. 79,
016502 (2016).

[5] J. Frenkel, Kinetic Theory of Liquids (Oxford University
Press, New York, 1947).

[6] J. C. Dyre, Rev. Mod. Phys. 78, 953 (2006).
[7] C. Yang, M. T. Dove, V. V. Brazhkin, and K. Trachenko,

Phys. Rev. Lett. 118, 215502 (2017).
[8] J. C. Maxwell, Phil. Trans. R. Soc. London 157, 49 (1867).
[9] K. Trachenko, Phys. Rev. E 96, 062134 (2017).

[10] L. D. Landau and E. M. Lifshitz, Fluid Mechanics
(Butterworth-Heinemann, Oxford, 1987).

[11] G. Feinberg, Phys. Rev. 159, 1089 (1967).
[12] V. Nosenko, J. Goree, and A. Piel, Phys. Rev. Lett. 97,

115001 (2006).
[13] L. D. Landau and E. M. Lifshitz, Theory of Elasticity

(Elsevier, New York, 1986).
[14] W. C. Morkel, S. Hosokawa, H. Saggau, H. Sinn, and E.

Burkel, J. Non-Cryst. Solids 250–252, 96 (1999).
[15] L. Noirez and P. Baroni, J. Phys. Condens. Matter 24,

372101 (2012).
[16] L. Noirez and P. Baroni, J. Mol. Struct. 972, 16 (2010).

[17] S. Grozdanov and N. Poovuttikul, Phys. Rev. D 97, 106005
(2018).

[18] S. Grozdanov, D. M. Hofman, and N. Iqbal, Phys. Rev. D
95, 096003 (2017).

[19] D. M. Hofman and N. Iqbal, SciPost Phys. 4, 005 (2018).
[20] D. Gaiotto, A. Kapustin, N. Seiberg, and B. Willett, J. High

Energy Phys. 02 (2015) 172.
[21] S. Grozdanov and N. Poovuttikul, arXiv:1707.04182.
[22] L. Alberte, M. Baggioli, and O. Pujolas, J. High Energy

Phys. 07 (2016) 074.
[23] T. Andrade and B. Withers, J. High Energy Phys. 05 (2014)

101.
[24] S. A. Hartnoll, A. Lucas, and S. Sachdev, arXiv:

1612.07324.
[25] A. Jimenez-Alba, K. Landsteiner, and L. Melgar, Phys. Rev.

D 90, 126004 (2014).
[26] R. E. Arias and I. S. Landea, J. High Energy Phys. 11 (2014)

047.
[27] P. Kovtun, J. Phys. A 45, 473001 (2012).
[28] L. Alberte, M. Ammon, A. Jimnez-Alba, M. Baggioli, and

O. Pujols, Phys. Rev. Lett. 120, 171602 (2018).
[29] M. Baggioli and O. Pujolas, Phys. Rev. Lett. 114, 251602

(2015).
[30] D. Vegh, arXiv:1301.0537.
[31] L. Alberte, M. Baggioli, A. Khmelnitsky, and O. Pujolas, J.

High Energy Phys. 02 (2016) 114.
[32] R. A. Davison, Phys. Rev. D 88, 086003 (2013).

MAXWELL INTERPOLATION AND CLOSE SIMILARITIES … PHYS. REV. D 99, 106002 (2019)

106002-9

https://doi.org/10.1023/A:1026654312961
https://doi.org/10.4310/ATMP.1998.v2.n2.a1
https://doi.org/10.4310/ATMP.1998.v2.n2.a1
http://arXiv.org/abs/1612.07324
http://arXiv.org/abs/1612.07324
https://doi.org/10.1088/0034-4885/79/1/016502
https://doi.org/10.1088/0034-4885/79/1/016502
https://doi.org/10.1103/RevModPhys.78.953
https://doi.org/10.1103/PhysRevLett.118.215502
https://doi.org/10.1098/rstl.1867.0004
https://doi.org/10.1103/PhysRevE.96.062134
https://doi.org/10.1103/PhysRev.159.1089
https://doi.org/10.1103/PhysRevLett.97.115001
https://doi.org/10.1103/PhysRevLett.97.115001
https://doi.org/10.1016/S0022-3093(99)00218-5
https://doi.org/10.1088/0953-8984/24/37/372101
https://doi.org/10.1088/0953-8984/24/37/372101
https://doi.org/10.1016/j.molstruc.2010.02.013
https://doi.org/10.1103/PhysRevD.97.106005
https://doi.org/10.1103/PhysRevD.97.106005
https://doi.org/10.1103/PhysRevD.95.096003
https://doi.org/10.1103/PhysRevD.95.096003
https://doi.org/10.21468/SciPostPhys.4.1.005
https://doi.org/10.1007/JHEP02(2015)172
https://doi.org/10.1007/JHEP02(2015)172
http://arXiv.org/abs/1707.04182
https://doi.org/10.1007/JHEP07(2016)074
https://doi.org/10.1007/JHEP07(2016)074
https://doi.org/10.1007/JHEP05(2014)101
https://doi.org/10.1007/JHEP05(2014)101
http://arXiv.org/abs/1612.07324
http://arXiv.org/abs/1612.07324
https://doi.org/10.1103/PhysRevD.90.126004
https://doi.org/10.1103/PhysRevD.90.126004
https://doi.org/10.1007/JHEP11(2014)047
https://doi.org/10.1007/JHEP11(2014)047
https://doi.org/10.1088/1751-8113/45/47/473001
https://doi.org/10.1103/PhysRevLett.120.171602
https://doi.org/10.1103/PhysRevLett.114.251602
https://doi.org/10.1103/PhysRevLett.114.251602
http://arXiv.org/abs/1301.0537
https://doi.org/10.1007/JHEP02(2016)114
https://doi.org/10.1007/JHEP02(2016)114
https://doi.org/10.1103/PhysRevD.88.086003


[33] R. A. Davison and B. Goutraux, J. High Energy Phys. 01
(2015) 039.

[34] T. Ciobanu and D. M. Ramirez, arXiv:1708.04997.
[35] S. Pu, T. Koide, and D. H. Rischke, Phys. Rev. D 81, 114039

(2010).
[36] M. Baggioli and K. Trachenko, J. High Energy Phys. 03

(2019) 093.
[37] W. Israel and J. Stewart, Ann. Phys. (N.Y.) 118, 341 (1979).

[38] P. Romatschke, Int. J. Mod. Phys. E 19, 1 (2010).
[39] L. Alberte, M. Ammon, M. Baggioli, A. Jimnez, and O.

Pujols, J. High Energy Phys. 01 (2018) 129.
[40] M. Baggioli and A. Buchel, J. High Energy Phys. 03 (2019)

146.
[41] M. Baggioli and D. K. Brattan, Classical Quantum Gravity

34, 015008 (2017).
[42] M. Baggioli, arXiv:1610.02681.

M. BAGGIOLI and K. TRACHENKO PHYS. REV. D 99, 106002 (2019)

106002-10

https://doi.org/10.1007/JHEP01(2015)039
https://doi.org/10.1007/JHEP01(2015)039
http://arXiv.org/abs/1708.04997
https://doi.org/10.1103/PhysRevD.81.114039
https://doi.org/10.1103/PhysRevD.81.114039
https://doi.org/10.1007/JHEP03(2019)093
https://doi.org/10.1007/JHEP03(2019)093
https://doi.org/10.1016/0003-4916(79)90130-1
https://doi.org/10.1142/S0218301310014613
https://doi.org/10.1007/JHEP01(2018)129
https://doi.org/10.1007/JHEP03(2019)146
https://doi.org/10.1007/JHEP03(2019)146
https://doi.org/10.1088/1361-6382/34/1/015008
https://doi.org/10.1088/1361-6382/34/1/015008
http://arXiv.org/abs/1610.02681

