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We show that adjoint QCD features very strong Bose-Fermi cancellations in the large-N limit, despite
the fact that it is manifestly nonsupersymmetric. The difference between the bosonic and fermionic

densities of states in large-N adjoint QCD turns out to have a “two-dimensional” scaling ∼ expð ffiffiffiffiffiffi
lE

p Þ for
large energies E in finite spatial volume, where l is a length scale associated with the curvature of the
spatial manifold. In particular, all Hagedorn growth cancels, and so does the growth exp ðV1=4E3=4Þ
expected in a standard local four-dimensional theory in spatial volume V. In these ways, large-N adjoint
QCD, a manifestly nonsupersymmetric theory, acts similarly to supersymmetric theories. We also show that
at large-N the vacuum energy of multiflavor adjoint QCD is non-negative and exponentially small
compared to the UV cutoff with several natural regulators.
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I. INTRODUCTION

The goal of this paper is to discuss relations between
bosonic and fermionic excitations in four-dimensional
adjoint QCD. Despite the manifest lack of supersymmetry
in adjoint QCD with nf > 1, these relations turn out to be
surprisingly powerful. In several ways, these relations turn
out to be as powerful as the Bose-Fermi relations in
supersymmetric QFTs.
To probe relations between bosonic and fermionic states,

we will mostly consider a ð−1ÞF-graded grand-canonical
partition function Z̃ðLÞ and the related grand-canonical
ð−1ÞF-graded density of states ρ̃ðEÞ:

Z̃ðLÞ ¼ trð−1ÞFe−LH ¼
Z

dE ρ̃ðEÞe−LE: ð1:1Þ

Here, ρ̃ðEÞ ¼ ρBðEÞ − ρFðEÞ, and ρBðEÞ and ρFðEÞ are the
bosonic and fermionic densities of states as a function of
energy E.
In four-dimensional supersymmetric (SUSY) quantum

field theories (QFTs), the energies of bosonic and fermionic

states are tightly correlated by definition. In flat space,
bosonic and fermionic finite-energy excitations come in
degenerate pairs, and (at least when the spectrum is
discrete) ρ̃ðEÞ vanishes for energies E > 0, and Z̃ becomes
the Witten index [1]. If space is taken to be a compact
curved manifold, then in a SUSY QFT [2]

log ρ̃ðEÞ ∼
ffiffiffiffiffiffi
lE

p
; ð1:2aÞ

log Z̃ðLÞ ∼ l
L
; ð1:2bÞ

where ∼ indicates the scaling for large E and small L,
respectively; l is a length scale characterizing the spatial
manifold M, l≡ R

d3x
ffiffiffi
g

p
R, and g and R are the metric

and Ricci scalar curvature of M.1

In generic nonsupersymmetric four-dimensional (4D)
QFTs, on the other hand, one expects

no SUSY ⇒

�
log ρ̃ðEÞ ∼ V1=4E3=4

log Z̃ðLÞ ∼ V=L3:
ð1:3Þ

These scaling relations follow from the expectation that
the partition function should have an extensive dependence
on the spatial volume V in the absence of high-energy
Bose-Fermi cancellations. Indeed, roughly speaking, the
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1It can be helpful to write l ¼ V=R2, where V is the volume of
M and R is its volume-averaged radius of curvature. For example,
ifM ¼ T3, which is flat, then l ¼ 0, but ifM ¼ S3 with radius r,
then l ∼ r.
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coefficient of V=L3 counts the difference between the
number of bosonic and fermionic degrees of freedom
(d.o.f.) at short distances. Its value can be related to the
standard quartically divergent contribution to the cosmo-
logical constant, as we discuss in Sec. V D. Of course,
SUSY implies that the Bose-Fermi d.o.f. mismatch under-
lying Eq. (1.3) vanishes and, relatedly, also implies that
quartic divergences in the contributions to the vacuum
energy must vanish, leading to Eq. (1.2).
The main goal of this paper is to show that there are some

manifestly nonsupersymmetric QFTs, which manage to
satisfy Eq. (1.2). In particular, we find that Eq. (1.2) applies
toUðNÞ adjointQCDcoupled to 1 ≤ nf < 6massless adjoint
Majorana fermions in the ’t Hooft large-N limit. This family of
theories is asymptotically free, with a strong scale Λ.2 We
choose to define UðNÞ adjoint QCD to include nf massless
freeMajorana fermions in addition to aMaxwell field. Then, if
nf ¼ 1, adjoint QCD reduces to N ¼ 1 pure super–Yang-
Mills theory, and the fact that Eq. (1.2) is satisfied when nf ¼
1 is not surprising. But for nf > 1, the number of massless
microscopic bosonic degrees of freedom ∼N2 is smaller than
the number of massless fermionic degrees of freedom∼N2nf,
so there is no supersymmetry to begin with, and there is
naively no reason that Eq. (1.2) should hold.
Nevertheless, we find that at small LΛ the graded

partition function scales as

log Z̃ðLÞ ∼ a
N2

V
L3

þ b
l
L
; UðNÞ adjoint QCD ð1:4Þ

for any 1 < nf < 6. Here, a and b are dimensionless
parameters, which are independent of N in the large-N

limit and have a logarithmic dependence on L. Note that the
first term is suppressed by 1=N4 relative to its naive ∼N2

scaling. If one takes the large-N limit with all other
parameters held fixed, the first term vanishes, and we
recover Eq. (1.2). Consequently, the ð−1ÞF-graded partition
function of four-dimensional large-N adjoint QCD behaves
as if it were the partition function of a two-dimensional
theory. The general observation that large-N adjoint QCD
must have strong Bose-Fermi relations was first made in
Ref. [15], while the observation that these cancellations
can be so strong as to lead to Eq. (1.2) was made in
Refs. [16–21] in the context of a one-loop analysis. Our
results here generalize these earlier works and promote
Eq. (1.2) to an exact statement about adjoint QCD.
How is such a thing possible without supersymmetry,

given the obvious mismatch in the number of bosonic and
fermionic d.o.f. in adjoint QCD? The answer is tied up with
two special features of adjoint QCD. The first special
feature is that adjoint QCD has both bosonic and fermionic
color-singlet excitations with energies ∼N0. Among theo-
ries with fermionic matter fields in a single color repre-
sentation of SUðNÞ, the only way to achieve this is with
fermions in a real representation, and the only real
representation SUðNÞ is the adjoint representation. In
QCD with, e.g., fundamental fermions, the lightest fer-
mionic states have energies ∼N when N is odd, and there
are no fermionic states at all when N is even. This feature is
illustrated in Fig. 1.
The second special feature of adjoint QCD is that if it is

compactified on a circle of size L with periodic boundary
conditions it stays in the confined phase for all L, even if L
is small, and has a smooth dependence on L; see, e.g.,
Refs. [22–39]. Note that Eq. (1.4) is obtained precisely
at small LΛ, where adjoint QCD is in the confined
phase. Relatedly, in adjoint QCD, the L dependence of
appropriate observables disappears at large N in a phe-
nomenon called large-N volume independence [22];
see also, e.g., Refs. [40–47] for important related work.
These two features are tied to the ZN center symmetry of

FIG. 1. Illustrations of the large-N bosonic and fermionic Hilbert spaces of color-singlet states in QCD with fundamental fermions
(left),N ¼ 1 super–Yang-Mills (middle), and multiflavor adjoint QCD (right). The are no light fermionic states in QCD(F), so no Bose-
Fermi correlations are possible. In N ¼ 1 super Yang-Mills theory, the nonzero energy states come in Bose-Fermi pairs due to
supersymmetry. In QCD(Adj), there is no mode-by-mode Bose-Fermi pairing and no supersymmetry, but at large N, the spectrum
nevertheless enjoys Bose-Fermi correlations, with some consequences as powerful as the ones that follow from supersymmetry.

2For some values of nf , especially nf ¼ 5 and most likely also
nf ¼ 4 [3–14], the theory is believed to be in an infrared-
conformal sphase. The lower boundary of the conformal window
is not known. For theories in the conformal window, one can
interpret Λ as the scale at which the gauge coupling saturates to
its infrared–fixed point value.

CHERMAN, SHIFMAN, and ÜNSAL PHYS. REV. D 99, 105001 (2019)

105001-2



adjoint QCD. The Euclidean path integral associated to
compactification on a circle with periodic boundary con-
ditions calculates precisely the ð−1ÞF-graded partition
function we are discussing. One can thus think about the
contributions to log Z̃ at small LΛ in two ways: either as a
ð−1ÞF-graded sum of contributions of colorless hadronic
states or as a (gauge-invariant) ð−1ÞF-graded sum of
colored gluon and adjoint quark contributions.
Introducing a ð−1ÞF grading makes adjoint QCD remain

confining at small L, in the sense that center symmetry is
not spontaneously broken. The reason this is relevant is
because, thanks to the presence of a center-symmetric
Polyakov-loop expectation value, the contributions of the
quarks and gluons to the partition function come with
phases which are Nth roots of 1. These phases induce
extreme destructive interference in the sum over colors,
suppressing the coefficient of L−3 by four powers of N
relative to the naively expected N2L−3 term, as advertised
in Eq. (1.4). This phenomenon is explained in Sec. II B.
From the hadronic perspective, this means that the energies
and distributions of bosonic and fermionic hadrons are such
that they manage to cancel each other to extreme accuracy
in log Z̃ despite the absence of energy-level-by-energy-
level cancellations in this nonsupersymmetric QFT.
These cancellations require a subtle “spectral con-

spiracy” or “emergent large-N symmetry,” which is tied
up with both confinement and the large-N limit. The
emergent large-N symmetry terminology was first used
in Ref. [15], and we feel that the power of the Bose-Fermi
relations in adjoint QCD justifies this term. But we
emphasize that we are not dealing with any standard
symmetry because there are no level-by-level Bose-
Fermi cancellations in adjoint QCD; the cancellations
nontrivially involve summing over the whole spectrum,
as discussed in Refs. [15,16] and in this paper. That is why
we generally use the less prejudicial term “spectral con-
spiracy” in this paper.
The fact that the large-N limit is necessary for the

cancellations is naively rather surprising because one might
have thought it would make matters worse rather than
better. In confining large-N gauge theories, the density of
states with energies E ∼ N0 scales as

ρðEÞ ∼ eLHE þ � � � ð1:5Þ

for some length scale LH, leading to “Hagedorn singular-
ities” in the partition function. Note that the � � � terms
generically include an infinite number of smaller but still
exponentially growing terms, as we discuss in more detail
in Sec. VA. The fact that adjoint QCD remains confining at
small L, with no phase transition between small and large
L, means that all such exponential growth must cancel
between the bosons and fermions, as emphasized in
Refs. [15,16]. Such Hagedorn cancellations are very
difficult to achieve. The point we emphasize here is that

the cancellations are even more severe than expected in
Ref. [15]; they are so precise that not even a single 4D
particle’s worth of d.o.f. is left over, despite the absence of
supersymmetry.
To establish Eq. (1.4), our basic tool is to study

compactification of adjoint QCD on a circle of circum-
ference L with periodic boundary conditions for the
fermions. In Sec. II, we show that confinement is indeed
present at small LΛ at large N in adjoint QCD, filling a
small gap in the discussion of Ref. [22] along the way. We
then analyze the implications of known results on large-N
volume independence on the partition function and show
that they imply a version of Eq. (1.2) for R3 × S1. This
gives a simple but not especially explicit demonstration of
our main result. Section III contains a more direct analysis
of the graded partition function and shows that the
preservation of center symmetry at small LΛ leads to
Eq. (1.2). In Sec. IV, we consider deformations of adjoint
QCD obtained by turning on quark masses or introducing
some extra grading by the flavor symmetries into the
partition function to explore the class of theories and
symmetry gradings that can produce Eq. (1.2).3 As a side
benefit, by a method similar to Ref. [48], we construct
compactifications of adjoint QCD that have a smooth
dependence on L, regardless of the possible fate of chiral
symmetry breaking in adjoint QCD on R4.4 Section V
places our results in context. There, we discuss the
connections between our work here and earlier discussions
of Bose-Fermi cancellations in adjoint QCD [15,16] and
discuss a striking parallel between our results and the
notion of misaligned supersymmetry in string theory
[55–58]. Finally, we explain the implications of our results
for the vacuum energy hEi of multiflavor large-N adjoint
QCD and argue that hEi is non-negative and exponentially
small in units of the UV cutoff, with several natural choices
for UV regulators.

II. LARGE N VOLUME INDEPENDENCE
AND ITS IMPLICATIONS

In this section, we explain how massless adjoint QCD
manages to remain in the confined phase when compacti-
fied on a small circle and then show that putting this result
together with known properties of large-N volume inde-
pendence leads to our main result, Eq. (1.4).

3For example, when nf ¼ 2, not only is ð−1ÞF well defined,
but so is the fermion number F per se [13]. So, one can introduce
gradings by eiαF rather than just eiπF.

4For recent discussions of chiral symmetry breaking, or
its possible absence, in N ¼ 2 adjoint QCD, see, e.g.,
Refs. [14,49–53]. Reference [54] discusses the expectations
for N > 2 as well as the relation of adjoint QCD to a bona-
fide large-N limit of standard QCD via the orientifold N
equivalence between adjoint QCD and QCD with two-index
antisymmetric representation quarks.
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A. Confinement at small LΛ
Reference [22] showed that adjoint QCD with massless

quarks has unbroken center symmetry when it is com-
pactified on R3 × S1 with sufficiently small S1 sizes L, so
long as periodic boundary conditions are used for all of
the fields (including the quarks). At large L, there is
evidence from lattice simulations that the theory is in a
center-symmetric phase; see, e.g., Refs. [32–34]. This
inspired the conjecture that the theory enjoys unbroken
center symmetry for all L.
If one believes this conjecture, then adjoint QCD enjoys

large-N volume independence; roughly speaking, the L
dependence of observables vanishes [22]; see also
Refs. [40,41]. But the IR dynamics of adjoint QCD are
strongly coupled on R4, and volume independence implies
that this remains true for any L so long as LΛ ∼ N0. So, if
generic large-distance observables are strongly coupled on
R4, they remain strongly coupled for any L. So, how can
one know that a theory enjoys large-N volume independ-
ence analytically, without lattice simulations? Relatedly,
just how small does L have to be to make the conclusion of
Ref. [22] reliable?
To see the answer, let us recall the precise statement of

large-N volume independence on R3 × S1 [22] for adjoint
QCD. The claim is that correlation functions of topologi-
cally trivial single-trace operators are independent of L at
large N so long as center symmetry does not break
spontaneously.5 Most of the physics of interest in a gauge
theory is in the sector covered by volume independence.
This is conceptually interesting but also unfortunate for
calculations due to strong coupling issues. But very
fortunately, the observables necessary to check the center
symmetry realization conditions vital to volume independ-
ence are not in the volume-independent sector. The
prototypical operator charged under center symmetry is
the Polyakov loop

trΩ ¼ trPei
H
S1

A: ð2:1Þ

This operator is topologically nontrivial because it winds
around the compact direction. When LΛ≳ 1, quantum
fluctuations in trΩn are large, and one must appeal to
numerical lattice Monte Carlo simulations to determine
htrΩni; the simulations indicate that center symmetry is not
broken [32–34].
However, things are simpler when L is sufficiently small

to make quantum fluctuations in trΩn small so that a loop
expansion becomes useful. In such a regime, it becomes
meaningful to compute the Coleman-Weinberg effective
potential for the holonomy of the gauge field on S1L. This

effective potential is often called the Gross-Pisarski-Yaffe
(GPY) effective potential [59] and takes the form [22]

VeffðΩÞ ¼
2ðnF − 1Þ
π2L4

X
n≥1

1

n4
jtrΩnj2; ð2:2Þ

in UðNÞ adjoint QCD. The minimum of this potential for
nf > 1 is

Ω ¼ eiαdiagð1;ω;…;ωN−1Þ;ω ¼ e2πi=N; ð2:3Þ

where α is arbitrary.6 At this minimum, the traces of the
holonomy vanish,

htrΩni ¼ 0; n ≠ 0 mod N; ð2:4Þ

and the ZN center symmetry of adjoint QCD is not sponta-
neously broken.7 This means that by the standard criterion
adjoint QCD is confining whenever the one-loop computa-
tion leading to Eq. (2.2) is valid.
Clearly, the only chance for the calculation to be valid is

to take L small enough that one can appeal to asymptotic
freedom. The question is what is the precise criterion
involved. In the three-dimensional (3D) effective theory
valid for LΛ ≪ 1, the holonomy “Higgses” the gauge
group SUðNÞ → Uð1ÞN−1, but the W-boson mass scale is
1=ðNLÞ. This means that an Abelianized 3D effective
theory, which is weakly coupled [23,25], is a valid
description only if NLΛ ≪ 1. This may make it tempting
to conclude that Eq. (2.2) is valid only when NLΛ ≪ 1.
This is not correct. To appreciate this, we need to discuss

what controls the corrections to Eq. (2.2). First, consider
the behavior of loop corrections near the center-breaking
extrema Ω ¼ ωk1. The physics here is essentially identical
to that of thermal Yang-Mills (YM) theory. It is well known
that naive perturbation theory in thermal YM theory with
temperature T ¼ 1=L suffers from IR divergences starting
at three loops (corresponding to λ2 terms in an expansion of
the free energy F, since the λ0 term in F is a one-loop
term). The physical origin of these IR divergences is the
∼N2 zero modes of the theory on the circle. IR divergences
in perturbation theory are of course a signal that the theory is
trying to develop effective masses for some modes, and the
strength of IR divergences is correlated with the size of these
effective masses. Here, the IR divergences are cut off by the
appearance of effective masses for electric and magnetic
gluons. The “Debye” electric gluon mass is calculable in
resummed perturbation theory, mD ∼ λ1=2L−1, while the

5In fact, one must also assume that translation symmetry in S1
does not break spontaneously [22]. This is indeed the case in all
known examples of Lorentz-invariant theories compactified to
R3 × S1, so we do not further discuss this condition.

6In an SUðNÞ theory, α would be fixed by requiring detΩ ¼ 1,
and one would replace jtrΩnj2 by jtrΩnj2 − 1 in the effective
potential.

7More precisely, the center symmetry is ZN in SUðNÞ adjoint
QCD, while in UðNÞ ¼ ½SUðNÞ × Uð1Þ�=ZN , the center sym-
metry is extended from ZN to Uð1Þ.
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magnetic gluon mass mmag ∼ λL−1 is determined by the
confining dynamics of three-dimensional YM theory and is
not calculable in perturbation theory. Taking these effective
masses into account by appropriate resummations produces
nonanalyticities in the free energy of the form L−4λ3=2 and
L−4λ2 log λ, where the ’t Hooft coupling is taken at the scale
1=L. In the end, however, all corrections to the one-loop free
energy are small whenever LΛ ≪ 1. So, one can trust the
one-loop value of the free energy at Ω ¼ 1 whenever
LΛ ≪ 1.
What about the loop corrections when 1

N jhtrΩij ≠ 1, and
in particular near the center-symmetric point in holonomy
space? The key point is that when 1

N jhtrΩij ≠ 1 there are
only ∼N zero modes on the circle in perturbation theory,
corresponding to the Cartan gluons. At the center-sym-
metric point, the Cartan gluons only develop nonperturba-
tively small masses, mCartan ∼ e−16π

2=λ [23,25], see also
Ref. [60], while all other modes pick up masses propor-
tional to ∼1=ðNLÞ and λ1=2=ðNLÞ. Note that all of these
mass scales are much smaller than in the thermal case. This
testifies to the fact that the strength of IR divergences
decreases when one moves away from the center-breaking
point Ω ¼ ωk1, and indeed they are smallest when Ω takes
the center-symmetric value. Not coincidentally, this is also
the point in holonomy space where volume independence
sets in at large N, and the physics becomes four dimen-
sional. IR divergences are much weaker in four-
dimensional theories compared to three-dimensional theo-
ries. In 4D theories, the IR divergences are cut off by
nonperturbatively small effective masses ∼e−8π=ðb0λÞ, where
b0 ¼ 11=3 − 2nf=3, while in 3D theories, the IR masses
scale with powers of λ, as discussed above in the context of
thermal YM theory. All of this implies that it is meaningful
to compare the center-broken and center-symmetric
extrema of the potential whenever LΛ ≪ 1.
In thermal YM theory, such considerations justify the

famous conclusion of Ref. [59] that YM theory is in a
deconfined phase at high temperature. In adjoint QCD on a
circle with periodic boundary conditions, these consider-
ations imply that center symmetry is not broken when
LΛ ≪ 1. This means that large-N volume independence
applies to adjoint QCD whenever LΛ ≪ 1. Lattice calcu-
lations [32–34] show that center symmetry is also pre-
served when LΛ≳ 1. So, the evidence supports the
conclusion that adjoint QCD enjoys large-N volume
independence for all L.

B. Derivation of the main claim
from large-N volume independence

These results, along with known features of large-N
volume independence, are actually already enough to give
a quick derivation of our main result. First, we recall that
large-N volume independence is a statement about toroidal
compactifications [22,40]. It has not been studied extensively

on manifolds with curvature,8 so in this subsection, we
consider compactifying adjoint QCDonT3 × S1 and assume
that the size ofT3 is very large so that we are effectively in the
R3 × S1 limit.
Consider the expectation value of the ð−1ÞF-graded

energy density,

hEi ¼ ∂L log Z̃; ð2:5Þ

in a 4D gauge theory. In the L → ∞ limit, one expects that

hEi ∼ cΛ4; ð2:6Þ

where Λ is the strong scale and c is a scheme-dependent
constant.9 Equation (2.6) is only defined given a choice of
regularization and renormalization scheme, and in the
following, we assume that the scheme does not break
center symmetry. When LΛ ≪ 1, in theories with a gauge
group with rank ∼N, one expects

hEi ¼ atypicalL−4 þ cΛ4 þ � � � ; ð2:7Þ

where atypical ∼ N2. In adjoint QCD on R3 × S1, there
cannot be any terms proportional to, e.g., Lp−4Λp with
p ¼ 1, 2, 3 for reasons explained around Eq. (3.2), without
any assumptions about center symmetry.
In a theory which enjoys large-N volume independence

for any LΛ, however, the L−4 term must vanish, so one
must have

a ¼ OðN−2Þ: ð2:8Þ

Indeed, following Gross and Kitazawa [63],10 we deduce
that planar perturbation theory in a center-symmetric
holonomy background with just one compact dimension
depends on L only through the parameter LN. Trading L
for LN in Eq. (2.7) with atypical ∼ N2, one lands on an
effective value of a as given in Eq. (2.8).
To recover Eq. (1.2), we just integrate Eq. (2.6) with

respect to L. This produces Eq. (1.2) with l ¼ 0 because
we have taken the spatial manifold to be flat for this
discussion. We expect that a careful study of large-N
volume independence on product manifolds where one
of the factors is curved, such as S3R × S1L, will show that L
continues to enter observables in the combination LN. The
curvature term in the effective action will then produce an
N-independent term scaling as 1=L2 in Eq. (2.7) and hence

8Although, see Refs. [16,61,62].
9We are assuming that the theory in question does not flow to a

nontrivial IR fixed point. In an IR conformal field theory on R4,
any reasonable renormalization scheme choice would lead to
hEi ¼ 0.

10See also the literature on twisted Eguchi-Kawai reduction
[42–47].
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reproduce Eq. (1.2) with l ∼ R. This expectation is
supported by an explicit large-N calculation of log Z̃ on
S3 × S1 with small S3 radius R. This calculation is pre-
sented in Appendix.
One may ask how the disappearance of the 1=L3 term in

log Z̃ can be consistent with the microscopic counting of
the d.o.f. in adjoint QCD. The answer can be seen from
Eq. (2.2). A center-symmetric holonomy means that differ-
ent color components of the gluons and adjoint quarks do
not contribute equally to log Z̃. Indeed, let eiϕa , a ¼
1;…; N be the eigenvalues of Ω. Then, one can write
the one-loop effective potential as

VeffðΩÞ ¼
2ðnF − 1Þ

L

XN
a;b¼1

Z
d3p
ð2πÞ2 log ð1 − e−pLeiϕa−iϕbÞ

¼ 2ðnF − 1Þ
π2L4

X∞
n¼1

XN
a;b¼1

1

n4
einðϕa−ϕbÞ

¼ 2ðnF − 1Þ
π2L4

X∞
n¼1

1

n4
jtrΩnj2: ð2:9Þ

The sum over a, b in Eq. (2.9) is a sum over the color for the
gluons and adjoint quarks. A nontrivial holonomy can be
interpreted as giving twisted boundary conditions for these
fields, and consequently their contributions to the partition
function come with phases determined by the holonomy.
Evaluating this expression on its center-symmetric mini-
mum gives log Z̃, and the quark and gluon contributions get
weighed by phases which are Nth roots of unity. This
causes very strong destructive interference and leads to the
one-loop result

log Z̃¼ 2ðnF−1Þ
π2L4

X
k¼1

1

N4k4
N2 ¼ 2ðnF−1Þ

π2L4N2
ζð4Þ; ð2:10Þ

rather than Veff ∼ ðnf − 1ÞN2L−4, which would have held
if center symmetry were broken. In Sec. III, we generalize
this one-loop argument to all orders in the perturbative
expansion and explain why nonperturbative effects cannot
change the results.

III. HOLONOMY EFFECTIVE POTENTIAL
AND CANCELLATIONS

In this section, we complement the arguments of
Sec. II B by a more explicit discussion of the small-L
behavior of the log Z̃ in adjoint QCD.

A. General structure

To understand the structure of Z̃ for small L, one can
integrate out all modes with energies ≳1=L. To avoid IR
divergences, we put the theory on a compact spatial
manifold M. In adjoint QCD, Z̃ must take the form [2]

log Z̃ ¼ aðN; λÞL−3
Z

d3x
ffiffiffi
g

p þ bðN; λÞL−1
Z

d3x
ffiffiffi
g

p
R

þ cðN; λÞL
Z

d3x
ffiffiffi
g

p
Leff þ � � � ð3:1Þ

Here, a, b, and c are functions determined by matching
to the UV theory, g is the metric on M, R is the Ricci
scalar curvature associated to g, and Leff is the effective
Lagrangian for modes which are massless on the scale L.
In adjoint QCD,

L3d ¼
1

2g2

�
trFijFij þ

Xnf
a¼1

λ̄aDspatialλa

�
; ð3:2Þ

where i and j are 3D indices. Note that gauge invariance
forbids terms like L−1

R
d3x

ffiffiffi
g

p
O2, where O2 is a dimen-

sion-2 local operator built out of gluons and quarks. There
cannot be any term like L−2

R
d3x

ffiffiffi
g

p
O1 with an operator

built out of dynamical or background fields with dimension
1 because there are no such operators consistent with the
symmetries. Finally, the term L0

R
d3x

ffiffiffi
g

p
O3 is also for-

bidden because the only candidate dimension-3 operator λλ,
where λ is an adjoint Weyl fermion in four dimensions,
transforms under chiral symmetry.
The coefficients of the volume term L−3 and the

curvature term L−1 are scheme independent, and their
values are physical. In thermal YM theory, for example,
aðN; λÞ is just the coefficient of T4 in the high-temperature
expansion of the free energy density F,

FYM ¼ 1

βV
logZ ¼ aðN; λÞT4; ð3:3Þ

and a ∼ N2.
Here, we are dealing with a theory which remains

confining for small L. A naive microscopic count of the
d.o.f. would lead one to expect

aðN; λÞ¼! OðN2Þ: ð3:4Þ

But in the confining phase, it is expected that the free
energy scales as N0. In a theory in which confinement
persists to small LΛ, this already means that the growth of a
with N cannot be stronger than

aðN; λÞ ¼ OðN0Þ: ð3:5Þ

This already requires some highly nontrivial cancellations.
Our goal here is, of course, to argue that in adjoint QCD the
cancellations are even stronger, and in fact,

aðN; λÞ ¼ O
�

1

N2

�
: ð3:6Þ
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B. Holonomy effective potential to all orders

Rather than constraining aðN; λÞ directly, we will instead
discuss the structure of the effective potential for the
holonomy, VeffðΩÞ,

VeffðΩÞ ¼ aðN; λ;ΩÞL−4 þ � � � ; ð3:7Þ

where � � � are finite-volume corrections and corrections
involving positive powers of the strong scale Λ. When
VeffðΩÞ is minimized with respect to Ω, it coincides with
the ð−1ÞF-graded free energy density, and so a study of
VeffðΩÞ gives us information about the function we are
really after, namely, aðN; λÞ. We find it easier to understand
the implications of center symmetry starting with Veff
rather than working with aðN; λÞ directly.
We now record some important basic observations con-

cerning the structure and physical origin of aðN; λ;ΩÞ.
First, aðN; λ;ΩÞ is fully determined in perturbation theory.
Dimensional transmutation means that nonperturbative
effects, which are weighed by positive powers of e−1=λ,
generate contributions involving positive powers of the
strong scale Λ. This means that nonperturbative effects
cannot contribute to the coefficient of 1=L4 in Veff , so we
only need to consider the perturbative effects from here
onward.
Second, gauge invariance along with the definition of

quantum effective potentials implies that the dependence of
f on Ω can only be through the variables

un ≡ 1

N
htrΩni; n ∈ Z: ð3:8Þ

We have normalized these variables so that un ∼Oð1Þ at
large N. Next, standard large-N arguments imply that a has
an expansion11 in inverse powers of N2,

aðN;λ;fungÞ¼N2a0ðλ;fungÞþN0a1ðλ;fungÞþOðN−2Þ;
ð3:9Þ

where the functions ag are sums of Feynman diagrams of
genus g. The functions ag become manifestly N indepen-
dent when junj ¼ 1 and center symmetry is broken. We will
see that when the holonomy deviates away from the center-
broken locus,

junj ¼ 1; ∀ n ∈ N; ð3:10Þ

the functions ag decrease in magnitude. In particular,
when center symmetry is unbroken and un ¼ 0 for all
n ≠ 0 mod N, we will see that ag become so small that
aðN; λÞ goes to zero at large N.

To see how this comes about, consider the expansion of
the functions ag as formal power series in λ,12

agðλ; fungÞ ¼
X∞
p¼0

λpcg;pðfungÞ: ð3:11Þ

The coefficients cg;p are functions of the holonomies.
Feynman diagrams involving p powers of the ’t Hooft
coupling at genus g have pþ 2 − g index loops, and to
contribute an L-dependent piece to Veff (and hence to
log Z̃), at least one of the propagators in the position-space
representation of the diagram has to go around the circle.
So, the relevant diagrams at order λp produce expressions
involving at least two and at most pþ 2 − g holonomy
traces. Finally, center symmetry implies that the sum of the
powers of these holonomies must add up to zero. All this
taken together means that we can write

cg;pðfungÞ ¼
X
n∈Zþ

cg;p2 ðn⃗Þunu−n

þ
X
n⃗∈Z2

n1≠0;n2≠0

cg;p3 ðn⃗Þun1un2u−n1−n2

þ… ð3:12Þ

þ
X

n⃗∈Zpþ1−g
ni≠0

cg;ppþ2−gðn⃗Þun1un2

���unpþ1−g
u−n1−…−npþ1−g

; ð3:13Þ

where we have separated terms with different numbers of
holonomy traces. The dependence of cg;ppþ2−gðn⃗Þ on n⃗ is
constrained by noting that

cg;pk ðn1; n2;…; nkÞ ¼ cg;pðnPð1Þ; nPð2Þ;…; nPðkÞÞ; ð3:14Þ

where P is an arbitrary permutation, since

un1un2 � � � unku−n1−���−npþ1−g

¼ unPð1ÞunPð2Þ � � � unPðpþ1−gÞu−nPð1Þ−���−nPðkÞ : ð3:15Þ

This means that the summands entering our ansatz are
effectively “spherically symmetric.”
Our goal is to establish bounds on the n⃗ dependence of

the functions cg;p, which have the effect of ensuring
Eq. (3.6). To find such bounds, we observe the effective
potential must make sense for all values of un, including
junj ¼ 1. This can only work if the coefficients cg;pk ðn⃗Þ have
sufficiently fast falloff at large jnj. Requiring

11This expansion in 1=N2 is expected to be asymptotic, see,
e.g., Ref. [64], but this does not matter for our argument.

12This expansion in λ is also asymptotic due to, e.g., IR
renormalon effects, but this is also irrelevant to our argument
because renormalons only matter for understanding the terms
involving powers of Λ.
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X
n⃗∈Zk−1

cðn⃗Þ ð3:16Þ

to converge then places restrictions on the large-jnj scaling
of the summand c. The permutation-symmetry property
means that conditionally convergent expressions such as

X
n⃗∈Z2

n21 − n22
n41 þ n42

ð3:17Þ

cannot appear. So, the sums we are dealing with must
converge absolutely. The expressions with k holonomy
traces are k − 1 dimensional sums, and convergence
requires the associated coefficient functions to scale as

cg;pk ðn⃗Þ ∼ 1

jnjc ; c > k − 1: ð3:18Þ

This is as far as we have been able to get in deriving general
constraints on Veff .
However, for expressions involving only two holonomy

traces,

X
n∈Zþ

cg;p2 ðnÞunu−n; ð3:19Þ

one can show a stronger constraint, which will be important
below.13 Consider ∂LVeffðΩÞ. When evaluated on the
minimum of Ω, this computes the expectation value of
the energy density. In perturbation theory, a holonomy
dependence involving two traces arises when precisely one
gluon or adjoint quark propagator goes around the circle S1,
while the rest do not. If we denote the position-space gluon
propagator on R4 by GðxμÞab, where all labels except color
have been suppressed, then the R3 × S1 propagator can be
written as

Gðxμ;L;ΩÞab ¼
X
n∈Z

Gðxμ þ nLδ4;μÞabeiðαa−αbÞn; ð3:20Þ

where Ω ∼ diagðeiα1 ;…; eiα1Þ. This is just a sum-over-
images construction of a periodic function from a non-
periodic one. For the present application, where we are
interested in the finite-volume contribution to the partition
function, we need to consider propagators where xμ

vanishes. This leads to UV divergences, but they are the
same as on R4 and can be ignored, since we are really after
Z̃ðLÞ=Z̃ðL → ∞Þ. Passing to momentum space in R3, we
are led to consider expressions of the form

cg;p2 ∼
Z

d3p
XN
a;b¼1

f½Gacðp;L;ΩÞ�gðp⃗Þcb; ð3:21Þ

and gðp⃗Þ encapsulates the contributions of loops of gluons
and quarks of which the propagators do not go around S1,
and f is some linear function acting on the S1 gluon
propagator, which can involve derivatives. Since only one
gluon propagator goes around S1, this expression involves
two traces of the color holonomy. Moreover, the circle size
L always enters the expressions together with n in the
combination nL. We are interested in the terms which scale
as 1=L4, and putting these observations together, we learn
that Feynman diagrams where a single gluon goes around
S1 always produce contributions that scale as 1=n4.14 This
means that the function f must involve two derivatives.
This is quite natural, seeing as how the lowest-dimension
gauge-invariant and Lorentz-invariant operator in YM
theory, trF2, has dimension 4. It is not hard to check that
the discussion above also applies if we replace G with an
adjoint quark propagator. So, we conclude that

cg;p2 ðnÞ ∼ 1

n4
: ð3:22Þ

Note that this is much better than the 1=n1þδ; δ > 0 scaling
required for convergence.

C. Cancellations due to center symmetry

Now, we are finally in a position to collect some rewards
from the long discussion above. We already know from
Sec. II that the holonomy takes a center-symmetric expect-
ation value in adjoint QCD, so

junj ¼
�
0 n ≠ 0 mod N

1 n ¼ 0 mod N:
ð3:23Þ

In Sec. II B, we saw that this leads to a 1=N4 suppression in
the one-loop effective potential relative to its naive N2

scaling. Using the result at the end of the preceding
subsection, exactly the same suppression appears for all
terms involving two holonomy traces in planar perturbation
theory. Terms with two traces from genus-1 diagrams are
(of course) even more suppressed.
What about terms with more than two traces of the

holonomy? The convergence constraint in Eq. (3.18)
implies that these terms, which are multiplied by N2, must
go to zero faster than N2 when Eq. (3.23) holds. Since the
1=N expansion is organized in powers of 1=N2, this means
that all of these terms must go to zero at least as fast as
1=N2. The same remarks apply to the genus-1 and higher

13We are very grateful to L. G. Yaffe for suggesting the
argument which follows.

14Indeed, this was seen by explicit calculation of two-loop
contributions to the effective potential in Ref. [65].
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diagrams. So, in adjoint QCD, all perturbative contribu-
tions to the 1=L3 coefficient in log Z̃ vanish as N → ∞.
Nonperturbative effects cannot contribute to the coef-

ficient of 1=L3 in log Z̃. So, we conclude that the
coefficient of the extensive VL−3 term in the small-L
expansion of log Z̃ vanishes as 1=N2 for any nf > 1 in the
large-N limit. This matches the general expectations from
large-N volume independence explained in Sec. II B. Of
course, the coefficient of 1=L3 also vanisheswhen nf ¼ 1 at
any N, due to supersymmetry. So, at least for the specific
observable we have been discussing, the large-N spectral
conspiracy in adjoint QCD is just as powerful as
supersymmetry.

IV. DEFORMATIONS

We have now seen that massless UðNÞ adjoint QCD
features remarkably powerful cancellations between its
bosonic and fermionic excitations, leading to Eq. (1.4)
when one computes a ð−1ÞF-graded partition function. In
this section, we discuss what happens if we introduce
gradings by symmetries other than fermion number or take
the quark masses away from zero.

A. Alternative gradings and comments
on chiral phase transitions

Let us see how the phase structure of adjoint QCD
depends on gradings by global symmetries other than
ð−1ÞF, especially grading by the flavor symmetries.
Along the way, we will also explain the conditions for a
smooth dependence of the theory on the compactification
scale L regardless of the realization of chiral symmetry
on R4.
For simplicity, let us first consider massless adjoint

QCD with nf ¼ 2. There is an SUð2Þ continuous chiral
symmetry15 and a discrete Z4N chiral symmetry, as well as
a ZN one-form center symmetry. Thanks to a mixed
’t Hooft anomaly, the Z4N axial symmetry is spontaneously
broken whenever center symmetry is unbroken [66,67]. On
R4, the continuous chiral symmetry might be spontane-
ously broken to the maximal vectorlike subgroup, SOð2Þ.
(This is the widely held expectation for generic values
of N).
Let ψ be a flavor doublet,

ψ ¼
�
ψ1

ψ2

�
: ð4:1Þ

When compactifying the theory, one can consider flavor-
twisted boundary conditions ψðx3 þ LÞ ¼ gψðx3Þ, where
g ∈ SOð2Þ. The matrix g can be diagonalized without loss

of generality by using flavor rotations, giving a one-
parameter family of boundary conditions,16

ψðx3 þ LÞ ¼
�
eiφ 0

0 e−iφ

�
ψðx3Þ: ð4:2Þ

Note that φ ¼ π corresponds antiperiodic “thermal”
boundary conditions, while φ ¼ 0 corresponds to periodic
“spatial” boundary conditions. Turning on a generic twist
angle φ is equivalent to working with periodic quark fields
with a background flavor SOð2Þ holonomy,

�
eiφ 0

0 e−iφ

�
¼ U ¼ Pei

H
S1

A4 ; ð4:3Þ

where A is the background flavor gauge field. This is also
equivalent to turning on an imaginary chemical potential
iφ=L for the charge associated to the Cartan subgroup
Uð1Þ ⊂ SUð2Þ. Physically, one can package the two Weyl
fermion flavors ψ1 and ψ2 into a Dirac fermion Ψ. Then,
the fermion number symmetry Uð1ÞF is isomorphic to
the vectorlike SOð2Þ ¼ Uð1Þ subgroup of SUð2Þ, which
remains unbroken. Hence,

F ¼ QUð1Þ; ð4:4Þ

where F is the fermion charge. The Euclidean path integral
with the boundary condition (4.2) computes a twisted
partition function

Z̃ðL;φÞ ¼ trð−1ÞFe−LĤeiφQ̂Uð1ÞF ; ð4:5Þ

where Ĥ is the Hamiltonian operator, while Q̂Uð1Þ is the
charge operator for the Uð1Þ symmetry.
Suppose that the quarks are massless. Then, the boun-

dary condition (4.2) explicitly breaks the flavor symmetry
from SUð2ÞF toUð1ÞF ≡ SOð2Þ for any finite L and φ ≠ 0,
π. If continuous chiral symmetry is spontaneously broken
on R4, then the breaking pattern must be SUð2Þ → SOð2Þ
so that onR4 one would get two exactly massless “diquark”
Nambu-Goldstone bosons, G�. Given our choice of boun-
dary conditions, at finite L, these Nambu-Goldstone bosons
pick up effective masses ∼φ=L. So, with (4.2), we should
not expect to see any exactly gapless bosons in the
spectrum of the theory on R3 × S1 because there is no
exact continuous symmetry which could be spontaneously
broken.17 Consequently, the realization of the unbroken

15There are subtleties when N ¼ 2; see Ref. [52] for a careful
discussion.

16The same setup was explored in Ref. [68], in which the
holonomy effective potential was also written down and analyzed
numerically. The emphasis of our analysis is different, but it
agrees with Ref. [68] in areas of overlap.

17SOð2Þ is vectorlike symmetry, and the present theory has a
non-negative path integral measure [69], so SOð2Þ cannot break
spontaneously.

BOSE-FERMI CANCELLATIONS WITHOUT SUPERSYMMETRY PHYS. REV. D 99, 105001 (2019)

105001-9



continuous flavor symmetry must be identical for all Lwith
the boundary condition of Eq. (4.2) so long as φ ≠ 0, π.
At large LΛ, we expect an unbroken center symmetry, so

htrΩni ¼ 0; n ¼ 1;…; N − 1; ð4:6Þ

where Ω is the Polyakov loop around S1. Let us now
examine the realization of center symmetry at small LΛ.
Generalizing the GPY calculation of the holonomy effec-
tive potential [59], we find the one-loop effective potential
for Ω with massless quarks:

VeffðΩ;φÞ ¼
2

π2L4

X
n≥1

½−1þ 2 cosðnφÞ� jtrΩ
nj2

n4
: ð4:7Þ

The first term comes from the gluons, while the second
term comes from the adjoint fermions.
To determine the phase of the theory, one only has to

specify the first bN=2c expectation values powers of the
holonomy, since this suffices for the determination of the
ZN center symmetry. Thus, to preserve center symmetry,
we have to make sure that the masses of theWilson lines for
trΩk are positive for k < bN=2c. This gives the condition

−1þ 2 cosðkφÞ > 0; k ¼ 1; 2;…; bN=2c ð4:8Þ

for center symmetry to be preserved at small LΛ.
Consequently, so long as the twist φ obeys the condition

0 < jφj < 2π

3N
; ð4:9Þ

then the large-L and small-L regimes of the theory are
smoothly connected, in the sense that all order parameters
for all of the symmetries—center symmetry and the
discrete and continuous chiral symmetries—are realized
in the same way for any L. However, in the large-N limit
with LΛ fixed, the only boundary condition/partition
function grading which preserves confinement at small
LΛ is φ ¼ 0. Grading by anything other than fermion
number destroys the cancellations described in the preced-
ing sections.
While we set nf ¼ 2 above, the construction easily

generalizes to higher nf, where the choice of boundary
conditions can be parametrized by nf − 1 angles. The one-
loop effective potential becomes

VeffðΩ;φiÞ ¼
2

π2L4

X
n≥1

½−1þ cosðnφ1Þ þ � � � þ cosðnφnf−1Þ þ cosðnðφ1 þ � � � þ φnf−1ÞÞ�
jtrΩnj2 − 1

n4
: ð4:10Þ

At finite N, one can always find noncoincident angles φi,
which preserve center symmetry. At large N, it is much
harder. To see why, first note that the fermions produce the
largest repulsion for eigenvalues ofΩwhen all of the angles
are set to zero. We have already analyzed this case in the
preceding sections. The next largest repulsion can be
obtained when all but one angle, say φ1, are set to 0. In
this case,

VeffðΩ;φ1Þ¼
2

π2L4

X
n≥1

½ðNF−3Þþ2cosðnφ1Þ�×
jtrΩnj2−1

n4
:

ð4:11Þ

If nf ≤ 4 and we pick φ1 ∼Oð1Þ, then there will exist an n
such that nf − 3þ 2 cosðnφ1Þ < 0. This means that at large
N center symmetry breaks. The only way to avoid this is to
take φ1 ∼ 1=N, but then at large N, one again lands on
periodic boundary conditions=ð−1ÞF grading as the only
way to ensure confinement at small LΛ.
The case of nf ¼ 5 is special for several reasons. For

example, it iswidely believed that whennf ¼ 5 adjointQCD
is in the conformal window onR4. The more important point
for the present discussion is that nf − 3þ 2 cosðnφ1Þ ¼
2ð1þ cosðnφ1ÞÞ ≥ 0 when nf ¼ 5, and for large N, when

large values of n become important for center symmetry
realization, 2ð1þ cosðnφ1ÞÞ can get arbitrarily close to 0.
This means that the one-loop potential can become very
small. So, the fate of center symmetry innf ¼ 5 adjointQCD
with additional gradings on topof ð−1ÞF is sensitive to higher
loop corrections and is left to futurework.We donot consider
nf > 5 because then the theory is not asymptotically free and
the small-circle limit is strongly coupled.

B. Mass deformations

So far, we have kept the adjoint quarks massless. What
happens to center symmetry at small L if we lift this
assumption? The holonomy effective potential takes the
form [70]

VeffðΩÞ ¼
2

π2L4

X
n≥1

�
−1þ 1

2

XNF

a¼1

ðnLmaÞ2K2ðnLmaÞ
�

×
jtrΩnj2
n4

: ð4:12Þ

The −1 term is generated by the gluons, while the term
involving Bessel functions K2 is generated by the adjoint
fermions.
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If all of the quarks have a common mass m, the fermi-
onic contribution to the potential for the large holonomy
windings n ∼ N is exponentially suppressed thanks to
K2ðNLmÞ ∼ e−NLm, and the gluons force center symmetry
breaking. Then, the coefficient of L−3 in log Z̃ scales as N2.
The only way to avoid this is to take m ∼ 1=N, but at large
N, this is the same as setting m ¼ 0.
If NF ¼ 1 and m1 > 0, the effective potential is mini-

mized for 1
N jhtrΩij ¼ 1, corresponding to spontaneously

broken center symmetry. The only way to protect center
symmetry at small L in the one-flavor theory is to take
m1 ¼ 0. This amounts to going to the supersymmetric
N ¼ 1 SYM theory, and there it is known that [71]

VeffðΩÞ ¼ 0; perturbation theory: ð4:13Þ

The minimum of the full nonperturbative potential has the
property that trΩn ¼ 0 for all n ≠ Nk [71,72]. So, for
mq ¼ 0, the coefficient of L−3 in log Z̃ vanishes trivially
due to supersymmetry, but ifmq > 0, it does not vanish and
scales as N2.
Now, let us suppose that nf > 1, one of the flavors of

quarks is massless,m1 ¼ 0, and all of the other quarks have
nonvanishing masses. Suppose for simplicity that all of the
nonvanishing quark masses have a common mass m. Then,
Eq. (4.12) shows that the one-loop gluon contribution is
canceled by the contribution of the massless quark flavor,
while the remaining quarks make positive-definite contri-
butions to VeffðΩÞ. It is then tempting to say that center
symmetry is stabilized. This will indeed be self-consistently
true at finite N within the domain of validity of the one-loop
calculation so long as mL ≪ 1.
But life is harder at large N, because we must stabilize

∼N winding modes of the holonomy. When mL ≪ 1, one
can be sure that trΩn with n ∼Oð1Þ will experience a
center-stabilizing potential. But it is not clear what happens
to trΩn with n ∼OðNÞ because for such modes the one-
loop effective potential vanishes exponentially in N. The
nonperturbative neutral bion center-stabilization mecha-
nism of N ¼ 1 super-YM theory is only under control
when NLΛ ≪ 1, so we cannot appeal to it. Moreover,
without SUSY, we have no way to argue that all perturba-
tive contributions to the holonomy effective potential
cancel; nor do we know how to control their overall sign
for the high-winding modes. It thus appears that the fate of
center symmetry in adjoint QCD with precisely one
massless quark flavor rests on the explicit evaluation of
higher-loop contributions to the effective potential. There
are two possibilities: either these contributions favor center
symmetry breaking, which would imply that at small LΛ
the theory is in a “partially confined” phase, or it is exactly
confining with an unbroken center symmetry. In the latter
case, the cancellations we have observed in the massless
theory would hold, while in the former case, they
would not.

Finally, suppose that nf > 2 and two (or more) quark
flavors have vanishing masses, while the rest do not. One
can then see that all windings of the holonomy have Oð1Þ
positive effective masses for any N. As a result, center
symmetry will be preserved for LΛ ≪ 1, and the cancella-
tions we saw in the fully massless theory will continue to
hold. But of course, such theories interpolate between
multiflavor adjoint QCD with different numbers of mass-
less flavors, so this result is very natural.
All of this suggests that the class of nonsupersymmetric

theories obeying Eq. (1.2) is larger than just massless
adjoint QCD. It would be very interesting to understand
which theories should obey Eq. (1.2) more systematically.

V. DISCUSSION

In the preceding sections, we have established that
adjoint QCD features extremely precise cancellations in
its ð−1ÞF-graded partition function. We gave two argu-
ments for this result: a general argument from large-N
volume independence and a more concrete argument from
the structure of the perturbative expansion of the holonomy
effective potential. In this section, we discuss some
implications of these results.
First, we discuss the interpretation of the cancellations

from the perspective of the hadronic color-singlet excita-
tions of the theory, making a connection with Ref. [15],
and highlight why such cancellations are much more
difficult to arrange than one might guess. We then draw
a parallel between our field-theoretic findings and some
properties of nonsupersymmetric string theories discussed
in Refs. [55–58].
Next, we turn to applications. First, we discuss why one

might hope to derive some implications of our results on
large-N adjoint QCD to real QCD with fundamental
fermions and N ¼ 3. Second, we discuss the vacuum
energy of adjoint QCD. A famous implication of super-
symmetry is that the vacuum energy vanishes unless
supersymmetry is spontaneously broken. It turns out that
something similar takes place in adjoint QCD in the
large-N limit.

A. Large-N spectral conspiracy and a 4D-2D relation

The key feature of adjoint QCD which is used in our
work is that it enjoys large-N volume independence when
compactified on a circle with periodic boundary conditions.
A corollary is that the dependence on the circle size is
smooth. It is interesting to understand the implications of
this weaker statement. Recall that the ð−1ÞF-graded par-
tition function can be written as

Z̃ðLÞ ¼
Z

dE½ρBðEÞ − ρFðEÞ�e−LE: ð5:1Þ

Confining large-N gauge theories are expected to have
densities of states with Hagedorn scaling: an exponentially
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growing density of bosonic states ρB → eþLH;BE for large E.
Gauge theories with adjoint fermions have light fermionic
states, and consequently one also expects ρF → eþLH;FE,
with LH;B, LH;F ∼ N0. If the difference between the
bosonic and fermionic densities of states scales exponen-
tially with energy, ρB − ρF → eþL0

HE for some L0
H ∼ N0,

then Z̃ðLÞ must have a singularity at some L� ≤ L0
H. So,

unless all exponential growth cancels between the bosons
and fermions, smoothness of the physics as a function of
L for all L is impossible at large N.
Cancellation of all exponential growth is extremely

difficult to achieve. In a large-N gauge theory, one
can write densities of states as trans-series18 in E,

ρBðEÞ¼ eL
ð1Þ
B Efð1ÞB ðEÞþeL

ð2Þ
B Efð2ÞB ðEÞþ �� �þgBðEÞ ð5:2Þ

ρFðEÞ¼ eL
ð1Þ
F Efð1ÞF ðEÞþeL

ð2Þ
F Efð2ÞF ðEÞþ �� �þgFðEÞ; ð5:3Þ

where Lð1Þ
B;F > Lð2Þ

B;F > � � � are Hagedorn scales and the
functions fiðEÞ have subexponential growth at large E,

fiðEÞ < EKi exp ðciEpiÞ ð5:4Þ

with pi < 1 and for some dimensionful parameters Ki, ci
(with dimensions determined in terms of ΛQCD and geo-
metric parameters like volume and curvature). The func-
tions gB;FðEÞ are also defined to have subexponential
growth.
Cancellation of all exponential growth—which is

required for smoothness—means that

ρ̃ðEÞ ¼ gBðEÞ − gFðEÞ: ð5:5Þ

Note that this is much weaker than the condition which
would be required by supersymmetry, ρ̃ðEÞ ¼ 0, E > 0.
But the fact that Eq. (5.5) must hold implies that in adjoint
QCD there is a remarkable spectral conspiracy, requiring

LðiÞ
B ¼ LðiÞ

F ; ∀ i ∈ N;

fðiÞB ðEÞ ¼ fi;FðEÞ; ∀ i ∈ N and ∀E > 0: ð5:6Þ

By itself this is already surprising and interesting. Of
course, there is a natural followup question: what is the
scaling of ρ̃ðEÞ ¼ gBðEÞ − gFðEÞ?

One might naively guess that once Hagedorn cancella-
tions are somehow ensured ρ̃ ¼ ρBðEÞ − ρF ðEÞ would
have the fastest growth allowed by a local quantum field
theory in four dimensions. This guess is motivated by the
principle of minimal surprise, since this rate of net growth
is all that is necessary for continuity in L at largeN. So, one
would guess that

ρ̃ðEÞ ¼ gBðEÞ − gFðEÞ∼? exp ½ðaVÞ1
DE

D−1
D �; ð5:7Þ

whereD ¼ 4 for some dimensionless parameter a, which is
roughly the number of d.o.f. per point. This growth in the
density of states would be associated to a growth in the
twisted free energy density of the form log Z̃ ∼ aVL−3.
But as shown by our discussion in the preceding two

sections, this guess is too naive. The reason is that adjoint
QCD on a circle with periodic boundary does not just have
a smooth dependence on L; it actually enjoys large-N
volume independence. As we saw in the preceding sec-
tions, the resulting cancellations are far stronger than those
implied by smoothness. Not even a single 4D particle’s
worth of density of states remains uncanceled in the ð−1ÞF-
graded partition function. Consequently, when 4D adjoint
QCD lives on a curved compact spatial manifold M3, the
associated graded density of states behaves as if we were
dealing with a two-dimensional theory:

ρ̃ðEÞ ∼ expð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
befflE

p
Þ; largeN: ð5:8Þ

Here, l ¼ R
M3

d3x
ffiffiffi
g

p
R, while the dimensionless param-

eter beff is some sort of count of the effective number of
d.o.f. The numerical values of this coefficient in large-N
adjoint QCD as a function of nf is derived in the Appendix,
in a calculable regime. Reference [2] showed that beff ∼
A − C in a wide class of SUSY QFTs, in which A and C are
the 4D conformal anomaly coefficients.19 In adjoint QCD,
the interpretation of ceff is more mysterious; we have
checked that it is not proportional to A − C. However,
direct comparison to Ref. [2] is complicated by the fact that
the small-L limit of Z̃ and its large-N limit do not commute
in adjoint QCD except at the supersymmetric point nf ¼ 1

because log Z̃ ∼ ðnf − 1Þ=ðN2L3Þ.
It is tempting to wonder whether large-N 4D adjoint

QCD might be related to a two-dimensional (2D) quantum
field theory, via a relation like

Z̃4dðM3 × S1LÞ ¼ Z2d; ð5:9Þ

where on the left we have the ð−1ÞF-graded large-N
partition function of the 4D theory, while on the right,

18Strictly speaking, the large-N density of states is not a
smooth function. In the infinite volume limit, it has step function–
type discontinuities associated with thresholds for accessing new
hadronic states, which are all stable at largeN. When expanded in
1=E, these step function discontinuities map to oscillatory terms
in the expansion, with an oscillation frequency ∼Λ in confining
theories. In writing the Hagedorn trans-series, we have assumed
that LðiÞ

B;F are all positive, and all the terms weighed by complex
exponentials of E are implicitly absorbed in gB;F.

19For discussion of some exceptions to this result, see
Refs. [73–75]. We note that these exceptions all appear to involve
a nontrivial behavior of the color holonomy at small L, which is
of course also the case in adjoint QCD.

CHERMAN, SHIFMAN, and ÜNSAL PHYS. REV. D 99, 105001 (2019)

105001-12



Z2d is some (graded) partition function of a 2D quantum
field theory. If such a relation were to hold, then when
M3 ¼ S3, it would be natural to guess that this conjectural
2D QFT should live on a torus with cycle sizes related to L
and l. The 2D behavior of the density of states Z̃ in
Eq. (5.8) makes such a conjecture at least conceivable.
Indeed, if one sets M3 ¼ S3R and takes the limit
l ∼ R ≪ Λ−1, one can even identify some (chiral) 2D
conformal field theories of which the partition functions
satisfy such a relation [18]. While it is interesting that even
this much is possible,20 to put such a conjecture on firmer
footing, one would need to make a proposal for what this
2D QFT should be in general.
All 4D supersymmetric theories obey Eq. (5.8), and

appropriately graded partition functions of some super-
symmetric theories are known to obey relations like
Eq. (5.9); see, e.g., Refs. [80–83]. But we are not aware
of a concrete 4D-2D connection which would be valid for
all 4D supersymmetric theories. It seems natural to try to
understand whether such a generic connection might exist
(or is perhaps ruled out) for supersymmetric 4D theories,
before trying to do understand conjectural 4D-2D con-
nections for confining large-N gauge theories like
adjoint QCD.

1. Comparison of two gradings

To better appreciate the spectral conspiracy that takes
place in QCD(adj), i.e., the cancellation of infinitely many
Hagedorn growth exponentials of the form eβHE=p, p ¼
1; 2;… in Z̃ðLÞ ¼ tre−LHð−1ÞF, it is useful to compare it to
a similar-looking construction in a different gauge theory.
For concreteness, let us consider the theory on S3 × S1 with
a very small S3 radius R, RΛ ≪ 1 [16,61]. The Hamiltonian
is the one of small-S3 theory. Its spectrum has both bosonic

and fermionic states and is quantized as n
R and ðnþ1=2Þ

R for
bosonic and fermionic gauge-invariant states in Hilbert
space H ¼ B ⊕ F , and one can show that [16]

Z̃ðLÞQCDðAdjÞ ¼ tre−LHð−1ÞF ¼
X
B

e−LEn degðEnÞ

−
X
F

e−LEn degðEnÞ

¼ 1− 4q3=2 þ 6q2 − 12q5=2 þ 28q3 − 72q7=2

þ 168q4 − 364q9=2 þ 828q5 � � � ð5:10Þ

The nontrivial point established in Ref. [16] is that Z̃ðLÞ
does not have any poles for real positive L, meaning that all
of the infinitely many Hagedorn poles of the thermal
partition function ZðβÞ disappear as soon as we introduce

a grading by the operator ð−1ÞF and center symmetry is
stable at any L [61].
The grading by ð−1ÞF introduces alternating � signs for

successive energy levels. One may wonder whether this
sort of trick can always cancel off Hagedorn growth. It
turns out that the answer is no. To see this, consider pure
Yang-Mills theory on S3 × S1. The spectrum of the
Hamiltonian is quantized as n

R in the limit RΛ ≪ 1, and
the confined-phase partition function is known in closed
form at large N [84]. One may ask the following question.
If one grades the states in Yang-Mills, similar to ð−1ÞF
grading, by assigning a (þ) sign to all n ∈ 2Z (even) states
and a (−) sign to all n ∈ 2Zþ 1 (odd) states, would one be
able to remove all the infinitely many singularities in the
confined-phase partition function of large-N Yang-Mills?
Operationally, consider

Z̃ðβÞYM ¼ tre−βHeiπRH ¼
X
n∈2Z

e−LEn degðEnÞ

−
X

n∈2Zþ1

e−LEn degðEnÞ

¼ 1þ 6q2 − 16q3 þ 72q4 − 240q5 þ � � � ð5:11Þ

If we were to consider just ZðβÞ ¼ tre−βH, then the density
of states grows as eβHE=p, p ¼ 1; 2;… with infinitely many
exponentials. By explicit computation, one can check that
grading by eiπRH only cancels the leading exponential
growth in the set of infinitely many exponential growths.
Despite the fact that the above construction in Yang-

Mills and QCD(adj) are extremely similar—both involve
state sums with ð�1Þ assigned to interlaced states—only in
QCD(adj) does one achieve an exact cancellation of the full
Hagedorn growth. This illustrates how special the distri-
bution of states in adjoint QCD is compared to other
theories and is a further piece of evidence for the large-N
spectral conspiracy.

B. Misaligned supersymmetry in string theory

What could possibly explain the spectral conspiracy we
have observed in adjoint QCD? Standard supersymmetry
certainly cannot do the job, and somehow both the large-N
limit and confinement must play a crucial role in the
explanation of the cancellations. The most satisfying
explanation of the cancellations would be directly in field
theory and involve some exotic symmetry principle. But it
is hard to find examples of emergent large-N symmetries,
let alone ones with the required properties. The examples
we are aware of are the Yangian symmetry of N ¼ 4
super–Yang-Mills theory [85–87] and the large-N spin-
flavor symmetry of baryons in QCD with fundamental-
representation quarks [88–90]. The Yangian symmetry is
(a) tied up with integrability and (b) a feature of a
nonconfining theory, so we see no reason to expect it to
have anything to do with our story. The large-N spin-flavor

20The results [18] were obtained in the free-field limit and
leveraged T-reflection symmetry [20,76–79]. We do not how to
generalize the methods of Ref. [18] away from the free-field limit.
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symmetry concerns baryons, while what we need here is
something that constrains the glueballs and mesons. We do
not know of any symmetry principles within quantum field
theory which depend on both of these features in the
necessary way, and looking for such principles is clearly an
important topic for future work.
Something with eerily similar properties to what we need

is available in string theory, however. Without the
assumption of spacetime supersymmetry, Kutasov and
Seiberg [55] showed that in string theories with modu-
lar-invariant world sheet partition functions and no space-
time tachyons the spacetime density of states graded by
ð−1ÞF has the growth of at most a two-dimensional
quantum field theory,

ρBðEÞ − ρFðEÞ≲ expð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
cefflE

p
Þ; ð5:12Þ

even when the number of noncompact spacetime directions
in the string theory is greater than 2. One might naively
guess that this sort of thing could happen due to the
emergence of supersymmetry asymptotically, in the sense
that the energies of bosonic and fermionic states become
degenerate level by level for large energies. However,
Dienes and collaborators pointed out that the mechanism
operating in string theory is more subtle. The cancellations
leading to Eq. (5.12) actually come from an oscillatory
difference (with an exponential envelope) between the
number of bosonic and fermionic states, arranged in such
a way that—in a sense made precise in Ref. [56]—the
bosonic and fermionic contributions cancel almost exactly,
leading to the bound in Eq. (5.12).21 This motivated
referring to the physics leading to these cancellations as
“misaligned supersymmetry.”
Heuristically, this story seems to fit very well with our

results, as was noted earlier in Ref. [16]. Large-N adjoint
QCD should be some sort of free string theory [91,92], and
this string theory should be well defined, without tachyonic
modes in spacetime. Could it be that adjoint QCD furnishes
the first QFT example of the string-theoretic misaligned
supersymmetry idea of Kutasov, Seiberg, and Dienes?
This is a tantalizing possibility, but it is not easy to make

it precise. Even with supersymmetry, the world sheet
descriptions of string duals to large-N gauge theories are
subtle [93–95] because the associated dual gravity back-
grounds involve Ramond-Ramond (RR) flux [96]. The
known constructions for the dual ofN ¼ 4 SYM leads to a
conformal world sheet sigma model [95], so the associated
world sheet partition function must be modular invariant.
When the field theory lives on R4, applying the technology
of Refs. [55–58] to this model is guaranteed to give a trivial
result due to N ¼ 4 supersymmetry. But when the

boundary geometry is S3 × S1, and fermions have periodic
boundary conditions on S1, the field theory is guaranteed to
be in the confining phase for all S1 sizes L [97]. The
associated field-theory partition function is then nontrivial
and must obey Eq. (1.2). It is then natural to expect that the
dual string theory spectrum nontrivially satisfies the mis-
aligned supersymmetry constraints. It would be interesting
to check this explicitly for the string dual of N ¼ 4 SYM
using the world sheet CFT proposed in Ref. [95].
A much more serious check of the relation to misaligned

supersymmetry would involve finding a nonsupersymmet-
ric string theory living in a bulk with RR flux and showing
that it is associated to a local conformal sigma model on the
world sheet so that it has a modular-invariant world sheet
partition function. If this can be done, one could presum-
ably use the results of Refs. [55–58] to obtain a nontrivial
constraint of the form of Eq. (5.12) on the string spectrum
in the bulk and then use the AdS=CFT dictionary to
translate these constraints to a statement about the dual
gauge theory. Checking whether this works in any explicit
example is, of course, very difficult. Perhaps more impor-
tantly, there is also a conceptual challenge: it is not clear
how, in general, confinement in the field theory is supposed
to interact with misaligned supersymmetry on the string
theory side of the story. Yet confinement plays a crucial role
in our field-theory arguments. To sharpen the claim that the
Bose-Fermi cancellations seen in adjoint QCD are tied up
with misaligned supersymmetry, we need some way to fill
this conceptual gap in the argument.

C. Connection to QCD

One may wonder whether the story in this paper can be
brought closer to real QCD. We can make two remarks
concerning this question. First, throughout this paper, we
have focused on UðNÞ adjoint QCD, but in QCD, the
gauge group is SUðNÞ. So, what happens to our story in
SUðNÞ adjoint QCD? In the large-N limit, the parallel of
Eq. (1.4) is

logZ̃ðLÞ∼−
π2

45
ðnf−1ÞV

L3
þb

l
L
þ��� ; SUðNÞ adjoint QCD:

ð5:13Þ

It should be emphasized that at large N the coefficient of
L−3 in this expression is exactly determined in free field
theory. This can be contrasted with the situation in thermal
Yang-Mills theory, in which the coefficient of L−3 involves
a nontrivial series in λ. The reason that the coefficient of
L−3 is determined in free field theory in SUðNÞ adjoint
QCD is that the difference between UðNÞ and SUðNÞ
adjoint QCD is just the addition of a free Maxwell field and
nf free Majorana fermion fields.
Second, one can ask whether our results about adjoint

QCD might have any bearing about on QCD as it is seen in

21The cancellations behind misaligned SUSY appear to have
the same form as discussed in the preceding section in adjoint
QCD; see Ref. [56] for a comparison.
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nature—at least to the extent that the large-N limit is useful
in QCD. Naively, it seems like there cannot be any
connection because real QCD has fundamental fermions
rather than adjoint fermions. But at N ¼ 3, the fundamental
(F) representation is isomorphic with the two-index anti-
symmetric (AS) representation Dirac fermions. This means
that one can keep the fermions in either the F or in the AS
representations when taking the large-N limit. Both limits
have reasonable (but distinct) phenomenologies compared
to N ¼ 3 expectations [54,98–101].
The relevance of these comments is that in the large-N

limit there is a precise relation between adjoint QCD and
QCD(AS): the correlation functions of local charge con-
jugation–even bosonic operators in these theories coincide
up to 1=N corrections thanks to “orientifold large-N
equivalence” [54,102,103]. While the cancellations we
have discussed in adjoint QCD are between bosonic and
fermionic states, it seems likely that any explanation of the
cancellations would lead to strong constraints on the
bosonic states. If this is the case, then the large-N
equivalence described above would lead to constraints
on the large-N spectrum of QCD(AS) and hence teach
us about an unconventional, but reasonable, large-N limit
of real QCD.

D. Implications for the vacuum energy

We now explain what our results say about the vacuum
energy hEi of adjoint QCD.22 The vacuum energy is
generically is a scheme-dependent UV-sensitive quantity.
We will evaluate it using several natural UV regulators,
which all give the same results. We view this as evidence
that our conclusions are physically significant.
To get started, it turns out to be easiest to compute hEi

using a spectral heat kernel regulator, which introduces a
damping factor 1

N ðμÞ e
−ωn=μ into the spectral sum over the

energies ωn. Here, N ðμÞ ¼ P
ne

−ωn=μ is a normalization
factor, and μ is the effective cutoff scale. We are interested
in computing the heat-kernel regularized sum for the
vacuum energy

hEðμÞi¼ 1

N ðμÞ
X
n

ð−1ÞFωne−ωn=μ; heatkernel: ð5:14Þ

Here, we have assumed that the spectrum is discrete, as
would be the case in any finite spatial volume V. In a
generic 4D QFT, evaluating such a sum for large cutoff μ
leads to hEðμÞi ∼ Vμ4. But by identifying μ ¼ 1=L, one
can note that this expression coincides with ∂L log Z̃ðLÞ,

where Z̃ is the partition function on a circle with periodic
boundary conditions. The preceding sections then imply
that in large-N adjoint QCD

hEðμ ≫ ΛÞi ∼ Λ4
QCDV; heat kernel: ð5:15Þ

Note that there is no explicit dependence on the UV
cutoff μ in Eq. (5.15). This result follows from the structure
of Eqs. (3.2) and (1.2) as well as the observation that
the term proportional to L in Eq. (3.2) is given by the
spatial integral of the gluon condensate htrF2i ∼ Λ4. But
Λ ∼ μ exp½−8π2=ðβ0λÞ�, where β0 ¼ 11=3 − 2=3nf is the
one-loop beta function coefficient and λ ¼ λðμÞ. Therefore,
hEi is exponentially small compared to the UV cutoff μ for
large μ.
This is a rather provocative statement, so it is important

to understand it better. Indeed, one might be concerned that,
because we are dealing with a scheme-dependent quantity,
maybe we happened to pick a regulator that somehow
automatically makes the coefficient of μ4 small. But in fact,
the result is driven by the physical spectral properties of
adjoint QCD, and so we would expect it to hold with any
reasonable choice of regulator.
We illustrate this by showing how the calculation works

with other regulators. First, we consider hEi evaluated with
a hard-cutoff regulator. Hard-cutoff regulators are not
compatible with gauge invariance when used at the level
of quarks and gluons, but here we envision using such a
regulator to compute the contributions of the physical
color-singlet particle excitations to hEi. With this in mind,
we write

hEðμÞi ¼
Z

μ

0

dE ρ̃CðEÞE; hard cutoff: ð5:16Þ

Here, ρ̃CðEÞ is the ð−1ÞF-graded canonical (that is, single-
particle) density of states, which is to be distinguished from
the grand-canonical density of states ρ̃ðEÞ we have been
discussing in most of the paper. In finite volume, ρ̃ðEÞ and
ρ̃CðEÞ are given by sums of delta functions, but for large E,
it becomes meaningful to view them as smooth functions
of E. There is a simple relation between the large-energy
behavior of the grand-canonical and canonical densities of
state:

ρ̃ðEÞ ∼ exp½ðxEÞd−1d � ⟺ ρ̃CðEÞ ∼ ðxEÞd−2: ð5:17Þ

Here, x is a parameter with dimensions of length, and d is
an effective spacetime dimension. In large-N adjoint QCD
on a flat spatial manifold, we have seen that the small-L
expansion of log Z̃ðLÞ starts with a term linear in L. This
maps to taking d ¼ 0 in Eq. (5.17), so there are no power
divergences in hEðμÞiwith a hard cutoff once one takes into
account the sum over particle species at largeN. The largest
growth allowed is

22Our discussion is conceptually very similar to the work on
supertrace relations in the context of misaligned SUSY in string
theory in Refs. [56–58,104]. In field theory, Refs. [16–21]
discussed one-loop evidence for constraints on the vacuum
energy in a class of theories which includes adjoint QCD. Our
results here generalize and simplify this earlier discussion.
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ρ̃CðEÞ ∼ Λ4VE−2; large-N adjoint QCD: ð5:18Þ

Plugging this into Eq. (5.16), we land on the same result as
in Eq. (5.15).
For a third example, consider adjoint QCD with nf ≤ 4.

Then, we can regularize UðNÞ adjoint QCD by embedding
it into UðNÞ N ¼ 4 SYM theory [105], which is a UV-
finite theory. One can make the regularized theory flow to
adjoint QCD by turning on SUSY-breaking mass terms for
the adjoint scalars and some of the adjoint fermions. Note
that this regulator respects all of the symmetries of adjoint
QCD, including center symmetry.
For simplicity, we focus on nf ¼ 4 adjoint QCD and give

all six adjoint scalars a common mass ms. Choosing the
bare value of λ to be small guarantees that it will be small at
the scale ms, where it starts running, and consequently
ms ≫ Λ. How does the vacuum energy depend on the
regulator scale ms with this more elaborate regularization
scheme? To answer this question, we first observe that
N ¼ 4 SYM theory enjoys unbroken center symmetry
even after we break supersymmetry by taking ms ≠ 0. To
see this, recall that when ms ¼ 0 the GPY holonomy
effective potential vanishes both perturbatively and non-
perturbatively; this is because a superpotential is forbidden
by N ¼ 4 supersymmetry. But when all six scalars are
given a mass ms, there is a one-loop contribution to the
holonomy effective potential:

VeffðΩÞ ¼
2

π2L4

X
n≥1

jtrΩnj2
n4

½3 − 3ðnLmsÞ2K2ðnLmsÞ�:

ð5:19Þ

This potential implies that center symmetry is not sponta-
neously broken at small LΛ for any value of ms ≥ 0. With
this in mind, we can again consider the vacuum energy in
the regularized theory,

hEðmsÞi¼
Z

∞

0

dEρ̃CðE;msÞE; N ¼ 4 SYM regulator:

ð5:20Þ

Here, ρ̃ðE;msÞ is the regularized canonical graded density
of states. When E ≫ ms, standard N ¼ 4 supersymmetry
implies that ρðE ≫ msÞ ¼ 0. But when Λ ≪ E ≪ ms, our
remarks concerning center symmetry above imply that the
density of states of softly broken N ¼ 4 SYM theory
enjoys the same large-N spectral cancellations that we have
discussed in the preceding sections. As a result, ρ̃ðE;msÞ
scales as Eq. (5.17) with d ¼ 0 when Λ ≪ E ≪ ms. This
implies that we again land on Eq. (5.15) with the N ¼ 4
regulator, just as we did with the other regulators we have
considered.
Now that we have seen that hEi is very small in adjoint

QCD at large N, and is given by the R4 limit of htrF2i, it is

time to ask about its sign. The operator trF2 is non-
negative, and if the same is true for the path integral
measure, then hEimust also be non-negative. Indeed, when
nf is even, one can package the fermions as Dirac spinors.
Integrating out the fermions gives ðdetDÞnf=2, where D is
the Dirac operator, the nonzero eigenvalues of which come
in conjugate pairs thanks to γ5 Hermiticity. Therefore,
ðdetDÞnf=2 is non-negative for even nf. When nf is odd,
integrating out the fermions gives a Pfaffian, which is the
square root of the determinant up to a sign. To see that this
sign can be consistently chosen to be þ1, note that one can
add a gauge-invariant positive mass term for the fermions,
which eliminates all zero modes of the Dirac operator,
while keeping the determinant positive. Then, we can
define the Pfaffian to be positive for some reference field
configuration, say Aμ ¼ 0, and ask whether it can change
sign as we vary Aμ. But at finite positive m, this is
impossible since there are no zero modes. Therefore, the
Pfaffian can consistently be defined to be positive for
any finite positive m. The same must therefore be true as
we take the m ¼ 0 limit with m ∈ Rþ. So, for any nf, we
find that

hEðμÞi ≥ 0 ð5:21Þ

in massless adjoint QCD at large N.
The inequality in Eq. (5.21) is saturated at Nf ¼ 1 due to

supersymmetry. It is also saturated when nf is within the
conformal window, because one-point functions in a con-
formal field theory on R4 must vanish, and large-N volume
independence implies that this is also true on R3 × S1. For
nf ¼ 2, 3, where the theory is likely not conformal in the
infrared, the vacuum energy must be positive and exponen-
tially small compared to the UV cutoff.
To summarize, we have presented evidence that there

exists a family of nonsupersymmetric quantum field
theories—large-N UðNÞ adjoint QCD—of which the
vacuum energy is non-negative and exponentially small.
We are aware of only two sets of solid examples of this sort
of behavior in the field-theory literature and another set in
the string theory literature. The first field-theory example is
Witten’s result concerning 2þ 1-dimensional supergravity
[106]. Witten pointed out that, in this setting, supersym-
metry can be unbroken, ensuring that the vacuum energy
vanishes exactly, without ensuring Bose-Fermi pairing
among the excited states. This has a clear surface-level
resemblance to our story, but we do not know how to make
the connection deeper. The second set of field-theory
examples involves microscopically massless theories with
spontaneously broken supersymmetry. In that context, it is
famously the case that hEi > 0, while the fact that hEi is
exponentially small compared to a UV cutoff follows from
dimensional transmutation [107,108]. Finally, Refs. [56,58]
showed that a vanishing vacuum energy can appear in
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nonsupersymmetric perturbative string theory as a conse-
quence of misaligned SUSY. Our story is distinguished
from all of these examples by being established in a
manifestly nonsupersymmetric quantum field theory, the
spectrum of which certainly does not feature level-by-level
Bose-Fermi pairing, and we have not made any appeal to
string theory (except perhaps indirectly, by taking a large-N
limit) to establish our results.
Given how few ways of getting a small vacuum energy

are known in quantum field theory, it would be interesting
to explore adjoint QCD and its large-N limit more deeply,
with the goal of developing some symmetry-based explan-
ation for the cancellations we have found. Perhaps this
exploration can also inspire some eventual phenomeno-
logical applications.
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APPENDIX: COEFFICIENT OF L− 1 R
M3

d3x
ffiffiffi
g

p
R

In this Appendix, we compute the coefficient of
L−1 R

M3
d3x

ffiffiffi
g

p
R in the small-L expansion of log Z̃ in

adjoint QCD at large N. In supersymmetric theories, this
coefficient was related to conformal anomaly coefficients in
Ref. [74], so it counts the number of d.o.f. of the theory.
Here, we briefly discuss the extent to which the coefficient
of L−1 in adjoint QCD counts the effective number of d.o.f.
in large-N adjoint QCD.23 We do this when M3 ¼ S3, with
radius R, and assume that RΛ ≪ 1. This allows us to ignore
everything except one-loop effects when doing the calcu-
lation. In large-N adjoint QCD,

log Z̃ ¼ b
R
L
þ � � � ; ðA1Þ

and our goal here is to compute b. This determines the
coefficient of L−1

R
M3

d3x
ffiffiffi
g

p
R, since

L−1
Z
M3

d3x
ffiffiffi
g

p
R ¼ jM3¼S3 ¼

R
L
12π2; ðA2Þ

given that R ¼ 6=R2 on S3.
It might be tempting to compute b directly from the

holonomy effective potential, by writing

LVeffðΩÞ ¼
1

L3

X
n≥1

cnðL=RÞjtrΩnj2; ðA3Þ

expanding cnðLÞ ¼ cð0Þn þ cð1Þn L2=R2, and looking at the
coefficient of R=L in the resulting expression when Ω is set
to its center-preserving value. This is not quite correct due
to the noncommutativity of the large-N and small-L limits.
We need to take the large-N limit first, compute the
partition function—which entails taking into account fluc-
tuations around the confining saddle-point of the path
integral—and only then extract the desired coefficient. As
explained in Refs. [16,18], the S3 × S1 graded partition
function of adjoint QCD takes the form

Z̃ ¼
Y∞
n¼1

ð1 −Q2nÞ3
1 − 3Q2n þ 4nfQ3n − 3Q4n þQ6n ; ðA4Þ

whereQ ¼ e−β=ð2RÞ. To extract b, it is very useful to rewrite
this expression in terms of standard modular functions

Z̃ðτÞ ¼ 8ηðτÞ9
Y3
α¼1

2
64e−iπbα cosðπbαÞ 1

ϑ

�
1=2

bα

�
ðτÞ

1

ϑ

�
0

bα

�
ðτÞ

3
75;

ðA5Þ

where τ is defined via L=R ¼ 2πiτ, η is the Dedekind eta
function, and our conventions for the theta functions are the
same as those of Ref. [18]. The numerical parameters bα,
written in the form zα ¼ e2πibα , are given by

z1¼
κ2þ2−

ffiffiffiffiffiffiffiffiffiffiffiffi
κ4þ4

p

2κ

z2¼−
1

16κ2
½κ3þ2κ−2

ffiffiffi
η

p þððκ3þ2κ−2
ffiffiffi
η

p Þ2−16κ4Þ1=2�

z3¼−
1

16κ2
½κ3þ2κþ2

ffiffiffi
η

p
−ððκ3þ2κþ2

ffiffiffi
η

p Þ2−16κ4Þ1=2�;
ðA6Þ

where

κ ¼
�
2nf þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2f − 2

q �
1=3

ðA7Þ23We are grateful to Zohar Komargodski for asking us this
question, which prompted this Appendix.
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η ¼ 3ðκ4 − nfκ3 − κ2 þ 2Þ: ðA8Þ

The reason Eq. (A5) is useful is that it allows us to use
the modular S transformation properties of the η and ϑ
functions to compute the small-jτj behavior of log Z̃. Some
algebra yields

b ¼ −
3π2

2
þ 4π2

X3
a¼1

b2α: ðA9Þ

It can be shown that the function b ¼ bðnfÞ is smooth for
nf > 1 but has a cusp at nf ¼ 1, as shown in Fig. 2.24 Of
course, physically, the parameter nf is an integer, so nf
takes discrete values as a function of nf, given in Table I.
As a more physical way of effectively varying nf, we

have also checked that if one fixes, e.g., nf ¼ 3, and keeps
two quark flavors massless while varying the massm of the
remaining flavor jbj decreases with increasing m. This
suggests that it may be possible to interpret jbj as a counter
of the number of effective “d.o.f.” of large-N adjoint QCD.
It would be very interesting to make this interpretation
more precise.
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[46] M. G. Pérez, A. González-Arroyo, and M. Okawa, Spatial
volume dependence for 2þ 1 dimensional SU(N) Yang-
Mills theory, J. High Energy Phys. 09 (2013) 003.

[47] M. G. Perez, A. Gonzalez-Arroyo, and M. Okawa, Volume
independence for Yang–Mills fields on the twisted torus,
Int. J. Mod. Phys. A 29, 1445001 (2014).

[48] A. Cherman, T. Schäfer, and M. Ünsal, Chiral Lagrangian
from Duality and Monopole Operators in Compactified
QCD, Phys. Rev. Lett. 117, 081601 (2016).

[49] A. Athenodorou, E. Bennett, G. Bergner, and B. Lucini,
Infrared regime of SU(2) with one adjoint Dirac flavor,
Phys. Rev. D 91, 114508 (2015).

[50] G. Bergner, P. Giudice, G. Münster, P. Scior, I. Montvay,
and S. Piemonte, Low energy properties of SU(2) gauge
theory with Nf ¼ 3=2 flavours of adjoint fermions, J. High
Energy Phys. 01 (2018) 119.

[51] M. M. Anber and E. Poppitz, Two-flavor adjoint QCD,
Phys. Rev. D 98, 034026 (2018).

[52] C. Córdova and T. T. Dumitrescu, Candidate phases for
SU(2) adjoint QCD4 with two flavors from N ¼ 2 super-
symmetric Yang-Mills theory, arXiv:1806.09592.

[53] Z. Bi and T. Senthil, An adventure in topological phase
transitions in 3þ 1-D: Non-Abelian deconfined quantum
criticalities and a possible duality, arXiv:1808.07465.

[54] A. Armoni, M. Shifman, and G. Veneziano, From super-
Yang-Mills theory to QCD: Planar equivalence and its
implications, arXiv:hep-th/0403071.

[55] D. Kutasov and N. Seiberg, Number of degrees of freedom,
density of states and tachyons in string theory and CFT,
Nucl. Phys. B358, 600 (1991).

BOSE-FERMI CANCELLATIONS WITHOUT SUPERSYMMETRY PHYS. REV. D 99, 105001 (2019)

105001-19

https://doi.org/10.1103/PhysRevLett.114.251604
https://doi.org/10.1007/JHEP06(2016)148
https://doi.org/10.1007/JHEP06(2016)148
https://doi.org/10.1103/PhysRevD.92.105029
https://doi.org/10.1103/PhysRevD.92.105029
https://doi.org/10.1103/PhysRevD.91.106004
https://doi.org/10.1103/PhysRevD.91.106004
https://doi.org/10.1007/JHEP06(2016)095
https://doi.org/10.1007/JHEP06(2016)095
https://doi.org/10.1088/1126-6708/2007/06/019
https://doi.org/10.1088/1126-6708/2007/06/019
https://doi.org/10.1103/PhysRevD.80.065001
https://doi.org/10.1103/PhysRevD.80.065001
https://doi.org/10.1103/PhysRevLett.102.182002
https://doi.org/10.1103/PhysRevD.78.065035
https://doi.org/10.1103/PhysRevLett.100.032005
https://doi.org/10.1103/PhysRevLett.100.032005
https://doi.org/10.1007/JHEP08(2012)063
https://doi.org/10.1007/JHEP08(2012)063
https://doi.org/10.1103/PhysRevD.92.021701
https://doi.org/10.1007/JHEP10(2015)051
https://doi.org/10.1007/JHEP10(2015)051
https://doi.org/10.1007/JHEP11(2013)142
https://doi.org/10.1007/JHEP09(2014)040
https://doi.org/10.1007/JHEP09(2014)040
https://doi.org/10.1103/PhysRevD.80.065031
https://doi.org/10.1103/PhysRevD.80.065031
https://doi.org/10.1103/PhysRevD.85.094504
https://doi.org/10.1103/PhysRevD.85.094504
https://doi.org/10.1103/PhysRevD.82.125013
https://doi.org/10.1088/1126-6708/2009/07/048
https://doi.org/10.1088/1126-6708/2009/07/048
https://doi.org/10.1103/PhysRevD.89.094509
https://doi.org/10.1007/JHEP01(2010)079
https://doi.org/10.1007/JHEP01(2010)079
https://doi.org/10.1016/j.physletb.2011.03.009
https://doi.org/10.1103/PhysRevLett.48.1063
https://doi.org/10.1103/PhysRevLett.48.1063
https://doi.org/10.1016/0370-2693(82)90106-X
https://doi.org/10.1016/0370-2693(83)90647-0
https://doi.org/10.1016/0370-2693(83)90647-0
https://doi.org/10.1103/PhysRevD.27.2397
https://doi.org/10.1007/JHEP07(2010)043
https://doi.org/10.1007/JHEP07(2010)043
https://doi.org/10.1103/PhysRevD.88.014514
https://doi.org/10.1007/JHEP09(2013)003
https://doi.org/10.1142/S0217751X14450018
https://doi.org/10.1103/PhysRevLett.117.081601
https://doi.org/10.1103/PhysRevD.91.114508
https://doi.org/10.1007/JHEP01(2018)119
https://doi.org/10.1007/JHEP01(2018)119
https://doi.org/10.1103/PhysRevD.98.034026
http://arXiv.org/abs/1806.09592
http://arXiv.org/abs/1808.07465
http://arXiv.org/abs/hep-th/0403071
https://doi.org/10.1016/0550-3213(91)90426-X


[56] K. R. Dienes, Modular invariance, finiteness, and mis-
aligned supersymmetry: New constraints on the numbers
of physical string states, Nucl. Phys. B429, 533 (1994).

[57] K. R. Dienes, How strings make do without supersym-
metry: An introduction to misaligned supersymmetry,
arXiv:hep-th/9409114.

[58] K. R. Dienes, M. Moshe, and R. C. Myers, String Theory,
Misaligned Supersymmetry, and the Supertrace Con-
straints, Phys. Rev. Lett. 74, 4767 (1995).

[59] D. J. Gross, R. D. Pisarski, and L. G. Yaffe, QCD and
instantons at finite temperature, Rev. Mod. Phys. 53, 43
(1981).

[60] A. M. Polyakov, Quark confinement and topology of
gauge groups, Nucl. Phys. B120, 429 (1977).

[61] M. Unsal, Phases of N ¼ infinity QCD-like gauge theories
on S3 × S1 and nonperturbative orbifold-orientifold equiv-
alences, Phys. Rev. D 76, 025015 (2007).

[62] E. Shaghoulian, Modular Invariance of Conformal Field
Theory on S1S3 and Circle Fibrations, Phys. Rev. Lett.
119, 131601 (2017).

[63] D. J. Gross and Y. Kitazawa, A quenched momentum
prescription for large N theories, Nucl. Phys. B206, 440
(1982).

[64] S. H. Shenker, The strength of nonperturbative effects in
string theory, Large N Expansion in Quantum Field Theory
and Statistical Physics (World Scientific, 1993), pp. 191–
200, ISBN 9810204566, DOI: 10.1142/1208.

[65] A. Dumitru, Y. Guo, and C. P. K. Altes, Two-loop pertur-
bative corrections to the thermal effective potential in
gluodynamics, Phys. Rev. D 89, 016009 (2014).

[66] Z. Komargodski, T. Sulejmanpasic, and M. Ünsal, Walls,
anomalies, and (De)Confinement in quantum anti-
ferromagnets, Phys. Rev. B 97, 054418 (2018).

[67] H. Shimizu and K. Yonekura, Anomaly constraints on
deconfinement and chiral phase transition, Phys. Rev. D
97, 105011 (2018).

[68] T. Misumi and T. Kanazawa, Adjoint QCD on R3 × S1

with twisted fermionic boundary conditions, J. High
Energy Phys. 06 (2014) 181.

[69] C. Vafa and E. Witten, Restrictions on symmetry breaking
in vector-like gauge theories, Nucl. Phys. B234, 173
(1984).

[70] M. Unsal and L. G. Yaffe, Large-N volume independence
in conformal and confining gauge theories, J. High Energy
Phys. 08 (2010) 030.

[71] N. M. Davies, T. J. Hollowood, V. V. Khoze, and M. P.
Mattis, Gluino condensate and magnetic monopoles in
supersymmetric gluodynamics, Nucl. Phys. B559, 123
(1999).

[72] E. Poppitz, T. Schäfer, and M. Unsal, Continuity, decon-
finement, and (super) Yang-Mills theory, J. High Energy
Phys. 10 (2012) 115.

[73] A. A. Ardehali, High-temperature asymptotics of super-
symmetric partition functions, J. High Energy Phys. 07
(2016) 025.

[74] L. Di Pietro and M. Honda, Cardy formula for 4d SUSY
theories and localization, J. High Energy Phys. 04 (2017)
055.

[75] C. Hwang, S. Lee, and P. Yi, Holonomy saddles and
supersymmetry, Phys. Rev. D 97, 125013 (2018).

[76] D. A. McGady, Temperature-reflection I: field theory,
ensembles, and interactions, arXiv:1711.07536.

[77] D. A. McGady, Temperature-reflection II: Modular invari-
ance and T-reflection, arXiv:1806.09873.

[78] J. F. R. Duncan and D. A. Mcgady, Modular forms on the
double half-plane, arXiv:1806.09875.

[79] D. A. McGady, L-functions for meromorphic modular
forms and sum rules in conformal field theory, J. High
Energy Phys. 01 (2019) 135.

[80] C. Beem, M. Lemos, P. Liendo, W. Peelaers, L. Rastelli,
and B. C. van Rees, Infinite chiral symmetry in four
dimensions, Commun. Math. Phys. 336, 1359 (2015).

[81] C. Beem, W. Peelaers, L. Rastelli, and B. C. van Rees,
Chiral algebras of class S, J. High Energy Phys. 05 (2015)
020.

[82] L. Rastelli and S. S. Razamat, The superconformal index of
theories of class S, in New Dualities of Supersymmetric
Gauge Theories, edited by J. Teschner (Springer, 2016),
pp. 261–305, DOI: 10.1007/978-3-319-18769-3.

[83] C. Cordova, D. Gaiotto, and S.-H. Shao, Surface
defects and chiral algebras, J. High Energy Phys. 05
(2017) 140.

[84] O. Aharony, J. Marsano, S. Minwalla, K. Papadodimas,
and M. Van Raamsdonk, The Hagedorn—deconfinement
phase transition in weakly coupled large N gauge theories,
Adv. Theor. Math. Phys. 8, 603 (2004).

[85] L. Dolan, C. R. Nappi, and E. Witten, A relation between
approaches to integrability in superconformal Yang-Mills
theory, J. High Energy Phys. 10 (2003) 017.

[86] N. Beisert, A. Garus, and M. Rosso, Yangian Symmetry
and Integrability of Planar N ¼ 4 Supersymmetric Yang-
Mills Theory, Phys. Rev. Lett. 118, 141603 (2017).

[87] N. Beisert, A. Garus, and M. Rosso, Yangian symmetry for
the action of planar N ¼ 4 super Yang-Mills and N ¼ 6

super Chern-Simons theories, Phys. Rev. D 98, 046006
(2018).

[88] E. E. Jenkins, Baryon hyperfine mass splittings in large
N QCD, Phys. Lett. B 315, 441 (1993).

[89] R. F. Dashen and A. V. Manohar, Baryon—pion couplings
from large N(c) QCD, Phys. Lett. B 315, 425 (1993).

[90] R. F. Dashen, E. E. Jenkins, and A. V. Manohar, The 1/N(c)
expansion for baryons, Phys. Rev. D 49, 4713 (1994);
Erratum 51, 2489 (1995).

[91] G. ’t Hooft, A planar diagram theory for strong inter-
actions, Nucl. Phys. B72, 461 (1974).

[92] E. Witten, Baryons in the 1/n expansion, Nucl. Phys. B160,
57 (1979).

[93] N. Berkovits, C. Vafa, and E. Witten, Conformal field
theory of AdS background with Ramond-Ramond flux, J.
High Energy Phys. 03 (1999) 018.

[94] R. R. Metsaev and A. A. Tseytlin, Type IIB superstring
action in AdS5 × S5 background, Nucl. Phys. B533, 109
(1998).

[95] N. Berkovits, Super Poincare covariant quantization of the
superstring, J. High Energy Phys. 04 (2000) 018.

[96] J. M. Maldacena, The large N limit of superconformal field
theories and supergravity, Int. J. Theor. Phys. 38, 1113
(1999); Theor. Math. Phys. 2, 231 (1998).

[97] E. Witten, Anti-de Sitter space and holography, Adv.
Theor. Math. Phys. 2, 253 (1998).

CHERMAN, SHIFMAN, and ÜNSAL PHYS. REV. D 99, 105001 (2019)

105001-20

https://doi.org/10.1016/0550-3213(94)90153-8
http://arXiv.org/abs/hep-th/9409114
https://doi.org/10.1103/PhysRevLett.74.4767
https://doi.org/10.1103/RevModPhys.53.43
https://doi.org/10.1103/RevModPhys.53.43
https://doi.org/10.1016/0550-3213(77)90086-4
https://doi.org/10.1103/PhysRevD.76.025015
https://doi.org/10.1103/PhysRevLett.119.131601
https://doi.org/10.1103/PhysRevLett.119.131601
https://doi.org/10.1016/0550-3213(82)90278-4
https://doi.org/10.1016/0550-3213(82)90278-4
https://doi.org/10.1142/1208
https://doi.org/10.1142/1208
https://doi.org/10.1142/1208
https://doi.org/10.1103/PhysRevD.89.016009
https://doi.org/10.1103/PhysRevB.97.054418
https://doi.org/10.1103/PhysRevD.97.105011
https://doi.org/10.1103/PhysRevD.97.105011
https://doi.org/10.1007/JHEP06(2014)181
https://doi.org/10.1007/JHEP06(2014)181
https://doi.org/10.1016/0550-3213(84)90230-X
https://doi.org/10.1016/0550-3213(84)90230-X
https://doi.org/10.1007/JHEP08(2010)030
https://doi.org/10.1007/JHEP08(2010)030
https://doi.org/10.1016/S0550-3213(99)00434-4
https://doi.org/10.1016/S0550-3213(99)00434-4
https://doi.org/10.1007/JHEP10(2012)115
https://doi.org/10.1007/JHEP10(2012)115
https://doi.org/10.1007/JHEP07(2016)025
https://doi.org/10.1007/JHEP07(2016)025
https://doi.org/10.1007/JHEP04(2017)055
https://doi.org/10.1007/JHEP04(2017)055
https://doi.org/10.1103/PhysRevD.97.125013
http://arXiv.org/abs/1711.07536
http://arXiv.org/abs/1806.09873
http://arXiv.org/abs/1806.09875
https://doi.org/10.1007/JHEP01(2019)135
https://doi.org/10.1007/JHEP01(2019)135
https://doi.org/10.1007/s00220-014-2272-x
https://doi.org/10.1007/JHEP05(2015)020
https://doi.org/10.1007/JHEP05(2015)020
https://doi.org/10.1007/978-3-319-18769-3
https://doi.org/10.1007/978-3-319-18769-3
https://doi.org/10.1007/978-3-319-18769-3
https://doi.org/10.1007/JHEP05(2017)140
https://doi.org/10.1007/JHEP05(2017)140
https://doi.org/10.4310/ATMP.2004.v8.n4.a1
https://doi.org/10.1088/1126-6708/2003/10/017
https://doi.org/10.1103/PhysRevLett.118.141603
https://doi.org/10.1103/PhysRevD.98.046006
https://doi.org/10.1103/PhysRevD.98.046006
https://doi.org/10.1016/0370-2693(93)91638-4
https://doi.org/10.1016/0370-2693(93)91635-Z
https://doi.org/10.1103/PhysRevD.49.4713
https://doi.org/10.1103/PhysRevD.51.2489
https://doi.org/10.1016/0550-3213(74)90154-0
https://doi.org/10.1016/0550-3213(79)90232-3
https://doi.org/10.1016/0550-3213(79)90232-3
https://doi.org/10.1088/1126-6708/1999/03/018
https://doi.org/10.1088/1126-6708/1999/03/018
https://doi.org/10.1016/S0550-3213(98)00570-7
https://doi.org/10.1016/S0550-3213(98)00570-7
https://doi.org/10.1088/1126-6708/2000/04/018
https://doi.org/10.1023/A:1026654312961
https://doi.org/10.1023/A:1026654312961
https://doi.org/10.4310/ATMP.1998.v2.n2.a1
https://doi.org/10.4310/ATMP.1998.v2.n2.a2
https://doi.org/10.4310/ATMP.1998.v2.n2.a2


[98] A. Armoni, M. Shifman, and G. Veneziano, QCD quark
condensate from SUSY and the orientifold large N
expansion, Phys. Lett. B 579, 384 (2004).

[99] A. Cherman, T. D. Cohen, and R. F. Lebed, All you need is
N: Baryon spectroscopy in two large N limits, Phys. Rev.
D 80, 036002 (2009).

[100] A. Cherman, T. D. Cohen, and R. F. Lebed, Alternate 1=Nc
expansions and SU(3) breaking from baryon lattice results,
Phys. Rev. D 86, 016002 (2012).

[101] A. Armoni, M. Shifman, G. Shore, and G. Veneziano, The
quark condensate in multi-flavour QCD? Planar equiv-
alence confronting lattice simulations, Phys. Lett. B 741,
184 (2015).

[102] A. Armoni, M. Shifman, and G. Veneziano, Exact results
in nonsupersymmetric large N orientifold field theories,
Nucl. Phys. B667, 170 (2003).

[103] A. Armoni, M. Shifman, and G. Veneziano, Refining the
proof of planar equivalence, Phys. Rev. D 71, 045015
(2005).

[104] K. R. Dienes, Solving the hierarchy problem without
supersymmetry or extra dimensions: An alternative ap-
proach, Nucl. Phys. B611, 146 (2001).

[105] N. Arkani-Hamed and H. Murayama, Holomorphy,
rescaling anomalies and exact beta functions in super-
symmetric gauge theories, J. High Energy Phys. 06 (2000)
030.

[106] E. Witten, Is supersymmetry really broken? Int. J. Mod.
Phys. A 10, 1247 (1995).

[107] J. Iliopoulos and B. Zumino, Broken supergauge sym-
metry and renormalization, Nucl. Phys. B76, 310 (1974).

[108] E. Witten, Dynamical breaking of supersymmetry, Nucl.
Phys. B188, 513 (1981).

BOSE-FERMI CANCELLATIONS WITHOUT SUPERSYMMETRY PHYS. REV. D 99, 105001 (2019)

105001-21

https://doi.org/10.1016/j.physletb.2003.10.094
https://doi.org/10.1103/PhysRevD.80.036002
https://doi.org/10.1103/PhysRevD.80.036002
https://doi.org/10.1103/PhysRevD.86.016002
https://doi.org/10.1016/j.physletb.2014.12.035
https://doi.org/10.1016/j.physletb.2014.12.035
https://doi.org/10.1016/S0550-3213(03)00538-8
https://doi.org/10.1103/PhysRevD.71.045015
https://doi.org/10.1103/PhysRevD.71.045015
https://doi.org/10.1016/S0550-3213(01)00344-3
https://doi.org/10.1088/1126-6708/2000/06/030
https://doi.org/10.1088/1126-6708/2000/06/030
https://doi.org/10.1142/S0217751X95000590
https://doi.org/10.1142/S0217751X95000590
https://doi.org/10.1016/0550-3213(74)90388-5
https://doi.org/10.1016/0550-3213(81)90006-7
https://doi.org/10.1016/0550-3213(81)90006-7

