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We initiate a quantum treatment of chameleonlike particles, deriving classical and quantum forces
directly from the path integral. It is found that the quantum force can potentially dominate the classical one
by many orders of magnitude. We calculate the quantum chameleon pressure between infinite plates, which
is found to interpolate between the Casimir and the integrated Casimir-Polder pressures, respectively in the
limits of full screening and no screening. To this end we calculate the chameleon propagator in the presence
of an arbitrary number of one-dimensional layers of material. For the Eöt-Wash experiment, the five-layer
propagator is used to take into account the intermediate shielding sheet, and it is found that the presence of
the sheet enhances the quantum pressure by two orders of magnitude. As an example of implication, we
show that in both the standard chameleon and symmetron models, large and previously unconstrained
regions of the parameter space are excluded once the quantum pressure is taken into account.
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I. INTRODUCTION

A wealth of dark energy models involve a scalar field
with an extremely low mass which plays a role on
cosmological scales [1], explaining the accelerated expan-
sion of the Universe. At shorter distances, such as the Solar
System scale, screening mechanisms must take place to
suppress the long-range force induced by the new scalar,
since such a scenario would be otherwise excluded by
stringent experimental tests [2,3]. Screening mechanisms of
the long-range force can naturally occur as a result of the
scalar coupling to matter. Indeed, whenever the local matter
density is high enough with respect to the other scales of the
problem, the properties of the scalar (mass or couplings)
tend to change in the local environment and, typically, the
scalar tends to get invisible where one could observe it
[4–7]. We will refer to any scalar with such property
as a “chameleonlike” field (and will sometimes use only
“chameleon” for short). For instance for the original
chameleon model the mass of the field increases in dense
environments while in the symmetron model [8–10] screen-
ing occurs as the coupling to matter decreases with an

increasing matter density. The existence of chameleonlike
fields can be tested by laboratory experiments, for instance
by neutrons [11–14] or atomic spectroscopy [15,16]. The
pressure between two parallel plates is also suited to test the
potential presence of chameleons [17,18] which could
become within reach in the near future [19].
The effects of chameleonlike fields are typically treated

in a classical approximation. However at short enough
distances, such as the submicron scale in the Eöt-Wash
experiment [20], a quantum treatment of the chameleon
mechanism becomes mandatory. In this work we develop
the formalism to describe “quantum chameleons” and
present some of its consequences. The formalism also
sheds new light on the quantum field theory calculation of
the Casimir pressure in its various regimes, providing for
instance the general quantum pressure interpolating
between the Casimir and the Casimir-Polder limits.
The paper is arranged as follows. In Sec. II we calculate

the force between bodies due to a chameleonlike field at the
classical and quantum levels. In Sec. III we restrict
ourselves to the quantum chameleon force between parallel
plates. We then apply our results to obtain constraints from
fifth force experiments in Secs. IV and V. We conclude in
Sec. VI and more details on the Feynman propagators and
the Casimir-Polder force are given in the Appendixes.

II. CHAMELEON FORCES FROM THE
PATH INTEGRAL

Our focus in this work is on scalar-tensor theories with a
conformal coupling between the scalar field and matter [21].
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In the Einstein frame this translates into the general
chameleon Lagrangian

L½ϕ; J� ¼ 1

2
ð∂μϕÞ2 − VðϕÞ − AðϕÞJ; ð1Þ

where gravity is described by its Einstein-Hilbert
Lagrangian, VðϕÞ is the interaction potential of the scalar
field, and J is a source representing the density of pressure-
less matter in the setting. The term AðϕÞJ describes how the
chameleon couples to the source [22]. In this work the source
J is considered as a matter density, i.e., JðxÞ ¼ ρðxÞ, which
is assumed to be static and vanishes at infinity. In general J,
ϕ, AðϕÞ depend on space. Both V and A can contain higher
dimensional operators, in which case the Lagrangian
describes a low-energy effective field theory (EFT) valid
for distances greater than some UV cutoff scale. In the
following we define the effective potential

VJ ¼ V þ AJ: ð2Þ

The source is assumed to depend on an external parameter L,
to be understood typically as measuring the distance between
two objects, L ¼ jLij. Our goal is to study how the quantum
system reacts when changing L.
We are interested in calculating the energy of a con-

figuration involving several objects acting as sources, all
described by the distribution J. The energy involves both
the classical energy due to the classical field configuration
between the bodies and the quantum fluctuations around
the classical value. The energy of the set of objects can be
obtained by integrating over the scalar field. This can be
performed using a path integral Z½J� whose source term is
the J distribution representing the objects. The relevant
information is contained in the generating functional of
connected correlators, given by

W½J� ¼ i logZ½J�; Z½J� ¼
Z

Dϕei
R

d4xL½ϕ;J�: ð3Þ

This is the Lorentzian analog to the free-energy in
Euclidean space (see e.g., [23]). When the source is static,
W½J� involves only a potential energy which is given by

E½J� ¼ W½J�
T

ð4Þ

where T ¼ R
dt is the integral over time. We will work with

T ¼ 1 conventionally and refer to the potential E½J� as the
vacuum energy. Our conventions regarding spacetime coor-
dinates are xμ ¼ ðt; xiÞ, d4x≡ dtd3x, d3x≡ dx1dx2dx3.
All the information about the force (or pressure) that one

source induces on another one in the presence of the
chameleonlike field is contained in the variation of the
vacuum energy with respect to L. This variation is given by

∂LE½J� ¼
R
Dϕ

R
d3x∂LJAðϕÞei

R
d4xL½ϕ;J�

R
Dϕei

R
d4xL½ϕ;J�

: ð5Þ

As the numerator is simply a normalizing constant, this
can be rewritten as

∂LE½J� ¼
Z

d3x∂LJ

�R
DϕAðϕÞei

R
d4xL½ϕ;J�

R
Dϕei

R
d4xL½ϕ;J�

�
ð6Þ

where we have commuted the integrals and extracted the
factor

R
d3x∂LJ from the functional integral as this is a field

independent term. The term in brackets can be seen as the
averaged value of A over all the field configurations of ϕ,
leading to the general expression for the force

∂LE½J� ¼
Z

d3x∂LJhAiJ; ð7Þ

where

hAiJ ¼
R
DϕAðϕÞei

R
d4xL½ϕ;J�

R
Dϕei

R
d4xL½ϕ;J�

ð8Þ

depends on the sources J.
Notice that in the functional integral defining E½J�, only

the source term depends on L and therefore the variation
with respect to L is only operative on the source J. This is
the reason why the variation of the vacuum energy Eq. (7)
only involves ∂LJ. From a functional derivative viewpoint,
hAiJ is given by hAiJ ¼ δE½J�=δJ; i.e., Eq. (7) is simply an
elaborate version of the chain rule. Namely, the formula
decouples the quantum average leading to hAiJ and the
change in the positions of the bodies captured by ∂LJ. In a
sense, Eq. (7) is deceptively simple as the calculation of the
quantum average hAiJ is highly nontrivial and can in
general be evaluated only in the loop expansion of quantum
field theory.
To go further, let us thus perform the ℏ expansion.

Writing the chameleon field as ϕ ¼ ϕcl þ η where η
represents the quantum fluctuations around the classical
field ϕcl, we find the first two terms in the ℏ expansion to be

∂LE¼
Z

d3x∂LJAðϕclÞþ
1

2

Z
d3x∂LJA00ΔJðx;xÞþOðℏ2Þ

¼FclþFquantþOðℏ2Þ; ð9Þ

where ΔJðx; x0Þ is the Feynman propagator of the fluc-
tuation, which satisfies the equation of motion

ð∂2
x þ V 00 þ A00JÞΔJðx; x0Þ ¼ −iδð4Þðx − x0Þ; ð10Þ

where V 00 ¼ d2V
dϕ2 jϕ¼ϕcl

, A00 ¼ d2A
dϕ2 jϕ¼ϕcl

. The convention

adopted here is that F > 0 for an attractive force. The
Feynman prescription will be specified below and in
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Appendix B. An efficient way to obtain the general result
Eq. (9) is to expand ϕ in Eq. (8), which gives
hAðϕÞi ¼ AðϕclÞ þ 1

2
A00ðϕclÞhηðxÞ2i þOðℏ2Þ, and realize

that hηðxÞ2i is the connected correlator of η in the presence
of the source term, i.e., ΔJðx; xÞ. A more pedestrian
derivation using the one-loop functional determinant will
be described further below and in Appendix A.
The first term in Eq. (9) is the classical force, pictured in

Fig. 1(a). This term does not involve relativistic retardation
and only requires us to solve the background equation of
motion. When for instance AðϕÞ ¼ yϕ, VðϕÞ ¼ 1

2
m2ϕ2,

one recovers exactly the Yukawa force [note that one can
use hϕiðxÞ ¼ y

R
d4x0iΔðx; x0ÞJðx0Þ] giving the same result

as in [24].
One can also notice that when writing explicitly the

source as describing two bodies a and b in the form
JðxiÞ ¼ Jaðxi − LiÞ þ JbðxiÞ, using ∂LiJa ¼ −∂iJa, and
using the fact that the bodies vanish at infinity, we obtain

Fi ¼
Z

d3x ρaðxiÞ∂iAðϕclÞ ð11Þ

after integrating by part. This matches the classical result
used in [24] and used to calculate classical forces in scalar-
tensor theories.
The second term in Eq. (9) is the quantum force at one-

loop order, pictured in Fig. 1(b). One method to obtain it is
to use the explicit evaluation of E½J�, which contains the
one-loop functional determinant (see e.g., [23])

E½J� ⊃ −
i
2
Tr logð∂2 þ V 00 þ A00JÞ

¼ i
2

�X∞
n¼1

1

n
Tr

�
−

A00J
∂2 þ V 00

�
n
− Tr logð∂2 þ V 00Þ

�
:

ð12Þ

The variation of E½J� with respect to L is detailed in
Appendix A and gives

∂LE½J� ⊃
i
2

Z
d3xA00∂LJð−iÞΔJðx; xÞ þOðℏ2Þ ð13Þ

where the quantity

ΔJðx; x0Þ ¼ −ið∂2 þ V 00Þ−1
X∞
n¼0

Tr

�
−

A00J
∂2 þ V 00

�
n

ð14Þ

has appeared, which is precisely the geometric series
representation of ΔJ satisfying Eq. (10). The result
Eq. (13) reproduces the quantum force formula given in
Eq. (9).
The vacuum energy (in)famously contains infinities

which usually have to be subtracted by hand (see e.g.,
[25,26]). In our approach all divergences automatically
disappear thanks to the ∂L as they are L-independent,
as should be the case as ∂LE½J� is an observable. Indeed, in
the functional determinant, the ∂L removes all diagrams
which do not link a source to the other one, i.e., the
“tadpole” diagrams of the extended sources, pictured in
Fig. 1(c). Thus in Eq. (9) the infinite part of Δðx; xÞ (which
is L-independent) does not contribute and one can
readily use its finite part Δfinðx; xÞ. More details are given
in Appendix B.

A. An aside: Boundary integral representation

Before discussing further the properties of the chame-
leon quantum force, it is worth pointing out another
representation which applies to the general force Eq. (9),
or to any of the terms of the ℏ expansion separately. The
following formalism applies to bodies with sharp bounda-
ries, whose volumes Va;b can be described in the form

faðxi − LiÞ ≥ 0; fbðxiÞ ≥ 0: ð15Þ

The source a can generically be modeled as

JaðxiÞ ¼ ρaðxiÞΘðfaðxi − LiÞÞ ð16Þ

with a space-varying density ρaðxiÞ, and similarly for b.
Such modeling of the sources applies to essentially all
physically relevant situations.
Let us remark that the variation of source a with respect

to Li gives

∂LiJa ¼ −ρaðxiÞ∂ifaðxi − LiÞδðfaðxi − LiÞÞ: ð17Þ

Using Eq. (17), the force is given by an integral over the
boundary S of Va. Parametrizing the boundary manifold
using coordinates ξα (α ¼ 1, 2) with induced metric gαβ, we
have

(a) (b) (c)

(d) (e) (f)

FIG. 1. Sample Feynman diagrams for a chameleon field in the
presence of two extended sources. (a): A generic classical
contribution. (b): A generic one-loop contribution. (c): Tadpoles.
(d): Casimir (strong coupling to sources). (e): Casimir-Polder
(weak coupling to sources). (f): A two-loop contribution from
higher-dimensional coupling to matter.
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Fi ¼ −
Z
S
d2ξ

ffiffiffi
g

p
niρðxiÞhAiJ ð18Þ

where

ni ¼ ∂ifaðxi − LiÞ
j∂ifaðxi − LiÞj ð19Þ

is the unit vector normal to S and oriented inwards Va.
To study the modulus of the force, let us chose a

coordinate system such that Li ¼ ð0; 0; LzÞ without loss
of generality. In these coordinates the force modulus is
given by

jFj ¼ Fz ¼ −
Z
S
d2ξ

ffiffiffi
g

p
nzρðxiÞhAiJ: ð20Þ

Since the volume is closed, nz can take both signs. This
naturally splits the integral into a positive contribution
from Sþ ¼ ðξαjnz ≥ 0Þ and a negative contribution from
S− ¼ ðξαjnz < 0Þ. The presence of these two opposite-sign
contributions in the boundary integral is helpful to under-
stand how infinite contributions cancel in the quantum case.
This will be explicitly illustrated in the case of plates in
Sec. III.

B. The chameleon quantum force

Computing the quantum force [Eq. (9)] requires us to
calculate the ΔJ propagator. However some important
general properties can be deduced prior to any calculation.
Whenever the source term A00J is large with respect to
other scales involved in the interaction potential, the
Green’s function should vanish (i.e., be “screened”) inside
the source and vanish at its surface, as illustrated in
Fig. 1(d); see Appendix B. These are precisely the con-
ditions for the standard Casimir effect.
In the opposite limit, when the coupling to the source

A00J can be treated perturbatively, the functional determi-
nant Eq. (12) can be truncated at quadratic order, in which
case it is the limit of no screening where the force is

Fquant¼
i
2

Z
d3x

Z
d4x0

×A00ðxÞ∂LJðxÞΔ0ðx;x0ÞA00ðx0ÞJðx0ÞΔ0ðx0;xÞ: ð21Þ

This corresponds to the bubble diagram shown in Fig. 1(e),
which is precisely the Casimir-Polder force integrated over
extended sources; see Appendix E. For point sources
JðxÞ ¼ δð3ÞðxiÞ þ δð3Þðxi − LiÞ, jLij ¼ L, we obtain the
potential

VCPðLÞ ¼ −A00ð0ÞA00ðLÞ 1

32π3
V 00

L2
K1ð2V 00LÞ: ð22Þ

This is a generalization of the Casimir-Polder potential in
the presence of an unscreened scalar, which matches results

of Refs. [27,28] when taking AðϕÞ ¼ ϕ2

2M and VðϕÞ ¼ m2

2
ϕ2.

The chameleonlike models are effective theories whose
predictions are valid below a cutoff scale, specific to each
experimental situation. When self-interactions such as L ⊃
ϕn=Λn−4 are present, the cutoff is expected to be ∼4πΛ
since higher order diagrams are expected to produce fast-
growing 1=ðΛLÞn contributions to the force which cannot
be neglected when L ∼ 1=4πΛ. The cutoff resulting from
the interactions with matter is more subtle because of
screening. Consider the contributions to the force from the
leading interaction M−2ϕ2J and a next-to-leading inter-
action of order M−4ϕ4J [shown in Fig. 1(f))], which
contributes at two-loop as

two-loop ∼M−2
Z

d3x∂LJðΔðx; xÞÞ2: ð23Þ

We obtain that the two-loop contribution is negligible
for [29]

Δfin
J ðxbd; xbdÞ ≪ M2: ð24Þ

In the presence of screening, one has

Δfin
J ðxbd; xbdÞ → 0 ð25Þ

(see Appendix B), and therefore the range of validity of the
calculation of the quantum force is largely extended. This is
not surprising as the Casimir pressure should not depend on
the coupling to the plates, only on the mass and degrees of
freedom of the field living between the plates. Also, this
screening is a familiar effect in compact extra-dimension
theories [30]: a large brane mass term repels the field and
amounts to a Dirichlet boundary condition [31,32]. Yet, it is
remarkable that the presence of screening reduces the
contributions from n > 1-loop diagrams, hence improving
on the ℏ expansion.
Our conclusions about the validity of the chameleonlike

EFT differ from those drawn in Ref. [33] for the following
reason. The reasoning of Ref. [33] would hold if the source
occupied the whole space. However one should take into
account that whenever an empty region exists, the fluc-
tuation gets confined there when the effective mass induced
by the source becomes large [as pictured in Fig. 1(d)]. As a
consequence the contributions to the one-loop potential in
the source region are suppressed by the vanishing wave
function of the fluctuation, and the chameleonlike EFT is
not violated—even when the effective mass induced by the
source becomes infinite.

III. QUANTUM FORCE BETWEEN PLATES

We now study the case of a chameleonlike field in an
environment whose constant density changes piecewise
along the direction z. We construct configurations with two
facing plates, by first taking the plates to be of finite width
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to guarantee that the density vanishes at infinity and then
taking the limit of infinite width.
The classical component of the chameleon force in this

geometry has been extensively studied. It can be obtained
using for instance Eq. (11) or Eq. (18), which givesFcl=S ¼
ρ3jAðLÞ − Að∞Þj, and can be further transformed to

Fcl

S
¼ jVJðϕvacÞ − VJðϕ0Þj; ð26Þ

where ϕvac is the value of the field in the absence of
the plates and ϕ0 is the value of the field midway between
the plates; see [24]. We will recall the expressions of the
classical pressure for inverse power-law chameleons [4] and
symmetrons [10] in the next sections. The present section is
about the quantum component force.
We model the mass of the chameleon fluctuation as a

piecewise constant along z. This piecewise mass model is
important as it is a sensible approximation whenever the
profile of ϕcl near the interfaces is irrelevant compared to
the distance L. This piecewise constant mass approxima-
tion is especially accurate for symmetron models [34].
Let us then consider three regions, for which the effective

mass V 00
J ≡m2ðzÞ takes the form

m2ðzÞ ¼ m2
1Θð−z∞ < z < 0Þ þm2

2Θð0 < z < LÞ
þm2

3ΘðL < z < z∞Þ; ð27Þ

where jz∞j is near infinity, i.e., larger than all other length
scales of the problem. This model can be readily used to
calculate the chameleon pressure between plates of homo-
geneous mass density ρ, in which case m2

2 is seen as the
intrinsic mass and the sources in regions 1 and 3 are
identified with M−2J1;3 ¼ ðMÞ−2ρ1;3 ¼ m2

1;3 −m2
2.

Defining ωðzÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp0Þ2−ðp1Þ2−ðp2Þ2þiϵ−m2ðzÞ

p
, the

equation of motion becomes

ð∂2
z þ ω2ðzÞÞϕðzÞ ¼ 0: ð28Þ

The solution in regions i ¼ 1, 2, 3 is simply ðϕþ
i ;ϕ

−
i Þ ¼

ðeiωiz; e−iωizÞ. The solution everywhere can be found by
continuity of the solution and its derivative at each of the
interfaces, defining momentum-dependent transfer matri-
ces of the form

ðϕþ
2 ;ϕ

−
2 Þt¼T21ðϕþ

1 ;ϕ
−
1 Þt; ðϕþ

3 ;ϕ
−
3 Þt¼T32T21ðϕþ

1 ;ϕ
−
1 Þt:
ð29Þ

More details about the propagator are given in Appendix B,
which also includes details about the Feynman prescription
and analytic continuation.
The quantum force induced by the fluctuation between

regions 1 and 3 is obtained by varying E½J� with respect to
L, as described in Eq. (9). The variation of the source gives

A00∂LJ ¼ ðm2
2 −m2

3Þðδðz − LÞ − δðz − z∞ÞÞ. This makes
appear the quantity ΔpðL;LÞ − Δpðz∞; z∞Þ≡ Δfin

p ðL;LÞ,
where

ΔpðL; LÞ

¼ ðω1 þ ω2Þ þ e2iLω2ðω2 − ω1Þ
ðω1 þ ω2Þðω2 þ ω3Þ − e2iLω2ðω2 − ω1Þðω2 − ω3Þ

ð30Þ
and Δpðz∞; z∞Þ ¼ 1=ðω2 þ ω3Þ. The final expression for
the pressure between regions 1 and 3 is then

Fquant

S
¼
Z

∞

0

dρρ2

2π2
γ2ðγ2−γ1Þðγ2−γ3Þ

e2Lγ2ðγ1þγ2Þðγ2þγ3Þ−ðγ2−γ1Þðγ2−γ3Þ
ð31Þ

where one has performed a Wick rotation and intro-
duced ωi ¼ iγi ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þm2

i

p
.

Let us consider some limiting cases. For m1;3 → ∞, the
expression gives the Casimir pressure from a massive
scalar,

Fquant

S
¼

Z
∞

0

dρρ2

2π2
γ2

e2Lγ2 − 1
; ð32Þ

which is π2=ð480L4Þ if m2 ¼ 0.
On the other hand, weak coupling is defined by ðm2

1;3 −
m2

2Þ=m2
2 ≪ 1 in which case a perturbative expansion is

possible. The leading order in the expansion is quadratic
and gives

Fquant

S
¼ ðm2

1 −m2
2Þðm2

3 −m2
2Þ
Z

∞

0

dρρ2

2π2
e−2Lγ2

16ðγ2Þ3
: ð33Þ

This corresponds exactly to the Casimir-Polder force
integrated over regions 1 and 3.
Although the limits taken above are conceptually simple,

the transition between both as a function of L is nontrivial,
as shown in Fig. 2. We see that the transition occurs over 3
orders of magnitude in L and takes place near L ∼ 1=m1;3.
Qualitatively, this is the typical distance for which the
chameleonlike fluctuation has high enough momentum to
start travelling in the 1 and 3 regions. This behavior can be
seen as a validity cutoff on the Casimir pressure, in the
sense that at close enough distance the pressure becomes
constant instead of continuing to grow. This behavior can
be seen in Fig. 2 at low values of L. AnOð1Þ estimate of the
pressure in this regime, taking m1 ∼m3, is given by

Fquant

S
∼ −

ðm2
1 −m2

2Þðm2
3 −m2

2Þ
32π2

logm1;3L; ð34Þ

and applies both for m1;3 ≫ m2 (strong coupling) and
m1;3 ∼m2 (weak coupling).
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The validity cutoff of the prediction of the quantum force
in the presence of a higher-dimensional coupling to matter
is shown in Fig. 2. The minimum value allowed for ML,
defined as ðMLÞval ≡ L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δfin

J ðxbd; xbdÞ
p

following Eq. (24),
reaches a maximal value of ∼0.02, which is similar to
∼1=4π. This corresponds to the lowest possible scaleM for
a given L. Conversely, for a given M this gives the domain
of validity of the EFT as a function of L. In the screening
limit m1;3 ≫ 1=L the range of validity is largely widened.
We have that Δfin

J ðxbd; xbdÞ ≃ π2

480m2
1;3L

4; hence the EFT

validity condition Eq. (24) takes the simple form

L ≫
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

Mm1;3
p ð35Þ

which goes to much shorter length scales than 1=4πM.

IV. QUANTUM FORCE IN THE
EÖT-WASH EXPERIMENT

The torsion pendulum Eöt-Wash experiment involves
two plates separated by a distance L in which holes have

been drilled regularly on a circle. The two plates rotate with
respect to each other. The scalar interaction induces a
torque on the plates which depends on the potential energy
of the configuration. The potential energy is obtained by
calculating the amount of work required to approach one
plate from infinity [35,36]. Defining by SðθÞ the surface
area of the two plates which face each other at any given
time, the torque is obtained as the derivative of the potential
energy of the configuration with respect to the rotation
angle θ and is given by

T ∼ aθ

Z
∞

L
dx

F
S
ðxÞ; ð36Þ

FIG. 2. Top: The quantum pressure between plates as a function
of L for fixed m2 (or vice versa). The thin dashed line shows the
Casimir pressure for a massive scalar. The thin dotted lines show
the integrated Casimir-Polder force. The exact result interpolates
between these two regimes. The classical pressure in the
symmetron model where m2

2 ¼ 2μ2 is also shown. Bottom:
Lower bound on ML needed for the perturbative expansion to
be valid.

FIG. 3. Bounds on chameleonlike models. Top: Exclusion
regions on the standard chameleon with n ¼ 1, including bounds
from Casimir experiments on the quantum and classical chame-
leon pressures. Bottom: Exclusion regions on the symmetron
from Eöt-Wash on quantum and classical torques in the presence
of the intermediate sheet. Insert: Enhancement of the quantum
force from an intermediate sheet as a function of its width.
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where aθ ¼ dS
dθ depends on the experiment. For the 2006

Eöt-Wash experiment [37], we consider the bound obtained
for a separation between the plates of D ¼ 55 μm,

jTj ≤ aθΛ3
T; ð37Þ

where ΛT ¼ 0.35Λ [35] where Λ ∼ 2.4 meV is the dark
energy scale. Importantly, a thin electrostatic shielding
sheet is placed between the plates. It turns out that the
presence of this sheet modifies both the classical and
quantum components of the torque induced by the putative
chameleon field, as we will see in the following.
The Eöt-Wash experiment is sensitive to many modified

gravity models; it is thus interesting to evaluate the
quantum force from a chameleonlike field in this setup.
We use, as above, the piecewise constant mass approxi-
mation for the chameleonlike fluctuations. Because of the
electrostatic shielding sheet present between the plates,
the chameleon particle propagates in five different regions.
The five-layer propagator is obtained using the method
described in Sec. III, and the subsequent change in force is
shown in Fig. 3 for a massless particle. We see that when
the sheet is dense enough, it screens the propagation and
the quantum force is enhanced by a factor 16, as the
pressure is now between the plate and the sheet, twice
closer than the opposite plate. The full expression for the
force in the five regions is heavy and not very illuminating.
But in the screening limit of the sheet the Casimir pressure
is found to be π2=ð30ðL −WsheetÞ4Þ, where Wsheet is the
width of the sheet (L ¼ 55 μm, Wsheet ¼ 10 μm for [20]).
Interestingly, without the sheet, the L ¼ 55 μm Eöt-

Wash measurement is already close to being sensitive to the
Casimir pressure induced by a chameleonlike particle.
Once the effect of the sheet is taken into account, the
pressure is enhanced and Eöt-Wash then becomes sensitive
to the chameleon Casimir pressure.

V. QUANTUM BOUNDS ON
CHAMELEONLIKE MODELS

Here we consider the implications of the previous results
for two well-known models for which the piecewise
constant mass approximation can be safely used. In each
model we first define the masses mi and give the classical
force. The quantum force is obtained using the formalism
developed in this paper.
Standard chameleon. The standard chameleon

potential is

VJðϕÞ ¼
Λ4þn

ϕn þ e
ϕ
MJ ð38Þ

and has been studied in great detail [38,39]. The mass
between the plates is given by

m2L ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðnþ 1Þ

n

r
B

�
1

2
;
1

2
þ 1

n

�
ð39Þ

where B is the Euler function. This is true as long as L ≫
m−1

1;3 where the masses in the plates are m2
1;3 ¼ Λnþ4=ϕnþ2

1;3

and the fields in the plates are given by ϕnþ1
1;3 ¼

nΛnþ4MJ1;3. The classical Casimir pressure is then

Fcl

S
≈ Λ4

� ffiffiffi
2

p
n

Bð1
2
; 1
2
þ 1

nÞ
ΛL

�−2n=ðnþ2Þ
ð40Þ

which is a power law as a function of L.
Focussing on n ¼ 1, the chameleon mass between the

plates is m2 ≈ π=L. We find that the most precise Casimir
force experiments [40–42] are sensitive to the small extra
Casimir pressure induced by the chameleon. It turns out
that exclusions from classical and quantum forces are
complementary, and the quantum force excludes a large
region inaccessible to other experiments, as shown in
Fig. 3.
Symmetron. The symmetron model relies on the restora-

tion of a Z2 symmetry in the presence of matter and is
usually realized as

VJðϕÞ ¼
1

2

�
1

M2
J − μ2

�
ϕ2 þ λ

4
ϕ4: ð41Þ

When J > μ2M2 the expected value of the field is ϕcl ¼ 0

and the mass of the fluctuation is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M−2J − μ2

p
while for

smaller densities the field is ϕcl ¼ μffiffi
λ

p ≡ ϕvac and the mass

is
ffiffiffi
2

p
μ. In the case of plates, one can show that the classical

solution between plates vanishes when L≲ π=μ, in which
case the classical pressure is given by

Fcl

S
≈
μ4

4λ
: ð42Þ

When L≳ π=μ the classical solution between the plates
increases until it reaches ϕvac when L → ∞. The classical
symmetron force between plates is suppressed and is
approximated by

Fcl

S
≈
μ4

λ
e−2

ffiffi
2

p
μL: ð43Þ

As made clear in Fig. 2, the classical force is suppressed
with respect to the quantum one by ∼ðμLÞ4=λ which is
small at distances L < 1=μ, for which the forces become
active.
A simple bound on the symmetron comes from molecu-

lar spectroscopy, in which case the Casimir-Polder force
between nuclei is unscreened and results from [27,28] can
be applied. For masses below the meV range (see Fig. 2 in
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[28]), the main bound on the symmetron comes from the
Eöt-Wash experiment.
Interestingly the Eöt-Wash experiment is sensitive to the

symmetron Casimir pressure because of the intermediate
shield. The L ¼ 55 μm measurement excludes a large part
of the symmetron parameter space as shown in Fig. 3.
A sensitivity up to M ∼ 1 TeV and to μ ∼ 58 meV is
obtained. In comparison, the classical exclusion region
[24,43] is finite, depends on λ and vanishes for λ≳ 0.4. The
exclusion region near the transition requires a treatment of
the vacuum expectation value profile at the interface which
is beyond the piecewise constant mass approximation
used here.
Let us finally comment on the cosmological symmetron

[10,44]. In such a case the parameters of the symmetron
model are typically chosen to satisfy μ2M2 ∼H2

0M
2
Pl,

λ ∼ M2
Plμ

2

M4 . Solar System tests require the coupling scale
M to be M ≲ 10−3MPl. It turns out that the classical
pressure Eq. (42) is overwhelmed by the quantum pressure
at the scale of laboratory experiments. The main constraint
comes thus from the Eöt-Wash bound on the quantum
pressure shown in Fig. 3. Since the lower bound on M
reaches only ∼1 TeV, this leaves plenty of order of
magnitudes in M where the cosmological symmetron
can exist. In terms of distance scales, the bound from
the quantum pressure implies that the range of the symme-
tron force has to be larger than ∼3 × 107 km. Similar
conclusions apply to astrophysically relevant symmetrons,
which tend to have larger masses μ and similar coupling
scales M [45,46].

VI. CONCLUSION

We have studied the forces induced by chameleonlike
particles in a fully fledged quantum approach. Our for-
malism elucidates the role of screening in the quantum
picture and naturally interpolates between the limits of
Casimir and Casimir-Polder pressures. We have computed
propagators with piecewise constant masses in an arbitrary
number of 1D regions and analyzed in detail the quantum

chameleon pressure between plates. Our conclusions rel-
ative to the validity of the chameleon EFT differ from [33]
and are less restrictive. In the Eöt-Wash experiment we find
that the sensitivity to the quantum pressure from chame-
leonlike fields is enhanced by the presence of the inter-
mediate sheet. For both symmetron and standard
chameleon models, the bounds on the quantum pressure
exclude large and previously unconstrained regions of the
parameter spaces.
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APPENDIX A: VARIATION OF THE
VACUUM ENERGY

Here we detail the one-loop calculation of the vacuum
energy and its variation with the source term J. We start
with the partition function

Z½J� ¼
Z

Dϕei
R

d4xð1
2
ð∂μϕÞ2−VðϕÞ−AðϕÞJÞ: ðA1Þ

Introducing ϕ ¼ ϕcl þ η, where ϕcl satisfies the classical
equations of motion in the presence of the source J, gives

Z½J� ¼
Z

Dηei
R

d4xð1
2
ð∂μðϕclþηÞÞ2−VðϕclþηÞ−AðϕclþηÞJÞ: ðA2Þ

An infinitesimal change in the source J → J þ δJ as the
one induced by the variation in L also changes the classical
field ϕcl → ϕcl þ δϕcl. The partition function, once the
source has been shifted, is explicitly given by

Z½J þ δJ� ¼
Z

Dηe−
R

d4xð1
2
ð∂μðϕclþδϕclþηÞÞ2−VðϕclþδϕclþηÞ−AðϕclþδϕclþηÞðJþδJÞÞ: ðA3Þ

However the shift in ϕcl can be absorbed in the integration
variable using η̃≡ ηþ δϕcl, leaving

Z½J þ δJ� ¼
Z

Dη̃ei
R

d4xð1
2
ð∂μðϕclþη̃ÞÞ2−Vðϕclþη̃Þ−Aðϕclþη̃ÞðJþδJÞÞ:

ðA4Þ
Notice that the source variation δJ now only appears in the
last term of the action. Note the functional derivative of
E½J� built from this variation gives us the quantum average

of hAiJ, as the variation only acts on the term in
Aðϕcl þ ηÞðJ þ δJÞ

E½J þ δJ� − E½J�
δJ

¼ i
Z½J�

Z½J þ δJ� − Z½J�
δJ

¼ hAiJ ðA5Þ

in agreement with Eqs. (7) and (8). Finally, one performs
the η integration of the Z½J�’s up to one-loop order, which is
just the functional Gaussian integral
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Z½J�≈ei
R
d4xð1

2
ð∂μϕclÞ2−VðϕclÞ−AðϕclÞJÞ ·ðdet½∂þV 00þA00J�Þ−1=2;

ðA6Þ

Z½J þ δJ� ≈ ei
R

d4xð1
2
ð∂μϕclÞ2−VðϕclÞ−AðϕclÞðJþδJÞÞ

· ðdet½∂ þ V 00 þ A00ðJ þ δJÞ�Þ−1=2: ðA7Þ

The first lines in Eqs. (A6) and (A7) contain the classical
action whose variation gives the classical force. The second
lines of these equations are the one-loop functional deter-
minants. Using these expressions in Eq. (A5) gives the
general formula Eq. (9) of Sec. II after some manipulations
described in Eqs. (12)–(14).

APPENDIX B: GREEN’S FUNCTIONS

1. Universal mass

In position-momentum space, the Feynman propagator
takes the form

Δðz; z0Þ ¼ eiωjz−z0j

2ω
ðB1Þ

where one has introduced

ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp0Þ2 − ðp1Þ2 − ðp2Þ2 þ iϵ −m2

q
: ðB2Þ

This propagator can for instance be obtained by taking
the Fourier transform of the usual 4-momentum space
expression,

Z
dpz

2π

i
p2 −m2 þ iϵ

e−ipzðz−z0Þ

¼
Z

dpz

2π

−i
p2
z − ω2 − iϵ

e−ipzðz−z0Þ

¼ −i
2π

8<
:

ð−2πiÞ eiωðz−z0Þ−2ω z > z0

ð2πiÞ e−iωðz−z0Þ
2ω z < z0

: ðB3Þ

We can see that, as a result of the iϵ prescription, the
propagator vanishes at infinity. Note this is the boundary
condition to impose if one calculates the position-
momentum propagator directly from the equation of
motion.

2. Piecewise constant mass

Position-momentum space is convenient to treat the
case of a z-dependent mass mðzÞ. Here we give the key
steps to calculate the general case of N regions Di,

m2ðzÞ ¼
XN
i¼1

m2
iΘðz ∈ DiÞ; ðB4Þ

with ∪N
i¼1 Di ¼ R and the interface between regions

j, jþ 1 lies at the position zj;jþ1. The Green’s function
satisfies

∂2
zΔðz; z0Þ −m2ðzÞΔðz; z0Þ ¼ iδðz − z0Þ: ðB5Þ

The Feynman propagator is selected among the Green’s
function by imposing that it vanish at infinity. Defining
ωðzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp0Þ2 − ðp1Þ2 − ðp2Þ2 þ iϵ −m2ðzÞ

p
, the solu-

tions in each region are given by ϕ�ðzÞ ¼ e�iωiz.
Requiring continuity of the solution and of its derivative,
the solution over the full space reads

ϕ ¼ ðAþ; A− Þ ·
XN
i¼i

�
Ci

�
ϕþ
i ðxÞ

ϕ−
i ðxÞ

�
Θðz ∈ DiÞ

�
ðB6Þ

with Ci ¼
Q

i
j¼i T j;jþ1 where

T j;jþ1 ¼
1

2γjþ1

� ðγj þ γjþ1Þeixj;jþ1ðγj−γjþ1Þ ðγjþ1 − γjÞeixj;jþ1ðγjþγjþ1Þ

ðγjþ1 − γjÞe−ixj;jþ1ðγjþγjþ1Þ ðγj þ γjþ1Þeixj;jþ1ðγjþ1−γjÞ

�
ðB7Þ

is the transfer matrix given by the continuity conditions. The
rest of the calculation of the Green’s function is given by
standard ordinary differential equation solving techniques;
see for instance the appendix of [47] for more details.

3. The two-regions case

In the case of two regions, the Feynman propagator is
found to be

Δðz; z0Þ ¼

8>>><
>>>:

eiω2ðz>−z<Þ
2ω2

E2ðz<Þ z12 < z<
eiðω2ðz>−z12Þ−ω1ðz<−z12Þ

ω1þω2
z< < z12 < z>

eiω1ðz>−z<Þ
2ω1

E1ðz>Þ z> < z12

ðB8Þ

where
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E1ðzÞ ¼ 1þ ei2ðz12−zÞω1
ω1 − ω2

ω1 þ ω2

E2ðzÞ ¼ 1þ ei2ðz−z12Þω2
ω2 − ω1

ω1 þ ω2

ðB9Þ

and where x< ¼ minðx; x0Þ and x> ¼ maxðx; x0Þ. The E1,
E2 functions essentially describe how the presence of the
boundary affects the propagator with both end points in the
same region. When the boundary x12 is rejected to infinity,
one recovers the usual expression for fully homo-
geneous space.

APPENDIX C: VANISHING AT THE BOUNDARY

Let us consider two regions of arbitrary shape D1, D2

where the mass takes values m1, m2. When m2 → ∞ while
other scales remain fixed, the homogeneous equation of
motion in D2 corresponds to m2

2Φ ¼ 0 which is satisfied
only if Φ ¼ 0 at any point in D2. Moreover, since one
requires continuity of the solution in the whole space, the
value ofΦ at the interface is also set to zero whenm2 → ∞.
As a result, the problem is equivalent to having a field
living in D1 and a Dirichlet boundary condition at the
boundary of D2. This property can be directly seen in the
planar case in, for instance, Eq. (B8). For ω2 → ∞, it is
clear that the propagator tends to zero inside D2 and at its
boundary.

APPENDIX D: ANALYTIC STRUCTURE

The quantum force at one loop has been calculated in
Sec. III using a Wick rotation in p0.
Let us first verify that the integrand ΔpðL; LÞ [and

Δpðz∞; z∞Þ] is analytic in the first and third quadrant of the
p0 complex plane. The function ΔpðL;LÞ depends on the
wi’s which have branch cuts on intervals along the real axis.
The iϵ prescription shifts the branch cuts just below the real
axis for p0 > 0 and just above the real axis for p0 < 0.
Thus the integrals in the p0 plane along the real axis avoid
the branch cuts, and no branch cut is crossed during the
Wick rotation. Let us analyze the poles of the integrand.
They would appear for

ω1 − ω2

ω1 þ ω2

ω2 − ω3

ω2 þ ω3

¼ e−2iω2x0 : ðD1Þ

In the first quadrant of the p0 complex plane and writing
ωi ¼ jωijeiθi we have θ1;3 > θ2 asm1;3 > m2. These angles
are all in the first quadrant too. This implies that

���� ω1 − ω2

ω1 þ ω2

ω2 − ω3

ω2 þ ω3

���� < 1 ðD2Þ

while je−2iω2x0 j ¼ 1. Hence the integrand has no poles in
the first quadrant of the complex p0 plane and one can

perform a Wick’s rotation to the imaginary axis. A similar
analysis applies to the third quadrant.
Finally, the ΔpðL;LÞ − Δpðz∞; z∞Þ integrand tends

exponentially to zero at infinity on the arcs in the first
and third quadrant, including on the real axis because of the
iϵ shift, hereby ensuing that the Wick rotation is valid just
like in the familiar case of a universal mass.

APPENDIX E: THE CASIMIR-POLDER FORCE

In the main text, the Casimir-Polder force between plates
(33) has been obtained as the unscreened limit of the
general result Eq. (11), which is given by the path integral
approach introduced in this work. Here we present an
alternative calculation of the Casimir-Polder force between
plates, done by first calculating the Casimir-Polder force
between pointlike sources using the Feynman diagram
approach and then integrating over the plates. The result
matches the unscreened limit (33) obtained in the main text.
Rewrite the source term as

L ⊃ A00JðxÞ ¼ 1

2
m2

2η
2 þ 1

2
η2ðΘðx < 0Þðm2

1 −m2
2Þ

þ Θðr < xÞðm2
3 −m2

2ÞÞ: ðE1Þ

We consider the presence of the plates as small perturba-
tions, related to the coupling to individual nucleons via

ðm2
i −m2

2Þ ¼
ρi
Λ2

¼ mNni
Λ2

¼ mNNi

ViΛ2
ðE2Þ

where ρi is the mass density, ni is the number density, and
Ni is the total number of particles homogeneously distrib-
uted in the volume Vi.
We first compute the potential between two point sources

(the single static nucleons), replacing ρ by mNδ
ð3ÞðxÞ. The

corresponding source term is

L ⊃ AJðxÞ ¼ 1

2
η2
�
mN

Λ2
δð3Þðxi − xiaÞ þ

mN

Λ2
δð3Þðxi − xibÞ

�
:

ðE3Þ

The bubble diagram is

iM ¼ −
m2

N

Λ4
4m2

N
1

2

Z
dk3

ð2πÞ3
eiω2jz1−z2jÞ

2ω2

eiω
0
2
jz1−z2jÞ

2ω0
2

ðE4Þ

where ω2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 −m2

2

p
, ω0

2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþ pÞ2 −m2

2

p
. We have

used the explicit expression for the Feynman propagator. In
this formalism k, p are 3-momenta; k ¼ ðk0; k1; k2Þ for
example. The scattering potential is given by
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Ṽðp; z1 − z2Þ ¼ −
M
4m2

N

¼ −i
m2

N

Λ4

1

2

Z
dk3

ð2πÞ3
eiγ2jz1−z2jÞ

2ω2

eiω
0
2
jz1−z2jÞ

2ω0
2

:

ðE5Þ

The sources are static; hence p0 can readily be set to zero.
The spatial potential is given by the Fourier transform of
this,

V
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðz1−z2Þ2þx2k
q 	

¼
Z

d2pk
ð2πÞ2 Ṽðpk;z1;z2Þeipk·xk ðE6Þ

where xk ¼ ðx1; x2Þ. We are also going to average the
potential over plates with separation L,

Vplates ¼ N1V−1
1 N3V−1

3

×
Z

d2xk

Z
0

−∞
dz1

Z
d2x0k

Z
∞

L
dz2

×
Z

d2pk
ð2πÞ2 Ṽðpk; z1; z2Þeipk·xk ðE7Þ

where V1, V3 are the volumes of regions 1 and 3. One hasR
d2x0k ¼ S. We can see that the integrals simplify since

Z
d2xk

d2pk
ð2πÞ2 e

ipk·xkFðpkÞ ¼ Fð0Þ: ðE8Þ

Thus the potential is simply

Vplates ¼ Sn1n3

Z
0

−∞
dz1

Z
∞

L
dz2Ṽð0; z1; z2Þ ðE9Þ

¼ −iSn1n3
m2

N

Λ4

1

2

Z
dk3

ð2πÞ3
Z

0

−∞
dz1

Z
∞

L
dz2

ei2ω2ðz2−z1Þ

4ω2
2

ðE10Þ

¼ Sn1n3
m2

N

Λ4

Z
dk3E
ð2πÞ3

Z
0

−∞
dz1

Z
∞

L
dz2

e−2γ2ðz2−z1Þ

−8ðγ2Þ2
ðE11Þ

¼ −Sn1n3
m2

N

Λ4

Z
dk3E
ð2πÞ3

e−2γ2L

32ðγ2Þ4
ðE12Þ

¼ −Sðm2
1 −m2

2Þðm2
3 −m2

2Þ
m2

N

Λ4

Z
dk3E
ð2πÞ3

e−2γ2L

32ðγ2Þ4
: ðE13Þ

In the last line one has used nimN
Λ2 ¼ m2

i −m2
2. We

have also rotated the contour of the k3 integral by
π=2. This is legitimate as the integral over a large
radius in the first quadrant goes to zero exponentially
fast. Finally the pressure is obtained by taking the
derivative,

P¼S−1∂LVplates¼ðm2
1−m2

2Þðm2
3−m2

2Þ
Z

dk3E
ð2πÞ3

e−2γ2L

16ðγ2Þ3
:

ðE14Þ

This reproduces (33) in the main text.
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