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Gravity is not only able to be mimicked in flat spacetimes, but also in curved spacetimes. We study
analogue gravity models in curved spacetime by considering the relativistic Gross-Pitaevskii theory and
Yang-Mills theory in the fixed background spacetime geometry. The results show that acoustic metrics can
be emergent from curved spacetimes yielding a Hadamard product of a real metric tensor and an analogue
metric tensor. Taking quantum vortices as test particles, we evaluate their released energy ratio during the
“gravitational binding.” The (2þ 1)-dimensional flat Minkowski metric is derived from the (3þ 1)-
dimensional anti–de Sitter space by considering perturbations of the Yang-Mills field, which implies that
Minkowski spacetime can also be simulated and the derivations presented here have some deep
connections with the holographic principle.
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I. INTRODUCTION

Analogue models of gravity have become an active field
in recent years because they provide important connections
between astrophysical phenomena, such as the Hawking
radiation of black holes [1], the Penrose process of rotating
black holes, and the Kibble mechanism of topological
defect deformation in the early Universe, with tabletop
experiments. The recent experimental realizations of acous-
tic black holes reported were conducted in a Bose-Einstein
condensate [2–4] and optical medium [5], and the obser-
vation of the Kibble-Zureck mechanism was proposed in
various systems [6–11].
Being able to mimic kinematic aspects of general rela-

tivity only, the analogue models of gravity were originally
proposed to explore the quantum nature of gravity. In 1968,
Sakharov argued that gravity might be induced since it
would not be fundamental from the particle physics point of
view [12]. Although the Weinberg-Witten no-go theorem

states that a spin-2 graviton cannot be a composite particle in
a relativistic quantum field theory [13], the holographic
principle and the later discoveredAdS=CFTcorrespondence
build a bridge between a (dþ 1)-dimensional gravity theory
and ad-dimensional quantum field theory. Therefore, via the
AdS=CFT correspondence, gravity can be studied in a
system in the absence of gravity. The gauge/gravity duality
and analogue gravity are quite different but they share one
property: spacetime is emergent and gravity may not be the
fundamental force. In desktop systems, one canmimic black
holes by using the fluid mechanics (i.e., acoustic black
holes) in the absence of gravity. In most of the previous
literature, the analogue black hole metric was derived from
flat Minkowski spacetime. However, acoustic black holes
can be embedded in a curved spacetime in general. What is
more, a real black hole surrounded by an acoustic horizon is
equivalent to a dumb black hole: at the acoustic horizon
sound cannot escape while at the event horizon light cannot
escape.1 In this paper, we are going to reverse the logic by
first producing an analogue gravity metric in generalized
background and then try to mimic the Minkowski metric
from curved spacetimes.
We first derive the analogue gravity metric in curved

spacetime by considering a relativistic Gross-Pitaevskii
equation and then the Yang-Mills equation. The reason
comes from the following observations:
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1Sound waves can propagate only in a medium. Outside the
Schwarzschild black hole in vacuum, sound waves are not well
defined. Here, we consider a black hole immersed in the cosmic
microwave background so that sound waves propagate.
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(i) A real black hole, the Schwarzschild black hole,
for example, in the bath of the cosmological micro-
wave background is a natural candidate for an
acoustic black hole. At the location rs ¼ 6GM, the
escape velocity is vs ¼ 1ffiffi

3
p and in the region r < rs,

the relativistic sound waves of thermal radiation
cannot escape2 [14].

(ii) For astrophysical black holes, accretion disks around
black holes at the centers of galaxies play a central
role in explaining active galactic nuclei such as
quasars and those include the most energetic steady
sources of radiation in the Universe. Relativistic and
transonic accretion onto astrophysical black holes is
a unique example of analogue gravity realized in
nature [15–18].

(iii) In addition to accretion disks, black holes may be
surrounded by some quantum superfluids. There have
long been some proposals that dark matter might be
some kind of superfluid [19]. The transonic accretion
and the condensation of those quantum fluids also
provide a scenario realizing analogue gravity.

This paper is organized as follows. Firstly, we consider a
superfluid described by the Gross-Pitaevskii equation in the
curved spacetime. Secondly, we show that a three-dimen-
sional analogue Minkowski metric can emerge from the
combination of two SU(2) gauge fields in four-dimensional
Yang-Mills theory in the curved spacetime. Throughout
this paper, we work in the probe limit, where the back-
ground spacetime is considered as a rigid frame without
dynamics. Acoustic black holes are formed only at next-to-
leading order level. Both the Cartesian coordinates
ðt; x; y; zÞ and the spherical coordinates ðt; r; ϑ;ϕÞ will
be used and switched frequently in this paper. We also
adopt the units c ¼ G ¼ ℏ ¼ 1 in what follows.

II. ACOUSTIC BLACK HOLES FROM GROSS-
PITAEVSKII THEORY IN CURVED SPACETIME

Let us consider a nonlinear complex scalar field, obeying
the Gross-Pitaevskii equation. The matter field has no
backreaction to the background spacetime in the probe
limit. The Gross-Pitaevskii theory yields the action [20,21]

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
j∂μφj2 þm2jφj2 − b

2
jφj4

�
; ð1Þ

where φ is a complex scalar order parameter. In the
following, we consider fluctuations of the complex scalar
field. The equation of motion for φ is written as

□φþm2φ − bjφj2φ ¼ 0; ð2Þ

where m2 is a temperature-dependent parameter. Because
Eq. (2) is the relativistic version of the theory describing the
second-order phase transition and φ is the corresponding
complex order parameter [22], it is natural to assume the
temperature dependence m2 ∼ ðT − TcÞ. For temperatures
above the critical temperature T > Tc, the phenomeno-
logical parameterm2 is positive and it becomes vanishing at
T ¼ Tc and negative at T < Tc. The background spacetime
metric is fixed as a static one:

ds2 ¼ gttdt2 þ gxxdx2 þ gyydy2 þ gzzdz2: ð3Þ

In the Madelung representation ϕ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρðx⃗; tÞp

eiθðx⃗;tÞ, we
obtain

0 ¼ 1ffiffiffiffiffiffi−gp ∂tð
ffiffiffiffiffiffi
−g

p
gtt∂t

ffiffiffi
ρ

p Þ þ 1ffiffiffiffiffiffi−gp ∂ið
ffiffiffiffiffiffi
−g

p
gii∂i

ffiffiffi
ρ

p Þ

− gtt
ffiffiffi
ρ

p ð∂tθÞ2 − gii
ffiffiffi
ρ

p ð∂iθÞ2 þm2ρ
1
2 − bρ

3
2;

0 ¼ 1ffiffiffiffiffiffi−gp ∂tð
ffiffiffiffiffiffi
−g

p
gttρ∂tθÞ þ

1ffiffiffiffiffiffi−gp ∂ið
ffiffiffiffiffiffi
−g

p
giiρ∂iθÞ: ð4Þ

A dumb black hole metric can be obtained by considering
perturbations around the background ðρ0; θ0Þ:

ρ ¼ ρ0 þ ρ1 and θ ¼ θ0 þ θ1: ð5Þ

Working in the long-wavelength limit, thus neglecting the
quantum potential terms, we obtain a relativistic wave
equation governing the propagation of the phase fluctuation
of the weak excitations in a homogeneous stationary
condensate:

∂μ

� ffiffiffiffiffiffiffi
−G

p
Gμν∂νθ1

�
¼ 0; ð6Þ

with G ¼ detðGμνÞ and the metric Gμν encodes both the
information of the background spacetime metric and the
background four-velocity of the fluid vt ¼ −_θ0, vi ¼ ∂iθ0.
The effective metric extracted from the Klein-Gordon
equation is given by

Gμν ¼H

0
BBB@
gttðc2s −v2Þ ..

.
−vivt

� � � � � � � � � � � � · � � � � � � � � � � � � � � � � � �
−vivt ..

.
giiðc2s −vtvt−v2Þδijþvivj

1
CCCA;

ð7Þ

where H ¼ csffiffiffiffiffiffiffiffiffiffiffiffi
c2s−vμvμ

p and c2s ¼ bρ0
2
.

The background four-velocity obeys the relation
bρ0 ¼ m2 − vtvt − vivi. Now we switch to the spherical

2The escape velocity for an observer maintaining a stationary
position at the Schwarzschild coordinate radius rs obeys the

relation vescape ¼
ffiffiffiffiffiffiffiffi
2GM
rs

q
. At the event horizon rH ¼ 2GM, the

escape velocity is exactly the speed of light. The speed of sound
for thermal radiation is vs ¼ 1ffiffi

3
p , corresponding to rs ¼ 6GM.

GE, NAKAHARA, SIN, TIAN, and WU PHYS. REV. D 99, 104047 (2019)

104047-2



coordinates ðt; r; ϑ;ϕÞ. Under the assumption vϑ ¼ vϕ¼ 0,
vt ≠ 0, vr≠0without any time dependence and grrgtt ¼ −1,
with the coordinate transformation

dt ¼ dτ̃ þ vtvr
gttðc2s − vrvrÞ

dr; ð8Þ

we can write down the line element for static dumb black
holes,

ds2¼ csffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2s −vμvμ

q �
ðc2s −vrvrÞgttdτ̃2þc2s

c2s −vμvμ

c2s −vrvr
grrdr2

þðc2s −vμvμÞgϑϑdϑ2þgϕϕðc2s −vμvμÞdϕ2

�
; ð9Þ

where μ ¼ 0, 1, 2, 3. Note that we can rescale parameters

as m2 → m2

2c2s
and vμvμ →

vμvμ

2c2s
, so that the metric can be

recast as

ds2¼ c2sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−2vμvμ

p �
ð1−2vrvrÞgttdτ̃2þ

1−2vμvμ

1−2vrvr
grrdr2

þð1−2vμvμÞgϑϑdϑ2þgϕϕð1−2vμvμÞdϕ2

�
: ð10Þ

Keeping in mind that m2 − vμvμ ¼ 1 and working at the
critical temperature T ¼ Tc (i.e., m2 ¼ 0), we can also put
the metric in the form

ds2 ¼
ffiffiffi
3

p
c2s

�
1

3
ð1 − 2vrvrÞgttdτ̃2 þ

1

1 − 2vrvr
grrdr2

þ gϑϑdϑ2 þ gϕϕdϕ2

�
: ð11Þ

Thus, in general, we can write the acoustic metric in curved
spacetime as a Hadamard product � of matrices with gGRμν

denoting the spacetime metric in general relativity and gacμν
the metric of analogue gravity as

ds2 ¼ ðgGR � gacÞμνdxμdxν: ð12Þ

Although the background spacetime here is fixed to be
static, the analogue metric can be a rotating one. A Kerr-
like analogue black hole was derived for relativistic fluids
in [23,24].
We thus obtain a metric consisting of an analogue metric

multiplied by a real spacetime metric. The background real
spacetime can be the Friedmann-Robertson-Walker (FRW)
metric or a black hole metric. As gGRμν → ημν, Eq. (12)
reduces to the acoustic black hole metric obtained in [23],
while as gacμν → δμν, Eq. (12) becomes the spacetime metric
in general relativity. In principle, we are able to embed the
analogue metric in asymptotically flat, de Sitter, or anti–de
Sitter spacetimes. In the appendixes, we show how to
embed the analogue black hole in a “wormhole” spacetime
background. As an acoustic black hole is embedded in real
black hole spacetimes, there could be two event horizons:
the optical event horizon and acoustic horizon. One may
notice interesting observations about the metric signature as
follows:

(i) For an acoustic black hole embedded in the
Schwarzschild black hole background, two horizons
sperate the spacetime into three regions as shown in
Table I. It looks like the superfluid field makes the
original black hole “charged” after condensation.

(ii) Embedding in the Reissner-Nordström geometry
with outside event horizon rþ and inner event
horizon r− is shown in Table II. From the sign of
Gtt and Grr only, it seems that the causal structure of
the original Reissner-Nordström black hole is modi-
fied. Note the fact that the acoustic metric obtained
here works only in the probe limit and thus it cannot
be extended to inside the optical event horizon
region. Moreover, the analogue metric obtained here
is not a solution of Einstein’s equation.

(iii) Light-sound cones: A better understanding of the
metric (12) as an acoustic black hole is the behavior
of sound trajectories. Sound propagates along world
lines for which dϑ ¼ dϕ ¼ 0 and ds2 ¼ 0. First we
introduce the tortoise coordinate r� defined by

dr� ¼ −
ffiffiffi
3

p

ð1 − 2vrvrÞgtt
dr: ð13Þ

TABLE I. For an analogue metric embedded in the
Schwarzschild spacetime, inside the optical event horizon
r < rH, the signs of Gtt and Grr are different from the ordinary
Schwarzschild black holes.

r > rac rH < r < rac r < rH

Gtt < 0;Grr > 0 Gtt > 0;Grr < 0 Gtt < 0;Grr > 0
Both light and
sound can escape

Sound cannot
escape

Inside the
black hole

TABLE II. For an analogue metric embedded in the Reissner-Nordström spacetime, inside the optical event horizon r < rH , the signs
of Gtt and Grr are different from the charged black holes. Note that r− denotes the inner event horizon.

r > rac rH < r < rac r− < r < rH 0 < r < r−

Gtt < 0;Grr > 0 Gtt > 0;Grr < 0 Gtt < 0;Grr > 0 Gtt > 0;Grr < 0
Both light and sound can escape Sound cannot escape Inside the black hole Inside the black hole
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Note that as vr → 0, r� reduces to the tortoise of
optical black holes. Next, we adapt the Eddington-
Finkelstein coordinate V ¼ τ̃ þ r� and obtain

ds2¼
ffiffiffi
3

p
c2s

�
1

3
ð1−2vrvrÞgttdV2þ 2ffiffiffi

3
p dVdr

�
: ð14Þ

The optical event horizon is located at gtt ¼ 0 and
the acoustic horizon satisfies c2s − vrvr ¼ 0. Espe-
cially, in the Schwarzschild geometry background,
the optical event horizon should be at rH ¼ 2M,
while the radial velocity satisfies the relation vr ¼
ð1 − 2M=rÞ1=2cs at the acoustic horizon. In the
asymptotically flat region r → ∞, we can recover
the relation vr ¼ cs, which characterizes the for-
mation of the acoustic horizon given in [1]. For null
geodesics ds2 ¼ 0, a simple solution is that some
radial sound trajectories move along the curves3

V ¼ const: ðinfallingÞ: ð15Þ
The outgoing rays satisfy

dV
dr

¼ −
2

ffiffiffi
3

p

ð1 − 2vrvrÞgtt
: ð16Þ

The conditions 1 − 2vrvr ¼ 0 and gtt ¼ 0 character-
ize the location of the acoustic and optical horizons
rac and rH, respectively, so that sound and light rays
are neither ingoing nor outgoing there, respectively
(see Fig. 1 for typical sound and light cones). A
special condition is that as gtt ¼ −1, Eq. (16) only
describes sound waves.

(iv) Embedding in the FRW Universe: Let us consider
a complex scalar field in the early Universe as given
in (1). The flat FRW geometry is the simplest
example of a homogeneous, isotropic cosmological
metric ds2¼−dt2þa2ðtÞðdx2þdy2þdz2Þ. We only

consider the t-component fluctuations of the com-
plex scalar field because at a sufficiently early time
in the inflationary epoch, the expansion rate H is
negligible compared to ∇θ1=a and the metric
perturbation can be neglected [25]. In this case,
the analogue metric can be expressed as

ds2 ¼ ½ð2c2s þ v2t Þa2ðtÞ − v2z �

×
	
−

2c2s − v2z=a2ðtÞ
ð2c2s þ v2t Þa2ðtÞ − v2z

dτ̃2

þ 2c2s
2c2s − v2z=a2ðtÞ

dz2 þ dx2 þ dy2


;

where we have used the transformation

dτ̃ ¼ dtþ vtvza2

2c2sa2 − v2z
dz: ð17Þ

If we further set vz ¼ 0, then we have

ds2 ¼−2c2sdt2þð2c2s þv2t Þa2ðtÞðdx2þdy2þdz2Þ:
ð18Þ

See [26–29] for more references on the acoustic
analogue of the expanding Universe produced in the
Bose-Einstein condensate.

As grrðrHÞ → ∞ at the optical event horizon rH, the
acoustic horizon is located at c2s ¼ grrðvrÞ2, which implies
that the location of the acoustic horizon should be outside
the black hole optical event horizon. Furthermore, it seems
that for a black hole surrounded by an acoustic horizon, a
spacelike type singularity looks like a timelike singularity
and vice versa. But this may not be true, because inside the
black hole event horizon, the term vrvr in Eq. (14) might
decrease below cs and then the spacelike singularity is still
a spatial singularity for sound waves.4

FIG. 1. Schematic view of light-sound cones for an acoustic black hole in curved spacetime. The orientation of the future light-sound
cones at different radii is shown. Inside the acoustic horizon rac, the sound cones become tilted. Further into the optical event horizon rH,
both sound and light cones become tilted.

3Here we provide a degenerate description of light rays and
sound trajectories as ds2 ¼ 0. Actually, light rays also satisfy the
null condition ds2 ¼ 0.

4We would like to thank the anonymous referee for figuring
out this point.

GE, NAKAHARA, SIN, TIAN, and WU PHYS. REV. D 99, 104047 (2019)

104047-4



The Hawking temperature of the resultant acoustic
solution encodes both the information of black holes and
the acoustic metric. The Hawking temperature is given by

T ¼ 1

4π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgGR � gacÞrr

p
0
@

ffiffiffiffiffiffiffiffi
gactt
gGRtt

s
g0GRtt þ

ffiffiffiffiffiffiffiffi
gGRtt
gactt

s
g0actt

1
A

horizon

;

ð19Þ

where the prime 0 denotes derivative with respect to r. Let
us consider a four-dimensional black hole as an example:
gGRtt ¼ − 1

gGRrr
¼ −fðrÞ and gGRϑϑ ¼ r2. The acoustic Hawking

temperature is then given by

Ta ¼
1

2
ffiffiffi
3

p
π

���� fffiffiffiffiffi
cs

p ð2vrv0rf − v2rf0Þ
����
horizon

: ð20Þ

We notice that at the optical event horizon where
fðrHÞ ¼ 0, the Hawking temperature of the acoustic black
hole is vanishing. In general, vt cannot be zero because it is
the frequency related to the relativistic dispersion relation.
In the fðrÞ → 1 limit and after recovering the scaling
vr →

ffiffiffi
2

p
vr=cs, Ta can naturally reduce to the pure acoustic

black hole Hawking temperature: Ta ¼ 1
2π jc0s − v0rjcs¼vr .

A. Energy released during “gravitational binding”

It is well known that gravitational binding is a more
efficient mechanism for releasing rest energy than the
thermonuclear mechanism [14,30]. This is why black holes
and compact relativistic stars are at the heart of many
energetic phenomena in the Universe. We are going to
examine the energy release for a vortex moving from
infinity to the stable orbit of an acoustic black hole in
curved spacetime. Vortices can behave as relativistic
particles with their dynamics governed by the fluid metric
[31,32] and their stability ensured by a topological number.
Vortices with mass m0 given by the Einstein’s relation E ¼
m0c2s [33,34] cannot propagate at velocities faster than the
sound speed cs. We can therefore utilize vortices to study
the timelike geodesics of massive particles near an acoustic
black hole in curved spacetime.
Since the metric is independent of coordinates t and ϕ,

where u⃗ is the four-velocity of the particle and ξ⃗ and η⃗ are
Killing vectors, we can introduce energy per unit mass ϵ
and angular momentum per unit mass l [14]:

ϵ ¼ −ξ⃗ · u⃗ ¼ −Gtt
dt
dτ

; ð21Þ

l ¼ η⃗ · u⃗ ¼ Gϕϕ
dϕ
dτ

; ð22Þ

where dτ2 ¼ −ds2 denotes the proper time. We can
normalize the four-velocity as u⃗ · u⃗ ¼ Gαβuαuβ ¼ −1 and

this provides an integral for the geodesic equation in
addition to the energy and angular momentum. Taking
into account the equatorial plane condition uθ ¼ 0

(θ ¼ π
2
); writing ut ¼ dt

dτ, u
r ¼ dr

dτ, u
ϕ ¼ dϕ

dτ ; and using the

above relations to eliminate dt
dτ and dϕ

dτ , we can rewrite
Eq. (10) as

GttðutÞ2 þ GrrðurÞ2 þ GϕϕðuϕÞ2 ¼ −1: ð23Þ

Multiplying Gtt on both sides and taking Gϕϕ ¼ r2, we
obtain

ϵ2 þ GttGrr

�
dr
dτ

�
2

þ l2

r2
Gtt ¼ −Gtt: ð24Þ

By further defining E ≡ ðϵ2−1Þ
2

and the effective potential

Veff ¼ −
1

2

�
Gtt

�
1þ l2

r2

�
þ 1

�
; ð25Þ

we obtain

E ¼ −
1

2
GttGrr

�
dr
dτ

�
2

þ Veff : ð26Þ

Suppose there are some stable circular orbits outside the
horizon. The angular velocity of a particle or a vortex in
a circular orbit with respect to the acoustic time is the
rate measured with respect to a stationary clock at
infinity. For any equatorial orbit, the angular velocity
is given by

Ω≡ dϕ
dt

¼ dϕ=dτ
dt=dτ

¼ −
l
ϵ

Gtt

r2
: ð27Þ

The effective potential has its minimum ∂rVeff ¼ 0 at the
radius of the orbit. The value of the total energy E equals
the value of the effective potential at the minimum.
These two requirements yield the ratio l=ϵ of circular
orbits

l
ϵ
¼

�
−
r3∂rGtt

2G2
tt

�
1=2

: ð28Þ

The components of the four-velocity of a particle or a
vortex in a circular orbit are then uα ¼ utð1; 0; 0;ΩÞ. The
component ut is determined by the normalization con-
dition u⃗ · u⃗ ¼ −1. Now there is a contribution from the
angular velocity, so
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ut ¼
�
−Gtt þ

r
2
∂rGtt

�
−1=2

: ð29Þ

The energy difference between a free particle/vortex and
one bound in a circular orbit of radius r that is available
for release is

released energy
rest energy

¼ 1þ Gtt

�
−Gtt þ

r
2
∂rGtt

�
−1=2

����
r¼rISCO

:

ð30Þ

For the Schwarzschild metric Gtt ¼ −ð1 − 2M=rÞ with
the innermost stable circular orbit (ISCO) at r ¼ 6M, the
energy release ratio is 5.7%. The gravitational binding is
a more efficient mechanism for releasing rest energy
than thermonuclear fusion, which is approximately 1%.
As an example, let us consider an orbit of a vortex that
executes radial free fall from infinity starting from rest
outside the Schwarzschild black hole. The radial com-
ponent of the four-velocity vr is taken to be the escape
velocity of an observer maintaining a stationary position
at the Schwarzschild coordinate radius r, that is to say,
vr ¼ ðγ 2M

r Þ1=2, and thus

Gtt ¼ −
�
1 −

2M
r

�
½1 − 2γM=rð1 − 2M=rÞ� ð31Þ

by further setting c2s ¼ 1ffiffi
3

p , where γ is a tuning parameter.

γ is introduced by hand to guarantee that the acoustic
horizon is outside the optical event horizon. In this
case, there are horizons with the radius rH ¼ 2M and

rac ¼ ðγ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 4γ

p
ÞM. The acoustic horizon rac is

located outside the real black hole and requires γ ≥ 4.
The energy release ratio is summarized in Table III. The
energy release ratio obtained here is slightly higher than
that of a Schwarzschild black hole at 5.7%.

III. ANALOGUE GRAVITY FROM
EINSTEIN-YANG-MILLS THEORY

In this section, we show how to produce a (2þ 1)-
dimensional acoustic metric from the (3þ 1)-dimensional

Yang-Mills theory. To compare our results with the gauge/
gravity duality theory, we demonstrate that a (2þ 1)-
dimensional Minkowski metric can emerge from the
SU(2) Yang-Mills theory.
The action for the Einstein-Yang-Mills theory in (3þ 1)-

dimensional spacetime is

S¼
Z ffiffiffiffiffiffi

−g
p

d4x

�
1

2κ24

�
Rþ 6

l2

�
−

1

2g2YM
TrðFμνFμνÞ

�
; ð32Þ

where κ4 is the gravitational coupling, R is the Ricci
scalar curvature, l is the radius of the AdS space, and
gYM is the gauge coupling constant. The gauge field
strength is given by Fa

μν ¼ ∂μAa
ν − ∂νAa

μ þ ϵabcAb
μAc

ν and
A ¼ Aμdxμ ¼ τaAa

μdxμ. Here τa are the generators of
SU(2), which obey the relation ½τa; τb� ¼ ϵabcτc and are
related to the Pauli matrices by τa ¼ σa=2i. ϵabc is the
totally antisymmetric tensor with ϵ123 ¼ 1. The Yang-Mills
Lagrangian becomes TrðFμνFμνÞ ¼ −Fa

μνFaμν=2. In the
probe limit, we focus on the gauge fields only.
The equations of motion for the gauge fields are

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
FaμνÞ þ ϵabcAb

μFcμν ¼ 0: ð33Þ

We consider the symmetric metric as

ds2 ¼ gμνdxμdxν

¼ gttdt2 þ gxxðdx2 þ dy2Þ þ grrdr2; ð34Þ

A ¼ τ3ϕðt; x; y; rÞdtþ wðt; x; y; rÞðτ1dxþ τ2dyÞ; ð35Þ

where gμν are functions of the radial coordinate r only,
but ϕ and w are considered as functions of ðt; x; y; rÞ.
Such a coordinate is usually used for planar AdS black
holes. The U(1) subgroup of SU(2) generated by τ3 is
identified with the electromagnetic gauge group and ϕ is
the electromagnetic scalar potential. There are no ana-
lytic solutions of the Einstein-Yang-Mills theory, but
numerical calculations have been widely studied (see
[35–37] for reviews). In case ϕ ≠ 0, but w ¼ 0, the
solution is simply the Reissner–Nordström–anti–de Sitter
(RNAdS) metric.
The (real) field w is charged under the U(1) group and

represents the amplitudes of the px þ ipy components of
the superfluid order parameter [38]. In the presence of
vortices, w is a complex variable and can be considered
as a composite of two real fields w ¼ wR þ iwI .
We choose A1

x ¼ A2
y ¼ wR and A2

x ¼ −A1
y ¼ wI. The y-

components of the Yang-Mills equation for a ¼ 1 and
a ¼ 2 are given by

TABLE III. Orbits in the equatorial plane: the radius rISCO of
the innermost stable circular orbit, the angular momentum per
unit mass, and the energy release ratio as a function of the
parameter γ. M is the mass of the Schwarzschild black hole.

γ ¼ 0 γ ¼ 5 γ ¼ 7 γ ¼ 9 γ ¼ 11

rISCO 6M 23.59M 35.78M 47.86M 59.89M
l 2

ffiffiffi
3

p
M 16.70M 23.71M 30.68M 37.63M

1 − ϵ 0.057 0.083 0.074 0.071 0.068
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0 ¼ −
1ffiffiffiffiffiffi−gp ∂rð

ffiffiffiffiffiffi
−g

p
grrgyy∂rwIÞ

þ 1ffiffiffiffiffiffi−gp ∂x½
ffiffiffiffiffiffi
−g

p
gxxgyyð−∂xwI − ∂ywRÞ�

þ 1ffiffiffiffiffiffi−gp ∂t½
ffiffiffiffiffiffi
−g

p
gttgyyð−∂twI − ϕwRÞ�

þ gxxgyywIðw2
R þ w2

I Þ − gttgyyϕð∂twR − ϕwIÞ;

0 ¼ 1ffiffiffiffiffiffi−gp ∂rð
ffiffiffiffiffiffi
−g

p
grrgyy∂rwRÞ

þ 1ffiffiffiffiffiffi−gp ∂x½
ffiffiffiffiffiffi
−g

p
gxxgyyð∂xwR − ∂ywIÞ�

þ 1ffiffiffiffiffiffi−gp ∂t½
ffiffiffiffiffiffi
−g

p
gttgyyð∂twR − ϕwIÞ�

− gxxgyywRðw2
R þ w2

I Þ þ gttgyyϕð−∂twI − ϕwRÞ:
The t component for a ¼ 3 is given by

∂rð
ffiffiffiffiffiffi
−g

p
grrgtt∂rϕÞþ∂ið

ffiffiffiffiffiffi
−g

p
gijgtt∂jϕÞ

−2
ffiffiffiffiffiffi
−g

p
gxxgtt½ϕðw2

Rþw2
I ÞþwR∂twI −wI∂twR� ¼ 0:

In what follows, the electromagnetic-scalar potential ϕ is
only regarded as a background field and fluctuations ofϕwill
not be considered [23]. For consistency and the purpose of
deriving the acoustic metric, we assume wI and wR to be y-
independent, so that there will be no x- and y-dependent
mixing terms.Aswe can see later, thiswill lead to an acoustic
black holemetric, where the space dimension is reduced by 1
and this in turn is consistent with the holographic principle,
which states that the description of a volume of space can be
thought of as encoded on a lower-dimensional boundary.
Under this assumption, the equations ofmotion forwR andwI
can be combined into a single equation,

0 ¼ 1ffiffiffiffiffiffi−gp ∂rð
ffiffiffiffiffiffi
−g

p
grrgyy∂rwÞ þ

1ffiffiffiffiffiffi−gp ∂xð
ffiffiffiffiffiffi
−g

p
gxxgyy∂xwÞ

þ 1ffiffiffiffiffiffi−gp ∂t½
ffiffiffiffiffiffi
−g

p
gttgyyð∂twþ iϕwÞ�

− gxxgyyjwj2wþ gttgyyϕði∂tw − ϕwÞ; ð36Þ

where w ¼ wR þ iwI. Notice that this is an equation in
(2þ 1)-dimensional spacetime. In the condensed phases, the
quantized field describing the microscopic system can be
replaced by a classical mean field with a macroscopic wave
function. Thus, with the assumption w ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

ρðx⃗; tÞp
eiθðx⃗;tÞ,

the resulting equation of motion for the complex scalar field
w reduces to real and imaginary parts, respectively,

0¼ 1ffiffiffiffiffiffi−gp ∂rð
ffiffiffiffiffiffi
−g

p
grrgyyρ∂rθÞþ

1ffiffiffiffiffiffi−gp ∂xð
ffiffiffiffiffiffi
−g

p
gxxgyyρ∂xθÞ

þ 1ffiffiffiffiffiffi−gp ∂t½
ffiffiffiffiffiffi
−g

p
gttgyyðρ∂tθþϕρÞ�þgttgyy

∂tρ

2
;

0¼ 1ffiffiffiffiffiffi−gp ffiffiffi
ρ

p
�
gttgyy∂2

t þgrrgyy∂2
r þgxxgyy

∂2
x

2

� ffiffiffi
ρ

p

−gttgyyð∂tθÞ2−gxxgyyð∂xθÞ2−grrgyyð∂rθÞ2−gxxgyyρ:

ð37Þ

When themetric gμν reduces to theMinkowskimetric ημν, the
above equations are completely equivalent to those of an
irrotational and inviscid fluid apart from the quantum
potential and the θ-dependent terms. In what follows, we
neglect the first term in the second equation of (37) from the
observation that the quantum potential term contains the
second derivative of slowly varying ρ, which is small in
the hydrodynamic regime where the related frequency and
momentum are small.
Now we linearize the fields around the background

ðρ0; θ0Þ, ρ ¼ ρ0 þ ερ1 and θ ¼ θ0 þ εθ1, and write the ε
terms as

0 ¼ ∂t½
ffiffiffiffiffiffi
−g

p
gttgyyðρ0∂tθ1 þ ρ1∂tθ0Þ�

þ ∂x½
ffiffiffiffiffiffi
−g

p
gxxgyyðρ0∂xθ1 þ ρ1∂xθ0Þ�

þ ∂r½
ffiffiffiffiffiffi
−g

p
grrgyyðρ0∂rθ1 þ ρ1∂rθ0Þ�; ð38Þ

0 ¼ 2gtt∂tθ0∂θ1 þ 2gxx∂xθ0∂xθ1 þ 2grr∂rθ0∂rθ1 þ ρ1gxx:

ð39Þ

Defining the velocity field by

vt ¼ −∂tθ0; vi ¼ ∂iθ0; ð40Þ

where vt corresponds to the frequency obeying a “relativistic
dispersion relation,” gxxρ0 ¼ −vtvt − vrvr − vxvx, we can
also define three-velocity as

vμ ¼ gμνvν: ð41Þ

Equations (38) and (39) can be written as a single equation
for θ1:

0¼∂t

	 ffiffiffiffiffiffi
−g

p
gtt
�
1

2
gyyρ0∂tθ1þðvt∂tθ1−vx∂xθ1−vr∂rθ1Þvt

�

þ∂x

	 ffiffiffiffiffiffi
−g

p
gxx

�
1

2
gyyρ0∂xθ1þðvt∂tθ1−vx∂xθ1−vr∂rθ1Þvx

�


þ∂r

	 ffiffiffiffiffiffi
−g

p
grr

�
1

2
gyyρ0∂rθ1þðvt∂tθ1−vx∂xθ1−vr∂rθ1Þvr

�

: ð42Þ
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Comparing this with the massless Klein-Gordon equation

1ffiffiffiffiffiffiffi
−G

p ∂μð
ffiffiffiffiffiffiffi
−G

p
Gμν∂νθ1Þ ¼ 0; ð43Þ

we can extract a metric from (42) for the sound modes:

ffiffiffiffiffiffiffi
−G

p
Gμν ≡ ffiffiffiffiffiffi

−g
p

0
BBBB@

gtt
�
1
2
gxxρ0 − vtvt

�
..
.

vivt

� � � � � � � � � � � � · � � � � � � � � � � � � � � � � � �
vivt ..

.
gii
�
1
2
gxxρ0δij − vivj

�

1
CCCCA: ð44Þ

By further defining the local speed of sound as

c2s ¼
1

2
gxxρ0; ð45Þ

we can determine the acoustic metric simply by inverting this 3 × 3 matrix. The acoustic metric is obtained as

Gμν ¼ H

0
BBBB@

gttðc2s − v2Þ ..
.

−vivt
� � � � � � � � � � � � · � � � � � � � � � � � � � � � � � �

−vivt ..
.

giiðc2s − vtvt − v2Þδij þ vivj

1
CCCCA;

where

H ¼ ð−gÞ1=4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2s − ðvtvt þ v2Þ

p ; ð46Þ

v2 ¼ vivi, and g≡ detðgμνÞ is the determinant of the
background spacetime metric.
In the case vi ¼ 0 and grr ¼ −1

gtt
, but vr ≠ 0, we can

simplify the metric as

ds2 ¼ ðgGR � gacÞμνdxμdxν

¼ H
�
ðc2s − vrvrÞgttdτ2 þ c2s

3c2s
c2s − vrvr

grrdr2

þ 3c2sgxxdx2
�
; ð47Þ

where the Hadamard product of matrices was used with gGRμν
representing the spacetime metric in general relativity and
gacμν the metric of analogue gravity. Note that the coordinate
transformation has been used,

dt ¼ dτ þ vrvt
gttðc2s − vrvrÞ

dr; ð48Þ

and the assumption that vμ is independent of time has
been made.

(i) Emergent asymptotic Minkowski spacetime. The
obtained metric can reduce to a pure black hole
case with an overall factor c2s, when each component
of the fluid velocity vanishes (i.e., vt ¼ 0, vi ¼ 0).
The acoustic metric in this case becomes

ds2 ¼ c2sðgttdt2 þ grrdr2 þ gxxdx2Þ: ð49Þ

To see how the Minkowski metric is emergent, let us
first assume that ρ0 is constant so that the sound
velocity c2s mainly depends on gxx. Further setting
the background spacetime to be the pure AdS space
in the Poincaré coordinate, one can easily find that
the resultant acoustic metric becomes

ds2 ¼ c2sr2ð−dt2 þ dr2 þ dx2Þ
¼ ρ0

2
ð−dt2 þ dr2 þ dx2Þ: ð50Þ

One observation is that one can establish a quantum
field theory even in this analogue spacetime. In case
the background spacetime has a black hole inside,
the acoustic metric has its form

ds2 ¼ ρ0
2

�
−fðrÞdt2 þ dx2 þ 1

fðrÞ dr
2

�
; ð51Þ

which is also asymptotically flat as fðr → ∞Þ ¼ 1.
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(ii) FRW version. An interesting example is the case in
which the analogue metric is embedded in the flat
FRW metric. The line element of the acoustic metric
is listed as

ds2 ∼ a−
1
2ð−dt2 þ dx2 þ dz2Þ: ð52Þ

This implies that as the spacetime expands the
analogue metric produced by the Yang-Mills field
shrinks.

IV. CONCLUSION AND DISCUSSION

In summary, we have shown that acoustic black holes
can also be produced in curved spacetime and we use the
Gross-Pitaevskii and the Yang-Mills equations for a con-
crete demonstration. The analogue metric can be written as
the Hadamard product of a real metric matrix and an
analogue metric matrix. Working at the critical temperature
can simplify the form of the metric. For acoustic black
holes produced in the Gross-Pitaevskii fluid, the light-
sound cone of the analogue geometry in the background of
the Schwarzschild spacetime can be summarized as fol-
lows. (i) Outside the acoustic horizon, both light and sound
can escape to infinity. (ii) In the region inside the acoustic
horizon but outside the optical event horizon, light can
escape although sound cannot. (iii) Inside the optical event
horizon of the Schwarzschild black hole, both light and
sound cannot escape. Intriguingly, the optical event horizon
also plays the role of the acoustic horizon.5 The physical
picture can be understood through a thought experiment as
follows: consider a large enough black hole with small
enough tidal forces so that a box full of relativistic
condensate matter falling into the black hole is not to be
destroyed by the tidal force. Suppose there is an observer
who freely falls into the acoustic black holewith the box. For
the box partially inside the acoustic horizon and partially
outside, sound waves cannot propagate out when the
observer perturbs it inside the acoustic horizon. However,
a faraway observer can still receive the light sent by the
observer who is located between the acoustic horizon and
the optical event horizon. When the box is located half
outside and half inside the optical event horizon, when the
observer perturbs it again from inside, not only sound but
also light cannot propagate across the optical event horizon.
The Hawking temperature of the acoustic black hole comes
from the contributions from the fluid and the background
spacetime. Regarding quantum vortices as “test particles,”
we calculated their energy-release ratio during “gravita-
tional binding.”
A (2þ 1)-dimensional acoustic black hole can be pro-

duced by considering the combination of two (3þ 1)-
dimensionalYang-Mills fields. Surprisingly, this is consistent

with the holographic principle. What is more, we show how
the flat Minkowski metric is emergent from the bulk anti–de
Sitter space by considering perturbations of the Yang-Mills
field. The shortcoming of analogue gravity is that such
models do not have a dynamical description but only reflect
kinetic aspects of black holes, though there are some papers
trying to resolve this problem [39–42]. It is also worth
investigating analogue gravity from the holographic duality
viewpoint. In a previous paper [43], someof us havemanaged
to construct an acoustic black hole from the d-dimensional
fluid located at the timelike cutoff surface of a neutral black
brane in asymptotically AdSdþ1 spacetime. We also have
shown that the phonon field, which comes from the normal
mode excitation of the fluid at the cutoff surface and scatters
in the acoustic black hole geometry, is dual to the scalar field
—the sound channel of quasinormal modes propagating in
the bulk perturbed AdS black brane (see also [44]).
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APPENDIX A: ACOUSTIC NONTRAVERSABLE
WORMHOLES

In [1], Unruh was the first to obtain an acoustic black
hole metric by considering a spherically symmetric, sta-
tionary, and convergent flow,

ds2 ¼ ρ0
cs

�
−ðc2s − vr20 Þdτ2 þ

c2s
c2s − vr20

dr2

þ r2ðdθ2 þ sin2θdϕ2Þ
�
; ðA1Þ

where ρ0 is the background fluid density, cs is the local
velocity of sound, and vr0 is the radial velocity of the
background fluid. Assuming at some value of r ¼ R, vr0
exceeds the velocity of sound vr0 ¼ −cþ αðr − RÞ þ…,
we obtain the Schwarzschild-like metric

ds2 ¼ ρ0
cs

�
−2αcsðr − RÞdτ2 þ dr2

2αðr − RÞ

þ r2ðdθ2 þ sin2θdϕ2Þ
�
: ðA2Þ5Acoustic horizons naturally are not optical event horizons, but

optical event horizons are naturally acoustic horizons.
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We consider a coordinate transformation u2 ¼ r − R and
obtain

ds2 ¼ ρ0
cs

�
−2αcsu2dτ2 þ

2csdu2

α

þ ðu2 þ RÞ2ðdθ2 þ sin2θdϕ2Þ
�
: ðA3Þ

This metric is asymptotically flat as u → −∞ and u → ∞,
corresponding to r → ∞. This is an acoustic version of the
Einstein-Rosen bridge which is nontraversable for sound.
The acoustic black hole is expected to be useful in studying
the relationship between spacetime geometry and quantum
entanglement.

APPENDIX B: ACOUSTIC TRAVERSABLE
WORMHOLES

It would be interesting to consider an acoustic black
hole embedded in a traversable wormhole background.

A two-dimensional wormhole metric can be achieved by
setting θ ¼ π=2 in an Ellis wormhole [45]:

ds2GR ¼ −dτ2 þ dl2 þ ðb20 þ l2Þðdθ2 þ sin2θdϕ2Þ: ðB1Þ
Under coordinate transformation l2 ¼ r2 − b20, the two-
dimensional wormhole metric is precisely equivalent to the
line element of a catenoid:

ds2GR ¼ −dτ2 þ r2

r2 − b20
dr2 þ r2dϕ2: ðB2Þ

An acoustic black hole embedded in a traversable worm-
hole is then given by

ds2 ¼ H
�
−ðc2s − vrvrÞdτ2 þ c2s

c2s − vtvt − vrvr

c2s − vrvr

×
r2

r2 − b20
dr2 þ ðc2s − vtvt − vrvrÞr2dϕ2

�
; ðB3Þ

where H is given by Eq. (7).
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