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We consider implications of the quantum extension of the inflationary no-hair theorem. We show that
when the quantum state of inflation is picked to ensure the validity of the effective field theory of
fluctuations, it takes only Oð10Þ e-folds of inflation to erase the effects of the initial distortions on the
inflationary observables. Thus, the Bunch-Davies vacuum is a very strong quantum attractor during
inflation. We also consider bouncing universes, where the initial conditions seem to linger much longer and
the quantum “balding” by evolution appears to be less efficient.
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I. INTRODUCTION

Inflation is a simple and controllable framework for
describing the origin of the Universe. It relies on rapid
cosmic expansion and subsequent small fluctuations
described by effective field theory (EFT). Once the
slow-roll regime is established, rapid expansion wipes
out random and largely undesirable initial features of the
Universe, and the resulting EFT of fluctuations on the
expanding background replaces them with small, nearly
scale-invariant spectra of scalar and tensor fluctuations. The
beginning of inflation might be described by some of the
existing theories, such as no-boundary, tunneling from
nothing, a preinflationary origin, or eternal inflation in the
multiverse.1 The exact details are largely irrelevant for the
last 60 e-folds when the observable features are generated,
except for the description of the initial state. “Common
wisdom” dictates that the initial state is taken to be the
Bunch-Davies vacuum, which readily yields a spectrum of
scale-invariant perturbations. Yet picking this state “by
choice” can lead to confusion, and a critic might even
object that this is a tuning, i.e., putting in the answer by
handpicking the initial state. Further, there are concerns that
the fluctuation modes seem to appear out of nowhere in the
Bunch-Davies vacuum, with apparently negligible initial
backreaction.

As we will explain, this is resolved by a proper
application of EFT to fluctuations. First off, the real
vacuum of the theory is the Bunch-Davies state [2]. This
follows from the quantum no-hair theorem for de Sitter
space, which selects the Bunch-Davies state as the vacuum
with UV properties that ensure cluster decomposition
[3–5]. The excited states on top of it obey the constraints
arising from backreaction, to ensure that EFT holds [6–14].
The initial state need not be the vacuum, but rather
some deformation of it with some (quantum, as well as
classical) memory of the initial conditions, whatever those
may be.
Starting with this, we will quantify explicitly how

quickly inflationary evolution wipes out the initial excita-
tions and evolves the initial state to the point where it is
practically indistinguishable from the Bunch-Davies vac-
uum. In other words, we will calculate the rate of the
“thermalization” process induced by inflation on the
quantum state of the Universe. This will generically require
an additional Oð10Þ e-folds, during which the initial
excitations (random or entangled) will be reduced to be
subleading to the intrinsic inflationary fluctuations in the
Bunch-Davies vacuum that generate the cosmic microwave
background (CMB) anisotropies and serve as the seeds for
structure formation. Moreover, we will also see that the
same thermalization dynamics of the quantum vacuum
reduces the initial nonlinearities, implying that the initial
non-Gaussianities also diminish in the course of inflation,
and that the non-Gaussianities which survive the initial ∼10
e-folds are really due to the nonlinear effects in the inflaton
sector rather than initial conditions. Our results will
explicitly show how the Bunch-Davies state is dynamically
realized by inflation, and determine the point after which
the standard calculations apply. Hence, there is a price to
pay for using the Bunch-Davies state for the computation of
δρ=ρ. The good news is that it is acceptable. Further, since
the standard EFT is valid throughout this regime, there is no
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1These ideas have been discussed so much in the literature that
even identifying the proper original references at this point is
difficult, to say the least. We shall only mention one of the earliest
suggestions about a quantum, uncertain, and cosmic origin [1].
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trans-Planckian problem whatsoever: it is merely a mirage
that follows from inconsistent assumptions.
A similar argument used for the vacuum state employed

in bouncing cosmologies generically shows that imposing
the Bunch-Davies vacuum there is much costlier, since one
must impose that the quantum state is initially homo-
geneous over many more orders of magnitude. Bouncing
cosmology models therefore need to include a mechanism
which explains how the quantum vacuum was achieved.

II. TRANS-PLANCKIAN ADDLING AND
CIS-PLANCKIAN SANGFROID

As a starting point, we briefly review the “standard”
description of the genesis of inflationary perturbations with
a particular focus on the so-called “trans-Planckian prob-
lem” [15]. We then point out a simple, logical resolution of
the alleged problem, consistent with the framework of the
EFT of quantum fluctuations of the inflaton and the cosmic
no-hair theorem.
Indeed, imagine an inflationary theory in the slow-roll

regime, and truncate the theory of the fluctuations to only
the Gaussian sector. Focusing for simplicity only on the
scalar field, in the longitudinal gauge one finds

ds2 ¼ a2ð−ð1 − 2ΦÞdη2 þ ð1þ 2ΦÞdx⃗2Þ;

ϕ ¼ ϕ0ðηÞ þ δϕðη; x⃗Þ; _ϕ0δϕ ¼ −2M2
Pl

�
_Φþ _a

a
Φ
�
;

ð1Þ

where a is the scale factor in a flat Friedmann-Robertson-
Walker (FRW) universe, and Φ is its scalar, Newtonian
perturbation generated by the inflaton perturbation δϕ
because of the mixing induced by the time derivative of
the inflaton background _ϕ0ðηÞ. Clearly, the system has only
one degree of freedom (d.o.f.), since once δϕ is given, Φ is
completely fixed. Turning to the dynamics of this d.o.f., it is
extremely convenient to use Mukhanov’s curvature pertur-

bation variable φ ¼ aδϕ − a _ϕ0

_a=aΦ, which obeys a free-field
equation in the FRW background [16]. In momentum
space,

φ̈k þ
�
k⃗2 −

2þ � � �
η2

�
φk ¼ 0; ð2Þ

where the ellipsis denotes the slow-roll corrections. Since
roughly Φ ∼ φ=a, we can follow the time evolution of the
fluctuations by using the solutions of the free-field equa-
tion (2). Using the physical wavelength of the modes,
λðηÞ ¼ λ0aðηÞ ¼ aðηÞ=k, it is easy to see that

Φk ≃
� Â

a cosðkηþ δÞ; for λ < 1=H;

Aþ B
a3 ; for λ > 1=H;

ð3Þ

where H is the (nearly constant) Hubble parameter during
inflation. The latter case describes the inflationary freeze-
out of perturbations. The former case describes the evolu-
tion of fluctuations at subhorizon scales, ignoring their
interactions. The normalization coefficient A can be calcu-
lated using EFTand declaring A to be the expectation value
of the inflaton’s propagator in the Bunch-Davies state.
Now, the statement of the “trans-Planckian problem”

[15] is that if one traces the fluctuations back in time, from
the horizon crossing to the earlier stages of inflation, one
finds that the wavelength shrinks exponentially, and before
one blinks it will become shorter than the Planck length.
Indeed, one can plot this as in Fig. 1. This is then taken to
mean that in order to really retain the predictivity of
inflation as a means for determining the late-time amplitude
of fluctuations, one must specify the theory all the way to
arbitrarily short lengths. Further, this might make one
suspect that the inflationary results—specifically, the scale
invariance of A—might be a consequence of “fine-tunings”
hidden in the choice of the Bunch-Davies vacuum for the
EFT of fluctuations, which “evidently” must be sensitive to
“trans-Planckian” physics.
This conclusion is faulty because it ignores the evolution

of the amplitude of fluctuations for a given physical
wavelength. Before horizon crossing, Φk ∼ 1=a ∼ 1=λ (as
also plotted in Fig. 2). This is just the virial theorem, since
for λ < 1=H the d.o.f. of the scalar behave just like free
harmonic oscillators in a cavity. Hence, if one extrapolates
λ back in time, one finds that its amplitude grows large! If
one takes the scale of inflation as the highest allowed that
might fit the data, by taking into account the bounds on
primordial tensor modes, H < 1013 GeV, and fixing the
amplitude Φ to 10−5 when λ ≃ 1=H one finds that Φ ∼ 1
for λ > 10lPl.
This means that linear perturbation theory in the Bunch-

Davies vacuum cannot be extrapolated to trans-Planckian
scales. When λ is short, gravitational effects become
strong and the fluctuations distort the background dramati-
cally. The linear approximation fails, and one cannot pass

FIG. 1. Wavelength of a fluctuation as a function of time during
slow-roll inflation.
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through this regime at one’s whim [17]. The large blueshift
factors enhance EFT interactions and the irrelevant oper-
ators cannot be ignored any more. In fact, even the
background metric (1) does not really make sense for
these fluctuations: Φ is really an expectation value of the
metric perturbation in the quantum state of inflation, and its
dispersion will be too large. The dynamics at short
distances yields all kinds of background distortions satu-
rated with the formation and evaporation of small black
holes, which play the role of the dynamical cutoff. Hence,
at the shortest scales some regions will be perturbed so
much that they collapse and inflation never even starts
there. In other regions of space, however, high-energy
dynamics would be less destructive and inflation can begin
[18]. These regions would initially not be as smooth and
flat, but inflation would iron them out as it goes, at both
the classical and quantum level. So a part of the trans-
Planckian confusion is the misidentification of the quantum
expectation value of the operator Φ̂ in an arbitrary state with
the classical mode function Φ in the Bunch-Davies state.
While this is correct in the Bunch-Davies state, it is not true
in a general state where fluctuations are large.
Instead, the curvature fluctuations come about from

particle production in an external field [19], analogously
to particle production in background fields in quantum
electrodynamics, where pairs can be created by a large
electric field in a parallel plate capacitor. Pair creation will
discharge the plates and decrease the field. Inflationary
perturbations are similar, starting as the quanta of the
inflaton placed on shell by the background fields and
perturbing the metric by generating density perturbations a
long time after inflation, when the curvature perturbations
of the geometry yield the perturbations of the matter density
generated at reheating. The production rate will be slow
thanks to a flat potential with a value significantly below
the Planck scale, and slightly inhomogeneous because of
the fluctuations. As the fluctuations evolve in the back-
ground, they will decohere, and soon after the fluctuation
length becomes ∼1=H they will cross the horizon and

freeze. Clearly, the fluctuations are never really subject to
any significant “trans-Planckian” influences. Simply put,
they never really probe physics beyond the Planck cutoff in
a significant manner, thanks to decoupling.
This picture will lay the foundation for our analysis that

follows. Let us outline it: we will start with some generic
initial quantum state that is a nontrivial excitation of the
Bunch-Davies state, which is selected by the cosmic no-
hair theorems as the vacuum state of the EFT. We will then
quantify the magnitude of the excitation by computing the
backreaction in this state, using the method of boundary
actions as a clear-cut means to locally parametrize the
initial deviations from Bunch-Davies. These are bounded
so that the weakly coupled EFT is valid. This, by default,
includes all those initial states where inflation can begin.
Prior to this stage, the dynamics in the excited state was in
strong coupling, and so it is not directly calculable without
details of the full theory. Some states might not survive for
long enough to allow inflation to set in; however, somewill.
The precise statement of the survival probability of a
completely generic state is beyond the scope of this work.
We will simply analyze the dynamics in the states that did
survive, as those indeed support the weakly coupled EFT
and are covered by our analysis. We will then study how
long the initial deviations from Bunch-Davies survive, and
show that in generic states they become negligible after
Oð10Þ e-folds. We will also find the magnitude of their
corrections to the inflationary perturbations. Finally, we
will consider similar processes in bouncing cosmologies.

III. BOUNDARY ACTION AND INITIAL STATES

Here we first review the formalism for implementing the
quantum boundary conditions on the state of inflation
which ensures the validity of the EFT description of
fluctuations of the inflaton. This provides a systematic
tool to parametrize the deviations of the initial state from
the Bunch-Davies vacuum. Following Ref. [6], the basic
idea is to supplement the action for the field whose
perturbation we are considering with a term evaluated on
a space-like boundary which encodes the initial conditions
for the field. In particular, for a massless scalar2 one has

S ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p ∂μϕ∂μϕ

þ 1

2

Z
Σ
d3xd3y

ffiffiffiffiffiffiffiffiffi
γðxÞ

p ffiffiffiffiffiffiffiffiffi
γðyÞ

p
ϕðxÞκðx; yÞϕðyÞ; ð4Þ

where γ is the induced metric on the space-like surface Σ,
and κðx; yÞ encodes information about the initial state of ϕ.
For a translation-invariant state one has κ ¼ κðjx − yjÞ.
Variation of the action with respect to ϕ (demanding, of

FIG. 2. Amplitude of a fluctuation as a function of its wave-
length (and thus time) during slow-roll inflation.

2A good leading-order approximation for the fluctuations of a
light inflaton in slow roll.
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course, that the variation is not set to zero on the boundary,
because the state initially differs from Bunch-Davies)
yields the usual bulk equation of motion, along with the
boundary condition

ð∂n þ κÞϕ ¼ 0; ð5Þ

where ∂n ≡ nμ∂μ is the derivative normal to the boundary.
Fourier transforming, and expanding the field in terms of
creation and annihilation operators,

ϕðx; ηÞ ¼
Z

d3k
ð2πÞ3 ðφ−ðηÞAðkÞ þ φþðηÞA†ð−kÞÞeik·x; ð6Þ

the mode function φþ obeys Eq. (5). Reference [6]
emphasized that the physics is encoded in the mode
functions, and so the precise location of the boundary is
arbitrary, so long as one also changes κ so as to ensure that
Eq. (5) is still satisfied. Thus, we can fix the boundary at the
conformal time η0, and so ∂n ¼ ∂η=a. Let us now use φ� to
denote the mode functions in the Bunch-Davies vacuum,
and denote their counterparts in more general states by φb.
The massless scalar field modes are the Hankel func-

tions, φ� ¼ Hffiffiffiffiffiffiffiffi
2k3=2

p ð1� ikηÞe∓ikη, and so the effective

“interaction” of the modes in the Bunch-Davies state is
given by

κBD ¼ −k2η0
1 − ikη0

: ð7Þ

We will treat the corresponding quantities in a general state
as a perturbation of the Bunch-Davies operators. This
yields

κ ¼ κBD þ δκ; φb ¼
1

1 − jbj2 ðφþ þ bφ−Þ: ð8Þ

Using Eq. (5) and the Klein-Gordon normalization of the
mode functions φþ∂nφ− − φ−∂nφþ ¼ i

a3, the “Bogoliubov
rotation” b is given by

b ¼ −
κφþ þ ∂nφþ
κφ− þ ∂nφ−

����
η¼η0

¼ ia30δκφ
2þ

1 − ia30δκjφþj2
����
η¼η0

: ð9Þ

Then, a straightforward calculation shows that with the
modes defined by Eq. (8) the Green function is

Gbðk; η1; η2Þ ¼ hbjϕbðk; η1Þϕbðk; η2Þjbi ¼ φ�
bðη1Þφbðη2Þ

¼ Gð0Þ
b −

H4a30
2k6

Im½δκð1þ ikη0Þ2ð1 − ikη1Þð1 − ikη2Þe−ikð2η0−η1−η2Þ�

þH6a60
8k9

½jδκj2ð1þ k2η20Þ2½ð1 − ikη1Þð1þ ikη2Þe−ikðη1−η2Þ þ 2ðη1 ↔ η2Þ�
− 2Reðδκ2ð1þ k2η20Þð1 − ikη0Þ2ð1 − ikη1Þð1 − ikη2Þe−ikð2η0−η1−η2ÞÞ� þOðδκ3Þ; ð10Þ

whereGð0Þ
b is the Green function in the Bunch-Davies state.

A. Backreaction

The above mathematical framework can be used to
estimate the backreaction of the excitations in the initial
state on the evolution. Specifically, the backreaction must
be subleading to the background effects in controlling the
evolution. A simple way to proceed is to consider the
expectation value of the stress-energy tensor in the excited

state as a leading-order measure of backreaction; this
follows from Ehrenfest’s theorem. The nonzero value of
δhbjT0

0jbi in the excited state must not overwhelm the
background sources and impede inflation. The boundary
action framework above then allows us to compute this
quantity unambiguously and in a generic excitation of
Bunch-Davies.
For a scalar field, the stress-energy tensor is Tμν ¼

∂μϕ∂νϕ − 1
2
gμν∂λϕ∂λϕ, and so3

δhbjT0
0jbi ¼ −δhbjTi

ijbi ¼ −
1

a2

Z
d3k
ð2πÞ3 ð∂η1∂η2 þ k2ÞδGbðk; η1; η2Þjη1¼η2¼η: ð11Þ

3Note that since the Feynman two-point function is the time-ordered version of Eq. (10), there is an extra factor of 2 in the integral
for δT.
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A natural IR cutoff regulating the integral is given by aH,
since comoving momenta smaller than this have already
exited the horizon [20].
The UV cutoff may be directly implemented at the

leading order by considering the states with finite occu-
pation numbers relative to the Bunch-Davies vacuum.
Alternatively, one can impose the cutoff by hand, as
e.g., in Ref. [7], where the high-energy states are cut off
by regulating the momenta according to ∂2 → e∂2=M2a2

0∂2,

yielding a factor e−k
2=M2a2

0 in the integrand in Eq. (11). In
that case, one can consider larger expectation values of the
“bare” number operators, with the physical expectation
values nevertheless suppressed by the explicit nonlocal
cutoff.
The terms in Eq. (10) involving e−ikð2η0−η1−η2Þ will

approximately integrate to zero, and so the leading back-
reaction effect is actually given by the second-order
corrections to the state:4

δhbjT0
0jbi ¼ −

3π2a60H
6

2ð2πÞ3a2
Z

dkjδκj2k−5ð1þ k2η20Þ2ð5þ 2k2η2Þe−k2=M2a2
0

≈ −
3a20
8πa4

Z
dkjδκj2ke−k2=M2a2

0 ; ð12Þ

where the last line is of course valid only if δκ is sufficiently
blue so that the integral is dominated by the UV contri-
butions. The explicit cutoff has been retained for com-
pleteness and illustrative purposes. One sees that the
backreaction is UV finite if δκ ∼ k−ð1þϵÞ or more sup-
pressed for large momenta k. In this case, we can drop the
exponential cutoff in Eq. (12), essentially by taking the
limitM → ∞. If on the other hand the function δκ has less
intrinsic suppression for large momenta k, it is essential to
keep the cutoff M finite. This scaling behavior, as we will
see below, is crucial to ensure the perturbativity of the
theory in the covariant local limit. We will return to this in

what follows. In any case, one sees that the backreaction
redshifts away like aγ , 2 ≤ γ ≤ 4.
This represents a finite renormalization of the stress-

energy tensor which corrects the background via its
gravitational effects. Specifically, in this state the effective
Friedman equation with the backreaction included is
H2 ¼ 1

3M2
Pl
ðρð0Þ þ δhbjT0

0jbiÞ. Using it, we can derive three

constraints on the scale of backreaction:
(1) Demanding perturbativity yields

Δ≡ δhbjT0
0jbi ≪ ρð0Þ ≈ 3H2M2

Pl: ð13Þ
(ii) Requiring validity of the slow roll leads to

ϵ ¼ −
_H
H2

¼ −
_ρ

2Hρ
≈

_Δ
6H3M2

Pl

þ ϵmeasured ∼ ϵmeasured ⇒ Δ≲ 3

2
H2M2

Plϵmeasured: ð14Þ

(iii) Finally, retaining the scale invariance of the scalar
power spectrum implies

ρ̈

H2ρ
≈

Δ̈
3H4M2

Pl

þ ϵmeasuredðϵmeasured þ ηmeasuredÞ

⇒ Δ≲ 3

16
H2M2

Plϵmeasuredðϵmeasured þ ηmeasuredÞ:
ð15Þ

The third constraint yields the strongest bounds on the
initial state. However, this constraint really only applies
when modes we can observe on the CMB leave the
horizon, and becomes equivalent to the second one within

a few e-folds. Again, the boundary action formalism leads
quickly to these results.

B. Correcting observables

Now we can check the scaling of the corrected power
spectrum in an excited state. The power spectrum of
fluctuations is

PbðkÞ ¼ lim
η→0−

k3

2π2
Gbðk; η; ηÞ

¼ PBDð1 − 2a30ðδκφþðη0Þ2Þ þOðδκ2ÞÞ

¼ PBD

�
1þ a30H

2

k3
Imðδκð1 − k2η20 þ 2ikη0Þe−2ikη0Þ

þOðδκ2Þ
�
: ð16Þ

In Refs. [6–10,13,14] the change of a state was due to an
irrelevant boundary operator, which in turn was due to in-
tegrating out unknown high-energy physics. This suggests

4The first-order change considered by Porrati [8,9] is localized
to the boundary, and so, as explained in Ref. [7], there are
renormalization ambiguities, in addition to it being negligible in
the bulk.
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the following parametrization, involving an explicit
momentum dependence which suppresses the deformations
in the UV in the construction of the initial state:

δκ ¼ βnM

�
k

a0M

�
n
: ð17Þ

Here M is the UV regulator, and βn is a dimensionless
coefficient. In principle M could be different from the

cutoff M of the previous section. Note that demanding
n < −1 ensures the finiteness of the stress-energy tensor in
the excited state even without the nonlocal cutoff, as we
have seen in Eq. (12). We will mostly work with this
requirement, although wewill reflect on the situation where
the suppression of δκ is weaker and the explicit nonlocal
cutoff expð∂2=a20M

2Þ is used. The correction to the power
spectrum is

δP
PBD

¼
�
H
M

�
n−1

��
k

a0H

�
n−3

�
Reβn sin

�
2k
a0H

�
þ Imβn cos

�
2k
a0H

��

þ 2

�
k

a0H

�
n−2

�
Reβn cos

�
2k
a0H

�
þ Imβn sin

�
2k
a0H

��

−
�

k
a0H

�
n−1

�
Reβn sin

�
2k
a0H

�
þ Imβn cos

�
2k
a0H

���
: ð18Þ

The powers of a0 above show that the correlation
functions at a later time receive only a small correction
compared to their values in the Bunch-Davies state. They
are redshifted as momenta due to de Sitter expansion and
covariance. Since the power spectrum essentially measures
the modes as they leave the horizon, the correction to
modes that were deeply subhorizon at η0 are greatly
suppressed. From Eq. (18) one has

k ≫ a0H ⇒
δP
PBD

����
k¼aH

∼ βn

�
a
a0

H
M

�
n−1

; ð19Þ

which is already exponentially (in time) suppressed [by
powers of a=a0 ≃ expðHtÞ] for n < 1. As noted above, the
condition n < −1 guarantees the finiteness of the corrected
stress-energy tensor.
This conforms with the fact that the standard approach to

quantum field theory fails in states which are separated
from the Bunch-Davies vacuum by infinite occupation
numbers, such as α vacua [21–24]. Some of the problems
were discussed in Refs. [25–28]. If the initial state is an
excitation of the Bunch-Davies vacuum described by a low-
energy theory with heavy states and higher-dimension,
irrelevant operators integrated out, the UV completeness of
the theory implies that in a general excited state the
occupation numbers are finite, and the perturbation theory
is meaningful [29,30]. These are the states with n < −1 on
which we have been mainly focusing. Alternatively, using
the nonlocal cutoff expð∂2=a20M

2Þ [7], one may be able to
sharply suppress the UV effects regardless of their origin.
This shows that the seeming enhancements for n ≥ −1 are
merely an illusion, since they are unphysical. If the cutoff is
explicitly inserted, the exponential suppression due to it
completely overwhelms any power-law enhancement with
k for n ≥ −1, for M < M2

Pl, to the point where such

excitations are completely irrelevant in the UV. However,
our analysis will establish that this arises naturally by the
evolution of the initial state towards the Bunch-Davies
vacuum, and is not an arbitrary assumption.
Let us confirm this by computing the occupation

numbers in an excited state. The number of particles per
unit volume, compared to the Bunch-Davies vacuum, is

N ¼
Z

d3k
ð2πÞ3 hbjA

†ðkÞAðkÞjbi ¼
Z

d3k
ð2πÞ3

jbj2
ð1 − jbj2Þ2

¼
Z

d3k
ð2πÞ3 a

6
0jδκj2jφþj4

���� 1 − ia30jφþj2δκ
1þ 2a30jφþj2ImðδκÞ

����2: ð20Þ

The large k-behavior of the integrand is

Nk ∼
� j δκk j2ð1þ j δκk j2Þ; if jImðδκÞj ≪ jReðδκÞj;
j δκk j2; otherwise:

ð21Þ

In either case we see that δκ ∼ kn with n < − 1
2
ensures that

the number of particles in the UV is finite. Thus, physically
realistic cases do indeed obey the no-hair scaling, and a
nonlocal cutoff is not required. Note that this condition is
weaker than the requirement that the extra energy density is
finite, n < −1, following from Eq. (12). However, it is still
stronger than the requirement that the change to the power
spectrum decays for large k (n < 1). The main reason for
this is that the backreaction and particle number involve
integrals of δκ which smear out the momentum depend-
ence, whereas the local operator for the power spectrum
does not. The power spectrum is thus the least sensitive
observable to the UV distortions of the theory, and one can
easily err by picking for initial states such configurations
where the power spectrum might not be affected too much,
even if the state itself is unphysical.
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C. Excitations as squeezed Bunch-Davies

So far we have been referring to the non-Bunch-Davies
initial states as “Bunch-Davies excitations” in a somewhat
heuristic way, basically taking it on faith that the identi-
fication is correct. The observables computed in these states
indeed support this. Further, this provides a direct link
between the boundary action parametrization of initial

excitations and a direct second-quantized framework,
yielding immediately the systematic normalization of the
latter.
We do this by actually constructing these states as

normalizable deformations of Bunch-Davies. To this end,
we deploy the general formalism found in Ref. [31], with
the result

hk1;…; knjbi ¼
(
in=2h0jbiP

P
fðk1; k2Þ � � � fðkn−1; knÞ; n even;

0; n odd:
ð22Þ

The summation is over the n!
2n=2ðn=2Þ! ways of forming pairs from fk1; k2; � � � kng. In terms of the Bogoliubov coefficients

which relate the operators which annihilate jbi to those which annihilate j0i, one has

fðq; pÞ ¼ −i
Z

d3kα�−1ðp; kÞβ�ðk; qÞ: ð23Þ

In this case the Bogoliubov transformation is “diagonal,” with αðk; k0Þ ¼ αkδ
ð3Þðk − k0Þ and βðk; k0Þ ¼ βkδ

ð3Þðkþ k0Þ.
Reading off the coefficients from Eq. (8), we find

jbi ¼ h0jbi
X∞
n¼0

1

2nn!

Z
d3k1 � � � d3knbðk1Þ� � � � bðknÞ�jk1;−k1; k2;−k2;…; k2n;−k2ni;

¼ h0jbi exp
�
1

2

Z
d3kbðkÞ�a†ðkÞa†ð−kÞ

�
j0i; ð24Þ

where the second line identifies the operator which turns
the Bunch-Davies vacuum into the modified state. Note that
this is precisely a squeezed state on top of the Bunch-
Davies vacuum, akin to the α vacua [21–24], but with an
explicit UV suppression manifest in the function bðkÞ. This
ensures that the occupation number is finite, and that the
transformation (24) is normalizable. Indeed, using Eqs. (17)
and (9) we see that for n < 1

b ≈
− i

2
βnð k

a0M
Þn−1e−2i k

a0H

1 − i
2
βnð k

a0M
Þn−1 ≈

8<
:

e−2i
k

a0H; k ≪ a0M;

− i
2
βn
	
a0M
k



1−n

; k ≫ a0M:

ð25Þ

Not surprisingly by now, we see yet again that the integrals
in Eq. (24) will be finite for n < −1, as evidenced by the
suppression of b in the last line of Eq. (25). Without
such behavior we would have to explicitly cut off the
momentum integral in Eq. (24) to keep the transformation
normalizable.

IV. QUANTUM INFLATION

Inflation in its standard form is a mechanism to get rid
of initial inhomogeneities and anisotropies. Once the
cosmological constant-like source starts to dominate
the expansion, (almost) everything else dilutes away
[32–37]. Intuitively—by invoking Ehrenfest’s theorem
—this must also happen with initial quantum excitations
of the Bunch-Davies vacuum. Beside proving this, we
will also compute precisely how many e-folds it takes to
suppress the effect of the initial excitations on the
observable predictions of inflation to below their intrinsic
dynamical value, obtained by the computation in the
Bunch-Davies state. In other words, we can precisely
state the “cost” of the choice of Bunch-Davies as the
initial state of inflation in terms of the number of e-folds
it takes prior to the last 60 e-folds in order to iron out
generic initial excitations.
So let us take as the initial state a deformation given by

Eq. (17), with n < −1 so that the quantum correction of the
stress-energy tensor is finite. In this case we can drop the
exponential cutoff factor from Eq. (12). Then, direct
computation yields
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ΔðaÞ ¼ 3

16π

�
jβj

�
H
M

�
n−1

�
2

H4

�
5

2
cðn − 1Þ

�
a0
a

�
2

þ cðnÞ
�
a0
a

�
4
�
; ð26Þ

where cðnÞ ¼ 1
n−1 þ 2

n þ 1
nþ1

. Let the parameters β andM be
such that at a ¼ a0 the extra stress-energy contribution is
just large enough to disrupt slow roll. Clearly this is the
maximal value allowed at the beginning of the slow-roll
phase, by the fact that the slow roll is an attractor for a
sufficiently flat inflationary potential. Equation (14) then
yields

jβj
�
H
M

�
n−1

¼ MPl

H

ffiffiffiffiffiffiffiffi
8πϵ

c̃

r
; ð27Þ

where c̃ ¼ j 5
2
cðnÞ þ cðn − 1Þj. Using this we can calculate

the change to the power spectrum at a later time. Using
Eq. (19), we find

δP
PBD

����
k¼aH

≃
�
a0
a

�
1−n MPl

H

ffiffiffiffiffiffiffiffi
8πϵ

c̃

r
<

�
a0
a

�
1−n MPl

H

ffiffiffiffiffiffiffiffi
8πϵ

p
:

ð28Þ

The inequality holds for n≳ −13. For larger negative
values of n the dimensionless factor can be larger, but
the redshift suppression ∼ða0=aÞ1−n is so efficient that
these cases are essentially ignorable.
Indeed, while the contribution of the initial excitations to

the scalar power spectrum (28) may be very large initially,
since MPl

H ≳ 105, the correction dilutes at least as quickly as
1=a2 because n < −1. The number of e-folds to reduce the
initial ratio to a desired value is

N ¼ 1

1 − n
ln

�
MPl

H

ffiffiffiffiffiffiffiffi
8πϵ

p �
δP
P

�
−1
�
: ð29Þ

Thus, to suppress the contribution from the initial condition
to δP to be below ∼10−2 of the Bunch-Davies value PBD,
using the slow-roll parameter ϵ ∼ 0.01 which allows
Oð100Þ e-folds of inflation, one has

N ≃
1

1 − n

�
4þ 2log10

�
MPl

H

��
: ð30Þ

For the highest scale inflation,H=MPl ∼ 10−5, and the most
UV sensitive distribution of excitations, n ∼ −1, this yields

N ≃ 7: ð31Þ

For lower scale inflation, N should be larger, but generi-
cally it will not take much more than N ∼Oð10Þ e-folds to
reduce the initial excitations to the level where they affect

scalar perturbations by less than a percent, at which point
they are completely negligible.
Remarkably, this completely confirms the intuition that

the erasure of the initial distortions of the quantum vacuum
during inflation takes about 10 or so e-folds [25,26]. We
should still verify that the third of the backreaction
constraints is obeyed. However, this is straightforward.
From Eq. (15) one sees that this will be satisfied when
ΔðaÞ has decreased by ∼ ϵ

8
∼ 10−3 which happens after ∼3

e-folds, i.e., even sooner.
Note that the cost of preparation of the initial state as

measured by the number of e-folds that it takes to erase the
excitations increases as the scale of inflation is lowered.
The reason is that while the background energy density is
∼H2M2

Pl, the perturbation to the energy density is Δ ∼H4,
because it arises from relativistic inflaton fluctuations at
subhorizon scales. Therefore, the requirement that the
perturbation is just about to disrupt slow roll when a ¼
a0 means that the size of the perturbation as measured by β
or M must be larger for smaller H. In other words, a
relatively larger initial excitation is allowed. This is why it
takes longer for this perturbation to wash away.

A. Non-Gaussianities

The no-hair theorems in de Sitter space [3–5] proscribe
all hair—not just that endowing the two-point function.
This also includes non-Gaussian signatures, which is
indeed why they are small during inflation [38].
Nevertheless, it is interesting from a phenomenological
point of view to consider whether the effects induced by
initial excitations on higher-point correlators might be more
resilient to inflationary washout. In other words, does one
need more e-folds than Eq. (30) to bleach nonlinear hairs?
To test this, we turn to the three-point function of the

perturbation field. The effect on the three-point function
from non-Bunch-Davies initial states has been calculated in
Refs. [11,39]. We can translate the result of Ref. [39] into
our language, and interpret it in the context of the no-hair
theorem. The relative change in the three-point function of
the scalar curvature perturbation ζ, in the high-frequency
limit where gravity is decoupled, yields

δ3≡δhζk1ζk2ζk3i
hζk1ζk2ζk3i

≃
kt

4
P

ik
−2
i
a30H

2
X
i

ð1þ ikiη0Þ2e−2ikiη0ð1−eik̃iη0Þδκ�þc:c:

k5i k̃i
;

ð32Þ

where kt ¼
P

iki, and k̃i ¼ kt − 2ki. Due to k̃i in the
denominator, δ3 is maximized in the so-called “folded
limit” defined by taking k̃i → 0 for some i. This case is
interesting as other effects which alter the three-point
function do not display this signature (occurring instead

NEMANJA KALOPER and JAMES SCARGILL PHYS. REV. D 99, 103514 (2019)

103514-8



in the equilateral and squeezed limits). Thus, any unusual
behavior in the folded limit might indicate the significance
of a non-Bunch-Davies initial state.
Let us now write δκ as in Eq. (17), and use the

backreaction constraint to eliminate the β and M para-
meters via Eq. (27). As before we take generic phases
of β, assuming ReðβÞ ∼ ImðβÞ ∼ jβj. In the folded limit of
Eq. (32), setting k2 ¼ k3 ¼ 1

2
k1 ¼ 1

2
k, the dominant con-

tribution is

δ3 ≃
1

18

�
MPl

H

� ffiffiffiffiffiffiffiffi
8πϵ

c̃

r �
k

a0H

�
n
≃

1

18

�
k

a0H

�
δP
PBD

: ð33Þ

For a mode leaving the horizon at k ¼ aH, this is larger
than the fractional change in the power spectrum by a factor
of a=a0. However, the constraints on the primordial
contribution to the three-point function are much less
severe than those on the two-point function. So a value
of δ3 which is larger than δP

PBD
is still practically irrelevant. In

particular, using Eq. (29), we can write

δ3 ≃
1

18

� ffiffiffiffiffiffiffiffi
c̃
8πϵ

r
H
MPl

δP
PBD

�− 1
1−n δP

PBD
; ð34Þ

and so for H ∼ 10−5MPl, when the fractional change in the
power spectrum is 1% the fractional change in the three-
point function for n ¼ −1 (which gives the largest effect) is
at most Oð1Þ. Thus, the non-Gaussianities induced by
initial conditions will be suppressed down to the level of
intrinsic dynamical non-Gaussianities—induced by scatter-
ing in the Bunch-Davies vacuum—by the same Oð10Þ
e-folds which prepared the Bunch-Davies state. Any longer
stage of inflation prior to the last 60 e-folds will suppress
them even more. This is in agreement with the analysis
done in Ref. [11].
Furthermore, as noted in Ref. [39], the extra factor of k

a0H
in δ3 compared with the modification of the scalar power
spectrum essentially gets washed out once one considers
the projection of the three-point function onto the two-
dimensional surface of last scattering. In this case the
change in the bispectrum would be irrelevant at the same
time as the change in the power spectrum.5

V. VACUA AND BOUNCING UNIVERSES

We can raise similar questions about the evolution of
quantum excitations in the so-called bouncing universes.
These models rely on a period of contraction prior to a
bounce and eventual reexpansion as a possible alternative
to the generation of the inflationary perturbations (see, e.g.,
Ref. [40] for a review). It has been pointed out that such

scenarios suffer from severe fine-tuning problems related to
their classical initial conditions (e.g., see Refs. [41–44]).
These prompted the proposal for cyclic universes where the
classical fine-tuning problems are addressed by repeated
incarnations of the Universe (see Refs. [45,46] for some
details of the idea and its critique). Some aspects of the
quantum mechanics of fluctuations in the bouncing ana-
logue of the Bunch-Davies state have been analyzed (see,
e.g., Refs. [47,48]); however, a general discussion of how
the Bunch-Davies state is attained appears to have been
overlooked to date. Without getting into a detailed dis-
cussion of the bounce dynamics (and what may or may not
cause it), we wish to merely point out the difference
between quantum state selection and evolution in inflation
and in bouncing universes. While in inflation the Bunch-
Davies state is an attractor, it is far less clear whether this is
true in bouncing cosmologies. Hence, such models need to
be explored in more detail to see if a quantum attractor
mechanism exists, that would justify the calculations of the
perturbations in the Bunch-Davies state.
To make things more precise, we consider a flat FRW

universe with scale factor a ¼ a0ðt=t0Þp ¼ a0ðη=η0Þ
p

1−p,
with η ∈ ð−∞; 0Þ and 0 < p < 1. The mode functions
for a massless scalar in the Bunch-Davies vacuum are

φ ¼
ffiffiffiffiffiffi−ηp

aðηÞ
ffiffiffi
π

4

r
ei

π
4
ð2νþ1ÞHð1Þ

ν ð−kηÞ; ð35Þ

where Hð1Þ
ν is the Hankel function of the first kind, and its

order is ν ¼ 1−3p
2ð1−pÞ. Note that the case of an expanding de

Sitter universe can be formally reached by taking the limit
p → ∞, or ν → 3=2. On the other hand, the phase which is
argued to be crucial for scale invariance in bouncing
cosmologies, corresponding to a very stiff equation of
state P=ρ ≫ 1 [47,48], yields p → 0, and so ν → 1=2.
Let us now consider what happens if the initial state is

not exactly the Bunch-Davies one. The boundary action
formalism can be readily applied to this situation. Note that
this state describes the universe well before the bounce
stage, and in principle it should be describable by means of
a standard EFT. Thus, by Eq. (12) the change in the energy
density due to a deviation from the vacuum is

ΔðηÞ ¼ 3π

128

�
1 − p
p

�
2

H2
0

�
a0
a

�
2

×
Z

dð−kη0Þjδκj2ð−kη0Þ
3−p
1−pð−kηÞ1−3p1−p

× jHð1Þ
ν ð−kη0Þj4ðjHð1Þ

ν ð−kηÞj2

þ jHð1Þ
ν−1ð−kηÞj2Þ þ � � � ; ð36Þ

where the ellipsis refers to more terms of a roughly similar
form. Note that the integral is UV finite for δκ ∼ kn with
n < −1, just as in the inflationary case, thanks to the

5This “information suppression” might be avoided by fully
three-dimensional observation, such as large-scale structure
surveys.
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behavior of Hankel functions for large argument. Indeed,
for large argument,HνðxÞ ∼ eix=

ffiffiffi
x

p
which means that each

power of the Hankel function in Eq. (38) contributes a
power of 1=

ffiffiffi
k

p
to the integrand. Thus at large momenta, the

integrand behaves as ∼kjδκj2. Also note that Δ involves a
prefactor ∼a−2 and so, unlike in the case of inflation, as
time goes on, and the universe shrinks, Δ increases. The
explicit η dependence in the integral cannot counter this, as
the Hankel functions blow up for small argument, render-
ing the mode functions finite. Nevertheless, the background
energy density driving the contraction behaves as
ρ ∼ 1=a2=p. Since p < 1 this grows more quickly than
the perturbation Δ, subduing the backreaction. This keeps
control of the collapse at the classical level [47,48].
The question is: what happens with the corrections to the

observables due to the excitations ensconced in the initial
quantum state of collapse, when it is not the Bunch-Davies
vacuum? Writing δκ as Eq. (17), at the initial time η0
one has

Δðη0Þ ¼
3π

128
Iðp; nÞ

�
1 − p
p

�
2

H2
0β

2M2

�
H0

M
1 − p
p

�
2n
;

ð37Þ

where Iðp; nÞ ¼ R∞
1 dxx4þ2njHð1Þ

ν ðxÞj4ðjHð1Þ
ν ðxÞj2 þ

jHð1Þ
ν−1ðxÞj2Þ þ � � �. Using Eq. (37) to constrain β and

M in terms of the initial backreaction, we can now examine
the change in the power spectrum. We find

δP
PBD

����
−kη¼1

≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32

3πIðp; nÞ

s
Δ

1
2

0

H2
0

�
a
a0

�
−n1−pp

����Hð1Þ
ν

��
a0
a

�1−p
p
�����2:
ð38Þ

So the fractional change in the power spectrum decreases
for modes which leave the horizon at a later time, just as in
the inflationary case considered above (recall that we are
considering n < −1 and 0 < p < 1).
So far so good. However, let us pay closer attention to

Eq. (38) in the limit relevant for bouncing universe models
p → 0, which is argued to be required in order to retain the
scale invariance of perturbations [47,48]. In this case, a →
const and H ¼ _a=a ∼ p → 0, such that H0=p is finite.
Thus the backreaction remains under control. Let us
therefore fix it by requiring Δ0 to be a small fraction of
the initial background energy density, ∼M2

PlH
2
0. This

implies that Eq. (38) involves an overall factor MPl=H0,
just as in the inflationary case. But because H0 → 0 in this
phase, MPl=H0 ≫ 1, much more so than in the case of
inflation. Because of this, bouncing universes can accom-
modate much larger initial excitations that can distort the
scalar power spectrum much more. In principle, they could
even be as large as unity, or even more, implying that the
whole approximation of the background universe by a

homogeneous FRW metric is invalid. Such initial quantum
distortions need to be suppressed. In inflation this occurs
automatically once accelerated expansion starts. While the
background backreaction in bouncing universes remains
under control, the influence of initial excitations on
observables is more persistent. In the absence of a more
efficient mechanism to smooth these excitations away,
bouncing universes seem to require fine-tunings by hand
to pick the right form of the perturbations from generic
initial conditions. In a way, the Bunch-Davies vacuum state
seems to be a much weaker attractor.
Note that we have used initial backreaction as a measure

of the excitations away from the Bunch-Davies state. One
could try imposing direct limits on βn in Eq. (17) instead. In
such an approach one opens the door to sensitivity to UV
physics, since generically the results will depend explicitly
on the UV cutoff M because the backreaction and the
modification of the power spectrum involve positive
powers of the ratio M=H0. This would therefore seem
counterproductive, requiring direct tunings of UV physics
in ways that conflict with decoupling. Fixing the cutoff M
leads to the same problems, as does fixing the ratioM=H0.
The bottom line is that in the absence of the inflationary
redshifts one needs to develop different mechanisms that
may even have to go beyond standard field theory to justify
using the Bunch-Davies state to compute perturbations in
bouncing cosmologies.

VI. SUMMARY

The standard calculation of inflationary perturbations
involves the computation of the spectrum of fluctuations of
relativistic fields in the Bunch-Davies vacuum. On the
other hand, one can—and should—imagine that the initial
quantum state of the Universe in the beginning of inflation
is more general, and check the effects of the more general
choices on the observables. After all, inflation is the
mechanism for smoothing the initial conditions away using
accelerated expansion as the attractor dynamics.
At the quantum level, the same phenomenon reoccurs:

inflationary expansion induces large redshift factors in the
expectation values of observable operators in generic initial
states which rapidly diminish the effects of initial excita-
tions. The quantum cosmic no-hair theorem picks the
Bunch-Davies state as the vacuum, and evolution turns it
into the attractor. The underlying physics of the quantum
balding of an initial state is just decoupling, whereby the IR
observables are insensitive to UV effects due to the large
relative redshifts. Using the boundary action formalism to
determine the magnitude of initial excitations due to their
backreaction on the background, we found that the effects
of initial excitations reduce to insignificant levels within
Oð10Þ e-folds. This occurs for both the scalar power
spectrum and non-Gaussianities. If inflation involves
Oð10Þ e-folds preceding the last 60, the quantum effects
of initial conditions are wiped out. Our results confirm that
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inflationary quasi–de Sitter expansion is indeed the mecha-
nism which smooths out the Universe at both the classical
and quantum levels. The “thermalization rate” of Eq. (30)
(in the sense of the initial excitations being reduced below
the level of the quantum quasi–de Sitter fluctuations) is
quite rapid. Note that while it has been colloquially said
that inflation prepares the Bunch-Davies state as the
vacuum of fluctuations, the precise and general details
were lacking in the literature. Our work fills that gap. We
nevertheless should note that larger signatures may occur in
“just-so” models where inflation lasts only Oð60Þ e-folds,
but this may require fine-tuning both the theory and the
initial state from the model building point of view. Some
recent examples are Refs. [49,50].
For bouncing universes, the tuning of the initial quantum

state has not previously been discussed in the literature. In
this case the dynamics is different; as a result, the EFT
description permits much larger initial excitations which
are much harder to suppress. The resultant Bunch-Davies
state typically used for computing the perturbations is a
much weaker attractor. Hence, if one starts with generic
initial conditions in the collapsing phase, one has to pick
more carefully the right initial state as a function of the
duration of collapse to get the observed quantities. By
itself, this is a fine-tuning. A dynamical mechanism
explaining it would be preferable. Perhaps this could be
alleviated in cyclic universes [45] where the universe
undergoes many stages of collapse followed by expansion,
with a late long phase dominated by a small cosmological
constant. In this case the “bleaching” of the quantum state
of the universe to a Bunch-Davies vacuum would be done
by a long late low-scale inflation [51]. This does not seem

like a very economical scenario since the dilution requires
very long times (see, e.g., Ref. [52]). But if the number of
cycles is large… A more careful investigation would seem
to be warranted to test these issues.
We note in closing that our analysis does not preclude

large effects due to the quantum initial conditions on the
post-inflationary universe. It does make them very unlikely,
however, if inflation is longer than the minimal 60 e-folds.
If for example we consider large-field slow-roll inflation,
it can easily last longer than 60 e-folds, by at least Oð10Þ
e-folds, and as we saw the initial excitations of the quantum
state of the Universe will be suppressed to very small levels.
Similarly, in the case of false vacuum inflation, where the
last stage happens after the tunneling out of a false vacuum
(see, e.g., Refs. [53,54]), the quantum state at the onset of
the last stage is prepared to be the Bunch-Davies one by the
long time the Universe lingered in the false vacuum. Again,
the quantum excitations will be grossly suppressed. To
avoid this, one needs a “just-so” inflation: the last 60 e-
folds need to start with a “bang” which provides a large
initial sudden excitation, disrupting the adiabaticity of
cosmic evolution [17,30]. While perhaps possible, such
dynamics seem to be tuned.
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