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Analytic arguments and numerical simulations show that bosonic ultralight dark matter (ULDM) would
form cored density distributions (“solitons”) at the center of galaxies. ULDM solitons offer a promising
way to exclude or detect ULDM by looking for a distinctive feature in the central region of galactic rotation
curves. Baryonic contributions to the gravitational potential pose an obstacle to such analyses, being
(i) dynamically important in the inner galaxy and (ii) highly nonspherical in rotation-supported galaxies,
resulting in nonspherical solitons. We present an algorithm for finding the ground-state soliton solution in
the presence of stationary nonspherical background baryonic mass distribution. We quantify the impact of
baryons on the predicted ULDM soliton in the Milky Way and in low-surface-brightness galaxies from the
SPARC database.
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I. INTRODUCTION

An ultralight bosonic field oscillating around a minimum
of its potential [1–4] can play the role of dark matter (DM).
On cosmologically large scales, ultralight dark matter
(ULDM) behaves similarly to cold weakly interacting
massive particle (WIMP) dark matter, reproducing its
success with respect to the cosmic microwave background
and large-scale structure. On smaller scales comparable
to the de Broglie wavelength, ULDM behaves differently
than WIMPs. In particular, at the center of galactic halos,
ULDM develops cored density profiles that lead to mark-
edly different predictions than those found for ordinary
WIMPs [1,5–30]. The cored ULDM distributions corre-
spond to quasistationary minimum energy solutions of the
equations of motion. We will follow common convention
and refer to these solutions as “solitons.”
Reference [23] analyzed the rotation curves of well-

resolved low–surface brightness (LSB) disk galaxies from
the SPARC database [31] and pointed out that these
galaxies fail to show the soliton feature predicted by

numerical simulations [9,10,32].1 This led to the bound
m≳ 10−21 eV. A similar constraint2 was found in Ref. [26]
considering the dwarf spheroidal galaxy Eridanus-II. The
matter power spectrum inferred from Ly-α forest analyses
yields a comparable bound [34–38].3 These lower bounds
on m are interesting because they probe DM using gravity
alone, without requiring any direct interactions with SM
fields; because they define how light DM could possibly
be; and also because ULDM with m ∼ ð10−22–10−21Þ eV
was suggested as an explanation for puzzles facing the
WIMP paradigm on small scales [16,47].
In the attempt to constrain (or detect) ULDM with

galactic kinematics, an important issue is the modeling
of the baryonic contribution to the gravitational potential
which can distort the soliton.4 Reference [23] analyzed the
solution in the presence of a spherically symmetric back-
ground potential, in order to estimate the size of the effect.
That was found to be significant for the Milky Way (MW)
but not significant for the relevant SPARC LSB galaxies.
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1Reference [33] reports independent evidence against soliton
cores.

2Reference [26] notes that dynamics of a central star cluster in
Eridanus-II could potentially probe ULDM up to m ∼ 10−19 eV.

3See also Refs. [39,40]. A bound, m≳ 10−23 eV, comes from
scalar metric perturbations induced by ULDM [41] that were
searched for in pulsar timing signals [42]. Heating of the MW
disk suggests m > 0.6 × 10−22 eV [43]. More tentative con-
straints include m > 1.5 × 10−22 eV [44], based on preliminary
analysis of stellar streams in the Milky Way, and m > 8 × 10−21

[45], assuming that 21 cm results by EDGES [46] are confirmed.
4See Ref. [48] for a preliminary study of the dynamical impact

of stars in ULDM numerical simulations.
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However, both in the MW and in rotation-supported
SPARC galaxies, the baryonic mass distribution is non-
spherical, following disklike morphology. In a nonspherical
system, dynamics in the central region of the galaxy can be
affected by the mass distribution at larger radii. It is
therefore important to extend the solitonþ baryon analysis
to nonspherical configurations.
In this paper, we present an algorithm to calculate the

soliton solution in the presence of a nonspherical back-
ground gravitational potential. The algorithm is simple,
fast, and accurate and can replace the standard one-
dimensional shooting method used for solving the spheri-
cally symmetric soliton.
Our goals in presenting this tool are twofold. First, it

allows us to perform a self-consistent analysis of the
velocity profile in disk galaxies. Once the baryonic mass
distribution is specified (presumably with input from
photometry), the soliton contribution to the gravitational
potential requires a single free parameter in the fit. This
parameter can be chosen to be, e.g., the soliton mass. For
example, stellar kinematics in the MW could provide a
testing ground for ULDM up to m ∼ 10−19 eV [23]. To this
end, implementing the soliton in a self-consistent manner
would be crucial, and we expect that our tool would be
useful.
Second, we revisit the analysis of Ref. [23] of baryonic

effects in SPARC galaxies. As noted in Ref. [23], the
soliton-halo relation predicted by DM-only numerical
simulations strongly overpredicts the circular velocity in
the centers of dozens of galaxies ifm < 10−21 eV. In many
cases, the predicted soliton mass in the central approx-
imately 100 pc of the galaxy exceeds the observationally
allowed total mass (baryonicþ DM) in that region by
factors of order 10. This large mass mismatch led the
authors of Ref. [23] to expect that baryonic effects are
unlikely to change the constraints. Here, focusing on two
sample galaxies, we determine the soliton solution while
accounting for the nonspherical baryonic mass distribution.
When noting that the gas and stellar distributions are highly
nonspherical, and when naively counting the mass outside
of the soliton region, the total baryonic mass in both
galaxies is comparable to or larger than the soliton mass.
Nevertheless, in both cases, our analysis largely confirms
the expectations of Ref. [23], showing that the baryonic
mass external to the soliton region does not significantly
affect the solution.
Some recent work in the literature investigated non-

spherical distributions of condensed dark matter [49,50].
Reference [49] considered a nonspherical parametrization
of ULDM halos and solitons and applied it to a Jeans
analysis of dwarf spheroidal galaxies. Differently than our
work here, Ref. [49] did not base its parametrization of the
ULDM core on a solution of the equations of motion
(EOM). In our view, one of the main points of beauty in
the discussion of ULDM in galaxies is that numerical

simulations—with and without stars—actually do consis-
tently show soliton solutions that satisfy the EOM.5 The
tools we present here solve the EOM and find the self-
consistent soliton, allowing us to refine the analysis of
Ref. [49]. Reference [50] looked for disk configurations
of self-interacting condensed dark matter. However, while
Ref. [50] looked for nonspherical configurations, at no
point do they solve the EOM. Instead, they restrict the
solution to certain disklike geometries and define and solve
a modified one-dimensional system.
The outline of this paper is as follows. In Sec. II, we

recall the ULDM equations of motion that define the
soliton solution in the presence of an external (nondynam-
ical) background gravitational potential. The standard one-
dimensional shooting method, that can be used to solve the
spherically symmetric problem, becomes impractical (in
general) once the background potential is not spherically
symmetric because it requires a discrete infinity of shooting
variables.6 A simple numerical recipe to solve this problem,
assuming an axisymmetric background potential, is
detailed in the Appendix A. While we do not pursue this
here, extending the algorithm to full three dimensionality is
straightforward.
In Sec. II A, we discuss the soliton–host halo mass

relation found in DM-only numerical simulations
[9,10,32]. Reference [23] shows that this relation is
equivalent to the statement that the specific energy (total
energy per unit mass) of the host halo is equal to the
specific energy of a self-gravitating soliton. Here, we point
out that a more physical representation of the soliton-halo
relation is obtained by equating the kinetic—rather than
total—energy per unit mass of the soliton and the halo. This
distinction is unimportant for DM-only simulations of
massive halos but becomes relevant once a background
potential is introduced.
In Sec. III, we take the MW as an illustrative example

of a system where the potential due to baryons (mostly
stars in this case) cannot be neglected in assessing the
soliton properties. The analysis demonstrates the use of
our numerical tool but is not intended to provide constraints
on ULDM; that would require a more comprehensive
treatment that we postpone to future work.
In Sec. IV, we consider two sample LSB galaxies from

the SPARC database. For these galaxies, we reconstruct the
circular velocity decomposition presented in the SPARC
database using photometric data, reproducing the SPARC
analysis. The baryonic mass models (starsþ gas) derived
in this way are used as input for the numerical nonspherical
soliton solution, allowing us to revisit in detail the earlier
rough estimates of Ref. [23]. We show that the total energy

5See Secs. III and V. A in Ref. [23].
6If the problem is axisymmetric, for example, then one

independent shooting variable is needed for every azimuthal
Legendre l-mode.
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per unit mass, E=M, of the soliton is modified by the
baryonic potential of these galaxies. However, the bulk of
this effect is unphysical; it comes from a nondynamical
shift of the energy due to an external gravitational potential
that is mostly constant throughout the relevant region of the
galaxy. This is supported by the fact that—as we show—
the specific kinetic energy, K=M, is essentially unaffected
both for the soliton and the halo.
In Sec. V, we summarize our results.
A number of technical details are postponed to

Appendixes. As mentioned above, Appendix A describes
the nonspherical soliton-finding algorithm. Appendix A 1
specifies the steps required to implement a black hole in
the code. In Appendix B, we discuss tests of the algorithm
and show evidence that the solutions we find are indeed
ground-state solutions. In Appendix C, we recall a con-
venient formula converting an axisymmetric mass distri-
bution into the gravitational potential induced by it. In
Appendix D, we collect a useful auxiliary parametrization
for galactic disks that we have found useful in modeling
SPARC galaxies. Appendix E explains our reconstruction
of the neutral gas distribution in UGC01281. Finally, our
results in the main text are presented—for concreteness—
assuming a ULDM particle mass of m ¼ 10−22 eV; in
Appendix F, we show relevant results for m ¼ 10−21 eV.

II. SOLITONS IN A NONSPHERICAL
BACKGROUND

We consider a real, massive, free7 scalar field ϕ satisfy-
ing the Klein-Gordon equation of motion and minimally
coupled to gravity. In the nonrelativistic regime, it is
convenient to decompose ϕ as

ϕðx; tÞ ¼ 1ffiffiffi
2

p
m
e−imtψðx; tÞ þ c:c:; ð1Þ

with complex field ψ that varies slowly in space and
time and satisfies the Schrödinger-Poisson equations
(SPEs) [53]

i∂tψ ¼ −
1

2m
∇2ψ þmðΦþΦbÞψ ; ð2Þ

∇2Φ ¼ 4πGjψ j2: ð3Þ
In Eq. (2), we include an external contribution to the
gravitational potential, given by Φb. We consider Φb as
the effect of a distribution of baryonic mass. Our
working assumption is that Φb should be constrained by
external information such as photometry and microlensing
measurements.
We look for a quasistationary phase-coherent solution

for the ULDM, described by the ansatz

ψðx; tÞ ¼
�
mMplffiffiffiffiffiffi

4π
p

�
e−iγmtχðxÞ; ð4Þ

where Mpl ¼ 1=
ffiffiffiffi
G

p
. The parameter γ is an eigenvalue of

the SPE subject to the bound-state boundary conditions that
we describe below.
We rescale the spatial coordinate,

x → mx; ð5Þ
keeping this convention throughout the rest of the paper.
Then, in terms of the dimensionless χ and x, the SPE are

∇2χ ¼ 2ðΦþΦb − γÞχ; ð6Þ
∇2Φ ¼ χ2: ð7Þ

We assume cylindrical symmetry and parity symmetry
(x3 ¼ z → −z) and define the radial coordinate in the plane
R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22

p
. At

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ z2

p
→ ∞, the potentials Φ and

Φb are assumed to decay ∝ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ z2

p
, implying that χ

decays approximately exponentially ∝ e−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jγjðR2þz2Þ

p
. A

given value of χ at the origin, specified by

χðR ¼ 0; z ¼ 0Þ ¼ λ2 ð8Þ
with λ a real positive number, fixes the minimal energy
solution of Eqs. (6) and (7) consistent with the boundary
conditions.
In the case of vanishing Φb, solutions of Eqs. (6) and (7)

admit a scaling symmetry, the orbit of which can be
parametrized by λ. This scaling symmetry is, in general,
broken by Φb ≠ 0. It remains true, however, that
varying the value of λ in Eq. (8) generates the continuous
family of solutions of Eqs. (6) and (7). Thus, λ remains a
useful tool to parameterize the mass, energy, and any
other property of the solution. For reference, the

self-gravitating soliton (found for Φb ¼ 0) satisfies M≈

2.06λ
M2

pl

m ≈2.8×1012λð m
10−22 eVÞ−1 M⊙ and E=M≈−0.23λ2≈

−0.054ð M
M2

pl=m
Þ2. When baryons induce Φb ≠ 0, these

relations are modified in a way that we will discuss below.
We have developed a numerical relaxation method to

find the ground-state soliton solution for any axisymmetric
background potential satisfying the boundary conditions
described below Eq. (7). The algorithm is described in
Appendix A and is one of the main results of this paper.
We discuss some theoretical aspects of the solutions in
Appendix B: first, the evidence for (but difficulty of
rigorously proving) that the solution is indeed the ground
state and, second, the issue of stability against small
perturbations.
In the next subsection, we clarify some issues related to

the soliton–host halo relation found in DM-only numerical
simulations. Then, in the following sections, we illustrate
the use of the numerical tool of Appendix A by analyzing

7Analyses of interacting fields can be found in, e.g.,
Refs. [7,8,51,52].
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the baryonic effects on the predicted ULDM soliton in the
Milky Way and in two disk galaxies from the SPARC
database.

A. Soliton-halo relation: E=M vs K=M

We can compute the soliton massM and energy E (recall
that x is measured in units of 1=m),

M ≈ 1011 M⊙

�
m

10−22 eV

�−1 Z
d3xχ2; ð9Þ

E ≈ 1011 M⊙

�
m

10−22 eV

�−1

×
Z

d3x

�
1

2
ð∇χÞ2 þ

�
Φ
2
þΦb

�
χ2
�
: ð10Þ

It is useful to separate the total energy into kinetic
energyþ potential energy,

E ¼ K þ P; ð11Þ
where K comes from the gradient term and P comes from
the Φ=2þΦb term in Eq. (10). For a self-gravitating
system in virial equilibrium, P ¼ −2K and E ¼ −K. This
applies to the self-gravitating soliton obtained for Φb ¼ 0.
When we turn on a background potential, the soliton ceases
to be self-gravitating, so that E ≠ −K for Φb ≠ 0.
Reference [23] showed that the empirical soliton–host

halo relation found in the DM-only numerical simulations
of Ref. [10] is equivalent to the statement

E
M

����
soliton

¼ E
M

����
halo

: ð12Þ

Note that on the lhs of Eq. (12) E
M jsoliton is defined for the

self-gravitating soliton without including the gravitational
potential induced by the large-scale halo. The halo gravi-
tational potential Φh is approximately constant in the halo
inner region where the soliton occurs and can be estimated
as Φh ∼ 10 E

M jhalo, up to Oð1Þ corrections depending on the
detailed shape of the halo [23]. If we were to include the
correction to the soliton energy due to this constant back-
ground potential, it would change: E

M jsoliton → E
M jsolitonþ

Φh. This discussion suggests that the soliton–host halo
relation is better expressed using kinetic energy, rather than
total energy:

K
M

����
soliton

¼ K
M

����
halo

: ð13Þ

Because Φh is approximately constant over the region
where the soliton is supported, the soliton shape is not
distorted, and its kinetic energy is not modified from its
value for the self-gravitating solution. This means that for
massive halos in DM-only simulations Eqs. (13) and (12)
are indistinguishable.

Equations (13) and (12) become distinguishable when
we turn on Φb ≠ 0, with a nontrivial spatial profile such
that Φb is not constant throughout the large-scale halo.

III. APPLICATION: THE MILKY WAY

We now consider soliton solutions in the background
of a gravitational potential Φb, chosen to roughly mimic
the inner region of the MW. Our goal is to illustrate the
approximate size of the baryonic effects on the soliton and
not to characterize these effects in full; a detailed, accurate,
and precise modeling of the inner MW stellar and gas mass
distributions is challenging and is postponed to future
work. For concreteness, throughout this section, we set
m ¼ 10−22 eV.
The dominant contributions to the stellar mass profile of

the MW inner few hundred parsecs were described in the
photometric analysis of Launhardt et al. [54] as a spherical
nuclear stellar cluster (NSC) and a nuclear stellar disk
(NSD), composing together the nuclear bulge (NB).
In addition to the stellar components, dynamics in the

central approximately 1 pc is dominated by a supermassive
black hole (SMBH) with mass MBH ≈ 4 × 106 M⊙. Here,
we omit the SMBH contribution, which was studied in
Ref. [23] and shown to have a negligible impact on the
soliton for m≲ 10−20 eV. We note that the numerical code
in Appendix A is capable of handling the SMBH
contribution via the procedure described in Appendix A 1.
A gas torus at a scale radius of approximately 100 pc
contributes approximately 2 × 107 M⊙. For simplicity, the
gas is also neglected here in comparison to the stellar
components.
The NSC density profile was modeled as

ρNSCðrÞ ¼
ρ̄NSC

1þ ð r
0.22ÞnNSC

θð200 − rÞ; ð14Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ z2

p
is stated in parsecs. ρ̄NSC ¼ 3.3×

106 M⊙=pc3 for r < r0, and ρ̄NSC ¼ 9.0 × 107 M⊙=pc3 for
r ≥ r0, with r0 ¼ 6 pc. The index nNSC ¼ 2 for r < r0, and
nNSC ¼ 3 for r ≥ r0 (keeping the profile continuous at r0).
With these parameters, we have8 MNSC ≃ 5.3 × 107 M⊙.
We parametrize the NSD stellar mass density as follows,

ρNSDðR; zÞ ¼
ρ̄NSD

1þ ð R
250

Þ14
�
1 − tanh4

�
R
140

��
e−

jzj
15; ð15Þ

where ρ̄NSD ¼ 330 M⊙=pc3 and where z and R are stated in
parsecs. This parametrization approximately reproduces the
near infra-red stellar volume emissivity model derived in
Ref. [54] and yields a NSD mass MNSD ≃ 109 M⊙,

8This NSC mass is larger than that quoted in Ref. [54] by a
factor of approximately 1.8. We are not sure of the reason for this
mismatch, but it does not have an important effect on our results.
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consistent within the uncertainty with the value of
ð1.4� 0.6Þ × 109 M⊙ quoted by Ref. [54].
A kinematic detection supporting the disklike morphol-

ogy of the NSD was given in Ref. [55], and the mass and
approximate scale estimates are consistent with the
dynamical modeling of Ref. [56] and with microlensing
analyses [57] that probe the outer boundary of the NSD
region.
In what follows, we define ϒL ≡ϒ=ϒLaunhardt as the

mass-to-light ratio of the stellar distribution compared to
the one used in Ref. [54]. We vary ϒL to explore the
consequences of different total stellar mass in the NB
region.
In Fig. 1, we plot the soliton mass vs λ, which allows us

to access different solutions. For λ≳ 10−3, we retrieve the
self-gravitating soliton result, shown by the dashed line.
For smaller λ, we find M ∝ λ4 [23].9 Figure 1 can be
compared to Fig. 16 in Ref. [23], which considered a
spherically averaged approximation to the same stellar
mass model. It shows an Oð1Þ difference in the M vs λ
relation in the phenomenologically interesting range
λ ∼ 10−4–10−3.
In Fig. 2, we study the deformation in the soliton shape

caused by the stellar mass distribution, at fixed soliton mass
M ≈ 1.35 × 109 M⊙ predicted by DM-only numerical
simulations for a halo mass Mh ¼ 1012 M⊙. The contour
lines show the soliton mass density normalized to a
reference value of 23.6 M⊙=pc3. Solid lines show the
result for the self-gravitating soliton, and dashed lines
show the result obtained when Φb is included in the SPE.
In Fig. 3, we plot the density profile of the deformed soliton
from Fig. 2 on the plane of the disk (z ¼ 0, dashed line)
and along the z axis (R ¼ 0, dot dashed). The solid line
shows the density profile of the self-gravitating soliton.
The dotted line shows the density profile of the soliton
when the baryonic potential is replaced by a radially
averaged version of the potential.10

It is instructive to consider the observable (in principle)
soliton-induced effective circular velocity,

veffðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x ·∇Φ

p
: ð16Þ

In Fig. 4, we plot veff , analogously to Fig. 3. The dashed
line is veff on the plane of the disk. The dot-dashed line is
veff transverse to the disk on the z axis. For comparison,
we also plot veff computed for a self-gravitating soliton
with the same mass (solid blue). The main effect of the

background stellar potential is to contract the soliton-
induced peak velocity deeper into the inner halo, enhancing
the peak velocity; this is an Oð1Þ effect that cannot be
ignored in realistic modeling of kinematic data. The
deviation from radial symmetry is, however, small: a
simplified treatment taking as input a radially averaged
baryonic mass distribution could suffice for practical
purposes. For comparison, the result of such a procedure
is plotted in the dotted line in Fig. 4.

10-4 10-3

108

109

1010

Milky Way

FIG. 1. Soliton M − λ relation in the stellar-induced back-
ground gravitational potential of the inner MW. For a halo mass
Mh ¼ 1012 M⊙, the soliton–host halo relation found in DM-only
numerical simulations predicts λ ¼ 4.9 × 10−4. The ULDM
particle mass is m ¼ 10−22 eV. ϒL is defined in the text.
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With Baryons

FIG. 2. Mass density contours of a soliton in the inner MW.
The density is normalized to a reference value of 23.6 M⊙=pc3.
We set m ¼ 10−22 eV in the plot. The soliton mass is fixed at
M ≈ 1.35 × 109 M⊙. Solid lines show the result for the self-
gravitating soliton, and dashed lines show the result when Φb is
included in the SPE.

9This can be understood as follows. For small λ, the external
potential dominates, and the SPEs reduce to ∇2χ ≈ 2ðΦb − γÞχ.
Since this equation is homogeneous and linear in χ,
the normalization at x ¼ 0 is a multiplicative factor, and
M ∝

R
d3xχ2 ∝ λ4.

10Specifically, we define the spherical rearrangement via
MðrÞ ¼ R

r
0 ρðxÞd3x, ϕðrÞ ¼ −

R∞
r dr0GMðr0Þ=ðr0Þ2.
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In the top (bottom) panel of Fig. 5, we plot the total
energy (kinetic energy) per unit mass as a function of
soliton mass M. For M ≳ 1010 M⊙, the self-gravitating
soliton result is retrieved. For small M, we find that E=M
and K=M approach constant values. The reason for this

scaling follows along the same lines of footnote 9, which
shows that at small λ, when the background potential
dominates,M, E, andK all scale as ∝ λ4 leading to constant
E=M and K=M.
For a halo mass Mh ¼ 1012 M⊙, the soliton–host halo

relation found in DM-only numerical simulations of
Refs. [9,10] [summarized by Eq. (13)] predicts K=M ≈
5.5 × 10−8 [23], shown by the black dot-dashed line. The
shaded band denotes a factor of 2 spread around this
prediction, motivated by the halo-to-halo spread seen in the
simulations.
Figure 5 shows that, because of the stellar-induced

background potential, K=M for an actual soliton solution
in this background is significantly deformed. This means
that baryonic effects are likely to significantly modify the

0 0.1 0.2 0.3 0.4 0.5 0.6

10-4

10-2

100

102

FIG. 3. Mass density of solitons corresponding to the inner
MW. We set m ¼ 10−22 eV in the plot. The soliton mass is fixed
at M ≈ 1.35 × 109 M⊙. The solid line shows the result for the
self-gravitating soliton, and the dashed lines show the results
when Φb is included in the SPE. The dotted line shows the result
when the NSD is replaced by a spherical rearrangement of the
same mass.
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FIG. 4. Effective circular velocity induced by a MW soliton.
We set m ¼ 10−22 eV in the plot and fix the soliton mass at
M ≈ 1.35 × 109 M⊙, predicted by DM-only numerical simula-
tions for a halo mass Mh ¼ 1012 M⊙. The solid line shows the
result for the self-gravitating soliton, and the dashed lines show
the result when Φb is included in the SPE. The dotted line shows
the result when the NSD is replaced by a spherical rearrangement
of the same mass.

FIG. 5. Specific energy jEj=M (top) and specific kinetic energy
K=M (bottom) for a soliton in the MW. For a halo mass
Mh ¼ 1012 M⊙, the Soliton–Host Halo Relation found in DM-
only numerical simulations predicts jEj=M ¼ K=M ≈ 5.5 × 10−8

[23], shown by the black dot-dashed line with a shaded band
denoting a factor of 2 spread (see the text for more details).
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soliton properties, and the soliton-halo expectation from
DM-only numerical simulations cannot be taken at face
value. A consistent way to constrain (or possibly detect) an
ULDM soliton in the MW, would be by a combined
analysis of kinematical modeling and photometry, where
the stellar potential constrained by photometry is used to
self-consistently calculate the soliton shape and where the
soliton mass is taken as a free parameter.
Reference [58] argued for dynamical evidence in favor of

an ULDM soliton in the MW, with m ≈ 10−22 eV andM ≈
109 M⊙ in tantalizing agreement with the expectations of
DM-only numerical simulations. The dynamical evidence
for a dense central mass component is consistent with
earlier studies [23,54–56]. Unfortunately, as we reviewed
here and in Ref. [23] (see Sec. V. B there), there is room for
and photometric evidence of about 109 M⊙ in stars within
the approximately 200 pc would-be soliton region [54].
Thus, the central mass component could well be due to
ordinary baryonic matter. Other systems, such as well-
resolved LSB galaxies, offer much cleaner laboratories in
which to look for ULDM solitons. We turn to such systems
in the next section.

IV. APPLICATION: LOW–SURFACE
BRIGHTNESS SPARC GALAXIES

Our second discussion of nonspherical solitons involves
two LSB disk galaxies from the SPARC database [31]:
UGC01281 and F571-8. We choose these galaxies as
representative examples of a larger sample including
dozens of well-resolved LSB galaxies. For concreteness,
throughout this section, we set m ¼ 10−22 eV. Results for
m ¼ 10−21 eV are collected in Appendix F.

The baryonic mass contributions in SPARC galaxies is
divided into a spherical bulge component and axisymmetric
disk and gas components. The stellar mass distribution is
calibrated to match surface-brightness data from Spitzer.
The computation of the gravitational potential due to the
disk is detailed in Appendix D. We focus here on galaxies
that are consistent with negligible bulge.
The gas mass distribution for UGC01281 (not relevant

for F571-8) is calibrated to approximately match the HI
surface brightness data reported in Ref. [59], normalizing to
the total gas mass reported in Ref. [60]. We provide details
on the gas fitting procedure in Appendix E.
In our computation, we fix the total gas mass to match the

total mass inferred from the photometry and vary the stellar
mass-to-light ratio of the disk from ϒd ¼ 0 up to larger
values that saturate the observed kinematic velocity [61].

10-5 10-4 10-3

105

106

107

108

109

UGC01281

FIG. 6. Soliton M − λ relation in the baryonic-induced back-
ground gravitational potential of UGC01281. The Soliton–Host
Halo Relation found in DM-only numerical simulations predicts
λ ¼ 2.2 × 10−4. The ULDM particle mass is m ¼ 10−22 eV.

FIG. 7. Specific energy jEj=M (top) and specific kinetic energy
K=M (bottom) for a soliton in UGC01281. The Soliton–Host
Halo Relation found in DM-only numerical simulations predicts
jEj=M ¼ K=M ≈ 10−8 [23], shown by the black dashed line with
a shaded band denoting a factor of 2 spread.

ULTRALIGHT DARK MATTER IN DISK GALAXIES PHYS. REV. D 99, 103020 (2019)

103020-7



In Fig. 6, we plot the M − λ relation for a soliton in
UGC01281. In the top (bottom) panel of Fig. 7, we plot the
total energy (kinetic energy) per unit mass vs M. The
dashed black line denotes the soliton-halo prediction of
DM-only numerical simulations. The shaded band shows a
factor of 2 spread around this prediction.
Inspecting Fig. 7, we see that in the neighborhood of

E=M values that conform to the DM-only simulation
prediction the actual E=M for a soliton in UGC01281 is
significantly shifted compared to the self-gravitating sol-
ution. However, the effect on K=M is much less pro-
nounced; the soliton shape is essentially unaffected.
We can also estimate the baryonic effect on the dynamics

of the large-scale halo. To do this, we can compare the
observed kinematic velocity at large distances (r ∼ 5 kpc in
this example) with the contribution to the velocity that can
be attributed to the baryons. The velocity decomposition is
shown in the top panel of Fig. 10 (discussed in more detail
at the end of this section). We find v2baryons=v

2
obs ∼ 0.26

(∼0.39), when adopting ϒd ¼ 1.07 (ϒd ¼ 2.14). This
means that the baryonic potential distorts the ULDM
large-scale halo K=M by no more than 40%.
The next galaxy we consider is F571-8. Soliton proper-

ties for this galaxy are presented in Figs. 8 and 9. Here, for
simplicity, we ignore the (negligible) gas contribution in
computing the soliton. Again, K=M for a soliton in F571-8
is unaffected by baryons in the parameter region expected
from DM-only simulations. The case of F571-8 is even
clearer than UGC01281 because the baryonic effect on the
dynamics of the large-scale halo, as seen by inspecting the
rotation curve decomposition (bottom panel of Fig. 10), is
not larger than ∼5%.
In the top (bottom) panel of Fig. 10, we show the rotation

curve decomposition of UGC01281 and F571-8, as found
in the SPARC database. The contributions due to soliton
solutions with different values of λ (indicated in the plot)
are overlaid in red, blue, and black. The solitons are

computed assuming different values of the disk stellar
mass-to-light ratio ϒd, listed in the caption. The central
value of λ (in blue) corresponds to the prediction of
DM-only numerical simulations. For these predicted sol-
itons, the baryonic potential makes a negligible impact
on the soliton shape, regardless of the value of ϒd in both
galaxies.
We conclude that if Eq. (13) correctly captures the

soliton-halo relation of the simulations then UGC01281
and F571-8 are clean systems in which to constrain the
ULDMmodel, in the sense that the baryonic contribution to
the gravitational potential is not important for neither the
large-scale halo nor the central soliton. These conclusions
stay unchanged when we consider more massive ULDM
with m ¼ 10−21 eV (see Appendix F). Dozens of other
comparably clean systems exist in the SPARC database.
The constraints derived in Ref. [23] should therefore
apply, and ULDM with m < 10−21 eV is in tension with
the data.
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108
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F571-8

FIG. 8. Same as Fig. 6, but done for F571-8. FIG. 9. Same as Fig. 7, but done for F571-8.
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V. CONCLUSIONS

An ultralight bosonic field oscillating around a minimum
of its potential can play the role of dark matter. On scales of
order the effective de Broglie wavelength, wave mechanics
dictates the dynamics of this ultralight dark matter, opening
potential avenues to constrain (or detect) ULDM in various
astrophysical and cosmological systems.
Stellar and gas kinematics of rotation-supported low–

surface brightness galaxies were used in Ref. [23] to derive
the constraint m≳ 10−21 eV. This constraint relies on the
validity of a soliton–host halo relation, found in DM-only

numerical simulations. It is important to assess to what
extent baryons could affect these results. For a nonspherical
baryonic distribution, a new numerical tool was required in
order to calculate the properties (shape, mass, and ener-
getics) of the nonspherical soliton obtained in the presence
of the baryonic-induced background gravitational potential.
In this paper, we provided a simple algorithm (see Sec. II
and Appendix A) that achieves this goal.
To illustrate the potential use of the nonspherical soliton

solver, we estimated the impact of a Milky Way nuclear
stellar disk on an ULDM soliton. Adopting a plausible
parameterization of the stellar distribution, motivated by
photometric measurements, we find that the NSD would
distort the shape and energetics of anm ¼ 10−22 eVULDM
soliton at the Oð1Þ level. Thus, an attempt to constrain
ULDM in the MW should self-consistently account for the
gravitational effect of stars. While we did not enter such an
analysis, the numerical tool we provided is an important step
in this direction. Having said that, we note that, while the
soliton can be compressed by an internal clump of stars, it is
not easily deformed into nonspherical shape. In the MW
example, the highly nonspherical nuclear stellar disk leads
to a soliton that is significantly contracted but remains
spherical to a good approximation. As a result, a spherical
rearrangement of the stellar mass distribution (namely,
replacing the disklike baryonic distribution by a radially
averaged profile) wouldmost likely be sufficient to calculate
the soliton in a kinematical analysis.
Next, we revisited the SPARC galaxy analysis of

Ref. [23]. Using two LSB galaxies as a concrete example,
we modeled the baryonic potential consistent with photo-
metric data and bracketed the possible impact on the shape
and energetics of the predicted soliton. Our results reinforce
the conclusions of Ref. [23], implying that baryons are
not expected to change the constraints derived on ULDM
based on rotationally supported LSB SPARC galaxies.
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APPENDIX A: NUMERICAL ALGORITHM
FOR SOLITONS IN A NONSPHERICAL

BACKGROUND POTENTIAL

In what follows, we describe a numerical method to find
the ground-state solution of Eqs. (6) and (7). This tool is
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FIG. 10. Top: Rotation curve SPARC data of UGC01281,
overlaid with soliton solutions assuming background baryonic-
induced potential parametrized by stellar disk mass-to-light ratio
Υd augmented by neutral gas mass distribution consistent with
the observed HI brightness measurements. The highest Υd is
chosen to saturate the error budget of the innermost kinematic
velocity data points. The central value, λ ¼ 10−3.65 (blue), is
based on the DM-only numerical simulation prediction. Bottom:
Same for F571-8 (for this galaxy, the gas contribution is neglected
in the soliton computation). The DM-only simulations predict
λ ¼ 10−3.22.
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one of the main results of our work; it is intended to be
simple, fast, and robust enough so it can be used in detailed
analyses of galactic kinematics with ULDM, in cases—
such as the Milky Way Galaxy—where the baryonic
contribution to the gravitational potential in the soliton
region cannot be neglected.
We assume that the baryonic-induced gravitational

potential is a direct input to the code. Often, an input in
terms of the stellar and gas mass density could be more
natural. Converting an axisymmetric mass distribution into
its corresponding gravitational potential is a straightfor-
ward exercise that we recall in Appendix C.
We use an N × N discretized lattice with physical size

L × L in the R–z plane. The lattice spacing is
δ ¼ L=ðN − 1Þ. The physical coordinate of each point
(recall that distance is measured in units of 1=m) is

ðRi; zjÞ ¼
�
i − 1

N − 1
L;

j − 1

N − 1
L

�
: ðA1Þ

The Laplacian in cylindrical coordinates is

∇2Φ ¼
� ∂2

∂R2
þ 1

R
∂
∂R

�
Φþ ∂2

∂z2Φ: ðA2Þ

We discretize it:

�� ∂2

∂R2
þ 1

R
∂
∂R

�
Φ
�
i;j

¼
(4ðΦ2;j−Φ1;jÞ

δ2
ði¼1Þ

Φiþ1;j−2Φi;jþΦi−1;j
δ2

þ 1
Ri

Φiþ1;j−Φi−1;j
2δ ð1<i<NÞ

ðA3Þ

� ∂2

∂z2 Φ
�
i;j

¼
8<
:

2ðΦi;2−Φi;1Þ
δ2

ðj ¼ 1Þ
Φi;jþ1−2Φi;jþΦi;j−1

δ2
ð1 < j < NÞ:

ðA4Þ

Note that we do not need to define ∇2Φ at i ¼ N
nor j ¼ N.
We start by initializing Φ as zero everywhere, assigning

an initial test profile of χ that is conveniently chosen as
some numerical approximation of the known self-gravitating
solution; see, e.g., Ref. [11]. Throughout the calculation,
we enforce

χi;N ¼ χN;i ¼ 0: ðA5Þ

The discretized Eq. (7) is then solved iteratively using
the successive over-relaxation (SOR) method (see, e.g.,
Chap. 19.5 in Ref. [62]). In each iteration of the program,
Φi;jði; j ≠ 1; NÞ is improved by the SOR method as

Φnew
i;j ¼ Φold

i;j þ ωΦδ
2

4

×

�Φold
iþ1;j − 2Φold

i;j þΦnew
i;j−1

δ2
þΦold

iþ1;j −Φnew
i−1;j

2δRi

þΦold
i;jþ1 − 2Φold

i;j þΦnew
i;j−1

δ2
− χ2i;j

�
; ðA6Þ

where ωΦ is an auxiliary parameter11 that we set Oð1Þ. For
i ¼ 1 and/or j ¼ 1, the rhs of Eq. (A6) should be modified
according to Eqs. (A3) and (A4). At i ¼ N and/or j ¼ N,
Φi;j is fixed by the following boundary conditions:

Φi;N ¼ ΦN;i ¼ −
M̃

4πri;N
: ðA7Þ

Here, ri;N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ði − 1Þ2=ðN − 1Þ2

p
L, and the dimen-

sionless12 M̃ is calculated as

M̃ ¼ πδ3

4
χ21;1 þ

�XN
i¼2

2πRiδ
2χ2i;1

�
þ
�XN

j¼2

πδ3

2
χ21;j

�

þ
XN
i;j¼2

4πRiδ
2χ2i;j; ðA8Þ

consistent with Gauss’s law (see Appendix A 1 below).
Next, once Φ is fixed, the ground-state solution of

Eq. (6), χ0, can be found by considering the following
imaginary time evolution (see also Appendix B):

∂
∂τ χðτÞ ¼ ∇2χ − 2ðΦþΦbÞχðτÞ: ðA9Þ

In the large τ limit, the asymptotic behavior of χ is

lim
τ→∞

χðτÞ ∝ e−2γτχ0: ðA10Þ

Thus, in each iteration, χi;jði; j ≠ 1; NÞ is improved as

χ̃i;j ¼ χoldi;j þ
ωχδ

2

4

�
χoldiþ1;j−2χoldi;j þχoldi;j−1

δ2
þ 1

Ri

χoldiþ1;j−χoldi−1;j

2δ

þ χoldi;jþ1−2χoldi;j þχoldi;j−1

δ2
−2ðΦi;jþΦb;i;jÞχoldi;j

�
;

ðA11Þ

11To obtain our results in this paper, we have used ωΦ ¼ 1.6 in
all computations. This value was chosen somewhat arbitrarily
based on tests of the rate of convergence.

12M̃ is related to M, the physical mass of the soliton, via

M ¼ ðM
2
pl

4πmÞM̃.
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χnewi;j ¼ χold1;1

χ̃1;1
χ̃i;j; ðA12Þ

where ωχ is an auxiliary parameter13 that we set Oð1Þ. For
i ¼ 1 and/or j ¼ 1, the rhs of Eq. (A11) should be modified
according to the prescription in Eqs. (A3) and (A4). At
i ¼ N and/or j ¼ N, χi;j is fixed by Eq. (A5).
We repeatedly update Φ and χ, using Eqs. (A6) and

(A11), until convergence is attained. The eigenvalue γ is
calculated as

γ ¼ −1
2χi;j

�
χiþ1;j − 2χi;jþ χi;j−1

δ2
þ 1

Ri

χiþ1;j − χi−1;j
2δ

þ χi;jþ1− 2χi;jþ χi;j−1
δ2

− 2ðΦi;jþΦb;i;jÞχi;j
�
: ðA13Þ

To calculate the total soliton energy, we use Eq. (10)
(averaging over adjacent grid sites can be useful in order to
reduce numerical error),

Ẽ ¼
Z

d3x

�
1

2
ð∇χÞ2 þ

�
Φ
2
þΦb

�
χ2
�

¼
XN−1

i;j¼1

2πδðR2
iþ1 − R2

i Þ

×
½ei;j þ ei;jþ1 þ eiþ1;j þ eiþ1;jþ1�

4
ðA14Þ

with the integrand

ei;j ¼
−χi;j
2

�
χiþ1;j − 2χi;j þ χi;j−1

δ2
þ 1

Ri

χiþ1;j − χi−1;j
2δ

þ χi;jþ1 − 2χi;j þ χi;j−1
δ2

− ðΦi;j þ 2Φb;i;jÞχi;j
�
:

ðA15Þ

For i ¼ 1 and/or j ¼ 1, the rhs of Eq. (A15) should be
modified according to the prescription in Eqs. (A3) and
(A4). We do not need to include i ¼ N nor j ¼ N because
there the integrand vanishes due to the boundary condition
in Eq. (A5).
This concludes the description of the numerical scheme.

1. Adding a black hole

Here, we explain how a central black hole (BH) can be
added to the discretized grid calculation of Appendix A.
To this end, we derive a discretized version of Gauss’s law.

Using Eqs. (A3) and (A4), for n < N, we obtain

Xn
i¼1

κiδ

�� ∂2

∂R2
þ 1

R
∂
∂R

�
Φ
�
i;j

¼ πð2n − 1ÞΦnþ1;j −Φn;j

δ
;

ðA16Þ

Xn
j¼1

λjδ

�∂2Φ
∂z2

�
i;j

¼ 2
Φi;nþ1 −Φi;n

δ
; ðA17Þ

where κi and λj are defined as

κi¼
�
π=4 ði¼1Þ
2ði−1Þπ ði≠1Þ ; λj¼

�
1 ðj¼1Þ
2 ðj≠1Þ : ðA18Þ

From these equations, we obtain

Xni
i¼1

Xnj
j¼1

κiλjδ
3ð∇2ΦÞi;j

¼ 2
Xni
i¼1

κiδ
2 ×

Φi;njþ1 −Φi;nj

δ

þ 2π
Xnj
j¼1

λj
2ni − 1

2
δ2 ×

Φniþ1;j −Φni;j

δ
; ðA19Þ

where ni, nj < N. This becomes the usual Gauss lawR
V ∇2Φ ¼ R

∂V dS · ∇Φ in the limit δ → 0.
Consider a black hole with physical mass MBH, trans-

lated in our conventions to MBH ¼ ðM2
pl=4πmÞM̃BH. It

gives the potential ΦBH ¼ −M̃BH=ð4πxÞ. The Poisson
equation is ∇2Φ ¼ ρ; thus, the discretized ρ configuration
that leads to ΦBH and that is consistent with Gauss’s law,
Eq. (A19), is

ρi;j ¼
� 4M̃BH

πδ3
ði ¼ j ¼ 1Þ

0 ði ≠ 1 or j ≠ 1Þ
: ðA20Þ

Finally, to interface to the code described in Appendix A,
it is convenient to utilize the gravitational potential induced
by the BH, which is given on the axisymmetric grid as
follows:

ΦBH;i;j ¼
8<
:

− 11M̃BH
12πδ ði ¼ j ¼ 1Þ

− M̃BH
4πri;j

ði ≠ 1 or j ≠ 1Þ
: ðA21Þ

The tricky point here is ΦBH;1;1; this is determined by
solving the discretized Poisson equation at the origin.

13To obtain our results in this paper, we have used ωχ ¼ 0.8 in
all computations. This value was chosen somewhat arbitrarily
based on tests of the rate of convergence. We note that setting
ωχ < ωΦ appears to be useful (see footnote 11).
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APPENDIX B: IS IT THE GROUND STATE?

In this Appendix, we present evidence that these sol-
utions obtained by our algorithm are indeed ground-state
solutions. At the same time, we also highlight the difficulty
in obtaining a rigorous proof. Finally, we comment about
stability to perturbations.
Let us recapitulate a few details of the imaginary time

evolution of the Schrödinger equation [63–65]. The equa-
tion reads

i∂tΨðr; tÞ ¼ HΨðr; tÞ: ðB1Þ
The time-independent Hamiltonian H is hypothesized to
have eigenfunctions ϕnðrÞ with eigenvalues ϵn, including a
ground state with finite ϵ0 < 0.
Consider an initial condition

Ψðr; 0Þ ¼
X
n

anψnðrÞ; ðB2Þ

which can be propagated in time as

Ψðr; tÞ ¼
X
n

e−iϵntanψnðrÞ: ðB3Þ

We can define τ ¼ it and rewrite the Schrödinger
equation as

∂τΨ̃ðr; τÞ ¼ −HΨ̃ðr; τÞ; ðB4Þ
with the initial condition

Ψ̃ðr; 0Þ ¼
X
n

anψnðrÞ ðB5Þ

and a general solution

Ψ̃ðr; τÞ ¼
X
n

e−ϵnτanψnðrÞ: ðB6Þ

In the limit τ → ∞, we have

lim
τ→∞

Ψ̃ðr; τÞ ¼ e−ϵ0τa0ψ0ðrÞ; ðB7Þ
thus providing the sought-after ground state, ψ0.
The difficulty in this formalism, which becomes appar-

ent in the regime where the self-gravitation is dynamically
relevant, is that the Hamiltonian is not constant between
iterations but rather changes as we iterate on the wave
function and the Newtonian potential induced by it. Thus,
while the solutions found by our solver are (within the
numerical accuracy) indeed solutions of the EOM, we have
no rigorous proof that these are in fact the ground-state
solutions. Having made this cautionary remark, we now
present some evidence that our solution is indeed the
ground state, at least when it comes to ULDM in the
background baryonic potential of realistic galaxies.
The first thing to note is that in the limit at which self-

gravity is negligible compared to the external potential the
problem becomes linear, the Hamiltonian is constant, and
the derivation leading to Eq. (B7) is applicable without
particular complications. Then, the formalism leading to

Eq. (B7) suggests that our solution does indeed isolate the
true ground state, as long as the initial test function has
some nonvanishing overlap with this ground state. In
specific examples, we can compare the numerical results
to analytic solutions. The case of a strong baryonic
potential concentrated near the origin is a good example;
in this case, the exact solution converges to the Coulomb
wave function χðrÞ ∝ e−Ar.
On the other hand, in the opposite limit where the

external potential is negligible and self-gravity dominates,
we find that our algorithm converges to the known self-
gravitating ground-state solution.
Many examples in the paper (e.g., Figs. 1, 5–9) explicitly

examine the behavior of the solution while going smoothly
between the two limits of negligible external potential and
all the way to where the external potential dominates the
solution. The two limits are smoothly connected by a
continuous deformation. This lends support to the notion
that also in the intermediate regime our solver is finding the
true ground-state solution.
We have also made sure that the solutions are not sensitive

to the details of the test function used as the initial condition.
For a given external potential Φb, we checked a variety of
initial conditions of the field χi;j, including Gaussian forms
with different slopes as well as randomized independent
realizations of the field on different grid points [always
keeping χi¼N;j ¼ χi;j¼N ¼ 0 as prescribed in Eq. (A5)].
For some of these initial conditions, the solver converges
on a solution, while for others, it does not. Importantly,
whenever the solver does converge, the different initial
conditions all lead to the same solution. Note that the solver
sometimes does not converge when the initial conditions do
not fall steeply enough as a function of distance away from
the origin. In addition, convergence also shows some
dependence on the function Φb used in the test. A simple
choice which works well for all of the problems we
experimented with was to use the spherical self-gravitating
solution as the initial test function.
We now give a short comment about the linear stability of

our solutions. It is useful to first recall the stability argument
for the self-gravitating soliton: in the Newtonian limit, the
mass and the energy of the field are conserved separately;
since the soliton is the field configuration that minimizes the
energy at a fixed value of the mass, it is guaranteed on
general grounds to be dynamically stable [7].14 Once we
“turn on” an external potential (spherically symmetric or
not), however, linear stability could become a concern.
Our solver finds solutions of the EOM while holding the

value of the field fixed at the origin [via the χð0Þ ¼ λ2

prescription]. Let us assume, based on the arguments given
in the previous paragraphs, that the solution we find is
indeed the lowest energy solution compatible with the

14Relativistic corrections do cause soliton decay [21,24], but
the decay time is long and of no phenomenological relevance in
the range of ULDM and soliton masses considered in this work.
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boundary conditions. One can show that in the limit where
the external potential dominates the solution, the boundary
condition χð0Þ remains in a monotonous one-to-one corre-
spondence to the mass of the solution as long as the external
potential decays away from the origin. Therefore, we expect
that our solutions remainminimizers of theULDMenergy at
fixed mass, as long as the external potential does not exhibit
strong departure from monotonous decay (this assumption
is satisfied for the LSB and MWexamples that we analysed
in the main text). This settles the stability question for the
limit where the external potential strongly dominates; as
long as the external potential is static and does not rearrange
itself dynamically following a change in the ULDM system,
there is no energy exchange between the ULDM and the
external system, and the soliton stability is guaranteed.
The intermediate limit, where the external potential is

comparable to that coming from the ULDM, is much more
complicated. Addressing the question of stability in this
case requires a joint analysis of the baryonic system and the
ULDM. This analysis is beyond the scope for the current
paper. Indeed, our goal in this work is not to solve the (in
general, very difficult) dynamical problem of finding stable
gravitating solutions of the joint baryonic and ULDM
system. Instead, our starting point is to assume that the
baryonic part of the system is already known via observa-
tional constraints like stellar luminosity and gas line
emission (as was the case for the LSB galaxies we
analyzed) and then derive the minimum energy soliton
consistent with this known external background.

APPENDIX C: GRAVITATIONAL POTENTIAL
OF AN AXISYMMETRIC MASS DISTRIBUTION

The solution of the Poisson equation in axisymmetry can
be found directly using the method of the Fourier-Bessel
transform. Following Ref. [66], the gravitational potential
is given by

ϕðR; zÞ ¼ −2πG
Z

∞

−∞
dζ

Z
∞

0

du ρðu; ζÞKðR; u; jz − ζjÞ;

ðC1Þ
where the kernel K is given by

KðR; u; zÞ ¼ u
Z

∞

0

dk J0ðkRÞJ0ðkuÞe−kz

¼
ffiffiffi
u

p

π
ffiffiffiffi
R

p Re

�
Q−1

2

�
R2 þ u2 þ z2

2Ru

��
ðC2Þ

with Q−1
2
the Legendre function of the second kind of

order − 1
2
. See also 6.612 (3) and 8.834 (1) in Ref. [67].

APPENDIX D: MODELING STELLAR DISKS

In order to simplify the analysis, we take advantage of
the Miyamoto-Nagai (MN) [68] disk parametrization,
described by the density profile

ρMNðR; zÞ ¼
MMNb2

4π

×
aR2 þ ðaþ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ b2

p
Þðaþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ b2

p
Þ2

ðR2 þ ðaþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ b2

p
Þ2Þ5=2ðz2 þ b2Þ3=2

ðD1Þ

for which the gravitational potential is known analytically:

ϕMNðR; zÞ ¼ −
GMMNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 þ ðaþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ b2

p
Þ2

q : ðD2Þ

The parameters a, b, andMMN define the disk scale radius,
thickness, and mass. A sum of three MN profiles provides
a reasonable approximation to the exponential disks of
typical galaxies [69].
In the SPARC database, the surface brightness ΣLðRÞ of

the disk component is reported. Assuming an exponential
approximation for the vertical direction, the stellar mass
density is given by

ρðR; zÞ ¼ ϒdΣLðRÞ
e−

jzj
zd

2zd
; ðD3Þ

where zd is specified in the database for each galaxy. One
can then fit the MN density on the disk plane,

ρMNðR; 0Þ ¼
MMN½aR2 þ ðaþ 3bÞðaþ bÞ2�

4πb½R2 þ ðaþ bÞ2�5=2 ðD4Þ

(or a sum of such functions), to
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FIG. 11. MN fit for the disk of UGC01281. The disk fit is
shown by the solid purple line, while the orange circles show the
velocity attributed to the disk in the SPARC database for ϒd ¼ 1.
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ρðR; 0Þ ¼ ϒdΣLðRÞ
2zd

; ðD5Þ

fixing b ¼ zd.
In Fig. 11, we show the rotation curve decomposition

for UGC01281, superimposed with a MN fit for the disk
obtained with the above prescription.

APPENDIX E: MODELING THE GAS
DISTRIBUTION IN UGC01281

The SPARC database [31] does not contain sufficient
information to allow a direct reconstruction of the gas mass
distribution.15 We have therefore done an independent analy-
sis of thegas component for the example ofUGC01281, using
the HI surface brightness profiles reported in Ref. [59].
Our analysis is less sophisticated than that in Ref. [59]

but captures the key features of the gas profile with
sufficient accuracy. We model the gas density profile as
a collection of K coplanar rings, with the mass density of
each ring taking to be constant on the plane (z ¼ 0) and
decaying vertically with a Gaussian profile,

ρgasðR; zÞ ¼
XK
k¼1

θðR − RkÞθðRk þ Δk − RÞρke
−z2

d2z ; ðE1Þ

where θðxÞ is the Heaviside function. The gravitational
potential due to this mass distribution is computed by the
procedure given in Appendix C.
The surface-brightness profile from this gas distribution

is easily computed. Matching the model to the vertical
profile reported in Ref. [59], we find a good fit for
dz ¼ 0.65 kpc. Considering the radial profile and matching
(approximately, by eye) to the average profile shown in
Fig. 2 of Ref. [59] (which averages the HI column density
over a slab in the vertical direction), we find that a model of
K ¼ 50 rings of equal width Δk ¼ 0.2 kpc, located with
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FIG. 12. Modeling the gas contribution to the rotation curve of
UGC01281.
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FIG. 13. Density profile of a toroidal soliton solution.
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FIG. 14. Soliton M − λ relation in baryonic-induced back-
ground gravitational potential of SPARC galaxies. Top panel:
UGC01281. Bottom panel: 571-8. The ULDM particle mass is
m ¼ 10−21 eV.15We thank Stacy McGaugh for clarification on this point.
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inner radii starting at R1 ¼ 0 kpc up to R50 ¼ 10 kpc,
reproduces the brightness profile radial shape for the
density assignment ρk ¼ ρ̃ð0.5þ RkÞ1.2 expð−ðRk

1.5Þ1.4Þ,
where Rk are noted in kiloparsecs and ρ̃ is an overall
normalization factor. We set ρ̃ ¼ 3.9 × 106 M⊙=kpc3, so
that the total gas mass (including a factor of 1.3 to account
for He) is fixed to Mgas ¼ 3.2 × 108 M⊙, inferred in
Ref. [60] from the total HI luminosity.
The gas-induced rotation curve we find with this

procedure is shown by the line in Fig. 12, compared to
the velocity contribution attributed to the gas in the SPARC
database (circles). The comparison is good enough for
our purpose in the current work; as we show in the body of
the work, the total baryonic effect (stars and gas combined)
on the predicted soliton and on the large-scale halo of
UGC01281 is small.

We conclude this technical discussion with an amusing
comment. The toroidal gas profile of UGC01281 prompted
us to look for toroidal soliton solutions that could coexist in
the background potential of such a baryonic mass distri-
bution. Indeed, varying the gas mass and the soliton mass,
we can find toroidal solitons; we show an example in
Fig. 13. The parameters chosen to achieve this toroidal
solution werem ¼ 10−22 eV, with λ ¼ 10−5 and a gas mass
50 times larger than the observed one in UGC01281. These
parameters do not represent an actual galaxy from SPARC;
we merely bring it as an observation about deformed
solitons and as a demonstration of the versatility of the
numerical code.

APPENDIX F: RESULTS WITH ULDM
PARTICLE MASS OF m = 10− 21 eV

Figs. 14–16 present a repetition of results from Sec. IV,
done for ULDM particle mass m ¼ 10−21 eV.

FIG. 15. Specific energy jEj=M (top) and specific kinetic
energy K=M (bottom) for a soliton in UGC01281. The
Soliton–Host Halo Relation found in DM-only numerical sim-
ulations is shown by the black dashed line with a shaded band
denoting a factor of 2 estimated spread. The ULDM particle mass
is m ¼ 10−21 eV.

FIG. 16. Same as Fig. 15, but done for F571-8.
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