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We study the interface effects of a quark-hadron mixed phase in compact stars. The properties of nuclear
matter are obtained based on the relativistic-mean-field model. For the quark phase, we adopt a perturbation
model with running quark masses and coupling constant. At certain choices of parameter sets, it is found
that varying the quark-hadron interface tension will have sizable effects on the radii (ΔR ≈ 600 m) and tidal
deformabilities (ΔΛ=Λ ≈ 50%) of 1.36 solar mass hybrid stars. These provide possibilities for us to
constrain the quark-hadron interface tension with future gravitational wave observations as well as the
ongoing NICER mission.
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I. INTRODUCTION

With the first observation of gravitational waves from the
binary neutron star merger event GW170817 [1,2], astro-
physics has entered the multimessenger era. Combined with
the electromagnetic observations of the transient counterpart
AT2017gfo and short gamma ray burst GRB170817A [3],
the dimensionless combined tidal deformability of the
corresponding compact stars is constrained within 279 ≤
Λ̃ ≤ 720 at a 90% confidence level [1–6]. Meanwhile, the
recentmeasurements of neutron stars’ radii indicate that their
values lie at the lower end of the 10–14 km range [7–15]. In
light of the precisemassmeasurements of the two-solar-mass
pulsars PSR J1614 − 2230 (1.928� 0.017 M⊙) [16,17] and
PSR J0348þ 0432 (2.01� 0.04 M⊙) [18], we have by far
the most stringent constraint on the equation of states (EoS)
of densematter,which have been examined extensively in the
past year [19–30].
The situation is even more exciting in the coming years.

As the implementation of the upgraded detectors, the
sensitivity of gravitational wave observation may be

improved by several times, which enables us to observe
postmerger signals and constrain neutron stars’ radii to
higher accuracy (on the order of a few hundred meters)
[31,32]. As the x-ray pulse profiles currently being
measured by the NICER mission to an unprecedented
accuracy [33], a precise measurement on neutron stars’
masses and radii is likely to take place in the near
future [34–38]. Meanwhile, pulsars that are more massive
than PSR J0348þ 0432 may be expected, e.g., PSR
J0740þ 6620 (2.17þ0.11−0.10 M⊙) [39] and PSR J2215þ
5135 (2.27þ0.17

−0.15 M⊙) [40]. Thus, the perspective for future
pulsar observations provide opportunities to constrain the
properties of dense matter to an unprecedented accuracy.
At large energy densities, hadronic matter (HM) is

expected to undergo a deconfinement phase transition.
For vanishing chemical potentials, a crossover was
observed at the critical temperature Tc ≈ 170 MeV [41].
Similar cases were also expected to occur in dense matter,
where the transition between HM and quark matter (QM)
is a smooth crossover [42–52]. More traditionally, one
expects a first-order phase transition from HM to QM [53],
which provides an important energy source for the super-
nova explosion of massive blue supergiant stars [54]. In
such cases, a distinct interface between quark and hadronic
matter is formed. Adopting the Maxwell construction, the
properties of hybrid stars with a strong first-order phase
transition and their relevance to gravitational wave obser-
vations were investigated [25–27]. The existence of third
family solutions for hybrid stars was examined as well
[29,30]. It was found that a sharp phase transition will lead
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to small tidal deformabilities and induce discontinuities in
the relation between tidal deformability and gravitational
mass [27]. Meanwhile, a significant deviation from the
empirical relation between the dominant postmerger gravi-
tational wave frequency fpeak and the radius/tidal deform-
ability of a star at a given mass was observed if a strong
first-order phase transition occurs [32,55]. All those fea-
tures can serve as distinct signals for a strong first-order
phase transition in the forthcoming gravitational wave
observations.
Nevertheless, the Maxwell construction for the quark-

hadron mixed phase (MP) is only valid if the surface
tension σ exceeds the critical value σc [56]. In fact,
depending on the values of σ, the MP exhibits various
structures [57]. The MP consists of pointlike HM and QM
when the surface tension σ is zero, which is consistent with
the Gibbs construction [58]. If the surface tension value is
moderate, the finite-size effects become important and the
geometrical structures such as droplet, rod, slab, tube,
and bubble start to appear [57,59–64]. The sizes of the
geometrical structures increase with the surface tension and
will approach to the limit of Maxwell construction scenar-
ios at σ > σc, i.e., bulk separation of quark and hadron
phases, which suggests the nonexistence of a MP inside
hybrid stars.
Such kind of structural differences due to the quark-

hadron interface effects are expected to affect many
physical processes in hybrid stars. For example, the
coherent scattering of neutrinos off the QM droplets
may greatly enhance the neutrino opacity of the core
[65]. Due to the relaxation of the charge neutrality con-
dition, the emergence of hyperons may be hindered [66],
which prevents a fast cooling via the hyperon Urca
processes [67–69]. Despite that the maximum mass of
hybrid stars varies little with respect to the structural
differences, it was found that their radii are more affected
[57]. Similar cases were found in Ref. [70], where the
robustness of third family solutions for hybrid stars was
examined against the formation of pasta structures in the
MP. Adopting both the Gibbs and Maxwell constructions
for MP, it was shown that hybrid stars described with the
Gibbs construction are more compact and less deformed
by the tidal force [24,28]. Since the Gibbs and Maxwell
constructions correspond to a MP obtained at two extreme
surface tension values, i.e., σ → 0 and σ > σc, the obser-
vations of neutron stars’ radii and tidal deformabilities may
provide a unique opportunity to constrain the interface
tension σ.
In the last decade, extensive efforts were made trying to

constrain the value of σ. Based on lattice QCD, the interface
tension was evaluated for vanishing chemical potentials
[71–76]. For dense matter, one has to rely on effective
models, e.g., the MIT bag model with color superconduc-
tivity [77], linear sigma model [78–80], Nambu-Jona-
Lasinio model [81,82], three-flavor Polyakov-quark-meson

model [83], Dyson-Schwinger equation approach [84],
nucleon-meson model [85], and equivparticle model [86],
which predict small surface tensions with σ ≲ 30 MeV=fm2.
The quasiparticle model gives slightly larger values for the
quark-vacuum interface, i.e., σ ¼ 30–70 MeV=fm2 [87].
Adopting the MRE method, larger surface tensions
(σ ¼ 145–165 MeV=fm2) were obtained based on the
Nambu-Jona-Lasinio model [88], which may vary with
directions in the presence of a strong magnetic field
[89,90]. A dimensional analysis suggests that the surface
tension value for a color-flavor locked phase may be much
larger, e.g., σ ≈ 300 MeV=fm2 [91].
Due to the ambiguities in estimating the values of σ, in

this work we consider the possibilities of constraining σ
with pulsar observations in the multimessenger era. In
particular, we study the interface effects of a quark-hadron
mixed phase in hybrid stars. It is found that the maximum
mass, tidal deformabilities, and radii of hybrid stars
increase with σ. These provide possibilities for us to
constrain the quark-hadron interface tension with future
gravitational wave observations as well as the ongoing
NICER mission. The paper is organized as follows. In
Sec. II, we present our theoretical framework, where the
properties of nuclear matter and quark matter were
obtained. The properties of their mixed phases and the
interface effects are investigated in Sec. III, where both the
Gibbs and Maxwell constructions are adopted and exam-
ined for the properties of hybrid stars in Sec. III A. As an
example, adopting certain choices of parameters, the
geometrical structures in hybrid stars are investigated in
Sec. III B, which verifies our findings in Sec. III A. Our
conclusion is given in Sec. IV.

II. THEORETICAL FRAMEWORK

A. Nuclear matter

In the mean field approximation, for infinite nuclear
matter, the Lagrangian density of relativistic-mean-field
model [92] is given as

L ¼
X
i¼n;p

ψ̄ ifiγμ∂μ − γ0½gωωþ gρτ3ρ� − gσσ −migψ i

−
1

2
m2

σσ
2 þ 1

2
m2

ωω
2 þ 1

2
m2

ρρ
2

þ
X
i¼e;μ

ψ̄ i½iγμ∂μ −mi�ψ i: ð1Þ

Three types of mesons are included to describe the
interactions between nucleons, i.e., the isoscalar-scalar
meson σ, isoscalar-vector meson ω, and isovector-vector
meson ρ. Note that the coupling constants gσ , gω, and gρ are
density dependent, which were obtained in accordance
with the self-energies of Dirac-Brueckner calculations of
nuclear matter [93], i.e.,
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gσ;ωðnÞ ¼ gσ;ωðn0Þaσ;ω
1þ bσ;ωðn=n0 þ dσ;ωÞ2
1þ cσ;ωðn=n0 þ dσ;ωÞ2

; ð2Þ

gρðnÞ ¼ gρðn0Þ exp ½−aρðn=n0 − 1Þ�: ð3Þ

Here n is the baryon number density and n0 the saturation
density of nuclear matter.
For the effective N − N interactions, we adopt the

covariant density functional TW99 [93], which is consis-
tent with all seven constraints related to symmetric nuclear
matter, pure neutron matter, symmetry energy, and its
derivatives [94]. Carrying out a standard variational pro-
cedure, one obtains the energy density EH, chemical
potential μi, and pressure PH at given particle number
densities ni. The energy density is determined by

EH ¼
X
i

ϵiðνi; m�
i Þ þ

X
ϕ¼σ;ω;ρ

1

2
m2

ϕϕ
2; ð4Þ

where ϵi is the kinetic energy density of free Fermi gas
at a given Fermi momentum νi and effective mass
m�

i ¼ mi þ gσσ. Note that the effective masses remain
the same for leptons, i.e., m�

e;μ ≡me;μ. The number density
for particle type i is given by ni ¼ ν3i =3π

2, while the
chemical potentials for baryons μi and leptons μe;μ are

μi ¼ gωωþ gρτ3ρþ ΣR þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν2i þm�2

i

q
; ð5Þ

μe;μ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν2e;μ þm2

e;μ

q
; ð6Þ

with ΣR being the “rearrangement” term, which is intro-
duced to maintain thermodynamic self-consistency with
density dependent coupling constants [95]. The pressure is
obtained with

PH ¼
X
i

μini − EH: ð7Þ

Based on Eqs. (4)–(7), the EoS for nuclear matter is
obtained, which gives the saturation density n0 ¼
0.153 fm−3, saturation energy EH

0 =n0−mN¼−16.25MeV,
incompressibility K ¼ 240.2 MeV and symmetry energy
Esym ¼ 32.77 MeV. A detailed contour figure for the
energy per baryon ε ¼ EH=n of neutron star matter in
β-equilibrium is presented in Fig. 1 as a function of the
chemical potentials of baryons μb ¼ μn and electrons μe,
in obtaining which we have disregarded the local charge
neutrality condition.

B. Quark matter

At ultrahigh densities, the properties of quark matter
can be obtained with perturbative QCD (pQCD), which
are often extrapolated to lower density regions [96,97].

Similarly, here we adopt pQCD to the order of αs and
investigate the properties of quark matter [98], while the
nonperturbative contributions are treated with phenomeno-
logical approaches. The pQCD thermodynamic potential
density is given by

Ωpt ¼
XNf

i

ðω0
i þ ω1

i αsÞ; ð8Þ

with

ω0
i ¼ −

m4
i

4π2

�
uivi

�
u2i −

5

2

�
þ 3

2
lnðui þ viÞ

�
; ð9Þ

ω1
i ¼

m4
i

2π3

��
6 ln

�
Λ̄
mi

�
þ 4

�
½uivi − lnðui þ viÞ�

þ3½uivi − lnðui þ viÞ�2 − 2v4i

�
; ð10Þ

where ui ≡ μi=mi and vi ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffi
u2i − 1

p
with μi and mi being

the chemical potential and mass for particle type i,
respectively. By solving the β-function and γ-function
[99] and neglecting higher order terms, the running
coupling constant and quark masses read [98]

αsðΛ̄Þ ¼
1

β0L

�
1 −

β1 lnL
β20L

�
; ð11Þ

miðΛ̄Þ ¼ m̂iα
γ0
β0
s

�
1þ

�
γ1
β0

−
β1γ0
β20

�
αs

�
: ð12Þ

Here L ¼ 2 lnð Λ̄
Λ
MS
Þ with ΛMS ¼ 376.9 MeV being the MS

renormalization point, while the invariant quark masses are
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FIG. 1. Energyper baryon of neutron starmatter in β-equilibrium,
which is obtained based on the effective N − N interaction
TW99 [93]. The dashed curve corresponds to the case where local
charge neutrality condition is satisfied.
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m̂u ¼ 3.8 MeV, m̂d ¼ 8 MeV, and m̂s ¼ 158 MeV
according to the results obtained by Particle Data
Group [100]. Note that β0 ¼ 1

4π ð11 − 2
3
NfÞ and β1 ¼

1
16π2

ð102 − 38
3
NfÞ for the β-function while γ0 ¼ 1=π and

γ1 ¼ 1
16π2

ð202
3
− 20

9
NfÞ for the γ-function. At present, it is

not clear how the renormalization scale Λ̄ evolves with the
chemical potentials of quarks, where many possibilities
exist [98,101]. In this work, we adopt the following
formalism:

Λ̄ ¼ C
3

X
i¼u;d;s

μi; ð13Þ

with C ¼ 1–4 [96].
To incorporate the nonperturbative effects, we introduce

an extra bag constant B to take into account the energy
difference between the physical and perturbative vacua.
According to various studies, it was found that the bag
constant can vary with state variables, e.g., the temperature
[102,103], chemical potentials of quarks [104], density
[105] and even magnetic field [106]. The bag constant at
vanishing chemical potentials is found to be around
455 MeV fm−3 according to QCD sum-rule [107], while
carrying out fits to light hadron spectra suggests B ≈
50 MeV fm−3 [108]. At larger chemical potentials, com-
paring Eq. (8) with the pQCD calculations to the order of
α2s [96], an increasing difference on the thermodynamic
potential density is observed. At the same time, the
dynamic equilibrium condition at the critical temperature
of deconfinement phase transition demands B ≈
400 MeV fm−3 [109], indicating a large bag constant value
at high energy density. On combination of those values,
similar to Refs. [105,110], we adopt the following para-
metrization of B, i.e.,

B ¼ BQCD þ ðB0 − BQCDÞ exp
�
−
�P

iμi − 930

Δμ

�
4
�
; ð14Þ

which gives B ¼ B0 ¼ 50 MeV fm−3 at μu þ μd þ μs ¼
930 MeV. The width parameter Δμ and BQCD are left
undetermined and to be fixed later. Note that adopting
smaller BQCD reduces the maximum mass of hybrid stars
and shrinks the parameter space for Δμ and C in light of the
observational mass of PSR J0348þ 0432 [18], which is
indicated in Fig. 5.
Combining both the pQCD results in Eq. (8) and

parametrized bag constant in Eq. (14), the thermodynamic
potential density for quark matter is obtained with
ΩQ ¼ Ωpt þ ω0

e=3þ B, including the contributions of
electrons. Based on the basic thermodynamic relations,
the particle number density is ni ¼ − ∂Ω

∂μi, and energy
density of quark matter

EQ ¼ Ωpt þ 1

3
ω0
e þ Bþ

X
i

μini: ð15Þ

The pressure takes negative values of the thermodynamic
potential density, i.e., PQ ¼ −ΩQ.

C. Approximate the EoSs of HM and QM

For matter inside compact stars, to reach the lowest
energy, particles will undergo weak reactions until the
β-equilibrium condition is fulfilled, i.e.,

μi ¼ Biμb − qiμe; ð16Þ

where Bi (Bp ¼ Bn ¼ 1, Bu ¼ Bd ¼ Bs ¼ 1=3, and
Be ¼ Bμ ¼ 0) is the baryon number and qi (qp ¼ 1,
qn ¼ 0, qu ¼ 2=3, qd ¼ qs ¼ −1=3 and qe ¼ qμ ¼ −1)
the charge of particle type i. Note that the chemical
potential of neutrinos is set to zero since they can leave
the system freely.
To simplify our calculation, it is convenient to approxi-

mate the pressures and energy densities of HM and QM by
expanding them with respect to μe, i.e.,

Pðμb; μeÞ ¼ P0ðμbÞ −
1

2
n0chðμbÞ½μe − μe0ðμbÞ�2; ð17Þ

Eðμb; μeÞ ¼ E0ðμbÞ þ E0ðμbÞ½μe − μe0ðμbÞ�

þ 1

2
E00ðμbÞ½μe − μe0ðμbÞ�2: ð18Þ

Here P0, E0, and μe0 is the pressure, energy density, and
electron chemical potential obtained by fulfilling the local
charge neutrality condition nch ¼

P
qini ¼ 0. We have

adopted prime notion to represent taking derivatives with
respect to μe at μe ¼ μe0, i.e.,

n0ch ¼
∂nch
∂μe ; E0 ¼ ∂E

∂μe ; E00 ¼ ∂2E
∂μ2e :

Note that n0ch is related to the Debye screening length with
λD ≡ ð−4παn0chÞ−1=2. Based on Eqs. (17)–(18) and basic
thermodynamic relations, we have

nchðμb; μeÞ ¼ −
∂P
∂μe

				
μb

¼ n0chðμe − μe0Þ; ð19Þ

nðμb; μeÞ ¼ðEþ μench þ PÞ=μb: ð20Þ

The obtained properties of HM and QM in Secs. II A
and II B are then well reproduced by Eqs. (17)–(20). As an
example, in Fig. 2 we plot the relative deviations of energy
per baryon for nuclear matter with Δε ¼ εcal − εfit, which
lies within 1%.
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III. MIXED PHASE AND INTERFACE EFFECTS

A. The Gibbs and Maxwell constructions

To investigate the effects of quark-hadron interface on
the properties of MP and compact stars, we consider two
extreme cases, i.e., the Gibbs construction at σ → 0 and the
Maxwell construction at σ > σc. In both cases, at a given
baryon chemical potential μb, the dynamic stability con-
dition needs to be satisfied, i.e.,

PH ¼ PQ: ð21Þ

In principle, leptons are free to move throughout the
quark-hadron interface, then the chemical potentials of
electrons in each phase become the same, i.e., μHe ¼ μQe ,
which is the case for the Gibbs construction. For the
Maxwell construction, the scale of MP is much larger than
the Debye screening length λD, so that the local charge
neutrality condition is effectively restored due to Coulomb
repulsion. Thus, for the two types of phase construction
schemes, we have

Gibbs∶ μHe ¼ μQe ; ð1 − χÞnHch þ χnQch ¼ 0; ð22Þ

Maxwell∶ μHe ≠ μQe ; nHch ¼ 0; nQch ¼ 0: ð23Þ

Here the quark fraction χ ≡ VQ=V with VQ being the
volume occupied by quarks and V the total volume. Based
on Eqs. (17)–(20), Eqs. (21)–(23) can be solved analyti-
cally at given μb. Then the properties of MP can be
obtained.
Adopting both the Gibbs and Maxwell constructions, we

investigate the properties of MP at various parameter sets
with C ¼ 2–3.5 and Δμ ¼ 770–1000 MeV. Note that the
deconfinement phase transition occurs at densities smaller

than 0.09 fm−3 if C≳ 3.5, while at Δμ≲ 770 MeV and
BQCD ¼ 400 MeV fm−3 the velocity of sound in QM may
exceed the speed of light, which is excluded in our
calculation. By solving Eqs. (21) and (23), the densities
of nuclear matter nHT and quark matter nQT on the occurrence
of deconfinement phase transition can be obtained at a
given C, Δμ, and BQCD, which are presented in Figs. 3
and 4. Since the energy per baryon of QM decreases if we
adopt larger C,Δμ, and smaller BQCD, the transition density

nHT decreases accordingly. The density jump nQT − nHT is
increasing with BQCD and decreasing with C andΔμ, where
a large nQT − nHT indicates a strong first-order phase tran-
sition. At C≳ 2.8, we find varying Δμ or BQCD does not

affect the transition densities nHT and nQT , while nQT
decreases slightly with C.
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FIG. 2. The relative deviations of the obtained energy per
baryon from those of Fig. 1.
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FIG. 3. The density of nuclear matter on the occurrence of
deconfinement phase transition obtained with the Maxwell
construction, beyond which quark matter start to appear.
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FIG. 4. The difference between the densities of nuclear matter
and quark matter on the occurrence of deconfinement phase
transition which is obtained with the Maxwell construction.
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Finally, based on the EoSs of NM, QM, and MP, we
solve the Tolman-Oppenheimer-Volkov (TOV) equation

dP
dr

¼ −
GME
r2

ð1þ P=EÞð1þ 4πr3P=MÞ
1 − 2GM=r

ð24Þ

with subsidiary condition

dMðrÞ
dr

¼ 4πEr2: ð25Þ

Here the gravity constant is taken as G ¼ 6.707×
10−45 MeV−2. Note that at subsaturation densities, uniform
nuclear matter becomes unstable and geometrical structures
emerge. In such cases, we adopt the EoS presented in
Refs. [111–113] at n < 0.08 fm−3. The massM and radius
R of a compact star are obtained at a given center pressure.
In Fig. 5 we present the maximum mass Mmax of hybrid
stars obtained with the Maxwell construction. It is found
that Mmax decreases with Δμ and increases with BQCD. At
fixed Δμ and BQCD, the obtained maximum mass decreases
with increasing C at C≲ 2.8. This is mainly due to the
softening of EoSs with the occurrence of deconfinement
phase transition. For larger C, as indicated in Fig. 3, QM
appears at densities smaller than 2n0. In such cases, the core
of a hybrid star is comprised almost entirely of QM, which
has a similar parameter dependence on C as a strange star
[114], i.e., the corresponding Mmax is increasing with C.
For our calculation to be consistent with the observational
mass of PSR J0348þ 0432 (2.01� 0.04 M⊙) [18], smaller
Δμ, C, and larger BQCD are favored, i.e., the lower left
regions in Fig. 5 with Mmax > 1.97 M⊙. This area in
the parameter space shrinks if we adopt smaller BQCD.

Note that introducing the Gibbs construction will result in a
different maximum mass. In Fig. 6 we present the varia-
tions on the maximum mass of hybrid stars ΔMmax ¼
MMaxwell

max −MGibbs
max caused by introducing the Gibbs and

Maxwell constructions. It is found that the difference is
larger and positive at smaller C, while ΔMmax becomes
negative and approaches to its minimum at C ≈ 2.8.
Nevertheless, ΔMmax is positive for the cases with
Mmax > 1.97 M⊙, where the obtained MMaxwell

max is larger
than MGibbs

max . In general, we find that the difference is
insignificant (jΔMmaxj≲ 0.08 M⊙) comparing with the
masses of hybrid stars.
The tidal deformability can be estimated with

Λ ¼ 2k2
3

�
R
GM

�
5

; ð26Þ

where k2 is the second Love number [115–117]. For hybrid
stars with M ¼ 1.36 M⊙, it is found that both tidal
deformability Λ1.36 and radius R1.36 are insensitive to the
choices of BQCD according to our calculation. We thus take
BQCD ¼ 400 MeV fm−3 and present the obtainedΛ1.36 with
the Gibbs construction at the center panel of Fig. 7, which is
decreasing with C but insensitive to Δμ and BQCD. If we
assume the mass ratio m2=m1 ¼ 1 for the binary neutron
star merger event GW170817, combined with the measured
chirp mass M ¼ ðm1m2Þ3=5ðm1 þm2Þ−1=5 ¼ 1.186�
0.001 M⊙ [2], we then have m1 ¼ m2 ¼ 1.362 M⊙ and
the dimensionless combined tidal deformability Λ̃ ¼ Λ1 ¼
Λ2 ≈ Λ1.36 with the constraint 279 ≤ Λ̃ ≤ 720 [1–6]. In
fact, the obtained Λ̃ may deviate slightly from Λ1.36 for
other mass ratios as indicated in Fig. 13, while the
variations are insignificant. In such cases, the region in
the parameter space centered at C ≈ 3.2 can be excluded
since a lower limit with Λ̃ > 279 was obtained based on
the Bayesian analysis of the combined information from
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GW170817, AT2017gfo, and GRB170817 [3]. To show the
interface effects on the properties of hybrid stars at
M ¼ 1.36 M⊙, we compare the radii and tidal deform-
abilities of hybrid stars obtained based on the Gibbs and
Maxwell constructions. The variations on Λ1.36 and R1.36
are presented in the top and bottom panels of Fig. 7, where
ΔR ¼ RMaxwell − RGibbs and ΔΛ=Λ ¼ ΛMaxwell=ΛGibbs − 1.
At a certain choice of parameters, e.g., C ≈ 2.7, the inter-
face effects on the properties of hybrid stars become
sizable. It is found that the radius of a hybrid star at M ¼
1.36 M⊙ may vary up to 600 m, which is within the
capability of the NICER mission [33] or gravitational wave
observations [31,32]. Meanwhile, the relative variations on
the tidal deformability may even reach 50%, which can be
distinguished by future gravitational wave observations.
Nevertheless, it is worth mentioning that for traditional
neutron stars without a deconfinement phase transition, the
properties of nuclear matter at high densities would have
sizable impacts on the radii and tidal deformabilities as
well, e.g., the symmetry energy slope [19,22]. In such
cases, due to the uncertainties in the properties of hadronic
matter, it is necessary to adopt other hadronic EoSs in our
future study and examine their impacts, e.g., DD2 EoS
with light clusters [118] or the nuclear EoS predicated by
the cluster variational method using the Jastrow wave
function [119].

To further examine the interface effects on more massive
hybrid stars, in Fig. 8 we present the variations of tidal
deformability with M ¼ 1.4, 1.6, and 1.8 M⊙ obtained at
BQCD ¼ 400 MeV fm−3. It is found that the region with
large ΔΛ in the parameter space varies with the mass of
hybrid stars, where the center shifts to smaller C as M
increases. This is mainly due to the fact that the interface
effects become important when deconfinement phase
transition starts to take place at the center of the star,
which is around the densities indicated in Figs. 3 and 4.
Similar cases are expected for the radii of hybrid stars as
well as adopting other values of BQCD.
In summary, based on the results indicated in Figs. 3–8,

the parameter C can be constrained and is likely small
(≲3) according to the expected hadron-quark transition
density in heavy-ion collision phenomenology, the obser-
vational mass of PSR J0348þ 0432 [18], and the lower
limit of the dimensionless combined tidal deformability
[3]. In such cases, the interface effects play important roles
for the radii and tidal deformabilities of hybrid stars as
indicated in Figs. 7 and 8. With the upgraded gravitational
wave detectors [31,32], the ongoing NICER mission [33],
and the mass measurements of massive pulsars [40], we
may have a good chance to constrain simultaneously the
parameters C, Δμ, BQCD, as well as the quark-hadron
interface tension in the near future with the accurately
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measured masses, radii, and tidal deformabilities of
pulsars.

B. Geometrical structures

Since the emergence of geometrical structures is inevi-
table if the interface tension σ < σc, it is necessary to
investigate the interface effects on those structures and
consequently on the properties of MP. To construct the
geometrical structures of MP, we employ a Wigner-Seitz
approximation and assume spherical symmetry; i.e., only
the droplet and bubble phases are considered.
As was done in Refs. [114,120–122] but neglecting the

contributions of gravity, the internal structure of the Wigner-
Seitz cell is determined by minimizing the mass, which is
consistent with the constancy of chemical potentials,

μ̄i ¼ μiðrÞ þ qiφðrÞ ¼ constant; ð27Þ

with the electric potential φðrÞ determined by

r2
d2φ
dr2

þ 2r
dφ
dr

þ 4παr2nchðrÞ ¼ 0: ð28Þ

Here α ¼ 1=137 is the fine-structure constant. Since the
β-equilibrium condition is fulfilled, the local chemical
potentials are determined by Eq. (16) with a constant μb
and space dependent μeðrÞ ¼ φðrÞ þme. With the lineari-
zation adopted inEq. (19), Eq. (28) can be solved analytically
and gives

φI ¼ CI

r
sinh

�
r
λID

�
þ φI

0; ð29Þ

φO ¼ CO

rðRW þ λODÞ
½sinhðr̃ÞλOD þ coshðr̃ÞRW� þ φO

0

with r̃≡ ðr − RWÞ=λOD: ð30Þ

Here the Wigner-Seitz cell is divided into the inner part (I)
and outer part (O), i.e., a small spherewith radiusR enclosed
within a spherical shellwith outer radiusRW.TheMP is at the
droplet phase ifwe haveQM located at the inner part andHM
in the outer part, and viceversa, theMP is at the bubble phase.
The electric fields φIðrÞ (r < R) and φOðrÞ (R < r ≤ RW)
and their derivatives should match with each other at r ¼ R,
which determines the parametersCI,φI

0,C
O, andφO

0 at given
μIe0 and μOe0. The radius R is fixed based on the dynamic
stability of the quark-hadron interface, i.e.,

PIðRÞ − 2
σ

R
¼ POðRÞ: ð31Þ

The Wigner-Seitz cell radius RW is obtained by minimizing
the energy per baryonM=A at a given baryon number density
n ¼ A=VW (VW ¼ 4πR3

W=3), where the total mass M and
baryon number A are fixed with

M ¼
Z
VW

�
EðrÞ þ 1

8απ

�
dφ
dr

�
2
�
dV þ 4πR2σ; ð32Þ

A ¼
Z
VW

nðrÞdV: ð33Þ

Note that analytical expressions can be obtained forM andA
based on Eqs. (18) and (20).
The properties of MP and the corresponding geometrical

structures can then be determined based on Eqs. (27)–(33).
To show the interface effects on the properties of
MP and hybrid stars, as an example, we take C ¼ 2.7,
Δμ ¼ 800 MeV, BQCD ¼ 400 MeV fm−3, and various sur-
face tension values with σ ¼ 1, 5, 10, 20, 30, 40, and
50 MeV=fm2. The obtained Wigner-Seitz cell radius RW ,
droplet radius R, and quark fraction χ are presented in
Fig. 9 as functions of baryon number density n. The quark
droplet starts to appear in nuclear matter at around 2n0 with
a largeWigner-Seitz cell radius RW and small droplet radius
R. As density increases, the thickness of the nuclear matter
shell RW − R decreases, corresponding to the increasing
quark fraction χ. Nevertheless, the quark fraction χ starts
to decrease at ∼0.65 fm−3 and reaches the minimum at
∼0.9 fm−3. This is mainly due to the fact that we have
adopted stiff EoSs for quark matter, which is necessary for
hybrid stars to be heavy as 2 M⊙. Note that in a large
density range the droplet phase is more stable, while the
bubble phase starts to take place at much larger densities
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(∼1 fm−3). As the surface tension σ increases, the sizes of
geometrical structures increase and the density range of MP
decreases with an increasing onset density for QM, which
is consistent with previous findings. According to the
obtained quark fractions, our results become closer to
the cases of the Gibbs construction if we adopt smaller
σ, while at larger σ they approach to the cases of the
Maxwell construction.
In Fig. 10 we present the energy per baryon of nuclear

matter (NM), QM, and MP in compact stars as functions of
baryon number density. According to Fig. 9, the onset
density for QM increases with σ, which approaches to the
transition densities nHT obtained with the Maxwell con-
struction. Similarly, the corresponding energy density for
the occurrence of the deconfinement phase transition
increases with σ. As the emergence of QM in NM, the
EoSs become softer, which will consequently affect the
properties of hybrid stars.
Based on the EoSs indicated in Fig. 10, we solve the

TOV equation (24) and obtain the structures of compact
stars. In Fig. 11 we present the masses of compact stars as
functions of radius (left panel) and central baryon number
density (right panel), which are compared with the obser-
vational mass of PSR J0348þ 0432 (2.01� 0.04 M⊙)
[18]. As QM starts to appear at the center of hybrid stars,
the maximum mass and radii become smaller. Comparing
with the variations caused by introducing different C, Δμ,
and BQCD, interface effects on the maximummass of hybrid
stars are insignificant, which is consistent with our findings
in Fig. 6 by introducing both the Gibbs and Maxwell
constructions. Nevertheless, the interface effects on hybrid
stars’ radii are sizable, where the variations can be as large
as 600 m. For hybrid stars with a given mass, the radius
increases with σ.

The tidal deformabilities of compact stars corresponding
to Fig. 11 can be obtained with Eq. (26), which are
presented in Fig. 12 along with the corresponding Love
number k2 and compactness GM=R. It is found that the
tidal deformability increases if we adopt larger σ, with the
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positive contributions from both the increasing k2 and
decreasing GM=R. Based on the observations of the
binary neutron star merger event GW170817 and its
transient counterpart AT2017gfo and short gamma ray
burst GRB170817A, the dimensionless combined tidal
deformability is constrained within 279 ≤ Λ̃ ≤ 720
[1–6], which is a mass-weighted linear combination of
tidal deformabilities [123],

Λ̃ ¼ 16

13

ðm1 þ 12m2Þm4
1Λ1 þ ðm2 þ 12m1Þm4

2Λ2

ðm1 þm2Þ5
: ð34Þ

With the best measured chirp mass M ¼
ðm1m2Þ3=5ðm1 þm2Þ−1=5 ¼ 1.186� 0.001 M⊙ [2], in
Fig. 13 we present the obtained Λ̃ as functions of the
mass ratio m2=m1. Unlike traditional neutron stars [124], a
slight deviation (jΔΛ̃j ≲ 20) is observed for hybrid stars as
we vary m2=m1, which is insignificant comparing with the
deviations caused by the interface effects. Similar cases are
also observed for other choices of parameters, where the
deviation on Λ̃ is insignificant. It is then convenient for us
to assume m1 ¼ m2 ¼ 1.362 M⊙ with Λ1 ¼ Λ2 ¼ Λ̃. The
corresponding constraints are indicated in Fig. 12, which
can not distinguish hybrid stars obtained at different σ.
Nevertheless, the situation will likely be changed in the
near future with the implementation of upgraded detectors
for gravitational wave observations [31,32].
Based on Figs. 11 and 12, in Fig. 14 we present the

evolution of maximummass, tidal deformability, and radius
of hybrid stars as functions of the surface tension σ, with
given masses M ¼ 1.36, 1.4, 1.6, 1.8 M⊙ and Mmax.

For the cases with σ ¼ 0, we adopt the results obtained
with the Gibbs construction. It is found thatMmax, Λ, and R
increase with σ. The results essentially interpolate between
two types of values, i.e., as a function of σ that connects
the results obtained with the Gibbs construction at σ → 0
and the Maxwell construction at σ > σc, where we have
found σc ¼ 79.12 MeV=fm2. In principle, the correspond-
ing function can be obtained by fitting to our results with
certain assumption on its form, e.g., [[56] Eq. (15)], which
we intend to do in our future works. According to Fig. 14,
we find the variations on the maximum mass, tidal
deformability, and radius of hybrid stars are up to
ΔMmax ≈ 0.02 M⊙, ΔR ≈ 600 m, and ΔΛ=Λ ≈ 50%,
respectively. Even though Mmax increases little with σ,
sizable changes are observed for Λ and R, which is within
the capability of the NICER mission [33] or future
gravitational wave observations [31,32].
Finally, our investigations in Figs. 10–14 suggests that

the radii and tidal deformabilities of hybrid stars are
monotonous functions of σ, which approach to the scenar-
ios of Gibbs construction at σ → 0 and Maxwell con-
struction at σ > σc. For other choices of parameter sets,
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we expect similar trends, where the critical surface tension
σc can be well reproduced with [62]

σc ¼
ðμHe0 − μQe0Þ2
8παðλQD þ λHDÞ

: ð35Þ

The obtained results for σc are presented in Fig. 15, where
we have observed similar trends as in Fig. 3. This indicates
correlations between the critical surface tension σc and the
thermodynamic quantities of MP, which was pointed out in
[56][Fig. 5]. To show this explicitly, in Fig. 16 we present
the obtained critical surface tension as a function of the
baryon chemical potential μT on the occurrence of decon-
finement phase transition. It is found that σc (in MeV=fm2)
increases linearly with μT (in MeV) and can be well

approximated with σc ¼ 0.23ðμT − 930Þ þ 19, where the
coefficients depend on the EoSs of HM and QM. In such
cases, if the deconfinement phase transition occurs at
large μT , the emergence of geometrical structures may
be inevitable in hybrid stars since typical estimations
suggest σ < σc with σ ≲ 30 MeV=fm2 [77–84,86].

IV. CONCLUSION

We investigate the interface effects of a quark-hadron
mixed phase in hybrid stars. The properties of nuclear
matter are obtained based on the relativistic mean-field
model. For the N − N interactions, we adopt the covariant
density functional TW99 [93], which is consistent with all
seven constraints related to symmetric nuclear matter, pure
neutron matter, symmetry energy, and its derivatives [94].
For the quark phase, we adopt a perturbation model by
expanding the pQCD thermodynamic potential density to
the order of αs [98]. A parametrized bag constant is
introduced by comparing with pQCD calculations to the
order of α2s [96] as well as incorporating information from
the QCD sum-rule [107] and light hadron mass spectra
[108]. Since the mixed phases obtained with the Gibbs and
Maxwell constructions correspond to the two limits of the
quark-hadron interface tension, i.e., σ → 0 for the Gibbs
construction and σ > σc for the Maxwell construction,
we investigate the interface effects by comparing the
results obtained by those two phase construction schemes.
It is found that the quark-hadron interface has sizable
effects on the radii (ΔR ≈ 600 m) and tidal deformabilities
(ΔΛ=Λ ≈ 50%) of 1.36 solar mass hybrid stars for certain
choices of parameters. This is then confirmed by consid-
ering the geometrical structures of the mixed phase with a
specific choice of parameters, where for larger σ the sizes of
geometrical structures increase but the density range of
mixed phase decreases. For the corresponding hybrid stars,
we find the maximum mass, tidal deformability, and
radius increase with σ, where the variations are up to
ΔMmax ≈ 0.02 M⊙, ΔR ≈ 600 m, and ΔΛ=Λ ≈ 50%,
respectively. This provides possibilities for us to
constrain the quark-hadron interface tension with future
gravitational wave observations [31,32] as well as the
NICER mission [33].
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