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We show that multicomponent meson systems can be described by chiral perturbation theory. We chiefly
focus on a system of two pion gases at different isospin chemical potential, deriving the general expression
of the chiral Lagrangian, the ground state properties and the spectrum of the low-energy excitations. We
consider two different kinds of interactions between the two meson gases: one which does not lock the two
chiral symmetry groups and one which does lock them. The former is a kind of interaction that has already
been discussed in multicomponent superfluids. The latter is perhaps more interesting, because it seems to
be related to an instability. Although the pressure of the system does not show any instability, we find that
for sufficiently strong locking, the spectrum of one Bogolyubov mode becomes tachyonic. This unstable
branch seems to indicate a transition to an inhomogeneous phase.
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I. INTRODUCTION

Cold hadronic matter is an interesting playground for a
deep understanding of the properties of the strong inter-
action. At asymptotic baryonic densities the liberated
quarks [1] should pair forming a color superconductor,
see [2–4] for reviews. At large isospin densities a different
kind of collective phenomenon happens, with mesons
forming a Bose-Einstein condensate (BEC) [5–10]. In
general, the matter density of the system is controlled by
the baryonic chemical potential, μB, while the isospin
chemical potential, μI, is associated to its degree of isospin
asymmetry, e.g., indicating that the number of neutrons and
protons are different. The properties of matter as a function
of μI have been the subject of intensive investigation for a
number of reasons. Systems with large isospin asymmetry
exist in Nature; in particular neutron stars [11] are believed
to be compact stellar objects with a large isospin asym-
metry. Recently, the possible existence of pion stars has
also been proposed [12–14]. Regarding the microscopic
properties of matter, the inclusion of μI can lead to a better
understanding of quantum chromodynamics (QCD) in
a regime in which lattice QCD simulations are doable

[15–22]. Remarkably, the lattice QCD simulations of
meson gases with vanishing baryonic density are not
affected by the sign problem and can be implemented
for not too high values of μI . These simulations are steadily
improving [20–22], reaching increasingly precise results on
the thermodynamic properties of the system and thus
offering powerful tests for the methods and models
developed for the effective description of the strong
interaction.
Among the various proposed models, it is worth men-

tioning the Nambu-Jona Lasinio (NJL) model [23–32] and
the quark-meson model [24,33–35], because they can be
used in a wide range of values of μI . Although these models
are useful tools for exploring the properties of hadronic
matter, they are based on a number of parameters that have
to be phenomenologically fixed. Thus, they lead to results
which depend on the choice of these parameters and on the
number of degrees of freedom (d.o.f.) used. A relevant
limitation of these models is that the obtained results cannot
be systematically improved because no expansion param-
eter can be identified.
A systematic analysis of hadronic matter can be obtained

by effective field theories [36–38], which are based on an
expansion in a control parameter. Here we focus on chiral
perturbation theory (χPT), which is an effective theory
designed to describe the low-energy properties of QCD
[39–43]. The χPT Lagrangian is derived by the global
symmetries of QCD, basically integrating out the high-
energy part. The effect of the isospin chemical potential is
conveniently included in covariant derivatives, see
[40,41,44] for a general discussion. This allows us to
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describe the transition to the meson condensed phase in a
straightforward way, see [45,46], and to easily compare
with lattice QCD results [47]. As the above-mentioned
models, the χPT Lagrangian depends on some constants
that have to be fixed in some way, however the obtained
results can be systematically improved including higher
orders in the χPT expansion [41,48]. The thermodynamic
and low-energy properties of mesons at nonvanishing μI
have been studied using the χPT Lagrangian in many
different works [12,45–47,49]. In particular, in these works
it has been confirmed that the pion condensed phase first
discussed in [5–9] sets in at μI ¼ mπ , where mπ is the pion
mass. The χPT approach has also been used to study
different gauge theories with isospin asymmetry, including
2 color QCD with different flavors [50–56]. In the present
paper we extend the χPT Lagrangian to study the con-
densation of multicomponent meson systems, which is
relevant for the core of compact stars where pions and
kaons, see e.g., [57], can condense.
The multicomponent condensation can be realized, and it

has been studied, in a variety of systems. In some cases the
two components are neutral, and in this case one realizes a
multicomponent superfluid such as in He3–He4 mixtures,
see [58,59], or in other ultracold atoms systems [60–64]. In
the compact star interior, neutrons and protons are believed
to simultaneously condense [11], forming a system which
is simultaneously superfluid and superconductor where
global and local symmetries are spontaneously broken. If
deconfined quark matter is formed, the color-flavor locked
(CFL) phase [65] could be realized, which is simultane-
ously superfluid and superconductor. When supplemented
with kaon condensation [66,67], the CFL phase has an
additional superfluid component, becoming a phase with
two superfluid modes.
In our work we examine a multicomponent meson

system in which each component is characterized by a
global symmetry. For each component, the spontaneous
breaking of a global symmetry leads to the formation of a
superfluid. We examine the effect of the possible intra-
species interactions on multicomponent superfluidity. In
particular, we focus on the meson condensed phases, which
can be realized in the core of compact stars, see e.g., [11],
employing the χPT framework for deriving the relevant
low-energy Lagrangian. We discuss a system in which the
two meson gases correspond to two fictitious pion systems,
paving the way for the discussion of the simultaneous
condensation of pions and kaons. We identify two very
different types of intraspecies interactions: those that lock
the two global symmetries and those that do not lock them.
The two considered interaction terms lead to two different
symmetry breaking patterns, that could be dynamically
generated by the strong dynamics underlying the χPT
effective description.
Remarkably, at the leading order (LO) in χPT, only the

interactions that lock the two chiral groups are possible. We

find that the strength of the locking term plays a prominent
role: Increasing the locking, the transition to the broken
phase is favored; for sufficiently large couplings the system
becomes unstable. Analyzing the dispersion laws of the
low-energy d.o.f., we find that the instability can be
interpreted as a transition toward an inhomogeneous phase.
At the next-to-leading order (NLO) χPT corrections, it is

possible to include those interactions that do not lock the
two chiral groups. This type of interaction is akin to the one
typically discussed in ultracold atoms systems and indeed
in this case we obtain results similar to those of multi-
component Bose gas, see e.g., [68,69].
The present paper is organized as follows. In Sec. II we

report known results for meson systems in χPT. This is
useful to fix the notation and for comparison with the
multicomponent meson system. In Sec. III we generalize
the χPT Lagrangian to two meson gases, introducing the
leading interaction terms. In Sec. IV we analyze the effect
of one of the possible interaction terms leading to the chiral
locking. In Sec. V we consider the χPT term that does not
lock the two chiral groups. We conclude in Sec. VI. A
number of results are collected in the Appendixes. In the
Appendix A, we report the low-energy excitations of a
single-component pion gas. In the Appendix B, we discuss
the low-energy corrections to the mean-field thermody-
namic quantities arising from the vacuum energy of the
Bogolyubov modes.

II. SINGLE MESON GAS

The χPT description of the single meson gas is based on
the global symmetries

G ¼ SUðNfÞL × SUðNfÞR; ð1Þ

of massless QCD, withNf the number of flavors. The meson
fields are collected in the Σ field, transforming under G as

Σ → LΣR†; ð2Þ

where L ∈ SUðNfÞL and R ∈ SUðNfÞR. The leading
Oðp2Þ χPT Lorentz-invariant Lagrangian [41,42,45] is
given by

L ¼ f2π
4
TrðDνΣDνΣ†Þ þ TrðMΣ† þM†ΣÞ; ð3Þ

where the mass matrix, M, and the so-called pion decay
constant, fπ , are the low energy constants (LECs) that
cannot be fixed by the symmetry group G and must be
determined in some other way. The χPT Lagrangian is
constructed assuming that the mass term does not break the
global symmetries, thus that M transforms as Σ. Then,
the locking of the chiral rotations to the vector SUðNfÞV
group is induced by the vev of M, see e.g., the discussion
in [39,42].
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The covariant derivative in Eq. (3) allows us to take
into account the coupling of the meson fields with gauge
fields and/or with external currents and/or the effect of
different chemical potentials [40,41,44]. In the present
work, we will only consider the effect of the isospin
chemical potential and we will restrict the analysis to
pions, corresponding to the Nf ¼ 2 case. Thus, we con-
sider the covariant derivative

DνΣ ¼ ∂νΣ −
i
2
δν0μI½σ3;Σ�; ð4Þ

where the isospin chemical potential, μI , is introduced as
the time component of a vector field. Note that the
covariant derivative does not include the baryonic chemical
potential, μB, because mesons do not have a baryonic
charge. A useful parametrization is

Σ ¼ cos ρþ iφ̂ · σ sin ρ; ð5Þ

where σi are the Pauli matrices. The radial field, ρ, and the
unit vector field, φ̂, encode in a nontrivial way the three
pion fields. By this parametrization, the LO χPT low-
energy Lagrangian takes the form obtained in [12]

L ¼ f2π
2
ð∂μρ∂μρþ sin2ρ∂μφ̂i∂μφ̂i

− 2mπγsin2ρϵ3ikφ̂i∂0φ̂kÞ − VðρÞ; ð6Þ

where

VðρÞ ¼ −f2πm2
π

�
cos ρþ γ2

2
sin2ρ

�
; ð7Þ

is the potential and the control parameter is γ ¼ μI=mπ. For
jγj < 1, the normal phase is favored, the potential minimum
is at Σ̄ ¼ I, and

V ¼ −f2πm2
π; ð8Þ

at the minimum. For jγj > 1, the pion condensed phase is
favored [5–10,45,49] and in the present parametrization the
minimum of the potential is attained for the radial field vev,
ρ̄, satisfying

cos ρ̄ ¼ 1

γ2
: ð9Þ

Therefore, in the broken phase the meson field vev is
given by

Σ̄ ¼ cos ρ̄þ in · σ sin ρ̄; ð10Þ

where n is a unit vector associated to the residual Oð2Þ
symmetry of the vacuum. The pressure and the isospin

number density in the broken phase are respectively given
by [45,47,49]

P¼ f2πm2
π

2
γ2
�
1−

1

γ2

�
2

; nI ¼ f2πmπγ

�
1−

1

γ4

�
; ð11Þ

leading to the Oðp2Þ equation of state [47]

ϵðPÞ ¼ −Pþ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pð2f2πm2

π þ PÞ
q

: ð12Þ

Close to the phase transition point, γ ≳ 1, the system is
dilute and it is possible to expand the pressure P and the
energy density ϵ, as a function of the isospin number
density nI. If we define the adimensional isospin density
n ¼ nI=ðf2πmπÞ, we can expand the control parameter as

γ ¼ 1þ n
4
þ 3n2

32
þ n3

32
þOðn4Þ; ð13Þ

which is a meaningful expansion for n ≪ 1. The pressure
can then be expanded as follows

P ¼ n2I
8f2π

þ n3I
16f4πm2

π
þOðn4I Þ; ð14Þ

where the leading term is the mean-field expression of the
pressure of a boson system with coupling g0 ¼ 1=4f2π . This
is indeed the correct expression of the coupling close to the
phase transition, see Eq. (B2) and the discussion in the
Appendix A. The energy density is instead given by

ϵ ¼ mπnI þ
g0n2I
2

þ g20n
3
I

2mπ
þOðn4I Þ; ð15Þ

which takes into account the energy associated to the mass
of the pions. Note that the above expressions are obtained
in the mean-field approximation, meaning that the low-
energy fluctuations are not included. Indeed, the order n3I
corrections are determined by the χPT Lagrangian and not
by the contribution of the Bogolyubov modes. The vacuum
contribution of the Bogolyubov modes is considered in the
Appendix B, and is much smaller than the leading mean-
field contribution. However, it can play an important role in
a multicomponent gas, as we will see below.

III. SYSTEM OF TWO MESON GASES

We now generalize the discussion of the previous section
to a system with two mesonic gases, considering the
simultaneous effect of the chemical potentials and of the
interaction terms. In the second quantization formalism we
assume that two meson systems with densities n1 and n2 are
described by the fields Σ1 and Σ2. As for the single meson
gas, we use the global symmetries for constructing the χPT
Lagrangian.
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As a starting point we consider the noninteracting case
with symmetry group

G ¼ G1 ×G2; ð16Þ

where

Ga ¼ fSUðNfÞL × SUðNfÞRga with a ¼ 1; 2 ð17Þ

is the chiral group of the Σa field. For simplicity, we will
mainly treat theNf ¼ 2 case, in which the two meson gases
correspond to two fictitious pion systems, paving the way
for the discussion of the simultaneous condensation of
pions and kaons. For a system of kaons and pions one has
to consider the Nf ¼ 3 case, thus including more compli-
cated interaction terms than the ones discussed below for
the Nf ¼ 2 case.
In the present framework, we assume that in the non-

interacting case the fields Σ1 and Σ2 transform independ-
ently under two chiral groups as

Σ1 → L1Σ1R
†
1 and Σ2 → L2Σ2R

†
2; ð18Þ

where La ∈ SUð2ÞL;a and Ra ∈ SUð2ÞR;a with a ¼ 1, 2.
The most general Oðp2Þ chiral Lagrangian invariant under
these symmetries is

L ¼ f21π
4

TrðD1
νΣ1D1νΣ†

1Þ þ
f22π
4

TrðD2
νΣ2D2νΣ†

2Þ
þ TrðΣ1M

†
1 þM1Σ†

1Þ þ TrðΣ2M
†
2 þM2Σ†

2Þ; ð19Þ

where f1π and f2π , as well as the matrices M1 and M2, are
the low energy constants (LECs) of the system. As for a
single meson system described by the Lagrangian in
Eq. (3), we have constructed this Lagrangian assuming
that the mass terms do not break the global symmetries,
which means that Ma transforms as Σa. The covariant
derivative Da

ν takes into account the interaction of the
mesons of the a system with the external fields. If the two
meson systems have different isospin chemical potentials,
μ1 and μ2, respectively, this can be encoded in the two
covariant derivatives

Dν
aΣa ¼ ∂νΣa −

i
2
δν0μa½σ3;Σa�; ð20Þ

for a ¼ 1, 2.
We now introduce the interaction between the two gases.

Before doing that, let us first recall that under Ga the
covariant derivative transforms as the Σa fields, that is

Dμ
aΣa → LaD

μ
aΣaR

†
a; ð21Þ

and therefore the two covariant derivatives are independ-
ently rotated. Let us now consider the possible intraspecies

interaction terms. If we add to the noninteracting
Lagrangian the term

Lint;1 ¼ k
f1πf2π

2
TrðD1

νΣ1D2νΣ†
2Þ; ð22Þ

it locks the two chiral groups, leaving only the group

GD ¼ SUð2ÞL × SUð2ÞR; ð23Þ

unbroken, corresponding to the simultaneous chiral rota-
tions of the two systems. Under this group, the two fields
Σ1 and Σ2 transform as in Eq. (18), but with L1 ¼ L2 and
R1 ¼ R2. In principle, the k coefficient is a number that
depends on the interaction strength between the two chiral
fields and, as any LEC, it is independent of the isospin
chemical potentials.
Remarkably, the interaction Lagrangian in Eq. (22) is the

only Oðp2Þ meaningful coupling leaving the GD group
unbroken. One may think to add a Lagrangian term of the
type

TrðΣ1Σ
†
2Þ; ð24Þ

which indeed locks chiral rotations. However, if one of the
two fields vanishes, from Eq. (5) we have that, say, Σ1 ≡ I.
Then the term in Eq. (24) acts as a mass term for the Σ2

field, breaking G2 down to the vector subgroup. Therefore,
this kind of term or any term of the type

TrðΣ1Σ
†
2Þn; ð25Þ

with n > 0 is not allowed. For a similar reason the masslike
terms

TrðM1Σ
†
1ðΣ2Σ

†
1ÞnÞ; ð26Þ

are not allowed, unless n ¼ 0.
If one wants to preserve theG group defined in (16), then

one has to consider theOðp4Þ terms. At this order, there are
only two derivative intraspecies interaction terms that do
not lock the two chiral groups:

Lint;2 ¼ L̃1TrðD1
μΣ1D1μΣ†

1ÞTrðD2
νΣ2D2νΣ†

2Þ
þ L̃2TrðD1

μΣ1D1νΣ†
1ÞTrðD2

μΣ2D2νΣ†
2Þ; ð27Þ

where L̃1 and L̃2 are two LECs analogous to the standard
L1 and L2 of Oðp4Þ χPT [42]. When including these
contributions, one should consistently include the standard
Oðp4Þ chiral terms, as well. However, as was shown in
[12], the effect of the standard NLO terms on the thermo-
dynamic properties of the system is extremely small and
can be accounted for by a renormalization of the LO LECs.
As an aside, we note that in principle one may consider

more complicated intraspecies interaction terms, like
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Lint ∝ kμνTrðD1
μΣ1D2

νΣ
†
2Þ; ð28Þ

with kμν a Lorentz tensor and a G singlet. This kind of
interaction term somehow generalizes Eq. (22), however it
is not obvious how to fix the values of the kμν components
in general.
In the following, we will discuss the effect of the

interaction terms in Eq. (22) and in Eq. (27), separately,
focusing on the pion system.

IV. CHIRAL LOCKING

To gain insight on the system described by Eqs. (19) and
(22), let us first assume that we are making a partition of an
ensemble of undistinguishable pions, dividing it in two
(interacting) subsets, in such a way that the Σ1 field
describes the pions of the first subset and Σ2 field the
pions of the second subset. Let us first focus on the kinetic
terms at vanishing isospin chemical potentials. Since the
pions are indistinguishable, one may naively think that the
most general Oðp2Þ Lagrangian is

L ¼ f2π
4
Trð∂νΣ1∂νΣ†

1Þ þ
f2π
4
Trð∂νΣ2∂νΣ†

2Þ

þ k
f2π
2
Trð∂νΣ1∂νΣ†

2Þ; ð29Þ

where the first term, respectively the second term, describes
the propagation and self-interactions of the fields of the
subset 1, respectively 2. The third term mixes the two fields
and induces the locking between the two subsets. If it were
absent, that is for k ¼ 0, there would be no interactions
between the two sets.
For subsets made of identical particles there must exist a

way of reshuffling them. Since Σ1Σ
†
1 þ Σ2Σ

†
2 ¼ 2, any

reshuffling can only correspond to a rotation

Σ1 → cos θΣ̂1 þ sin θΣ̂2;

Σ2 → − sin θΣ̂1 þ cos θΣ̂2; ð30Þ

transforming the Lagrangian in Eq. (29) in

L ¼ þ f2π
4
ð1 − k sinð2θÞÞTrð∂νΣ1∂νΣ†

1Þ

þ f2π
4
ð1þ k sinð2θÞÞTrð∂νΣ2∂νΣ†

2Þ

þ k
f2π
2
cosð2θÞTrð∂νΣ1∂νΣ†

2Þ: ð31Þ

To maintain the Lagrangian invariant we have to take k ¼ 0
or, more interestingly, k ¼ 1. Indeed, in the latter case

L ¼ f̂21π
4

Trð∂νΣ̂1∂νΣ̂†
1Þ þ

f̂22π
4

Trð∂νΣ̂2∂νΣ̂†
2Þ

þ f̂1πf̂2π
2

Trð∂νΣ̂1∂νΣ̂†
2Þ; ð32Þ

where f̂21π ¼ f2πð1 − sin 2θÞ, f̂22π ¼ f2πð1þ sin 2θÞ, and
therefore f̂1πf̂2π ¼ f2π cos 2θ. Note that one cannot identify
f̂aπ with the pion decay constant of the pions in the subset
a, because the fields are mixed by the locking interac-
tion term.
For nonvanishing locking, if one takes k ≠ 1, the Oð2Þ

symmetry in Eq. (30) does not hold and the coefficient of
the interaction term cannot be expressed as f̂1πf̂2π , mean-
ing that if one makes the rotation, this term would depend
on the rotation angle. On the other hand, in the Lagrangian
in Eq. (32) it is possible to eliminate the dependence on the
unphysical angle θ in the quadratic terms by writing

Σ̂a ¼ eiσ·φ̂a=f̂aπ ; ð33Þ

which is a generalization of the standard nonlinear expres-
sion of the pion fields. Therefore, the expression in Eq. (32),
where k ¼ 1 is set, is the most general χPT Lagrangian for
two gases of undistinguishable pions.We can easily general-
ize it to N undistinguishable pion gases, writing

L ¼
X
ab

fafb
4

Trð∂νΣa∂νΣ†
bÞ; ð34Þ

where a ¼ 1;…; N and fa are a generalization of the pion
decay constant. Note that the propagating d.o.f. are obtained
by diagonalizing the quadratic Lagrangian.
We turn now to a system of distinguishable pions.

Including the mass terms, formally considering the vevs
of the fields Ma in Eq. (19), we can write the total
Lagrangian of the system as follows

L ¼ f21π
4

Trð∂νΣ1∂νΣ†
1Þ þ

f22π
4

Trð∂νΣ2∂νΣ†
2Þ

þ f21πm
2
1π

4
TrðΣ1 þ Σ†

1Þ þ
f22πm

2
2π

4
TrðΣ2 þ Σ†

2Þ

þ k
f1πf2π

2
Trð∂νΣ1∂νΣ†

2Þ; ð35Þ

where we have assumed that the two fields have different
mass parameters, m1π and m2π . These parameters have to
be interpreted as the LECs for the coupled system and
correspond to the pion masses only in the k ¼ 0 case. The
actual masses can be obtained by the dispersion laws

E2
� ¼ p2 þM2

�; ð36Þ

where the masses, obtained diagonalizing the quadratic part
in Eq. (35), are given by
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M2
� ¼ m2

1π þm2
2π �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðm2
1π −m2

2πÞ2 þ 4k2m2
1πm

2
2π

p
2ð1 − k2Þ ð37Þ

for k ≠ 1, and equal to the “reduced mass”

M2 ¼ m2
1πm

2
2π

m2
1π þm2

2π

; ð38Þ

for k ¼ 1. From the above expressions it is clear that the
interaction term in Eq. (22) induces a mass splitting. For
clarity we report the behavior of the meson masses as a
function of k in Fig. 1.
We remind that k ¼ 0 corresponds to two noninteracting

gases, while k ¼ 1 corresponds to a system with only one
low-energy mode. For k < 1, the mass splitting induced by
the locking term is similar to the one induced by μI between
the charged pions, see e.g., [46]. However, the system is
unstable for k > 1. The instability is signaled by the
divergent mass of one mode as k → 1−, which becomes
imaginary for k > 1. In the context of ultracold atoms
physics, where boson condensates are mostly considered,
the latter feature is generally related to the appearance of
spatially inhomogeneous phases, see e.g., [70,71] and
references therein. We stress, however, that here we are
in the presence of an instability with a completely different
origin. Indeed, in ultracold atoms, the instability is trig-
gered by a sufficiently large density-density coupling
between the two systems [70,72,73] (a similar phenomenon
is known also for fermions, called Stoner instability, see
e.g., [74]). Instead, in the present case, the instability is due
to a quadratic symmetry locking term in the fields: it is
precisely the locking that rules the instability. Since k is the
coefficient of a derivative term in Eq. (35), Remarkably, as
k varies, the repulsion between the two systems remains

fixed and the total potential energy density is given by and
reads

V ¼ −
X
a

f2aπm2
aπ; ð39Þ

corresponding to the sum of two independent contributions,
see Eq. (8), that can be obtained from the nonderivative
terms of Eq. (35). In spite of this relevant difference and
considering that the locked theory in Eq. (35) is quadratic,
it is still quite natural to postulate that the same theory with
k > 1 cannot exist with the two species coexisting in the
same space domain.
To elucidate the mechanism underlying the locking

instability, and its possible resolution, let us consider a
simple system consisting of two scalar bosons with a
locking term

L ¼ L1 þ L2 þ Lint

¼ 1

2
∂μϕ1∂μϕ1 −

1

2
m2

1ϕ
2
1 þ

1

2
∂μϕ2∂μϕ2

−
1

2
m2

2ϕ
2
2 þ k∂μϕ1∂μϕ2; ð40Þ

with a manifest discrete Z2 × Z2 symmetry for k ¼ 0. This
symmetry corresponds to the transformationsϕ1 → −ϕ1 and
ϕ2 → −ϕ2, separately. For k ≠ 0 the two discrete sym-
metries are locked, with the only remaining Z2 symmetry
corresponding toϕ1 → −ϕ1 andϕ2 → −ϕ2, simultaneously.
This simple system becomes unstable for k > 1, because

one of the two eigenmodes has an imaginary mass. One
possible solution of the instability corresponds to the reali-
zation of an inhomogeneous phase. Let us give an heuristic
argument in favor of the inhomogeneous phase. If we assume
that one component is realized in the volumeV1 and the other
in the volume V2, then the action can be written as

S ¼
Z

d4xL ≈
Z
V1

d4xL1 þ
Z
V2

d4xL2 þ
Z
S12

d4xL

¼ S1 þ S2 þ Sinterface; ð41Þ

where Sa with a ¼ 1, 2 are the actions of the free scalar
fields. The effect of the interaction term is only relevant at
the interface, S12, of the two volumes. In other words, in the
inhomogeneous phase the interaction Lagrangian Lint has
only support at the interface and therefore the dispersion
laws of the field ϕ1, respectively ϕ2, in the volumes V1,
respectively V2, are not tachyonic.

A. Two pion gases at different isospin
chemical potentials

We now consider the effect of the isospin chemical
potentials for the two pion gases. Including them, the
Lagrangian reads

FIG. 1. Mass splitting induced by the locking term in Eq. (22)
for the two gases of pions. For simplicity we have assumed that
the pions of the two gases have equal mass parameters, i.e.,
m1π ¼ m2π . The k parameter indicates the strength of the intra-
species locking, see Eq. (22); k ¼ 0 corresponds to two non-
interacting gases, while k ¼ 1 to a system with one single type
low-energy d.o.f. For k > 1 the system is unstable.
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L ¼ þ f21π
4

TrðD1
νΣ1D1νΣ†

1Þ þ
f22π
4

TrðD2
νΣ2D2νΣ†

2Þ

þ f21πm
2
1π

4
TrðΣ1 þ Σ†

1Þ þ
f21πm

2
1π

4
TrðΣ2 þ Σ†

2Þ

þ k
f1πf2π

2
TrðD1

νΣ1D2νΣ†
2Þ; ð42Þ

where the covariant derivatives are given in Eq. (20).
Since the two fields can have different vevs, we general-

ize Eq. (10) to

Σa ¼ cos ρa þ ina · σ sin ρi a ¼ 1; 2; ð43Þ

where ρa are the two radial fields and na are two unit
vectors. Upon substituting Eq. (43) in Eq. (42), we obtain
the tree-level potential

V ¼ −
X
a

f2aπm2
aπ

�
cos ρa þ

γ2a
2
sin2ρa

�

− kn1 · n2f1πf2πμ1μ2 sin ρ1 sin ρ2; ð44Þ

where γa ¼ μa=maπ and the last term on the right-hand side
originates from the locking term, which explicitly breaks
the G symmetry to the diagonal group, GD. The interesting
aspect is that the potential depends on the relative angle
between n1 and n2. In the ground state the two unit vectors
are locked to be aligned, if the isospin chemical potentials
have equal signs, or antialigned, if the isospin chemical
potentials have opposite signs. We can clearly restrict the
analysis to the case in which both isospin chemical
potentials are positive and aligned. Since the vevs of the
two fields are not independent but tend to align, it is clear
that the condensation of one field favors the condensation
of the other; we will discuss this effect in detail below.
From the above expression it is also clear that the system
has two Nambu Goldstone bosons (NGBs) for k ¼ 0,
corresponding to the two independent oscillations of the
unit vectors, but only one NGB for k ≠ 0, corresponding to
the locked oscillations of the two fields. The second mode
is massive and corresponds to a pseudo-NGB.

B. Phase diagram of the locked pion gases

At the transition to the broken phase, where both gases
condense, we can expand

cos ρ̄1 ¼ 1 − ϵ1 and cos ρ̄1 ¼ 1 − ϵ2; ð45Þ

with ϵa ≪ 1. Upon replacing this expression in the sta-
tionary condition for the potential, we obtain

ffiffiffiffiffi
ϵ2
ϵ1

r
¼ 1 − γ21

kγ1γ2
and

ffiffiffiffiffi
ϵ1
ϵ2

r
¼ 1 − γ22

kγ1γ2
; ð46Þ

signaling that the condensation of one gas is deeply related
to the condensation of the other: as soon as, say, ϵ1 > 0, it
follows that ϵ2 > 0. The formation of one superfluid
necessarily makes the other gas superfluid by a simulta-
neous condensation (SCO) mechanism.
Upon solving the above system of equations, we easily

obtain that the SCO happens for

ðk2 − 1Þγ21γ22 þ γ21 þ γ22 ¼ 1; ð47Þ

corresponding to the curve, C on the ðγ1; γ2Þ plane depicted
in Fig. 2 for various values of k. The existence of this curve
makes explicit that the onset of one condensate induces the
condensation of the other, a manifestation of the interaction
between the two. A remarkable aspect is that the SCO
happens for any nonvanishing value of k. Clearly, the larger
is k, the larger is the effect of one condensate on the other.
Moreover, with increasing values of k, the normal phase
region shrinks. To better understand this process, let us
focus on the γ1 ¼ γ2 ¼ γ case. Since the two isospin
chemical potentials are equal, it follows has that
ρ̄1 ¼ ρ̄2 ¼ ρ̄,

cos ρ̄ ¼ 1

γ2ð1þ kÞ ; ð48Þ

and the transition happens for γ2 ¼ 1=ðkþ 1Þ. Therefore,
with increasing values of k, the transition to the SCO phase
happens at lower values of γ. One may naively think that
increasing k would lead to a system that becomes

FIG. 2. Phase diagram for the coupled superfluid system with
the intraspecies interaction of Eq. (22). The solid black line
corresponds to k ¼ 10−3; the dashed red line corresponds to
k ¼ 1 and the dotted blue line corresponds to k ¼ 5. For every
considered value of k, the broken phase is the region outside the
corresponding curve. In that region, indicated with SCO, there is
the simultaneous condensation of both fluids. Along the axes,
where γ1 ¼ 0 and γ2 > 1 or γ2 ¼ 0 and γ1 > 1, only one
component is superfluid. The analysis of the low-energy ex-
citations shows that for k > 1 one of the low-energy modes
becomes tachyonic, meaning that in this case the mean-field
results reported in this figure are not valid.
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superfluid for arbitrary values of the isospin chemical
potential. As we will see below, this is not the case,
because for k > 1 an instability in the low-energy spectrum
is triggered.
In general, close to the transition curve, C, one can

expand the pressure as

P ¼ 1

2
L11ðγ1 − γ̄1Þ2 þ

1

2
L22ðγ2 − γ̄2Þ2

þ L12ðγ1 − γ̄1Þðγ2 − γ̄2Þ; ð49Þ

where γ̄a ∈ C and

Lab ¼
∂2P

∂μa∂μb
����
C
; ð50Þ

are the susceptibilities. Upon expressing the isospin chemi-
cal potentials in terms of the number densities, we obtain

P ¼
X
ij

gij
2
ninj; ð51Þ

where the coupling constants are given by

g11 ¼
L11

D
g22 ¼

L22

D
g12 ¼ −

L12

D
; ð52Þ

where D ¼ L11L22 − L2
12, with Lab > 0. It turns out that

g12 þ
ffiffiffiffiffiffiffiffiffiffiffiffi
g11g22

p
≥ 0; ð53Þ

the equality corresponding to the case γ1 ¼ γ2 ¼ 1=
ffiffiffi
2

p
.

For nonrelativistic distinguishable and dilute superfluid
bosons, the equality in Eq. (53) corresponds to the stability
threshold against collapse or turn into an inhomogeneous
phase (depending on the sign of g12) [70,72,73]. By a
similar reasoning, one could argue that, because of the
relation in Eq. (53), the locked system at nonvanishing
isospin density is stable. Let us discuss this important point
more in detail. The condition in Eq. (53) relies on the mean-
field approximation. In condensed matter systems it is
known that when the relation in Eq. (53) is violated the
inclusion of the vacuum energy contribution of the
Bogolyubov modes can turn a collapsing system into an

inhomogeneous one, made of droplets of coexisting gases
[73]. In the present case the condition in Eq. (53) is not
violated: the mean-field pressure is well defined, and the
system could be expected to be homogeneous and stable.
However, for k > 1, we found that in the normal phase
there exists a tachyonic mode. It is therefore important to
analyze the low-energy spectrum of the system to figure out
what is the fate of the tachyonic mode in the SCO phase.

C. Low-energy excitations

The low-energy excitations of the multicomponent
system can be determined studying the fluctuations of
the radial component and of the Bogolyubov modes of the
meson fields. We shall employ the same formalism devel-
oped in [12] and briefly discussed in the Appendix A,
extending it to the two-component gas of pions.

1. Radial excitations

In the broken phase, the system has two radial excita-
tions, χ1 and χ2, corresponding to the fluctuations around
the corresponding vevs:

ρa ¼ ρ̄a þ χa with a ¼ 1; 2 ð54Þ

where it is assumed that χa ≪ ρ̄a. Upon substituting the
above expression in Eq. (42) and restricting to the quadratic
order in the fields, we obtain the Lagrangian

Lχ ¼
1

2
∂μχ1∂μχ1 þ

1

2
∂μχ2∂μχ2 þ c12∂μχ1∂μχ2

−
M2

1

2
χ21 −

M2
2

2
χ22 þM12χ1χ2; ð55Þ

where

c12 ¼ cosðρ̄1 − ρ̄2Þ s12 ¼ sinðρ̄1 − ρ̄2Þ
M2

1 ¼ m2
πðcos ρ̄1 − γ21 cos 2ρ̄1 þ kγ1γ2 sin ρ̄1 sin ρ̄2Þ

M2
2 ¼ m2

πðcos ρ̄2 − γ22 cos 2ρ̄2 þ kγ1γ2 sin ρ̄1 sin ρ̄2Þ
M12 ¼ km2

πγ1γ2 cos ρ̄1 cos ρ̄2: ð56Þ

The corresponding dispersion laws are given by

E� ¼ p2 þ c12M12 þ ðM2
1 þM2

2Þ=2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc12M12 þ ðM2

1 þM2
2Þ=2Þ2 þ s212ðM2

12 −M2
1M

2
2Þ

p
s212

; ð57Þ

thus the two modes have non-negative masses and are
stable for any value of k. On the transition region to
the BEC phase M12 ¼ M1M2, and one of the radial
modes becomes massless. The stability in the radial

modes for any value of k is clearly a manifestation of
the result obtained in the previous section, that the
pressure close to the transition region is positive
defined.
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2. Bogolyubov modes

Neglecting the radial excitations, thus taking ρ1 ≡ ρ̄1 and
ρ2 ≡ ρ̄2, one has the following low-energy Lagrangian

Lφ̂ ¼ L1 þ L2 þ L12; ð58Þ

where

L1¼
f2π
2
ðsin2ρ̄1∂μφ̂1 ·∂μφ̂1þ2μ21sin

2ρ̄iϵ3ikφ̂
1
i ∂0φ̂

1
kÞ; ð59Þ

and with L2 given by a similar expression, while

L12 ¼ kf2π½sin ρ̄1 sin ρ̄2ð∂μφ̂1 · ∂μφ̂2 þ μ1μ2φ̂1 · φ̂2Þ
þ ϵ3ikðsin ρ̄1μ2φ̂2

i ∂0φ̂
1
k þ sin ρ̄2μ1φ̂1

i ∂0φ̂
2
kÞ�; ð60Þ

stems from the locking term. The unit vectors fields φ̂1 and
φ̂2 describe the two angular fluctuations of the condensates
and can be parametrized as follows

φ̂1 ¼ ðcos α; sin αÞ and φ̂2 ¼ ðcos θ; sin θÞ; ð61Þ

which generalize the expression in Eq. (A7). Upon
substituting the above expression in the low-energy
Lagrangian, we obtain

Lφ̂ ¼
f2π
2
½sin2ρ̄1∂μα∂μαþ sin2ρ̄2∂μθ∂μθ

þ2ksin ρ̄1 sin ρ̄2 cosðα−θÞð∂μα∂μθþμ1μ2Þ�; ð62Þ

where we have not included the terms

f2π cosðα − θÞðμ2 sin ρ̄1∂0αþ μ1 sin ρ̄2∂0θÞ ð63Þ

and

f2πðμ1sin2ρ̄1∂0αþ μ2sin2ρ̄2∂0θÞ; ð64Þ

leading to interactions and total derivatives. The Lagrangian
in Eq. (62) describes two coupled modes. We restrict to the
case μ1μ2 > 0; the other case can be treated in a similar way.
The potential term isminimized forα ¼ θ, thus expanding in
(α − θ) and keeping only the quadratic terms, we obtain the
dispersion laws

E2
1¼p2

E2
2¼p2þμ1μ2

kðsin2ρ̄1þsin2ρ̄2Þþ2k2 sin ρ̄1 sin ρ̄2
1−k2

; ð65Þ

corresponding to themasslessNGBand themassive pseudo-
NGB, respectively. The propagation velocity of the NGB is
equal to 1, however integrating out the radial oscillations
would lead to a propagation velocity equal to the speed of
sound, see [12] and the discussion in the Appendix A. For

k ¼ 0 the mass of the pseudo NGB vanishes and thus the
system has two NGBs describing the independent fluctua-
tions of the two decoupled superfluids.
We notice that for k → 1− the mass of the pseudo-NGB

diverges and only one low-energy mode exists, which is
consistent with the fact that for k ¼ 1 the system is
equivalent to a single superfluid. For k > 1 the mass of
the pseudo-NGB becomes imaginary, signaling an insta-
bility. This is the same instability we previously discussed
in Fig. 1 in the unbroken phase. Thus, the unstable modes is
still present in the SCO phase, now appearing as a pseudo-
NGB with a tachyonic mass. The presence of this mode
indicates that the mean-field approximation breaks down.
Therefore, the expression of the pressure in Eq. (51) is
incorrect for k > 1. This result is discussed in more detail in
the Appendix B, where it is shown that the beyond mean-
field contributions are ill defined for k > 1.

V. INDEPENDENT CHIRAL ROTATIONS

We now consider the interaction terms that do not lock
the two chiral groups. Upon expanding the Lagrangian
given by Eqs. (19) and (27), we obtain the potential

V ¼ −
X
a

f2aπm2
aπ

�
cos ρa þ

γ2a
2
sin2ρa

�

− 4ðL̃1 þ L̃2Þμ21μ22sin2ρ1sin2ρ2; ð66Þ

where we have assumed the two gases have unequal masses
and decay constant parameters. Unlike the locked case in
the previous sections, now the tree-level potential is
independent of the relative orientation of the two con-
densates, indeed it does not depend on n1 · n2. In other
words, the potential does not break the degeneracy of the
two vacua and the two condensates vectors n1 and n2 can
independently rotate. This is a manifestation of the fact
that the interaction term does not lock the two chiral groups
and thus the system has two NGBs. Considering
L̃1 þ L̃2 ∼ 10−3, as typical for Oðp4Þ corrections (see
e.g., [42]) the interaction term has a small impact on the
favored ground state. In particular, the onset of the
simultaneous condensation is for γ1 ≳ 1 and γ2 ≳ 1. In
the following we will consider jL̃1 þ L̃2j ¼ 10−2 − 10−3,
also taking into account possible negative values of
ðL̃1 þ L̃2Þ.
In Fig. 3, we report the phase diagrams obtained with

positive (left panel) and negative (right panel) values of
L̃1 þ L̃2. The behavior with the strength of the intraspecies
interaction is very similar to the one obtained for a coupled
two-fluid system in [68]. The L̃1 þ L̃2 parameter has the
same effect on the phase diagram of the entrainment
parameter of [68]: a positive value of L̃1 þ L̃2 favors the
SCO, while a negative value disfavors it. In [68] it was also
discussed the instability generated by coupled superfluid
flows. Although a similar phenomenon might emerge in
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our model, we postpone its analysis to future work. In order
to generate such an instability in our model, it would
presumably require NLO χPT effects comparable with the
LO results, thus in a regime where the χPT expansion is not
under quantitative control. Similar results to the one
reported in Fig. 3 have also been reported in [69] by
changing the strength of the density-density interaction
between two scalar fields. In general, we believe that a
phase diagram akin to the one shown in Fig. 3 can be
obtained for any system with two condensates by changing
the density-density interaction between the two fluids.
In order to infer the effect of one superfluid on the other,

we consider the case in which one of the two superfluids is
formed, say the superfluid 2, and we seek the critical value
γ1;c for the onset of the condensation of the superfluid 1. At
the leading order in the intra-species interaction, we find that
the condensationonset for the first species obeys the equation

γ21;c ¼ 1 − 8ðL̃1 þ L̃2Þ
γ42 − 1

γ22
; ð67Þ

which is depicted in Fig. 4 for L̃1 þ L̃2 ¼ 10−3.

In principle, for large values of γ2 it suffices a small μ1
isospin chemical potential to drive the system 1 in the
condensed phase. However, for reasonable values of the
NLO LECs, the influence of one condensate on the other is
extremely small. The low-energy spectrum in the broken
phase consists of two well-defined NGBs.

VI. CONCLUSIONS

We have discussed multicomponent meson superfluids
in the χPT framework. We have derived the relevant χPT
Lagrangian restricting most of the analysis to the global
symmetry group given in Eqs. (16) and (17) with Nf ¼ 2,
corresponding to two fictitious pion gases with different
masses and decay constants. In the noninteracting case, if
one of the two isospin chemical potentials exceeds the
corresponding pion mass the system becomes superfluid.
Turning on the interactions the two condensates influence
each other. We have considered two possible interaction
terms, one that locks the two chiral groups and one that
does not lock them.
The Lagrangian term in Eq. (22) leads to the tree-level

potential in Eq. (44), with the peculiar interaction term
between the phases of the two condensates. Minimizing the
potential we have obtained the phase diagram reported in
Fig. 2. With increasing locking parameter k, the region in
which the simultaneous condensation is realized becomes
larger. It seems that one can arbitrarily shrink the normal
phase region by increasing the value of k. However, the
locking turns one low-energy mode becomes in a pseudo
NGB with dispersion law given in Eq. (65). For k > 1 the
mass of the pseudo NGB becomes imaginary and therefore
an instability is triggered. The unusual aspect is that even
for k > 1 the potential has a well defined minimum, indeed
the low-energy radial excitations studied in Sec. A 1 have a
well-defined mass. Since no other homogenous phase is
energetically favored, this suggests that there exists an
energetically favored inhomogeneous phase, where the two

FIG. 3. Phase diagram for the coupled superfluid system with the intraspecies interaction of Eq. (27). Left panel: case with
L̃1 þ L̃2 ¼ þ10−2. Right panel: L̃1 þ L̃2 ¼ −10−2. In both panels the phase with simultaneous condensation is indicated with SCO. The
phases indicated with SF1 and SF2, correspond to the phases in which only one component is superfluid. Positive values of L̃1 þ L̃2

favor the simultaneous condensation.

FIG. 4. Critical value for the condensation of the fluid 1,
once the fluid 2 is in the superfluid phase, obtained by
Eq. (67) for L̃1 þ L̃2 ¼ 10−3.
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gases do not coexist any longer. Though not rigorously
proved, this seems an educated guess, also because of the
analysis of the simplified model discussed in Sec. IV. It is
not obvious to us that this inhomogeneous phase can be
treated by a Ginzburg-Landau expansion [75], or any other
improved version [76], because in these approaches one
expects the appearance of an inhomogeneous phases when
the mean-field analysis indicates a first-order phase tran-
sition. Instead, in the present case, the tree-level analysis
does not show any phase transition or any instability: the
only sign of an odd behavior is in the spectrum of the
pseudo-NGB mode.
The Lagrangian term in Eq. (27), which does not lock the

two global symmetries, is also interesting, because it
induces a nontrivial interaction between the two conden-
sates. However, in χPT this term can only arise at the NLO
in the chiral expansion, thus we expect that it is strongly
suppressed. The tree-level interaction potential is reported
in Eq. (66): since it is independent of n1 and n2, it is clear
that in this case the two condensates are free to oscillate and
are not locked. The low-energy modes consist of two NGBs
which do not show any singular behavior. Upon minimiz-
ing the potential in Eq. (66) we obtain the phase diagrams
reported in Fig. 3.
The present work can be extended in different ways. As

already anticipated, it paves the way for the discussion of a
two-component system of pions and kaons. We plan to
develop this study shortly. It would also be interesting to
realize the locking instability in two-component ultracold
atoms system.
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APPENDIX A: LOW-ENERGY EXPANSION

In the following we recap and slightly extend the
discussion of the low-energy modes of the pion condensed
phase of [46,12], including higher order terms.

1. Radial field

Expanding the radial field around the stationary value as
ρ ¼ ρ̄þ χ and neglecting the angular fluctuations we
obtain from Eq. (6)

Lχ ¼
f2π
2
∂μχ∂μχ þ f2πm2

π

�
1 − γ4

2γ2
χ2

−
1

2

ffiffiffiffiffiffiffiffiffiffiffiffi
γ4 − 1

γ4

s
χ3 þ 4γ4 − 7

24γ2
χ4
�
; ðA1Þ

where the Oðχ5Þ terms and higher have been suppressed. It
is convenient to rescale the field with χ → χ=fπ to put the
kinetic term in the canonical form, obtaining

Lχ ¼
1

2
∂μχ∂μχ −

1

2
m2

χχ
2 − g3χχ3 þ g4χχ4; ðA2Þ

where the mass and self-couplings are given by

mχ ¼ mπγ sin ρ̄; ðA3Þ

g3χ ¼
m2

π sin ρ̄
2fπ

; ðA4Þ

g4χ ¼
m2

π

f2π

4γ4 − 7

24γ2
: ðA5Þ

We notice that the only nonvanishing term at the phase
transition point is the one proportional to χ4. Actually, it
can be easily proven that any term proportional to χ2nþ1

vanishes at γ ¼ 1, because in the unbroken phase the
system is symmetric for ρ → −ρ. Close to the phase
transition point, the radial fluctuations can be considered
as a self-interacting system of bosons with vanishing mass
and cubic interaction but nonvanishing quartic interaction.
This Lagrangian for the radial fluctuation is valid in the
whole broken phase.

2. Bogolyubov mode

The Lagrangian of the angular field is given by

L ¼ f̂2π
2
∂μφ̂ · ∂μφ̂; ðA6Þ

with f̂π ¼ fπ sin ρ̄ playing the role of an effective decay
constant. Since φ̂ is a unit vector, we can parametrize it by a
Bogolyubov mode α as follows:

φ̂ ¼ ðcos α; sin αÞ; ðA7Þ

leading to

L ¼ f̂2π
2
∂μα∂μα; ðA8Þ

which is the Lagrangian of a free scalar field, α. It can be
cast in the canonical form by α → α=f̂π. The Bogolyubov
field can only feel the medium effect by the interactions
with the χ field, as will be discussed below. We note that the
NLO chiral terms would be proportional to higher powers
of momentum, therefore this is the relevant Lagrangian
only for p2=f̂2π ≪ 1. For this reason, this low-energy
expansion is not valid close to the phase transition point,
corresponding to γ ¼ 1, where f̂π vanishes and thus all the
terms of the effective Lagrangian are equally important.
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Since the momentum scale is dictated by the temperature of
the system, one has to consider the T=f̂π ≪ 1 case.

3. Mixed terms and dispersion laws

The mixed terms can be obtained from the interaction
terms in Eq. (6) and considering that upon substituting
Eq. (A7) we have the compact expression

ϵ3ikφ̂i∂0φ̂k ¼ ∂0α; ðA9Þ

in terms of the Bogolyubov field α. Thus, up to the fourth
order in the fields, the mixed interaction terms are

Lχα
I ¼ −g2;1χ∂0αþ g3;1χ2∂0αþ g3;2χ∂μα∂μα ðA10Þ

þg4;1χ3∂0αþ g4;2χ2∂μα∂μα; ðA11Þ

with the couplings given by:

g2;1 ¼
2mπ

γ
g3;1 ¼

γ4 − 2

γ3f̂π
mπ; ðA12Þ

g3;2 ¼
1

γ2f̂π
g4;1 ¼

4mπ

3f2πγ
; ðA13Þ

g4;2 ¼
2 − γ4

2γ4f̂2π
; ðA14Þ

where the first subscript indicates the total number of fields
and the second one the number of α fields.
The quadratic Lagrangian can be written as

L ¼ 1

2
∂μχ∂μχ −

1

2
m2

χχ
2 þ 1

2
∂μα∂μα − g2;1χ∂0α; ðA15Þ

where themixing term allows oscillations between the radial
and the angular fields. Integrating out the radial fluctuations
one obtains the massless, phononlike, dispersion law

Eph ¼ csp; ðA16Þ

where

cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
χ

m2
χ þ g22

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
γ4 − 1

γ4 þ 3

s
ðA17Þ

describes the pressure oscillations propagating at the
sound speed.
Alternatively, one can diagonalize the quadratic

Lagrangian, obtaining the dispersion laws

E� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

eff

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
m2

eff

2

�
2

þ g22p
2

svuut ; ðA18Þ

where

m2
eff ¼ m2

χ þ g22 ¼ m2
π
γ4 þ 3

γ2
; ðA19Þ

which agree with the expressions reported in [46]. In
conclusion, the low-energy modes of a single-component
pion gas correspond to a NGB with dispersion law in
Eq. (A16) (in the limit p=mχ → 0) and to a massive mode
with mass meff .

APPENDIX B: LHY CORRECTION

Close to the phase transition to the broken phase, the
pressure of the single-component pion gas can be approxi-
mated with the expression in Eq. (11). Therefore, the χPT
analysis gives a correction to the mean-field value propor-
tional to n3, where n ¼ nI=ðf2πmπÞ. However, in the context
of condensed matter physics, an additional contribution,
due to the vacuum energy of the NGBs, is known to play an
important role in certain regimes. This contribution is
known as the Lee-Huang-Yang (LHY) term, first evaluated
for a hard sphere Bose gas in [77]. The LHY term is
proportional to n5=2 and is therefore the leading correction
to the mean-field results close to the phase transition point.
For a single-component pion gas, one can easily obtain

the LHY correction using the mapping developed in [47]
between the condensed pion gas in χPT and the Gross-
Pitaevskii (GP) Hamiltonian

HGP ¼ ψ� ∇2

2M
ψ −

g
2
jψ�ψ j2; ðB1Þ

where M ¼ μI , and

g ¼ 4γ2 − 1

12f2πγ2
¼ g0

�
1þ n

6

�
þOðn3Þ; ðB2Þ

where g0 ¼ 1=ð4f2πÞ is the coupling constant at the phase
transition point. The LHY correction to the pressure close
to the phase transition point is given by

ϵGP;LHY ¼ M3=2

15π2
ðgnIÞ5=2 ∝ m4

πn5=2; ðB3Þ

with the particular dependence on n indicating that this is a
nontrivial beyond mean-field effect. The LHY contribution
is the first one in the series expansion nIa3, where a ¼
gM=ð4πÞ is the s-wave scattering length. Close to the
transition point and using the values of the coupling
constant and of the mass of the GP expansion, we find
that nIa3 ≪ 1 that means the diluition condition for any
γ ∈ ½1; 2�. However, the evaluation of the LHY term by
Eq. (B3) assumes that the GP expansion is reliable,
implying that 1 ≤ γ ≪ 2.
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For a general evaluation of he LHY correction in
the χPT context, we consider the vacuum contribution of
the NGB

ϵLHY ∝
1

2π2

Z
Λ

0

dpp2Eph; ðB4Þ

where Eph is the dispersion law of the NGB obtained
integrating out the radial fluctuations, see Eq. (A16). The
hard cutoff, Λ, takes into account that the NGB describes
the low-energy fluctuations below the mass scale, mχ , of
the radial field, see Eq. (A3). Taking for simplicity Λ ¼ mχ,
considering the expression of the speed of sound in
Eq. (A17), and that, close to the phase transition,
γ ≈ 1þ n=4, see Eq. (13), we find

ϵLHY ∝ m4
πn5=2; ðB5Þ

in agreement with Eq. (B3). In Fig. 5 we compare the
isospin number density evaluated in χPT (solid red line),
with that obtained including the LHY correction (dashed
blue line), as well as with the results of the lattice
simulations of Refs. [13,21,22] using the same value of
their pion mass, mπ ¼ 135 MeV, and of the pion decay
constant, fπ ¼ 133=

ffiffiffi
2

p
.

The χPT results systematically underestimate the num-
ber density. With the inclusion of the LHY term the
agreement slightly improves. The χPTþ LHY pressure

is always larger than the χPT one. However, the difference
between the two is extremely small.
Generalizing the previous discussion to the two-

component pion gases with the interaction term in
Eq. (22), it is clear that there are two relevant low-energy
contributions. One from the NGB, and one from the pseudo
NGB. Since the latter becomes tachyonic for k > 1, the
LHY contribution is ill-defined. Again, this is a signal that
the mean-field approximation breaks down for k > 1, and
thus the evaluation of the pressure of the system given by
the expression in Eq. (51) is incorrect.

[1] N. Cabibbo and G. Parisi, Phys. Lett. 59B, 67 (1975).
[2] K. Rajagopal and F. Wilczek, arXiv:hep-ph/0011333.
[3] M. G. Alford, A. Schmitt, K. Rajagopal, and T. Schafer,

Rev. Mod. Phys. 80, 1455 (2008).
[4] R. Anglani, R. Casalbuoni, M. Ciminale, N. Ippolito, R.

Gatto, M. Mannarelli, and M. Ruggieri, Rev. Mod. Phys. 86,
509 (2014).

[5] A. B. Migdal, Zh. Eksp. Teor. Fiz. 61, 2209 (1971).
[6] R. F. Sawyer, Phys. Rev. Lett. 29, 382 (1972).
[7] D. J. Scalapino, Phys. Rev. Lett. 29, 386 (1972).
[8] A. B. Migdal, Phys. Rev. Lett. 31, 257 (1973).
[9] J. Kogut and J. T. Manassah, Phys. Lett. 41A, 129 (1972).

[10] A. B. Migdal, E. Saperstein, M. Troitsky, and D.
Voskresensky, Phys. Rep. 192, 179 (1990).

[11] S. Shapiro and S. Teukolsky, Black Holes, White Dwarfs,
and Neutron Stars: The Physics of Compact Objects, A
Wiley-Interscience Publication (Wiley, New York, 1983).

[12] S. Carignano, L. Lepori, A. Mammarella, M. Mannarelli,
and G. Pagliaroli, Eur. Phys. J. A 53, 35 (2017).

[13] B. B. Brandt, G. Endrődi, E. S. Fraga, M. Hippert, J.
Schaffner-Bielich, and S. Schmalzbauer, Phys. Rev. D 98,
094510 (2018).

[14] J. O. Andersen and P. Kneschke, arXiv:1807.08951.
[15] M. G. Alford, A. Kapustin, and F. Wilczek, Phys. Rev. D 59,

054502 (1999).
[16] J. B. Kogut and D. K. Sinclair, Phys. Rev. D 66, 034505

(2002).
[17] W. Detmold, K. Orginos, and Z. Shi, Phys. Rev. D 86,

054507 (2012).
[18] W. Detmold, K. Orginos, M. J. Savage, and A. Walker-

Loud, Phys. Rev. D 78, 054514 (2008).
[19] P. Cea, L. Cosmai, M. D’Elia, A. Papa, and F. Sanfilippo,

Phys. Rev. D 85, 094512 (2012).
[20] G. Endrödi, Phys. Rev. D 90, 094501 (2014).
[21] B. B. Brandt, G. Endrodi, and S. Schmalzbauer, Phys.

Rev. D 97, 054514 (2018).
[22] B. B. Brandt, G. Endrodi, and S. Schmalzbauer, arXiv:

1811.06004.
[23] Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122, 345 (1961).
[24] S. P. Klevansky, Rev. Mod. Phys. 64, 649 (1992).
[25] M. Buballa, Phys. Rep. 407, 205 (2005).
[26] D. Toublan and J. Kogut, Phys. Lett. B 564, 212 (2003).
[27] A. Barducci, R. Casalbuoni, G. Pettini, and L. Ravagli,

Phys. Rev. D 69, 096004 (2004).

FIG. 5. Isospin number density as a function of the isospin
chemical potential for a single-component pion gas. The solid red
line corresponds to the LO χPT result. The dashed blue line is
obtained adding the LHY contribution. The dots correspond to
the lattice results of [13,21,22].

MULTICOMPONENT MESON SUPERFLUIDS IN CHIRAL … PHYS. REV. D 99, 096011 (2019)

096011-13

https://doi.org/10.1016/0370-2693(75)90158-6
http://arXiv.org/abs/hep-ph/0011333
https://doi.org/10.1103/RevModPhys.80.1455
https://doi.org/10.1103/RevModPhys.86.509
https://doi.org/10.1103/RevModPhys.86.509
https://doi.org/10.1103/PhysRevLett.29.382
https://doi.org/10.1103/PhysRevLett.29.386
https://doi.org/10.1103/PhysRevLett.31.257
https://doi.org/10.1016/0375-9601(72)91080-8
https://doi.org/10.1016/0370-1573(90)90132-L
https://doi.org/10.1140/epja/i2017-12221-x
https://doi.org/10.1103/PhysRevD.98.094510
https://doi.org/10.1103/PhysRevD.98.094510
http://arXiv.org/abs/1807.08951
https://doi.org/10.1103/PhysRevD.59.054502
https://doi.org/10.1103/PhysRevD.59.054502
https://doi.org/10.1103/PhysRevD.66.034505
https://doi.org/10.1103/PhysRevD.66.034505
https://doi.org/10.1103/PhysRevD.86.054507
https://doi.org/10.1103/PhysRevD.86.054507
https://doi.org/10.1103/PhysRevD.78.054514
https://doi.org/10.1103/PhysRevD.85.094512
https://doi.org/10.1103/PhysRevD.90.094501
https://doi.org/10.1103/PhysRevD.97.054514
https://doi.org/10.1103/PhysRevD.97.054514
http://arXiv.org/abs/1811.06004
http://arXiv.org/abs/1811.06004
https://doi.org/10.1103/PhysRev.122.345
https://doi.org/10.1103/RevModPhys.64.649
https://doi.org/10.1016/j.physrep.2004.11.004
https://doi.org/10.1016/S0370-2693(03)00701-9
https://doi.org/10.1103/PhysRevD.69.096004


[28] A. Barducci, R. Casalbuoni, G. Pettini, and L. Ravagli,
Phys. Rev. D 71, 016011 (2005).

[29] D. Ebert and K. G. Klimenko, Eur. Phys. J. C 46, 771
(2006).

[30] D. Ebert and K. G. Klimenko, J. Phys. G 32, 599 (2006).
[31] L.-Y. He, M. Jin, and P.-F. Zhuang, Phys. Rev. D 71, 116001

(2005).
[32] L. He, Phys. Rev. D 82, 096003 (2010).
[33] J. O. Andersen, W. R. Naylor, and A. Tranberg, Rev. Mod.

Phys. 88, 025001 (2016).
[34] P. Adhikari, J. O. Andersen, and P. Kneschke, Phys. Rev. D

95, 036017 (2017).
[35] P. Adhikari, J. O. Andersen, and P. Kneschke, Phys. Rev. D

98, 074016 (2018).
[36] S. Weinberg, Physica (Amsterdam) 96A, 327 (1979).
[37] A. Pich, in Probing the Standard Model of Particle

Interactions. Proceedings, Summer School in Theoretical
Physics, NATO Advanced Study Institute, 68th session, Les
Houches, France, 1997. Pt. 1, 2 (Elsevier, The Netherlands,
1998), pp. 949–1049, http://inspirehep.net/record/471518.

[38] B. R. Holstein, Nucl. Phys. A689, 135 (2001).
[39] H. Georgi, Weak Interactions and Modern Particle Theory,

Dover Books on Physics Series (Dover Publications,
New York, 2009).

[40] H. Leutwyler, Ann. Phys. (N.Y.) 235, 165 (1994).
[41] J. Gasser and H. Leutwyler, Ann. Phys. (N.Y.) 158, 142

(1984).
[42] S. Scherer, Adv. Nucl. Phys. 27, 277 (2003).
[43] G. Ecker, Prog. Part. Nucl. Phys. 35, 1 (1995).
[44] H. Leutwyler, Helv. Phys. Acta 70, 275 (1997).
[45] J. Kogut and D. Toublan, Phys. Rev. D 64, 034007 (2001).
[46] A. Mammarella and M. Mannarelli, Phys. Rev. D 92,

085025 (2015).
[47] S. Carignano, A. Mammarella, and M. Mannarelli, Phys.

Rev. D 93, 051503 (2016).
[48] S. Scherer and M. R. Schindler, arXiv:hep-ph/0505265.
[49] D. Son and M. A. Stephanov, Phys. Rev. Lett. 86, 592

(2001).
[50] J. B. Kogut, M. A. Stephanov, and D. Toublan, Phys. Lett. B

464, 183 (1999).
[51] J. B. Kogut, M. A. Stephanov, D. Toublan, J. J. M.

Verbaarschot, and A. Zhitnitsky, Nucl. Phys. B582, 477
(2000).

[52] S. Hands, I. Montvay, S. Morrison, M. Oevers, L. Scorzato,
and J. Skullerud, Eur. Phys. J. C 17, 285 (2000).

[53] J. B. Kogut, D. K. Sinclair, S. J. Hands, and S. E. Morrison,
Phys. Rev. D 64, 094505 (2001).

[54] T. Brauner, Mod. Phys. Lett. A 21, 559 (2006).

[55] V. V.Braguta, E.M. Ilgenfritz,A. Yu.Kotov,A. V.Molochkov,
and A. A. Nikolaev, Phys. Rev. D 94, 114510 (2016).

[56] P. Adhikari, S. B. Beleznay, and M. Mannarelli, Eur. Phys.
J. C 78, 441 (2018).

[57] A. Ramos, J. Schaffner-Bielich, and J. Wambach, Lect.
Notes Phys. 578, 175 (2001).

[58] J. Tuoriniemi, J. Martikainen, E. Pentti, A. Sebedash, S.
Boldarev, and G. Pickett, J. Low Temp. Phys. 129, 531
(2002).

[59] J. Rysti, J. Tuoriniemi, and A. Salmela, Phys. Rev. B 85,
134529 (2012).

[60] E. A. Cornell and C. E. Wieman, Rev. Mod. Phys. 74, 875
(2002).

[61] M. Lewenstein, A. Sanpera, and V. Ahufinger, Ultracold
Atoms in Optical Lattices: Simulating Quantum Many-Body
Systems (Oxford University Press, New York, 2012).

[62] M. Inguscio and L. Fallani, Atomic Physics: Precise
Measurements and Ultracold Matter (Oxford University
Press, New York, 2013).

[63] I. Ferrier-Barbut, M. Delehaye, S. Laurent, A. T. Grier, M.
Pierce, B. S. Rem, F. Chevy, and C. Salomon, Science 345,
1035 (2014).

[64] L. Lepori, A. Trombettoni, and W. Vinci, Europhys. Lett.
109, 50002 (2015).

[65] M. G. Alford, K. Rajagopal, and F. Wilczek, Nucl. Phys.
B537, 443 (1999).

[66] P. F. Bedaque and T. Schafer, Nucl. Phys. A697, 802
(2002).

[67] D. Kaplan and S. Reddy, Phys. Rev. D 65, 054042 (2002).
[68] A. Haber, A. Schmitt, and S. Stetina, Phys. Rev. D 93,

025011 (2016).
[69] A. Haber and A. Schmitt, Phys. Rev. D 95, 116016 (2017).
[70] A. F. Andreev and E. P. Bashkin, Zh. Eksp. Teor. Fiz. 69,

164 (1975).
[71] A. Smerzi, A. Trombettoni, P. G. Kevrekidis, and A. R.

Bishop, Phys. Rev. Lett. 89, 170402 (2002).
[72] B. D. Esry, C. H. Greene, J. P. Burke, Jr., and J. L. Bohn,

Phys. Rev. Lett. 78, 3594 (1997).
[73] D. S. Petrov, Phys. Rev. Lett. 115, 155302 (2015).
[74] S. Blundell,Magnetism in CondensedMatter, OxfordMaster

Series in Condensed Matter Physics (Oxford University
Press, New York, 2001).

[75] V. L. Ginzburg and L. D. Landau, Zh. Eksp. Teor. Fiz. 20,
1064 (1950).

[76] S. Carignano, M. Mannarelli, F. Anzuini, and O. Benhar,
Phys. Rev. D 97, 036009 (2018).

[77] T. D. Lee, K. Huang, and C. N. Yang, Phys. Rev. 106, 1135
(1957).

L. LEPORI and M. MANNARELLI PHYS. REV. D 99, 096011 (2019)

096011-14

https://doi.org/10.1103/PhysRevD.71.016011
https://doi.org/10.1140/epjc/s2006-02527-5
https://doi.org/10.1140/epjc/s2006-02527-5
https://doi.org/10.1088/0954-3899/32/5/001
https://doi.org/10.1103/PhysRevD.71.116001
https://doi.org/10.1103/PhysRevD.71.116001
https://doi.org/10.1103/PhysRevD.82.096003
https://doi.org/10.1103/RevModPhys.88.025001
https://doi.org/10.1103/RevModPhys.88.025001
https://doi.org/10.1103/PhysRevD.95.036017
https://doi.org/10.1103/PhysRevD.95.036017
https://doi.org/10.1103/PhysRevD.98.074016
https://doi.org/10.1103/PhysRevD.98.074016
https://doi.org/10.1016/0378-4371(79)90223-1
https://doi.org/10.1016/S0375-9474(01)00828-4
https://doi.org/10.1006/aphy.1994.1094
https://doi.org/10.1016/0003-4916(84)90242-2
https://doi.org/10.1016/0003-4916(84)90242-2
https://doi.org/10.1007/b100519
https://doi.org/10.1016/0146-6410(95)00041-G
https://doi.org/10.1103/PhysRevD.64.034007
https://doi.org/10.1103/PhysRevD.92.085025
https://doi.org/10.1103/PhysRevD.92.085025
https://doi.org/10.1103/PhysRevD.93.051503
https://doi.org/10.1103/PhysRevD.93.051503
http://arXiv.org/abs/hep-ph/0505265
https://doi.org/10.1103/PhysRevLett.86.592
https://doi.org/10.1103/PhysRevLett.86.592
https://doi.org/10.1016/S0370-2693(99)00971-5
https://doi.org/10.1016/S0370-2693(99)00971-5
https://doi.org/10.1016/S0550-3213(00)00242-X
https://doi.org/10.1016/S0550-3213(00)00242-X
https://doi.org/10.1007/s100520000477
https://doi.org/10.1103/PhysRevD.64.094505
https://doi.org/10.1142/S0217732306019657
https://doi.org/10.1103/PhysRevD.94.114510
https://doi.org/10.1140/epjc/s10052-018-5934-6
https://doi.org/10.1140/epjc/s10052-018-5934-6
https://doi.org/10.1007/3-540-44578-1
https://doi.org/10.1007/3-540-44578-1
https://doi.org/10.1023/A:1021468614550
https://doi.org/10.1023/A:1021468614550
https://doi.org/10.1103/PhysRevB.85.134529
https://doi.org/10.1103/PhysRevB.85.134529
https://doi.org/10.1103/RevModPhys.74.875
https://doi.org/10.1103/RevModPhys.74.875
https://doi.org/10.1126/science.1255380
https://doi.org/10.1126/science.1255380
https://doi.org/10.1209/0295-5075/109/50002
https://doi.org/10.1209/0295-5075/109/50002
https://doi.org/10.1016/S0550-3213(98)00668-3
https://doi.org/10.1016/S0550-3213(98)00668-3
https://doi.org/10.1016/S0375-9474(01)01272-6
https://doi.org/10.1016/S0375-9474(01)01272-6
https://doi.org/10.1103/PhysRevD.65.054042
https://doi.org/10.1103/PhysRevD.93.025011
https://doi.org/10.1103/PhysRevD.93.025011
https://doi.org/10.1103/PhysRevD.95.116016
https://doi.org/10.1103/PhysRevLett.89.170402
https://doi.org/10.1103/PhysRevLett.78.3594
https://doi.org/10.1103/PhysRevLett.115.155302
https://doi.org/10.1103/PhysRevD.97.036009
https://doi.org/10.1103/PhysRev.106.1135
https://doi.org/10.1103/PhysRev.106.1135

